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Brachistochrone problem
Problem: Given points A and B what is the fastest path of a mass starting
in A and ending in B, being accelerated only by gravity? We assume no
friction is present.

BASICS OF CALCULUS OF VARIATIONS

MARKUS GRASMAIR

1. Brachistochrone problem

The classical problem in calculus of variation is the so called brachistochrone
problem1 posed (and solved) by Bernoulli in 1696. Given two points A and B,
find the path along which an object would slide (disregarding any friction) in the
shortest possible time from A to B, if it starts at A in rest and is only accelerated
by gravity (see Figure 1).
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Figure 1. Sketch of the brachistochrone problem.

This is obviously an optimization problem—after all, we want to minimize travel
time—, but the minimization takes place over all possible paths from A to B. Thus
we cannot expect this problem to fall directly into the (finite dimensional) setting
we have discussed previously.

First, we will need a good mathematical model of this problem. We may assume
without loss of generality that the point A is at the origin, that is, A = (0, 0). Next
we write the point B as B = (a, b). We may assume that a > 0, that is, the point
B lies to the right of A; if a < 0, we could simply reflect the whole setup around
the y-axis, and for a = 0 the solution is trivial (if B is directly below A, then free
fall is the optimal path). In order to simplify the notation in the long run, we
now assume that the y-axis points downwards (dealing only with positive numbers
will make life much easier). Then we can additionally assume that b > 0; else the
end point of the path lies above the starting point, and no physical solution of the
problem is possible.

Next, it seems plausible that we can write the path we look for as a curve of the
form

x 7→
(

x
y(x)

)
with y : (0, x)→ R satisfying y(0) = 0 and y(a) = b. Doing so, we actually exclude
a large number of possible paths (all those that pass the same x-coordinate more

Date: April 2015.
1The term is composed of the greek words brachistos meaning shortest and chronos meaning

time. Thus it literally translates to shortest time problem.
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I We denote A = (0, 0) and B = (b, 0). We are searching for a curve

y(x) : [0, b]→ R.
I Law of conservation of energy:

Potential energy + Kinetic energy=constant
1

2
mv(x)2 = mgy(x) ⇒ v(x) =

√
2gy(x).
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I Let s(x) be the arc length of the curve from A to (x , y(x)). We have:

s(x) =

∫ x

0

√
1 + y ′(x)2dx

and hence

s ′(x) =
ds

dx
=
√

1 + y ′(x)2.

I Let T (y) be the travel time along the curve {(x , y(x)) : x ∈ [0, b]}.
We have:

T (y) =

∫ T (y)

0
dt =

∫ s(b)

0

ds

v(s)
=

∫ b

0

√
1 + y ′(x)√

2gy(x)
dx .

I We need to minimize the functional T (y) : C [0, b]→ R on the vector
space of continuous functions on [0, b].

Theorem (Euler-Lagrange equation)

If y∗ is the solution of the minimization problem miny∈C [0,b] T (y), then it
satisfies the equation

∂

∂y
f (x , y(x), y ′(x)) =

d

dx

∂

∂y ′
f (x , y(x), y ′(x)).

3/14



Applying Euler-Lagrange equations for the brachistochrone problem, we
come to the differential equation

y ′ =

√
C − y

y
for some constant C .

Separation of variables: √
y

C − y
dy = dx .

Integrating both sides and using the substitution y = C sin2(t) we get

x(t) = C

(
t − 1

2
sin 2t

)
, y(t) = C

(
1

2
− 1

2
cos 2t

)
,

which is the cycloide.

For those who want to know more:

https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf

https://www.youtube.com/watch?v=Cld0p3a43fU
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Curvature

1. Intuitively we would like to measure for what amount does the curve
deviate from being the straight line.

2. For the circle of radius R we would like that the curvature is
proportional to 1/R.

The curvature κ(t) of a smooth curve f (t) at a point t = a is the rate of

change of the unit tangent vector T (t) =
f ′(t)

‖f ′(t)‖
:

κ(t) =

∥∥∥∥ 1

ds/dt
T ′(t)

∥∥∥∥ .
If the curve is parametrized by the arc length s, i.e., ‖f ′(s)‖ = 1, then this
is simply

κ(s) =
∥∥f ′′(s)

∥∥
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Problem: what is the curvature of a circle with radius a?

The natural parametrization of the circle is f (s) =

[
a cos(s/a)
a sin(s/a)

]
, so

f ′(s) =

[
− sin(s/a)
cos(s/a)

]
and f ′′(s) =

[
− cos(s/a)/a
− sin(s/a)/a

]
.

The curvature
κ(s) = ‖f ′′(s)‖ = 1/a

is constant along the circle.

I As a→∞, the circle goes towards a line and κ→ 0.

