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Health and Wellbeing

 Increasing importance of health and wellbeing
— Higher life and longevity expectations
— Accessibility (disability) awareness
— Mental health awareness
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Health and Wellbeing

» Current health care systems difficult to sustain

— Unfavourable demographic trends
» More elderly people who need more care

— Increased waiting times
— Growing cost of healthcare

— Lack of healthcare personnel, especially in certain
developing countries

— General treatments are often inefficient
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Next Stop: Personalised Healthcare

 One-size-fits-all treatments are ineffective -
adapt the treatment to an individual!

Percentage of the patient population for which a particular drug
in a class is ineffective, on average
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Next Stop: Preventive Healthcare

* Preventable causes of death are taking tens of
millions of lives every year
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Obstacles to Preventive Personalised

Healthcare
« Health state prediction is difficult

» Health state monitoring does not scale to
a larger population

» Personalisation requires fine-grain information
we don’t have time to collect

» Selecting the right treatment has to take into
account numerous factors

- Remote therapies are difficult to deliver
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Mobile Sensing for Personalised Preventive
Healthcare

* Mobile computing technology:
— Ubiquitous
» >3 billion smartphones in the world
— Used anytime/anywhere
— Highly personal

— Sensor-enabled
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Prediction & Monitoring
Use Case: Depression

e “Trajectories of Depression: Unobtrusive Monitoring of Depressive States by
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Impact of Depression

* In developed countries up to 90% of people who
die by suicide are affected by mental disorders

* Depression is the most common mental
disorder associated with suicidal behaviour

* Depressive disorders have a strong negative
economic impact

University of Ljiubljana
Faculty of Computer and
Information Science




Depression Diagnosis and Monitoring

 Based on self-assessment questionnaires

—_ P H Q'8 Over the last 2 weeks, how often have you been bothered by any of the following problems?
(circle one number on each line)

More than
How often during the past 2 Not Several half Nearly
weeks were you bothered by... at all days the days every day
1. Little interest or pleasure in
doiNg thINGS :snmnmmsnmnnainienmsamans 0 1 2 3
2. Feeling down, depressed, or hopeless.............. 0 1 2 3
3. Trouble falling or staying asleep, or
SleepINGtOOMUCH oovcvsan 0 1 2 3
4. Feeling tired or having little energy.................... 0 1 2 3
5. Poor appetite or overeating..........cccceeeeeeeneennnnn. 0 1 2 3
6. Feeling bad about yourself, or that you
are a failure, or have let yourself or
VOUE Tamily dOWI v snsrn s 0 1 2 3
7. Trouble concentrating on things, such as
reading the newspaper or watching
| teleViSION s 0 1 2 3
S
Bl 8. Moving or speaking so slowly that other
LidlLlL : ; ; ; eople could have noticed. Or the opposite —
University of Ljubljana E op e | F;,p
Faculty of Computer and SlAg ~omdgoly oF fcoti Sl Yol Nans
: been moving around a lot more than usual ....... 0 1 2 3
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Depression Diagnosis and Monitoring

Based on self-assessment questionnaires

Disadvantages:

— Time consuming

— Expensive

— Self-reflections are prone to errors

ldea: use mobile sensing for depression
diagnosis and monitoring
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Mobility Traces

 Previous interview-based studies have shown
that depression leads to a change in mobility
and activity levels

« Smartphones allow
continuous location
monitoring

» Potential of automated \
mobility trace collection ~.. -
for depression ‘
inference/prediction?
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Mobility Traces and Depression Prediction

« Can the mobility trace from Feb 20t till Feb 25t
predict the PHQ score on:

— Feb 25t?
— Feb 28th?
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Mobility Traces — Features

« Mobility trace is a sequence of stops and moves

« Extracted mobility metrics:
— The total distance covered
— The maximum distance between two locations

— The radius of gyration

» The deviation from the centroid of the places
visited in an interval

— The standard deviation of the displacements
— The maximum distance from home
— The number of different places visited
—++ — The number of different significant places visited

B University of Ljubljana
Faculty of Computer and
Information Science




Mobility Traces — Features

« Mobility trace is a sequence of stops and moves

« Extracted mobility metrics:

— The routine index

» Quantifying how different the places visited by the user
during the time interval [t,, t,] are with respect to the places
visited by the user during the same time interval in other
days.
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Data Collection App — Mood Traces

» Android app collecting:
— Fine-grain location data in the background
— PHQ-8 answers

(for ground truth onIy) g S

* Location sensing
IS power hungry Walking

— State machine for s
energy-optimised
location sensing
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Data Sample

* Users:
— 28 participants
* 15 male, 13 female
« On the average monitored for 71 day

— Varying PHQ score

. Histogram of the average PHQ scores of the user

Number of users
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Data Preprocessing

* Mobility features:
— Calculate stop points (centroids)
— Calculate features for last N days

— Subtract the average feature value for that interval of
the day

 PHQ scores:
— Get rid of “fake” answers: trap question, speed check
— Calculate the deviation from the mean behaviour
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Mobility — PHQ Score
Correlation Analysis

* Modest link between mobility metrics and the
PHQ score, if aggregate data are analysed

« Stronger when a longer interval is considered

- . Average abs. correlation Average p-value
Mobility metric Taist =1 | Turst =14 | Tyrsr =1 | TyrsT = 14
Dt 0.159 0.402 0.401 0.095
Dy 0.152 0.432 0.425 0.069
G 0.160 0.343 0.422 0.197
Tdis 0.147 0.417 0.431 0.088
Ll 0.199 0.358 0.297 0.168
Naif 0.191 0.360 0.335 0.157
Nsig 0.201 0.336 0.385 0.181
R 0.227 0.368 0.262 0.138
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Mobility — PHQ Score
Correlation Analysis

* For some individuals, the link is stronger

 Different individuals exhibit different changes of
mobility metrics when PHQ score changes

Histograms correlation and p values for different metrics (T =14 and THOR =0)
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Mobility — PHQ Score
Prediction Power

* Predict whether the PHQ score will jump to
above one standard deviation from that person’s

mean PHQ
« Train on Ty g7 data, predict at Tgrin future

PHQ
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Mobility — PHQ Score
Prediction Power

e Classifier:
— SVM with a Gaussian radial basis function kernel
— Personal classifier for each user

N
— General classifier for all users o
. Why is this
« Performance metrics: impractical?
— Sensitivity (true positive) J

— Specificity (true negative)
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Mobility — PHQ Score
Prediction Power

Histograms sensitivity for different values of THIST (THOR =0)
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Mobility — PHQ Score
Prediction Power
« General (unique) depression prediction model

Average sensitivity and specificity vs. T, - (T, .o =0)
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Mobile Sensing for Depression

Prediction

« Potential means for automated early depression
warning

 Relatively low sensitivity
— Certain depression onsets will not be recognised

* Feature engineering

— Mobility behaviour connected with depression can be
complex and difficult to formalise

— Do we know that the features are good?
— Can we construct more informative features?
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