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Chapter 1:

What is Mathematical Modelling?
I Types of models

I Modelling cycle

I Numerical errors
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Introduction

Tha task of mathematical modelling is to find and evaluate solutions to real
world problems with the use of mathematical concepts and tools.

In this course we will introduce some (by far not all) mathematical tools
that are used in setting up and solving mathematical models.

We will (together) also solve specific problems, study examples and work on
projects.
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Contents

I Introduction

I Linear models: systems of linear equations, matrix inverses, SVD
decomposition, PCA

I Nonlinear models: vector functions, linear approximation, solving
systems of nonlinear equations

I Geometric models: curves and surfaces

I Dynamical models: differential equations, dynamical systems
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Modelling cycle

Real world problem Idealization

Simplification

Mathematical model

Generalization

Conclusions

Solution

Computer solution

ProgramSimulation

Explanation
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What should we pay attention to?

I Simplification: relevant assumptions of the model (distinguish
important features from irrelevant)

I Generalization: choice of mathematical representations and tools (for
example: how to represent an object - as a point, a geometric shape,
. . . )

I Solution: as simple as possible and well documented

I Conclusions: are the results within the expected range, do they
correspond to ”facts” and experimantal results?

A mathematical model is not universal, it is an approximation of the real
world that works only within a certain scale where the assumptions are at
least approximately realistic.
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Example

An object (ball) with mass m is thrown vertically into the air. What should
we pay attention to when modelling its motion?

I The assumptions of the model: relevant forces and parameters
(gravitation, friction, wind, . . . ), how to model the object (a point, a
homogeneous or nonhomeogeneous geometric object, angle and
rotation in the initial thrust, . . . )

I Choice of mathematical model: differential equation, discrete model,
. . .

I Computation: analytic or numeric, choice of method,. . .

I Do the results make sense?
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Errors

An important part of modelling is estimating the errors!

Errors are an integral part of every model.

Errors come from: assumptions of the model, imprecise data, mistakes in
the model, computational precision, errors in numerical and computational
methods, mistakes in the computations, mistakes in the programs, . . .

Absolute error = Approximate value - Correct value

∆x = x̄ − x

Relative error = Absolute error
Correct value

δx =
∆x

x
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Example: quadratic equation

x2 + 2a2x − q = 0

Analytic solutions are

x1 = −a2 −
√

a4 + q and x2 = −a2 +
√
a4 + q.

What happens if a2 = 10000, q = 1? Problem with stability in calculating
x2.

More stable way for computing x2 (so that we do not subtract numbers
which are nearly the same) is

x2 = −a2 +
√

a4 + q =
(−a2 +

√
a4 + q)(a2 +

√
a4 + q)

a2 +
√

a4 + q

=
q

a2 +
√

a4 + q
.
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Example of real life disasters

I Disasters caused because of numerical errors:
(http://www-users.math.umn.edu/~arnold//disasters/)

I The Patriot Missile failure, Dharan, Saudi Arabia, February 25
1991, 28 deaths: bad analysis of rounding errors.

I The explosiong of the Ariane 5 rocket, French Guiana, June 4,
1996: the consequence of overflow in the horizontal velocity.
https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=W3YJeoYgozw

https://www.arianespace.com/vehicle/ariane-5/

I The sinking of the Sleipner offshore platform, Stavanger, Norway,
August 12, 1991, billions of dollars of the loss: inaccurate finite
element analysis, i.e., the method for solving partial differential
equations.
https://www.youtube.com/watch?v=eGdiPs4THW8
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Chapter 2:

Linear model
I Definition

I Systems of linear equations

I Generalized inverses

I The Moore-Penrose (MP) inverse

I Singular value decomposition

I Principal component analysis

I MP inverse and solving linear systems
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1. Linear mathematical models

Given points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R,

the task is to find a function F (x , a1, . . . , ap) that is a good fit for the data.

The values of the parameters a1, . . . , ap should be chosen so that the
equations

yi = F (x , a1, . . . ap), i = 1, . . . ,m,

are satisfied or, if this is not possible, that the error is as small as possible.

Least squares method: the parameters are determined so that the sum of
squared errors

m∑
i=1

(F (xi , a1, . . . ap)− yi )
2

is as small as possible.
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The mathematical model is linear, when the function F is a linear function
of the parameters:

F (x , a1, . . . , ap) = a1ϕ1(x) + ϕ2(x) + · · ·+ apϕp(x),

where ϕ1, ϕ2, . . . ϕp are functions of a specific type.

Examples of linear models:

1. linear regression: x , y ∈ R, ϕ1(x) = 1, ϕ2(x) = x ,

2. polynomial regression: x , y ∈ R, ϕ1(x) = 1, . . . , ϕp(x) = xp−1,

3. multivariate linear regression: x = (x1, . . . , xn) ∈ Rn, y ∈ R,

ϕ1(x) = 1, ϕ2(x) = x1, . . . , ϕn(x) = xn,

4. frequency or spectral analysis:

ϕ1(x) = 1, ϕ2(x) = cosωx , ϕ3(x) = sinωx , ϕ4(x) = cos 2ωx , . . .

(there can be infinitely many functions ϕi (x) in this case)

Examples of nonlinear models: F (x , a, b) = aebx and F (x , a, b, c) =
a + bx

c + x
.

13/97



Given the data points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R, the
parameters of a linear model

y = a1ϕ1(x) + a2ϕ2(x) + · · ·+ apϕp(x)

should satisfy the system of linear equations

yi = a1ϕ1(xi ) + a2ϕ2(xi ) + · · ·+ apϕp(xi ), i = 1, . . . ,m,

or, in a matrix form,
ϕ1(x1) ϕ2(x1) . . . ϕp(x1)
ϕ1(x2) ϕ2(x2) . . . ϕp(x2)
. . . . . . . . . . . .

