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Problem: What path does the valve on your bicycle wheel trace as you bike
along a straight road?

Represent the wheel as a circle of radius a rolling along the x-axis, the valve
as a fixed point on the circle, the parameter is the angle of rotation:

The curve is a cycloid: x(θ) = aθ − a sin θ, y(θ) = a− a cos θ.
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The following parametric curves all describe the circle with radius a around
the origin (as well as many others):

f1(t) =

[
a sin t
a cos t

]
, t ∈ [0, 2π]

f2(t) =

[
a cos 2t
a sin 2t

]
, t ∈ [0, 2π]

f3(t) =

[
a cos t
a sin t

]
, t ∈ R
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Derivative, linear approximation, tangent

The derivative of the vector function f (t) =

 x1(t)
...

xm(t)

 at the point a is

the vector:

Df (a) =

 x ′1(a)
...

x ′m(a)

 = f ′(a) = lim
h→0

1

h
(f (a + h)− f (a))

The vector f ′(a) (if it exists) represents the velocity vector of a point
moving along the curve at the point t = a.

If f ′(a) 6= 0 it points in the direction of the tangent at t = a.
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The linear approximation of the function f at t = a is

La(t) = f (a) + (t − a)f ′(a)

I If f ′(a) 6= 0, this is a parametric line corresponding to the tangent line
to the curve f (t) at t = a. In this case f (a) is a regular point of the
parametrization.

I If f ′(a) = 0 (or if it does not exist), the parametrization of the curve is
singular in the point f (a).

I A curve C ∈ Rm is smooth at a point P on C if there exists a
parametrization f (t) of C , such that f (a) = P and f ′(a) 6= 0.

I A smooth curve has a tangent at every point P ∈ C .
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Problem: Is the curve C = {f (t), t ∈ [0,
√

2π]},

f (t) =

[
cos(t2)
sin(t2)

]
, smooth?

Since x2 + y2 = 1, f (t) is a parametrization of the unit circle which is a
smooth curve (it has a tangent at every point).

Since f ′(0) = 0 the parametrization f is singular in the point (1, 0).

However, a smooth parametrization exists. Can you find it?
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Problem: Is the cycloid a smooth curve?

Our parametrization

f (t) =

[
t − sin t
1− cos t

]
, f ′(t) =

[
1− cos t

sin t

]
is not smooth at t = 2kπ since f ′(2kπ) = 0.

Does a tangent exist?
The slope of the tangent line at a point f (t) is:

kt =
y ′(t)

x ′(t)
=

sin t

1− cos t

The left and right limits as t → 2kπ are

lim
t↗2kπ

kt = lim
t↗2kπ

cos t

sin t
= −∞, limt↘2kπkt = lim

t↘2kπ

cos t

sin t
=∞,

so at these points the curve forms a sharp spike (a cusp) and a tangent does not exist.

So, the cycloid is not smooth at the points where it touches the x axis.

(l’Hospital’s rule was used to compute the limits.)
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Arc length and the natural parametrization

The arc length s of a parametric curve f (t), t ∈ [a, b], in Rm is the length
of the curve between the points t = a in t = b, i.e. the distance covered by
a point moving along the curve between these two points.

Example
For example, what distance does a point on the circle cover when the circle makes one
full turn?

Proposition

The arc length s of a parametric curve f (t) between the points t = a and
t = b is given by

s =

∫ b

a
‖f ′(t)‖ dt.
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Proof of the Proposition
An aproximate value for s is the length of a polygonal curve connecting close enough
points on the curve:

sn =
n∑

i=1

‖f (ti )− f (ti−1)‖

=
n∑

i=1

‖f ′(ti−1)‖∆t

→n→∞

∫ b

a

‖f ′(t)‖ dt

where:

I The value f (ti ) = f (ti−1 + ∆t), where ∆t = ti − ti−1, was approximated as
f (ti ) = f (ti−1) + f ′(ti−1)∆t and hence f (ti ) = f (ti−1) + f ′(ti−1)∆t. (Under the
assumption that f ′ is continuous.

I In the last line we used that the sum represents a Riemannian sum of the function
‖f ′(t)‖.

I For n big enough, sn is a practical approximation for s.
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Problem: The length of the path traced by a point on the circle after a full turn?

