Mathematical modelling

Lecture 6, March 22, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

Problem: What path does the valve on your bicycle wheel trace as you bike along a straight road?

Represent the wheel as a circle of radius a rolling along the x-axis, the valve as a fixed point on the circle, the parameter is the angle of rotation:

The curve is a cycloid: $x(\theta)=a \theta-a \sin \theta, y(\theta)=a-a \cos \theta$.

The following parametric curves all describe the circle with radius a around the origin (as well as many others):

$$
\begin{aligned}
& f_{1}(t)=\left[\begin{array}{c}
a \sin t \\
a \cos t
\end{array}\right], t \in[0,2 \pi] \\
& f_{2}(t)=\left[\begin{array}{c}
a \cos 2 t \\
a \sin 2 t
\end{array}\right], t \in[0,2 \pi] \\
& f_{3}(t)=\left[\begin{array}{c}
a \cos t \\
a \sin t
\end{array}\right], t \in \mathbb{R}
\end{aligned}
$$

Derivative, linear approximation, tangent

The derivative of the vector function $f(t)=\left[\begin{array}{c}x_{1}(t) \\ \vdots \\ x_{m}(t)\end{array}\right]$ at the point a is the vector:

$$
D f(a)=\left[\begin{array}{c}
x_{1}^{\prime}(a) \\
\vdots \\
x_{m}^{\prime}(a)
\end{array}\right]=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{1}{h}(f(a+h)-f(a))
$$

The vector $f^{\prime}(a)$ (if it exists) represents the velocity vector of a point moving along the curve at the point $t=a$.

If $f^{\prime}(a) \neq 0$ it points in the direction of the tangent at $t=a$.

The linear approximation of the function f at $t=a$ is

$$
L_{a}(t)=f(a)+(t-a) f^{\prime}(a)
$$

- If $f^{\prime}(a) \neq \mathbf{0}$, this is a parametric line corresponding to the tangent line to the curve $f(t)$ at $t=a$. In this case $f(a)$ is a regular point of the parametrization.
- If $f^{\prime}(a)=\mathbf{0}$ (or if it does not exist), the parametrization of the curve is singular in the point $f(a)$.
- A curve $C \in \mathbb{R}^{m}$ is smooth at a point P on C if there exists a parametrization $f(t)$ of C, such that $f(a)=P$ and $f^{\prime}(a) \neq 0$.
- A smooth curve has a tangent at every point $P \in C$.

Problem: Is the curve $C=\{f(t), t \in[0, \sqrt{2 \pi}]\}$,

 $f(t)=\left[\begin{array}{c}\cos \left(t^{2}\right) \\ \sin \left(t^{2}\right)\end{array}\right]$, smooth?

Since $x^{2}+y^{2}=1, f(t)$ is a parametrization of the unit circle which is a smooth curve (it has a tangent at every point).

Since $f^{\prime}(0)=\mathbf{0}$ the parametrization f is singular in the point $(1,0)$.
However, a smooth parametrization exists. Can you find it?

Our parametrization

$$
f(t)=\left[\begin{array}{c}
t-\sin t \\
1-\cos t
\end{array}\right], \quad f^{\prime}(t)=\left[\begin{array}{c}
1-\cos t \\
\sin t
\end{array}\right]
$$

is not smooth at $t=2 k \pi$ since $f^{\prime}(2 k \pi)=\mathbf{0}$.
Does a tangent exist?
The slope of the tangent line at a point $f(t)$ is:

$$
k_{t}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\sin t}{1-\cos t}
$$

The left and right limits as $t \rightarrow 2 k \pi$ are

$$
\lim _{t \nearrow 2 k \pi} k_{t}=\lim _{t \nearrow 2 k \pi} \frac{\cos t}{\sin t}=-\infty, \quad \lim _{t \searrow 2 k \pi} k_{t}=\lim _{t \searrow 2 k \pi} \frac{\cos t}{\sin t}=\infty
$$

so at these points the curve forms a sharp spike (a cusp) and a tangent does not exist.
So, the cycloid is not smooth at the points where it touches the x axis.