ϕ1(xm) ϕ2(xm) . . . ϕp(xm)




a1
a1
...
ap

 =


y1
y1
...
yp

 .
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1.1 Systems of linear equations and generalized inverses

A system of linear equations in the matrix form is given by

Ax = b,

where

I A is the matrix of coefficients of order m× n where m is the number of
equations and n is the number of unknowns,

I x is the vector of unknowns and

I b is the right side vector.
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Existence of solutions:

Let A = [a1, . . . , an], where ai are vectors representing the columns of A.

For any vector x =

 x1
...
xn

 the product Ax is a linear combination

Ax =
∑
i

xiai .

The system is solvable if and only if the vector b can be expressed as a
linear combination of the columns of A, that is, it is in the column space of
A, b ∈ C(A).
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By adding b to the columns of A we obtain the extended matrix of the
system

[A | b] = [a1, . . . , an | b],

Theorem
The system Ax = b is solvable if and only if the rank of A equals the rank
of the extended matrix [A | b], i.e.,

rank A = rank [A | b] =: r .

The solution is unique if the rank of the two matrices equals the number of
unknowns, i.e., r = n.

An especially nice case is the following:

If A is a square matrix (n = m) that has an inverse matrix A−1, the system
has a unique solution

x = A−1b.
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Let A ∈ Rn×n be a square matrix. The following conditions are equivalent
and characterize when a matrix A is invertible or nonsingular:

I The matrix A has an inverse.

I The rank of A equals n.

I det(A) 6= 0.

I The null space N(A) = {x : Ax = 0} is trivial.

I All eigenvalues of A are nonzero.

I For each b the system of equations Ax = b has precisely one solution.
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A square matrix that does not satisfy the above conditions does not have
an inverse.

Example

A =

 1 0 1
0 1 −1
1 1 1

 , B =

 1 0 1
0 1 −1
1 1 0


A is invertible and is of rank 3, B is not invertible and is of rank 2.

For a rectangular matrix A of dimension m × n, m 6= n, its inverse is not
defined (at least in the above sense...).
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Definition
A generalized inverse of a matrix A ∈ Rn×m is a matrix G ∈ Rm×n such that

AGA = A. (1)

Remark
Note that the dimension of A and its generalized inverse are transposed to each
other. This is the only way which enables the multiplication A · ∗ · A.

Proposition

If A is invertible, it has a unique generalized inverse, which is equal to A−1.

Proof.
Let G be a generalized inverse of A, i.e., (1) holds. Multiplying (1) with
A−1 from the left and the right side we obtain:

Left hand side (LHS): A−1AGAA−1 = IGI = G ,

Right hand side (RHS): A−1AA−1 = IA−1 = A−1,

where I is the identity matrix. The equality LHS=RHS implies that
G = A−1. 20/97



Theorem
Every matrix A ∈ Rn×m has a generalized inverse.

Proof.
Let r be the rank of A.

Case 1. rankA = rankA11, where

A =

[
A11 A12

A21 A22

]
and A11 ∈ Rr×r ,A12 ∈ Rr×(m−r),A21 ∈ R(n−r)×r , A22 ∈ R(n−r)×(m−r).
We claim that

G =

[
A−111 0

0 0

]
,

where 0s denote zero matrices of appropriate sizes, is the generalized
inverse of A. To prove this claim we need to check that

AGA = A.

21/97



AGA =

[
A11 A12

A21 A22

] [
A−111 0

0 0

] [
A11 A12

A21 A22

]
=

[
I 0

A21A
−1
11 0

] [
A11 A12

A21 A22

]
=

[
A11 A12

A21 A21A
−1
11 A12

]
.

For AGA to be equal to A we must have

A21A
−1
11 A12 = A22. (2)

It remains to prove (2). Since we are in Case 1, it follows that every column

of

[
A12

A22

]
is in the column space of

[
A11

A21

]
. Hence, there is a cofficient

matrix W ∈ Rr×(m−r) such that[
A12

A22

]
=

[
A11

A21

]
W =

[
A11W
A21W

]
.

We obtain the equations A11W = A12 and A21W = A22. Since A11 is
invertible, we get W = A−111 A12 and hence A21A

−1
11 A12 = A22, which is (2).
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Case 2. The upper left r × r submatrix of A is not invertible.

One way to handle this case is to use permutation matrices P and Q, such

that PAQ =

[
Ã11 Ã12

Ã21 Ã22

]
, Ã11 ∈ Rr×r and rank Ã11 = r . By Case 1 we

have that the generalized inverse (PAQ)g of PAQ equals to

[
Ã−111 0

0 0

]
.

Thus,

(PAQ)

[
Ã−111 0

0 0

]
(PAQ) = PAQ. (3)

Multiplying (3) from the left by P−1 and from the right by Q−1 we get

A

(
Q

[
Ã−111 0

0 0

]
P

)
A = A.

So, Q

[
Ã−111 0

0 0

]
P =

(
PT

[(
Ã−111

)T
0

0 0

]
QT

)T

is a generalized inverse of

A.
23/97



Algorithm for computing a generalized inverse of A
Let r be the rank of A.

1. Find any nonsingular submatrix B in A of order r × r ,
2. in A substitute

I elements of the submatrix B for corresponding elements of (B−1)T ,
I all other elements with 0,

3. the transpose of the obtained matrix is a generalized inverse G .

Example

Compute at least one generalized inverse of

A =

0 0 2 0
0 0 1 0
2 0 1 4

 .
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I Note that rankA = 2. For B from the algorithm one of the possibilities is

B =

[
1 0
1 4

]
,

i.e., the submatrix in the right lower corner.

I Computing B−1 we get B−1 =

[
1 0
− 1

4
1
4

]
and hence

(
B−1

)T
=

[
1 − 1

4
0 1

4

]
.

I A generalized inverse of A is then

G =

0 0 0 0
0 0 1 − 1

4
0 0 0 1

4

T

=


0 0 0
0 0 0
0 1 0
0 − 1

4
1
4

 .
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Generalized inverses of a matrix A play a similar role as the usual inverse
(when it exists) in solving a linear system Ax = b.

Theorem
Let A ∈ Rn×m and b ∈ Rm. If the system

Ax = b (4)

is solvable (that is, b ∈ C(A)) and G is a generalized inverse of A, then

x = Gb (5)

is a solution of the system (4).