A parametrization is f (t) =

[
t − sin t
1− cos t

]
and hence:

s =

∫ 2π

0

√
(1− cos t)2 + sin2 t dt =

∫ 2π

0

√
2− 2 cos t dt =

∫ 2π

0

√
4 sin2(t/2) dt

=

∫ 2π

0

2 sin(t/2) dt = −4(cos(π)− cos(0)) = 8.

Problem: What is the arc length of the helix f (t) =

a cos t
a sin t
bt

, 0 ≤ t ≤ 2π?

Problem: The circumference of the elipse

[
a cos t
b sin t

]
, a 6= b?

∫ 2π

0

√
a2 sin2 t + b2 cos2 t dt = 4a

∫ π/2

0

√
1− e2 sin2 t dt = 4aE(e)

where e =
√

1− (b/a)2 is its eccentricity and the function E is the nonelementary elliptic
integral of 2nd kind. It can be computed numerically, which is briefly explained in the
next few slides.
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Numerical integration

The integral
∫ b

a
f (x) dx can be approximated by a linear approximation of f over the

interval [a, b] and computing the area of the trapezoid formed.

∫ b

a

f (x) dx ≈ f (a) +
f (b)− f (a)

b − a
(x − a) =: T (b − a)

Of course the error of this approximation is usually large and we are not satisfied. How do

we estimate how good is this approximation?
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Adaptive trapezoid rule (integral(· · · ) in Matlab)
1. T (b − a) = f (a) + f (b)−f (a)

b−a
(x − a).

2. We add another point in the middle of the interval, i.e., x = a+b
2

and compute the
sum of the areas of two trapezoids formed:

T ((b − a)/2) =
1

2
T (b − a) +

b − a

2
· f ((a + b)/2).

3. If e := |T (b − a)− T ((b − a)/2)| is smaller than the tolerance tol , we are satisfied
and return T ((b − a)/2).

4. Otherwise we have to repeat the procedure on each of the subintervals
[a, (a + b)/2] and [(a + b)/2, b], where the tolerance on each of them must be
smaller than tol/2.

5. We can implement this recursively, obtaining the so called adaptive trapezoid rule,
where on different subintervals of [a, b] different number of recursions is needed
(this depends on the behaviour of the function f ).
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Natural parametrization

The arc length from the initial t = a to an arbitrary t = T

s(t) =

∫ t

a
‖f ′(u)‖ du

is an increasing function of t if f is a smooth parametrization, so it has an
inverse

t(s) : [0, s(T )]→ [a,T ].

So, the original parameter t can be expressed as a funcion of the arc length
s.

Inserting this into the parametrization gives the same curve with a different
parametrization:

g(s) = f (t(s)).

The arc length s is called the natural parameter of the curve.
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Proposition

A curve C is parametrized with the natural parameter s satisfies

‖g ′(s)‖ = 1, (1)

i.e., the length of the velocity vector is 1 at every point and so a
parametrization with the natural parameter is the unit speed
parametrization.

Proof. Indeed,

g ′(s) =
dg

ds
(s) =

d(f ◦ t)

ds
(s) =

df

dt
(t(s)) · dt

ds
(s) = f ′(t(s))t′(s). (2)

Now note that by the fundamental theorem of calculus we have that

s ′(t) = ‖f ′(t)‖
and hence

t′(s) =
1

‖f ′(t(s))‖ .

Plugging this into (2) we get

g ′(s) =
f ′(t(s))

‖f ′(t(s))‖ ,

which is equivalent to (1).
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Example

The standard parametrization of the circle

f (t) =

[
a cos t
a sin t

]
is not the natural parametrization if a 6= 1, since

‖f ′(t)‖ =
√

a2 cos2 t + a2 sin2 t = a 6= 1.

Since

s(t) =

∫ t

0
a dt = at,

it follows that t = s/a and the natural parametrization is

g(s) =

[
a cos(s/a)
a sin(s/a)

]
.
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Remember:

A parametric curve: f (t) =

x1(t)
...

xm(t)

,

t ∈ I ⊂ R,

The derivative f ′(t) =

x
′
1(t)
...

x ′m(t)


is the velocity vector or
tangent vector if f ′(t) 6= 0,

The image C = {f (t), t ∈ I}: a (geometric) curve in Rm.A curve C has many
parametrizations.

The arc length parametrization or natural parametrization f (s):
s is the length of the chord from f (a) to f (s), ‖f ′(s)‖ = 1.
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