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Problem: What path does the valve on your bicycle wheel trace as you bike
along a straight road?

Represent the wheel as a circle of radius a rolling along the x-axis, the valve
as a fixed point on the circle, the parameter is the angle of rotation:

_ix

The curve is a cycloid: x(0) = af — asin6, y(§) = a — acos 6.

x = a(0 — sin )
y=a(l —cosf)

T af 2ra
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The following parametric curves all describe the circle with radius a around
the origin (as well as many others):

ﬁ(t)::[ asint },te [0, 27] o R

acost

asin 2t

ﬁ(t)::[ acos2t], [0.27] iLeAiAeAF

acost
Alt) = [ asint } teR
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Derivative, linear approximation, tangent

x1(t)
The derivative of the vector function f(t) = 5 at the point a is
Xm(t)
the vector:
(2 1
Df(a) = : = f'(a) = lim =(f(a+ h) — f(a))
’ h—0 h
Xm(a)
T e

(f(a+h)-f(apin

The vector f’(a) (if it exists) represents the velocity vector of a point
moving along the curve at the point t = a.

If /(a) # 0 it points in the direction of the tangent at t = a.
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The linear approximation of the function f at t = a is

/

» If f’(a) # 0, this is a parametric line corresponding to the tangent line
to the curve f(t) at t = a. In this case f(a) is a regular point of the
parametrization.

> If f(a) = 0 (or if it does not exist), the parametrization of the curve is
singular in the point f(a).

> A curve C € R™ is smooth at a point P on C if there exists a
parametrization f(t) of C, such that f(a) = P and f’(a) # 0.

» A smooth curve has a tangent at every point P € C.
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VTN

Problem: s the curve C = {f(t),t € [0,V2n]}, / \‘
cos(t?) 5 T )

— \ /
f(t) Lin(tz)} , smooth? 1

Since x2 + y2 =1, f(t) is a parametrization of the unit circle which is a
smooth curve (it has a tangent at every point).

Since f'(0) = 0 the parametrization f is singular in the point (1,0).

However, a smooth parametrization exists. Can you find it?
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Problem: Is the cycloid a smooth curve?

o b
Our parametrization .

f(t):{ t—sint ]’ F(t) = [ 1—cost]

1—cost sint

is not smooth at t = 2k since f'(2kw) = 0.

Does a tangent exist?
The slope of the tangent line at a point f(t) is:

y'(t) sint
kt = = —
x'(t) 1—cost
The left and right limits as t — 2k7 are

cost . . cost
= —00, limpokrke = lim — =
t\2km SIn t

lim ks = lim

t 2k t 72km sin t ’

so at these points the curve forms a sharp spike (a cusp) and a tangent does not exist.

So, the cycloid is not smooth at the points where it touches the x axis.

('Hospital’s rule was used to compute the limits.)
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Arc length and the natural parametrization

The arc length s of a parametric curve f(t), t € [a, b], in R™ is the length
of the curve between the points t = ain t = b, i.e. the distance covered by
a point moving along the curve between these two points.

Example

For example, what distance does a point on the circle cover when the circle makes one
full turn?

Proposition

The arc length s of a parametric curve f(t) between the points t = a and
t = b is given by

b
s = / I (t)] dt.
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Proof of the Proposition

An aproximate value for s is the length of a polygonal curve connecting close enough
points on the curve:

T

n

Sp = z lf(t:) — F(ti-a)|

i=1

=Y If'(t-y)llAe
i=1

b
N / 1F(2)] dt

where:

» The value f(t;) = f(ti—1 + At), where At = t; — t;_1, was approximated as
f(t,') = f(t,;l) + fl(t,;l)At and hence f(t,') = f(t,;l) + f’(t,;l)At. (Under the
assumption that f’ is continuous.