Moreover, all solutions of the system (4) are exaclty vectors of the form

xz = Gb + (GA− I )z , (6)

where z varies over all vectors from Rm.
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Proof.
We write A in the column form

A =
[
a1 a2 . . . am

]
,

where ai are column vectors of A. Since the system (4) is solvable, there
exist real numbers α1, . . . , αm ∈ R such that

m∑
i=1

αiai = b. (7)

First we will prove that Gb also solves (4). Multiplying (7) with G we get

Gb =
m∑
i=1

αiGai . (8)

Multiplying (9) with A the left side becomes A(Gb), so we have to check
that

m∑
i=1

αiAGai = b. (9)
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Since G is a generalized inverse of A, we have that AGA = A or restricting
to columns of the left hand side we get

AGai = ai for every i = 1, . . . ,m.

Plugging this into the left side of (9) we get exactly (??), which holds and
proves (9).

For the moreover part we have to prove two facts:

(i) Any xz of the form (6) solves (4).

(ii) If Ax̃ = b, then x̃ is of the form xz for some z ∈ Rm.

(i) is easy to check:

Axz = A (Gb + (GA− I )z) = AGb + A(GA− I )z

= b + (AGA− A)z = b.
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To prove (ii) note that
A(x̃ − Gb) = 0,

which implies that
x̃ − Gb ∈ kerA.

It remains to check that

kerA = {(GA− I )z : z ∈ Rm} . (10)

The inclusion (⊇) of (10) is straightforward:

A((GA− I )z) = (AGA− A)z = 0.

For the inclusion (⊆) of (10) we have to notice that any v ∈ kerA is equal
to (GA− I )z for z = −v :

(GA− I )(−v) = −GAv + v = 0 + v = v .
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Example

Find all solutions of the system

Ax = b,

where A =

0 0 2 0
0 0 1 0
2 0 1 4

 and b =

2
1
4

.

I Recall from the example a few slides above that G =


0 0 0
0 0 0
0 1 0

0 − 1
4

1
4

.
I Calculating Gb and GA− I we get

Gb =


0
0
1
3
4

 and A =


−1 0 0 0
0 −1 0 0
0 0 0 0
1
2

0 0 0

 .

I Hence,

xz =
[
−z1 −z2 1 3

4
+ 1

2
z1

]T
where z1, z2 vary over R.
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1.2 The Moore-Penrose generalized inverse

Among all generalized inverses of a matrix A, one has especially nice
properties.

Definition
The Moore-Penrose generalized inverse, or shortly the MP inverse of
A ∈ Rn×m is any matrix A+ ∈ Rm×n satifying the following four conditions:

1. A+ is a generalized inverse of A: AA+A = A.

2. A is a generalized inverse of A+: A+AA+ = A+.

3. The square matrix AA+ ∈ Rn×n is symmetric: (AA+)T = AA+.

4. The square matrix A+A ∈ Rm×m is symmetric: (A+A)T = A+A.

Remark
There are two natural questions arising after defining the MP inverse:

I Does every matrix admit a MP inverse? Yes.

I Is the MP inverse unique? Yes.
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Theorem
The MP inverse A+ of a matrix A is unique.

Proof.
Assume that there are two matrices M1 and M2 that satisfy the four
conditions in the definition of MP inverse of A. Then,

AM1 = (AM2A)M1 by property (1)
= (AM2)(AM1) = (AM2)T (AM1)T by property (3)
= MT

2 (AM1A)T = MT
2 AT by property (1)

= (AM2)T = AM2 by property (3)

A similar argument involving properties (2) and (4) shows that

M1A = M2A,

and so
M1 = M1AM1 = M1AM2 = M2AM2 = M2.
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Remark
Let us assume that A+ exists (we will shortly prove this fact). Then the
following properties are true:

I If A is a square invertible matrix, then it A+ = A−1.

I (A+)+ = A.

I (AT )+ = (A+)T .

In the rest of this chapter we will be interested in two obvious questions:

I How do we compute A+?

I Why would we want to compute A+?

To answer the first question, we will begin by three special cases.
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Construction of the MP inverse of A ∈ Rn×m:

Case 1: ATA ∈ Rm×m is an invertible matrix. (In particular, m ≤ n.)

In this case A+ = (ATA)−1AT .

To see this, we have to show that the matrix (ATA)−1AT satisfies
properties (1) to (4):

1. AMA = A(ATA)−1ATA = A(ATA)−1(ATA) = A.

2. MAM = (ATA)−1ATA(ATA)−1AT = (ATA)−1AT = M.

3.

(AM)T =
(
A(ATA)−1AT

)T
= A

((
ATA

)−1)T

AT =

= A

((
ATA

)T)−1
AT = A(ATA)−1AT = AM.

4. Analoguous to the previous fact.
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Case 2: AAT is an invertible matrix. (In particular, n ≤ m.)

In this case AT satisfies the condition for Case 1, so (AT )+ = (AAT )−1A.

Since (AT )+ = (A+)T it follows that

A+ =
(

(A+)T
)T

=
(

(AAT )−1A
)T

= AT
(

(AAT )−1
)T

= AT
(

(AAT )−T
)−1

= AT (AAT )−1.

Hence, A+ = AT (AAT )−1.
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Case 3: Σ ∈ Rn×m is a diagonal matrix of the form

Σ =


σ1

σ2
. . .

σn

 or Σ̃ =



σ1
σ2

. . .

σm


.

The MP inverse is

Σ+ =



σ+1
σ+2

. . .

σ+n


or Σ̃+ =


σ+1

σ+2
. . .

σ+m

 ,

where σ+i =

{ 1
σi
, σi 6= 0,

0, σi = 0.
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Case 4: A general matrix A. (using SVD)

Theorem (Singular value decomposition - SVD)

Let A ∈ Rn×m be a matrix. Then it can be expressed as a product

A = UΣV T ,

where

I U ∈ Rn×n is an orthogonal matrix with left singular vectors ui as its
columns,

I V ∈ Rm×m is an orthogonal matrix with right singular vectors vi as its
columns,

I Σ =


σ1 0

. . .
...