Arc length and the natural parametrization

The arc length s of a parametric curve $f(t), t \in[a, b]$, in \mathbb{R}^{m} is the length of the curve between the points $t=a$ in $t=b$, i.e. the distance covered by a point moving along the curve between these two points.

Example

For example, what distance does a point on the circle cover when the circle makes one full turn?

Proposition

The arc length s of a parametric curve $f(t)$ between the points $t=a$ and $t=b$ is given by

$$
s=\int_{a}^{b}\left\|f^{\prime}(t)\right\| d t
$$

Proof of the Proposition

An aproximate value for s is the length of a polygonal curve connecting close enough points on the curve:

$$
\begin{aligned}
s_{n} & =\sum_{i=1}^{n}\left\|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right\| \\
& =\sum_{i=1}^{n}\left\|f^{\prime}\left(t_{i-1}\right)\right\| \Delta t \\
& \rightarrow_{n \rightarrow \infty} \int_{a}^{b}\left\|f^{\prime}(t)\right\| d t
\end{aligned}
$$

where:

- The value $f\left(t_{i}\right)=f\left(t_{i-1}+\Delta t\right)$, where $\Delta t=t_{i}-t_{i-1}$, was approximated as $f\left(t_{i}\right)=f\left(t_{i-1}\right)+f^{\prime}\left(t_{i-1}\right) \Delta t$ and hence $f\left(t_{i}\right)=f\left(t_{i-1}\right)+f^{\prime}\left(t_{i-1}\right) \Delta t$. (Under the assumption that f^{\prime} is continuous.
- In the last line we used that the sum represents a Riemannian sum of the function $\left\|f^{\prime}(t)\right\|$.
- For n big enough, s_{n} is a practical approximation for s.

Problem: The length of the path traced by a point on the circle after a full turn?

A parametrization is $f(t)=\left[\begin{array}{c}t-\sin t \\ 1-\cos t\end{array}\right]$ and hence:

$$
\begin{aligned}
s & =\int_{0}^{2 \pi} \sqrt{(1-\cos t)^{2}+\sin ^{2} t} d t=\int_{0}^{2 \pi} \sqrt{2-2 \cos t} d t=\int_{0}^{2 \pi} \sqrt{4 \sin ^{2}(t / 2)} d t \\
& =\int_{0}^{2 \pi} 2 \sin (t / 2) d t=-4(\cos (\pi)-\cos (0))=8
\end{aligned}
$$

Problem: What is the arc length of the helix $f(t)=\left[\begin{array}{c}a \cos t \\ a \sin t \\ b t\end{array}\right], 0 \leq t \leq 2 \pi$?
Problem: The circumference of the elipse $\left[\begin{array}{l}a \cos t \\ b \sin t\end{array}\right], a \neq b$?

$$
\int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} d t=4 a \int_{0}^{\pi / 2} \sqrt{1-e^{2} \sin ^{2} t} d t=4 a \mathrm{E}(e)
$$

where $e=\sqrt{1-(b / a)^{2}}$ is its eccentricity and the function E is the nonelementary elliptic integral of 2nd kind. It can be computed numerically, which is briefly explained in the next few slides.

Numerical integration

The integral $\int_{a}^{b} f(x) d x$ can be approximated by a linear approximation of f over the interval $[a, b]$ and computing the area of the trapezoid formed.

$$
\int_{a}^{b} f(x) d x \approx f(a)+\frac{f(b)-f(a)}{b-a}(x-a)=: T(b-a)
$$

Of course the error of this approximation is usually large and we are not satisfied. How do we estimate how good is this approximation?