I On the other hand, as a→ 0, the circle goes towards a point and
κ→∞.
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Problem: designing roads and railways

Roads, railway bends, roller coaster
loops, the ski jump in Planica . . . are
designed so that the transitions from
the straight to the circular parts are
as smooth as possible.

The force acting on a moving point on the curve (car, train, ski jumper,. . . )
increases and decreases as evenly as possible.

The transition curve from

I the straight part (with curvature 0) to

I the circular part (with curvature a > 0)

has several names: clotoid, Euler spiral, Cornu

spiral . . .

Its characteristic property is that the curvature κ(s) is a linear function of
arc length s.
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Let us find its arc length parametrization f (s). Assume that
κ(s) = ‖f ′′(s)‖ = 2s.

Remember that the arc length parametrization is the unit speed
parametrization, so ‖f ′(s)‖ = 1 and so f ′(s) can be written in the form

f ′(s) =

[
x ′(s)
y ′(s)

]
=

[
cosϕ(s)
sinϕ(s)

]
.

This gives

κ(s) =
√

x ′′(s)2 + y ′′(s)2 = ϕ′(s) = 2s, ϕ(s) = s2,

x ′(s) = cos(s2), y ′(s) = sin(s2),

so

x(s) =

∫ s

0
cos(u2) du, y(s) =

∫ s

0
sin(u2) du
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The functions

x(s) =

∫ s

0
cos(u2) du = C (s), y(s) =

∫ t

0
sin(u2) du = S(s)

are nonelementary functions called the Fresnel integrals

Fresnel integrals clotoid
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Plane curves

For a plane curve f (t) =

[
x(t)
y(t)

]
the tangent at a regular point f (a) is

I the vertical line
x = x(a)

if x ′(a) = 0 and y ′(a) 6= 0,

I the line

y − y(a) =
y ′(a)

x ′(a)
(x − x(a))

if x ′(a) 6= 0,

I the horizontal line
y = y(a)

if y ′(a) = 0 and x ′(a) 6= 0.
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Plotting a parametric plane curve

Here is a general strategy:

I find the asymptotic behaviour: lim
t→∞

f (t), lim
t→−∞

f (t)

I find intersections with coordinate axes: solve y(t) = 0 and x(t) = 0

I find points where the tangent is vertical or horizontal: solve x ′(t) = 0 and y ′(t) = 0

I find self-intersections: solve f (t) = f (s), t 6= s

I and the two tangents there

I look for other helpful features . . .

I connect points r(t) = f (t) by increasing t
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Problem: find the self-intersection (if there is one) of a parametric curve

Let f (t) =

[
t3 − 2t
t2 − t

]

A self-intersection is at a point f (t) = f (s), with t 6= s, so:

t3 − 2t = s3 − 2s and t2 − t = s2 − s

⇒ t3 − s3 = 2t − 2s and t2 − s2 = t − s

Since t 6= s we can divide by t − s:

t2 + ts + s2 = 2 and t + s = 1

⇒ t = 1− s and (1− s)2 + s(1− s) + s2 = 2.

The self-intersection (where s and t can be interchanged) is at

s = (1 +
√

5)/2, t = (1−
√

5)/2, f (t) = f (s) =

[
1
1

]
.
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Problem: do two parametric curves intersect. Imagine two cars speeding
along the two curves. Do they crash?

Let f1(t) =

[
t2 − 1

−t3 − t2 + t + 1

]
, f2(s) =

[
s − 1
1− s2

]
.

To find the intersections, solve the system

t2 − 1 = s − 1 and − t3 − t2 + t + 1 = 1− s2

⇒ s = t2 and − s6 − s4 + s2 + 1 = 1− s2

There are three solutions:

t = −1, s = 1 ⇒ x = 0, y = 0
t = 0, s = 0 ⇒ x = −1, y = 1
t = 1, s = 1 ⇒ x = 0, y = 0

The cars meet at t = 0, s = 0 at the point (−1, 1) and at t = 1, s = 1 at the point (0, 0).
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Problem: plot f (t) =

[
t2 − 1

−t3 − t2 + t + 1

]
, f ′(t) =

[
2t

−3t2 − 2t + 1

]

I Asymptotic behaviour: lim
t→∞

f (t) =

[
∞
−∞

]
, lim
t→−∞

f (t) =

[
∞
∞

]
,

I intersections with axes:t = ±1, at
(0, 0)
this is also a self-intersection

I the two tangent lines at (0, 0)
I at t = −1: y = 0,

I at t = 1: y = −2x

I vertical tangent: t = 0 at (−1, 1)

I horizontal tangent
I at t1 = −1, y = 0,

I at t2 = 1/3, y = 32/27
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