σr 0

0 0

 =

[
S 0
0 0

]
∈ Rn×m is a diagonal matrix

with singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0

on the diagonal.
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Derivations for computing SVD

If A = UΣV T , then

ATA = (VΣTUT )(UΣV T ) = VΣTΣV T = V

[
S2 0
0 0

]
V T ∈ Rm×m,

AAT = (UΣV T )(UΣV T )T = UΣΣTUT = U

[
S2 0
0 0

]
UT ∈ Rn×n.

Let
V =

[
v1 v2 · · · vm

]
and U =

[
u1 u2 · · · un

]
be the column decompositions of V and U.

Let e1, . . . , em ∈ Rm and f1, . . . , fn ∈ Rn be the standard coordinate vectors
of Rm and Rn, i.e., the only nonzero component of ei (resp. fj) is the i-th
one (resp. j-th one), which is 1. Then

ATAvi = VΣTΣV T vi = VΣTΣei =

{
σ2i vi , if i ≤ r ,

0, if i > r ,

AATuj = UΣΣTUTuj = UΣΣT fj =

{
σ2i uj , if j ≤ r ,

0, if j > r .
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Further on,

(AAT )(Avi ) = A(ATA)vi =

{
σ2i Avi , if i ≤ r ,

0, if i > r ,

(ATA)(ATuj) = AT (AAT )uj =

{
σ2j A

Tuj , if j ≤ r ,

0, if j > r .

It follows that:

I ΣTΣ =

[
S2 0
0 0

]
∈ Rm×m (resp. ΣΣT =

[
S2 0
0 0

]
∈ Rn×n) is the

diagonal matrix with eigenvalues σ2i of ATA (resp. AAT ) on its
diagonal, so the singular values σi are their square roots.

I V has the corresponding eigenvectors (normalized and pairwise
orthogonal) of ATA as its columns, so the right singular vectors are
eigenvectors of ATA.

I U has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AAT as its columns, so the left singular vectors are
eigenvectors of AAT .
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I Avi is an eigenvector of AAT corresponding to σ2i and so

ui =
Avi
‖Avi‖

=
Avi
σi

is a left singular vector corresponding to σi , where in the second
equality we used that

‖Avi‖ =
√

(Avi )T (Avi ) =
√

vT
i ATAvi =

√
σ2
i v

T
i vi = σi‖vi‖ = σi .

I ATuj is an eigenvector of ATA corresponding to σ2j and so

vj =
ATuj
‖ATuj‖

=
ATuj
σj

is a right singular vector corresponding to σj , where in the second
equality we used that

‖ATuj‖ =
√

(ATuj)T (ATuj) =
√

uT
j AA

Tuj =
√
σ2
j u

T
j uj = σj‖uj‖ = σj .
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Algorithm for SVD computation

I Compute the eigenvalues and an orthonormal basis consisting of
eigenvectors of the symmetric matrix ATA or AAT (depending on
which is of them is of smaller size).

I The singular values of the matrix A ∈ Rn×m are equal to σi =
√
λi ,

where λi are the nonzero eigenvalues of ATA (resp. AAT ).

I The left singular vectors are the corresponding orthonormal
eigenvectors of AAT .

I The right singular vector are the corresponding orthonormal
eigenvectors of ATA.

I If u (resp. v) is a left (resp. right) singular vector corresponding to the
singular value σi , then v = Au (resp. u = AT v) is a right (resp. left)
singular vector corresponding to the same singular value.

I The remaining columns of U (resp. V ) consist of an orthonormal basis
of the kernel (i.e., the eigenspace of λ = 0) of AAT (resp. ATA).
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General algorithm for computation of A+ (long version)

1. For ATA compute its eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > λr+1 = . . . = λm = 0

and the corresponding orthonormal eigenvectors

v1, . . . , vr , vr+1, . . . , vm,

and form the matrices

Σ = diag(
√
λ1, . . . ,

√
λm) ∈ Rn×m,

V1 =
[
v1 · · · vr

]
, V2 =

[
vr+1 · · · vm

]
and V =

[
V1 V2

]
.

2. Let

u1 =
Av1
σ1

, u2 =
Av2
σ2

, . . . , ur =
Avr
σr

,

and ur+1, . . . , un vectors, such that {u1, . . . , un} is an ortonormal basis
for Rn. Form the matrices

U1 =
[
u1 · · · ur

]
, U2 =

[
ur+1 · · · un

]
and U =

[
U1 U2

]
.

3. Then
A+ = VΣ+UT .

Remark
Note that the eigenvectors vr+1, . . . , vn corresponding to the eigenvalue 0
of ATA do not need to be computed.
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General algorithm for computation of A+ (short version)

1. For ATA compute its nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > 0

and the corresponding orthonormal eigenvectors

v1, . . . , vr ,

and form the matrices

S = diag(
√
λ1, . . . ,

√
λr ) ∈ Rr×r ,

V1 =
[
v1 · · · vr

]
∈ Rm×r .

2. Put the vectors

u1 =
Av1
σ1

, u2 =
Av2
σ2

, . . . , ur =
Avr
σr

in the matrix
U1 =

[
u1 · · · ur

]
.

3. Then
A+ = V1Σ+UT

1 .
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Correctness of the computation of A+

Step 1. VΣ+UT is equal to A+.

(i) AA+A = A:

AA+A = (UΣV T )(VΣ+UT )(UΣV T ) = UΣ(V TV )Σ+(UTU)ΣV T

= UΣΣ+ΣV T = UΣV T = A.

(ii) A+AA+ = A+: Analoguous to (i).

(iii) (AA+)T = AA+:

(AA+)T =
(

(UΣV T )(VΣ+UT )
)T

=
(
UΣΣ+UT

)T
=

(
U

[
Ir 0
0 0

]
UT

)T

= U

[
Ir 0
0 0

]
UT

= (UΣV T )(VΣ+UT ) = A+.