Adaptive trapezoid rule (integral(...) in Matlab)

1. $T(b-a)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$.
2. We add another point in the middle of the interval, i.e., $x=\frac{a+b}{2}$ and compute the sum of the areas of two trapezoids formed:

$$
T((b-a) / 2)=\frac{1}{2} T(b-a)+\frac{b-a}{2} \cdot f((a+b) / 2)
$$

3. If $e:=|T(b-a)-T((b-a) / 2)|$ is smaller than the tolerance $t o$, we are satisfied and return $T((b-a) / 2)$.
4. Otherwise we have to repeat the procedure on each of the subintervals $[a,(a+b) / 2]$ and $[(a+b) / 2, b]$, where the tolerance on each of them must be smaller than tol/2.
5. We can implement this recursively, obtaining the so called adaptive trapezoid rule, where on different subintervals of $[a, b]$ different number of recursions is needed (this depends on the behaviour of the function f).

Natural parametrization

The arc length from the initial $t=a$ to an arbitrary $t=T$

$$
s(t)=\int_{a}^{t}\left\|f^{\prime}(u)\right\| d u
$$

is an increasing function of t if f is a smooth parametrization, so it has an inverse

$$
t(s):[0, s(T)] \rightarrow[a, T] .
$$

So, the original parameter t can be expressed as a funcion of the arc length s.

Inserting this into the parametrization gives the same curve with a different parametrization:

$$
g(s)=f(t(s))
$$

The arc length s is called the natural parameter of the curve.

Proposition

A curve C is parametrized with the natural parameter s satisfies

$$
\begin{equation*}
\left\|g^{\prime}(s)\right\|=1 \tag{1}
\end{equation*}
$$

i.e., the length of the velocity vector is 1 at every point and so a parametrization with the natural parameter is the unit speed parametrization.

Proof. Indeed,

$$
\begin{equation*}
g^{\prime}(s)=\frac{d g}{d s}(s)=\frac{d(f \circ t)}{d s}(s)=\frac{d f}{d t}(t(s)) \cdot \frac{d t}{d s}(s)=f^{\prime}(t(s)) t^{\prime}(s) \tag{2}
\end{equation*}
$$

Now note that by the fundamental theorem of calculus we have that

$$
s^{\prime}(t)=\left\|f^{\prime}(t)\right\|
$$

and hence

$$
t^{\prime}(s)=\frac{1}{\left\|f^{\prime}(t(s))\right\|}
$$

Plugging this into (2) we get

$$
g^{\prime}(s)=\frac{f^{\prime}(t(s))}{\left\|f^{\prime}(t(s))\right\|}
$$

which is equivalent to (1).

Example

The standard parametrization of the circle

$$
f(t)=\left[\begin{array}{l}
a \cos t \\
a \sin t
\end{array}\right]
$$

is not the natural parametrization if $a \neq 1$, since

$$
\left\|f^{\prime}(t)\right\|=\sqrt{a^{2} \cos ^{2} t+a^{2} \sin ^{2} t}=a \neq 1
$$

Since

$$
s(t)=\int_{0}^{t} a d t=a t
$$

it follows that $t=s / a$ and the natural parametrization is

$$
g(s)=\left[\begin{array}{l}
a \cos (s / a) \\
a \sin (s / a)
\end{array}\right]
$$

Remember:

A parametric curve: $f(t)=\left[\begin{array}{c}x_{1}(t) \\ \vdots \\ x_{m}(t)\end{array}\right]$,
 $t \in I \subset \mathbb{R}$,

The derivative $f^{\prime}(t)=\left[\begin{array}{c}x_{1}^{\prime}(t) \\ \vdots \\ x_{m}^{\prime}(t)\end{array}\right]$
is the velocity vector or
tangent vector if $f^{\prime}(t) \neq 0$,

The image $C=\{f(t), t \in I\}$: a (geometric) curve in \mathbb{R}^{m}.A curve C has many parametrizations.

The arc length parametrization or natural parametrization $f(s)$: s is the length of the chord from $\overline{f(a)}$ to $f(s),\left\|f^{\prime}(s)\right\|=1$.