» In the last line we used that the sum represents a Riemannian sum of the function
I (&)l

» For n big enough, s, is a practical approximation for s.
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Problem: The length of the path traced by a point on the circle after a full turn?

t—sint
1—cost

2w 27 2w

s = / \/(1—C°st)2+sin2tdt:/ \/2—2costdt:/ 4sin®(t/2) dt
0 0 0
27

- /0 2sin(t/2) dt = —a(cos(r) — cos(0)) = 8.

A parametrization is f(t) = { ] and hence:

acost
Problem: What is the arc length of the helix f(t) = |asint|, 0 <t <2x?
bt
Problem: The circumference of the elipse {ZC:S j ,a#b?

27 /2
\/aQSin2t+b2cosztdt:4a/ V1 — e?sin® t dt = 4aF(e)
0 0

where e = /1 — (b/a)? is its eccentricity and the function E is the nonelementary elliptic
integral of 2nd kind. It can be computed numerically, which is briefly explained in the
next few slides.
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Numerical integration

The integral fab f(x) dx can be approximated by a linear approximation of f over the
interval [a, b] and computing the area of the trapezoid formed.

la b

\

/ F(x) dx ~ F(a) + %(X )= T(b—a)

Of course the error of this approximation is usually large and we are not satisfied. How do

we estimate how good is this approximation?
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Adaptive trapezoid rule (integral(---) in Matlab)
1 T(b—a)=f(a) + =G (x _ ).

2. We add another point in the middle of the interval, i.e., x = %b and compute the

sum of the areas of two trapezoids formed:

b—a

T((b—2)/2) = 5 T(b—a) + °

f((a+ b)/2).

3. Ife:=|T(b—a)— T((b— a)/2)| is smaller than the tolerance tol, we are satisfied
and return T((b — a)/2).

4. Otherwise we have to repeat the procedure on each of the subintervals
[a,(a+ b)/2] and [(a + b)/2, b], where the tolerance on each of them must be
smaller than tol /2.

5. We can implement this recursively, obtaining the so called adaptive trapezoid rule,
where on different subintervals of [a, b] different number of recursions is needed
(this depends on the behaviour of the function f).
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Natural parametrization

The arc length from the initial t = a to an arbitrary t = T

s(1) = / 1F(u)] du

is an increasing function of t if f is a smooth parametrization, so it has an
inverse

t(s) : [0,s(T)] — [a, T].

So, the original parameter t can be expressed as a funcion of the arc length
s.

Inserting this into the parametrization gives the same curve with a different
parametrization:

The arc length s is called the natural parameter of the curve.
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Proposition
A curve C is parametrized with the natural parameter s satisfies

lg"(s)ll =1, (1)

i.e., the length of the velocity vector is 1 at every point and so a
parametrization with the natural parameter is the unit speed
parametrization.

Proof. Indeed,

, d f ot df dt /
g6 = Zo)= )= P Loy = Fes)es). (@)
Now note that by the fundamental theorem of calculus we have that
s'(t) = I (1)
and hence 1
t'(s) = ———.
© = TP
Plugging this into (2) we get
_f'(t(s))

&) = (s’

which is equivalent to (1).
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Example
The standard parametrization of the circle

F(t) = [ acost ]

asint

is not the natural parametrization if a # 1, since

IF'(t)]| = Va?cos? t + a?sin?t = a # 1.
Since

t
s(t) :/ adt = at,
0

it follows that t = s/a and the natural parametrization is

acos(s/a) } '

asin(s/a)

g(s) = [
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Remember:

X1 ( t) txm.yr/c))/,,, /,,,,,,g(\-n‘v(-»
A parametric curve: f(t) = | @ |,
Xm (t)
tel CR,
x1(t) =
The derivative f'(t) = e
Xm(t)
is the velocity vector or
7

tangent vector if f/(t) # 0,

The image C = {f(t),t € I}: a (geometric) curve in R™.A curve C has many
parametrizations.

The arc length parametrization or natural parametrization f(s):
s is the length of the chord from f(a) to f(s), ||f'(s)|| = 1.
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