(iv) (A+A)T = A+A: Analoguous to (iii).
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Step 2. VΣ+UT is equal to V1Σ+UT
1 .

VΣUT =
[
V1 V2

] [S 0
0 0

] [
UT
1

UT
2

]
=
[
V1S 0

] [UT
1

UT
2

]
= V1SU

T
1 .

Example

Compute the SVD and A+ of the matrix A =

[
3 2 2
2 3 −2

]
.

I AAT =

[
17 8
8 17

]
has eigenvalues 25 and 9.

I The eigenvectors of AAT corresponding to the eigenvalues 25, 9 are

u1 =
[

1√
2

1√
2

]T
, u2 =

[
1√
2
− 1√

2

]T
.

I The left singular vectors of A are

v1 =
ATu1
σ1

=
[

1√
2

1√
2

0
]T
, v2 =

ATu2
σ2

=
[

1

3
√
2
− 1

3
√
2

4

3
√
2

]T
.

v3 = v1 × v2 =
[

2√
3
− 2

3
− 1

3

]T
.
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I

A = UΣV T =

 1√
2

1√
2

1√
2
− 1√

2

5 0 0

0 3 0




1√
2

1√
2

0

1

3
√
2
− 1

3
√
2

4

3
√

2

2√
3

− 2
3

− 1
3

 .
I

A+ = VΣ+UT =


1√
2

1

3
√
2

2√
3

1√
2
− 1

3
√
2
− 2

3

0 4

3
√
2
− 1

3




1
5

0

0 1
3

0 0


 1√

2

1√
2

1√
2
− 1√

2



=


7
45

2
45

2
45

7
45

2
9
− 2

9

 .
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1.3 The MP inverse and systems of linear equations

Let A ∈ Rn×m, where m > n. A system of equations Ax = b that has more
variables than constraints. Typically such system has infinitely many
solutions, but it may happen that it has no solutions. We call such system
an underdetermined system.

Theorem

1. An underdetermined system of linear equations

Ax = b (11)

is solvable if and only if AA+b = b.

2. If there are infinitely many solutions, the solution A+b is the one with
the smallest norm, i.e.,

‖A+b‖ = min {‖x‖ : Ax = b} .

Moreover, it is the unique solution of smallest norm.
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Proof of Theorem.
We already know that Ax = b is solvable iff Gb is a solution, where G is
any generalized inverse of A. Since A+ is one of the generalized inverses,
this proves the first part of the theorem.

To prove the second part of the theorem, first recall that all the solutions of
the system are precisely the set

{A+b + (A+A− I )z : z ∈ Rm}.

So we have to prove that for every z ∈ Rm,

‖A+b‖ ≤ ‖A+b + (A+A− I )z‖.

We have that:

‖A+b + (A+A− I )z‖2 =

=
(
A+b + (A+A− I )z

)T (
A+b + (A+A− I )z

)
=
(
A+b

)T (
A+b

)
+ 2

(
A+b

)T
(A+A− I )z +

(
(A+A− I )z

)T (
(A+A− I )z

)
= ‖A+b‖2 + 2

(
A+b

)T
(A+A− I )z + ‖(A+A− I )z‖2
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Now, (
A+b

)T
(A+A− I )z = bT (A+)T (A+A− I )z

= bT (A+)T (A+A)T z − bT (A+)T z

= bT
(
(A+A)A+

)T
z − bT (A+)T z

= bT
(
A+AA+

)T
z − bT (A+)T z

= bT (A+)T z − bT (A+)T z = 0,

where we used the fact (A+A)T = A+A in the second equality.

Thus,

‖A+b + (A+A− I )z‖2 = ‖A+b‖2 + ‖(A+A− I )z‖2 ≥ ‖A+b‖2,

with the equality iff (A+A− I )z = 0. This proves the second part of the
theorem.
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Example

I The solutions of the underdetermined system x + y = 1 geometrically
represent an affine line. Matricially, A =

[
1 1

]
, b = 1. Hence,

A+b = A+1 is the point on the line, which is the nearest to the origin.
Thus, the vector of this point is perpendicular to the line.

I The solutions of the underdetermined system x + 2y + 3z = 5
geometrically represent an affine hyperplane. Matricially,
A =

[
1 2 3

]
, b = 5. Hence, A+b = A+5 is the point on the

hyperplane, which is the nearest to the origin. Thus, the vector of this
point is normal to the hyperplane.

I The solutions of the underdetermined system x + y + z = 1 and
x + 2y + 3z = 5 geometrically represent an affine line in R3.

Matricially, A =

[
1 1 1
1 2 3

]
, b =

[
1
5

]
. Hence, A+b is the point on the

line, which is the nearest to the origin. Thus, the vector of this point is
perpendicular to the line.
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Example

Find the point on the plane 3x + y + z = 2 closest to the origin.

I In this case,
A =

[
3 1 1

]
and b = [2].

I We have that AAT = [11] and hence its only eigenvalue is λ = 11 with eigenvector
u = [1], implying that

U = [1] and Σ =
[ √

11 0 0
]
.

I Hence,

v1 =
ATu

‖ATu‖ =
ATu

σ1
=

1√
11

[
3 1 1

]T
.

I

A+ = VΣ+UT =
1√
11

 3
1
1

 1√
11

[1] =


3
11

1
11

1
11

 .
I

x+ = A+b =
[

6
11

2
11

2
11

]T
.
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Overdetermined systems

Let A ∈ Rn×m, where n > m. This system is called overdetermined, since
here are more constraints than variables. Such a system typically has no
solutions, but it might have one or even infinitely many solutions.

Least squares approximation problem: if the system Ax = b has no
solutions, then a best fit for the solution is a vector x such that the error
||Ax − b|| or, equivalently in the row decomposition

A =

α1
...
αn

 ,
its square

||Ax − b||2 =
n∑

i=1

(αix − bi )
2,

is the smallest possible.
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Theorem
If the system Ax = b has no solutions, then x+ = A+b is the unique
solution to the least squares approximation problem:

||Ax+ − b|| = min{‖Ax − b‖ : x ∈ Rn}.

Proof.
Let A = UΣV T be the SVD decomposition of A. We have that

‖Ax − b‖ = ‖UΣV T − b‖ = ‖ΣV T − UTb‖,

where we used that
‖UT v‖ = ‖v‖

in the second equality (which holds since UT is an orthogonal matrix). Let

Σ =

[
S 0
0 0

]
, U =

[
U1 U2

]
, V =

[
V1 V2

]
, where

S ∈ Rr×r , U1 ∈ Rn×r ,U2 ∈ Rn×(n−r), V1 ∈ Rm×r , V2 ∈ Rm×(m−r).
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Thus,

‖ΣV T − UTb‖ =

∥∥∥∥[S 0
0 0

] [
V T
1

V T
2

]
x −

[
UT
1

UT
2

]
b

∥∥∥∥
=

∥∥∥∥[SV T
1 x − UT

1 b
UT
2 b

]∥∥∥∥ .
But this norm is minimal iff

SV T
1 x − UT

1 b = 0

or equivalently
x = V1S

−1UT
1 b = A+b.

Remark
The closest vector to b in the column space C (A) = {Ax : x ∈ Rm} of A is
the orthogonal projection of b onto C (A). It follows that A+b is this
projection. Equivalently, b − (A+b) is orthogonal to any vector Ax,
x ∈ Rm, which can be proved also directly.
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Example

Given points {(x1, y1), . . . , (xn, yn)} in the plane, we are looking for the line
ax + b = y which is the least squares best fit.

If n > 2, we obtain an overdetermined system x1 1
...
xn 1

[ a
b

]
=

 y1
...
yn

 .

The solution of the least squares approximation problem is given by

[
a
b

]
= A+

 y1
...
ym

.

The line y = ax + b in the regression line.
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An application of SVD: principal component analysis or PCA

PCA is a very well-known and efficient method for data compression,
dimension reduction, . . .

Due to its importance in different fields, it has many other names: discrete

Karhunen-Loève transform (KLT), Hotelling transform, empirical orthogonal functions

(EOF), . . .

Let {X1, . . . ,Xm} be a sample of vectors from Rn.

In applications, often m << n, where n is very large, for example,
X1, . . . ,Xm can be

I vectors of gene expressions in m tissue samples or

I vectors of grayscale in images

I bag of words vectors, with components corresponding to the numbers
of certain words from some dictionary in specific texts, . . . ,

or n << m for example if the data represents a point cloud in a low
dimensional space Rn (for example in the plane).
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We will assume that m << n. Also assume that the data is centralized, i.e., the centeroid
is in the origin

µ =
1

m

m∑
i=1

Xi = 0 ∈ Rn.

If not, we substract µ from all vectors in the data set.

A matrix norm ‖ · ‖ : Rn×m → R is a function, which generalizes the notion
of the absolute value for numbers to matrices. It is used to measure a
distance between matrices. In contrast with the absolute value, which is
unique up to multiplication with a positive constant, there are many
different matrix norms.

Two important matrix norms are the following:

1. Spectral norm ‖ · ‖2:

‖A‖2 := max
‖x‖2=1

‖Ax‖2 = max
j=1,...,min(n,m)

σj(A).

2. Frobenius norm ‖ · ‖F :

‖A‖F :=

√∑
i ,j

a2i ,j =

√ ∑
j=1,...,min(n,m)

σj(A)2.
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Let
X =

[
X1 X2 · · · Xm

]T
be the matrix of dimension m × n with data in the rows.

Let XTX ∈ Rm×m and XXT ∈ Rn×n be the covariance matrices of the
data.

I The principal values of the data set {X1, . . . ,Xr} are the nonzero eigenvalues
λi = σ2

i of the covariance matrices (where σi are the singular values of X ).

I The principal directions in Rn are corresponding eigenvectors v1, . . . , vr , i.e. the
columns of the matrix V from the SVD of X . The remaining clolumns of V (i.e.
the eigenvectors correspondong to 0) form a basis of the null space of X .

I The first column v1, the first principal direction, corresponds to the direction in Rn

with the largest variance in the data Xi , that is, the most informative direction for
the data set, the second the second most important, . . .

I The principal directions in Rm are the columns u1, . . . , ur of the matrix U and
represent the coefficients in the linear decomposition of the vectors X1, . . . ,Xm

along the orthonormal basis v1, . . . vn of Rn.
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PCA provides a linear dimension reduction method based on a projection of
the data from the space Rn into a lower dimensional subspace spanned by
the first few principal vectors v1, . . . , vk in Rn.

The idea is to approximate

Xi = σ1u1,iv1 + · · ·+ σmum,ivm ∼= σ1u1,iv1 + · · ·+ σkuk,ivk

with the first k most informative directions in Rn and supress the last
m − k .

PCA has the following amazing property:

Theorem
Among all possible projections of p : Rn → Rk onto a k-dimensional
subspace, PCA provides the best in the sense that the errors

‖X − p(X )‖2F and ‖X − p(X )‖22,

where p(X ) =
[
p(X1) · · · p(Xm)

]T
, are the smallest possible.

59/97



Chapter 3:

Nonlinear models
I Definition and examples

I Systems of nonlinear equations
I Vector functions of vector variables

I Derivative and Jacobian matrix
I Linear approximation

I Newton’s method for square systems
I Univariate case: Tangent method
I Use in optimization

I Gauss-Newton’s method for rectangular systems
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3. Nonlinear models
General formulation

Given is a sample of points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R.

The mathematical model is nonlinear if the function

y = F (x , a1, . . . , ap) (12)

is a nonlinear function of the parameters ai . This means it cannot be
written in the form

y = a1f1(x) + a2f2(x) + . . .+ apfp(x),

where each fi : Rn → R is some function.

Plugging each data points into (12) we obtain a system of nonlinear
equations

y1 = F (x1, a1, . . . , ap),

...

ym = F (xm, a1, . . . , ap),

(13)

in the parameters a1, . . . , ap ∈ R.
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Examples

1. Exponential decay or growth: F (x , a, k) = aekx , a and k are
parameters.

A quantity y changes at a rate proportional to its current value, which
can be described by the differential equation

dy

dx
= ky .

The solution to this equation (obtained by the use of separation of
variables) is y = F (x , a, k).
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Examples

2. Gaussian model: F (x , a, b, c) = ae−( x−b
c )

2

, a, b, c ∈ R parameters.

a is the value of the maximum obtained at x = b and c determines the
width of the curve.

It is used in statistics to describe the normal distribution, but also in
signal and image processing.

In statistics a = 1
σ
√
2π

, b = µ, c =
√

2σ, where µ, σ are the expected

value and the standard deviation of a normally distributed random
variable.
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Examples

3. Logistic model: F (x , a, b, k) = a
(1+be−kx )

, k > 0

The logistic function was devised as a model of population size by
adjusting the exponential model which also considers the saturation of
the environment, hence the growth first changes to linear and then
stops.

The logistic function F (x , a, b, k) is a solution of the first order
non-linear differential equation

dy(x)

dx
= ky(x)

(
1− y(x)

a

)
.
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Examples

4. In the area around a radiotelescope the use of microwave ovens is forbidden, since
the radiation interferes with the telescope. We are looking for the location (a, b) of
a microwave oven that is causing problems.

The radiation intensity decreases with the distance r from the source according to

u(r) =
α

1 + r
. In cartesian coordinates:

u(x , y) =
α

1 +
√

(x − a)2 + (y − b)2
,

where (a, b) is a position of the microwave.

Task: Find the position of the microwave, if the measured values of the signal at
three locations are u(0, 0) = 0.27, u(1, 1) = 0.36 in u(0, 2) = 0.3.

This gives the following system of equations for the parameters α, a, b:

α

1 +
√
a2 + b2

= 0.27

α

1 +
√

(1− a)2 + (1− b)2
= 0.36

α

1 +
√

a2 + (2− b)2
= 0.3
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An equivalent, more convenient formulation of the nonlinear system

I Our goal is to fit the data points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R.

I We choose a fitting function

F (x , a1, . . . , ap)

which depends on the unknown parameters a1, . . . , ap.
I Equivalent formulation of the system (13) ( which will be more suitable for solving with

numerical algorithms) is:
1. For i = 1, . . . ,m define the functions

gi : Rp → R by the rule gi (a1, . . . , ap) = yi − F (xi , a1, . . . , ap).

2. Solve or approximate the following system by the least squares method

g1(a1, . . . , ap) = 0,

...

gm(a1, . . . , ap) = 0.

(14)
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An equivalent, more convenient formulation of the nonlinear system - continued

In a compact way (14) can be expressed by introducing a vector function

G : Rp → Rm, G (a1, . . . , ap) = (g1(a1, . . . , ap), . . . , gm(a1 . . . , ap)),
(15)

and search for the tuples (a1, . . . , ap) that solve the system (or minimize
the norm of the left-hand side)

G (a1, . . . , ap) = (0, . . . , 0). (16)

Remark
Solving (16) is a difficult problem. Even if the exact solution exists, it is not easy
(or even impossible) to compute. For example, there does not even exist an
analytic formula to determine roots of a general polynomial of degree 5 or more.

But we will learn some numerical algortihms to approximate the solutions
of (16).
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3.1 Vector functions of a vector variable
Neccessary terminology to achieve our plan

G from (15) is an example of

I a vector function: since it maps into Rm, where m might be bigger
than 1.

I a vector variable: since it maps from Rp, where p might be bigger than
1.

Remark

I If m = 1 and p > 1, then G is a usual multivariate function.

I If m = 1 and p = 1, then G is a usual (univariate) function.

For easier reference in the continuation we call g1, . . . , gm from (15) the
component (or coordinate) functions of G .
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Examples

1. A linear vector function G : Rn → Rm is such that all the component
functions gi are linear:

gi (x1, . . . , xn) = ai1 · x1 + ai2 · x2 + . . .+ ain · xn, where aij ∈ R. (17)

In this case
G (x) = Ax ,

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 .
2. Adding constants bi ∈ R to the left side of (17) we get the definition

of an affine linear vector function,

gi (x1, . . . , xn) = ai1x1 + ai2x2 + . . . ainxn + bi ,

and then

G (x) = Ax + b, where b =
[
b1 b2 . . . bn

]T
.
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Examples

3. Most of the (vector) functions are nonlinear, e.g.,

f : R3 → R2, f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z),

g : R2 → R3, g(z ,w) = (zw , cos z + w2 − 2, e2z),

h : R→ R2, h(t) = (t + 3, e−3t).
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Derivative of a vector function - is needed in the algorithms we will use

The derivative of a vector function F : Rn → Rm in the point

a := (a1, . . . , an) ∈ Rn

is called the Jacobian matrix of F in a:

JF (a) = DF (a) =


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

 .
I If n = m = 1, the Df (x) = f ′(x) is the usual derivative.
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Derivative - continued

I For general n and m = 1, f is a function of n variables and

Df (x) = grad f (x)

is its gradient.

I For general m and n, Df (x) =

grad f1
...

grad fm

 is a vector of gradients of

component functions.
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Examples

1. For an affine linear function f : Rn → Rm, given by f (x) = Ax + b, it
is easy to check that

Df (x) = A.

2. For a vector function f : R3 → R2, given by

f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z),

then

Df (x) =

[
2x 2y 2z
1 1 1

]
.
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Application of the derivative - linear approximation

A linear approximation of the vector function f : Rn → Rm at the point
a ∈ Rn is the affine linear function

La : Rn → Rm, La(x) = Ax + b

that satisfies the following conditions:

1. It has the same value as f in a: La(a) = f (a).

2. It has the same derivative as f at a: DLa(a) = Df (a).

It is easy to check that

La(x) = f (a) + Df (a)(x − a).

I n = m = 1:
La(x) = f (a) + f ′(a)(x − a)

The graph y = La(x) is the tangent to the graph y = f (x) at the point a.
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Application of the derivative - linear approximation continued

I If n = 2 and m = 1, then

L(a,b)(x , y) = f (a, b) + gradf (a, b)

[
x − a
y − b

]
.

The graph
z = L(a,b)(x , y)

is the tangent plane to the surface z = f (x , y) at the point (a, b).
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Example

The linear approximation of the function

f : R3 → R2, f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z)

at a = (1,−1, 1) is the affine linear function

La(x , y , z) = f (1,−1, 1) + Df (1,−1, 1)

x − 1
y + 1
z − 1


=

[
2
1

]
+

[
2 −2 2
1 1 1

] x − 1
y + 1
z − 1


=

[
2 + 2(x − 1)− 2(y + 1) + 2(z − 1)

1 + (x − 1) + (y + 1) + (z − 2)

]

=

[
2 −2 2
1 1 1

]xy
z

+

[
−4
0

]
.
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3.2 Solving systems of nonlinear equations

Let f : D → Rm be a vector function, defined on some set D ⊂ Rn.

We will study the Gauss-Newton method to solve the system f (x) = 0 in
terms of least squares. This is one of the numerical methods for searching
approximate solution of this system. It is based on linear approximations of
f .
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Newton’s method for n = m = 1

We are searching zeroes of the function f : D → R, D ⊆ R, i.e., we are
solving f (x) = 0.

Newton’s or tangent method:

We construct a recursive sequence with:

I x0 is an initial term,

I xk+1 is a solution of

Lxk (x) = f (xk) + f ′(xk)(x − xk) = 0, so xk+1 = xk − f (xk )
f ′(xk )

.
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Newton’s method for n = m = 1 - continued

Theorem
The sequence xi converges to a solution α, f (α) = 0, if:

(1) 0 6= |f ′(x)| for all x ∈ I , where I is some interval containing α,

(2) x0 is sufficiently close to α.

Under these assumptions the convergence is quadratic, meaning that:

If we denote by εj = |xj − α|, then εi+1 ≤ Mε2i ,

where M is some constant. If f is twice differentiable, then

M ≤ max
x∈I
|f ′′(x)|/min

x∈I
|f ′(x)|.
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Proof.
Condition (1) implies in particular that α is a simple zero of f . Plugging α
in the Taylor expansion of f around xi we get

0 = f (α) = f (xi ) + f ′(xi )(α− xi ) +
f ′′(η)

2
(α− xi )

2

= f (xi ) + f ′(xi )(α− xi ) +
f ′′(η)

2
(α− xi )

2

(18)

where η is between α and xi . Dividing (18) with f ′(xi ) we get

0 =
f (xi )

f ′(xi )
− (α− xi ) +

f ′′(η)

2f ′(xi )
e2i

and hence (
xi −

f (xi )

f ′(xi )

)
− α = xi+1 − α =

f ′′(η)

2f ′(xi )
e2i .

Thus,

ei+1 =

∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ e2i
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Now ∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ ≤ maxx∈I |f ′′(x)|
minx∈I |f ′(x)|

.

To prove that the sequence converges note that there exists δ0 > 0 such
that

Mδ0 <
1

2
.

Hence, if ei ≤ δ0, then

ei+1 =

∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ e2i =
1

2
ei .

Therefore

lim
n→∞

en = lim
n→∞

1

2n
· e0 = 0.
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Newton’s method for n = m > 1

Newton’s method generalizes to systems of n nonlinear equations in n
unknowns:

I x0 – initial approximation,

I xk+1 – solution of

Lxk (x) = f (xk) + Df (xk)(x − xk) = 0,

so
xk+1 = xk − Df (xk)−1f (xk).

In practice inverses are difficult to calculate (require to many operations)
and the linear system for ∆xk = xk+1 − xk

Df (xk)∆xk = −f (xk)

is solved at each step (using LU decomposition of Df (xk)) and hence

xk+1 = xk + ∆xk .
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Example

Derive Newton’s method for solving the system of quadratic equations:

x2 + y2 − 10x + y = 1,

x2 − y2 − x + 10y = 25.

We are searching for the zero of the vector function

F : R2 → R2, F (x , y) = (x2 + y2 − 10x + y − 1, x2 − y2 − x + 10y − 25).

The Jacobian of F in (x , y) is

DF (x , y) =

[
2x − 10 2x − 1
2y + 1 −2y + 10

]
.

Using Newton’s metod we:

I Choose an initial term (x0, y0).

I Calculate xr+1 = xr + ∆xr , where DF (xr , yr )∆xr = −F (xr , yr )
T .
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Application of Newton’s method for n = m > 1 to optimization

Newton optimization method:

We would like to find the extrema of the function F : Rn → R.

Since the extrema are critical (or stationary) points, the candidates are
zeroes of the gradient, i.e.,

G (x) := grad F (x) =
[
Fx1(x) · · · Fxn(x)

]
= 0. (19)

(19) is a system of n equations for n variables, the Jacobian of the vector
function G is the so called Hessian of F :

DG (x) = H(x) =

Fx1x1 . . . Fx1xn
...

. . .
...

Fxnx1 . . . Fxnxn

 .
If the sequence of iterates

x0, xk+1 = xk − H−1(xk)G (xk)

converges, the limit is a critical point of F , i.e., a candidate for the
minimum (or maximum).
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Gradient descent
Optimization methods can also be used to ensure a sufficiently accurate starting

approximation for the Newton-based techniques. (Like bisection does for a single

one-variable equation.)

Finding solutions of the system F (x) = 0, where

F = [F1, . . . ,Fn]T : Rn → Rn

is equivalent to finding global minima of

g(x) := ‖F‖2 = F1(x)2 + . . .+ Fn(x)2 : Rn → R.

We search for the local minima (which are not necessarily global minima!) of g
as follows:

1. Choose x0.

2. Determine the constant α in xr − α · grad(g(xr )) which mimimizes

h(α) = g(xr − α · grad(g(xr )).

(Or is significantly smaller than h(0) = g(xr ).)

3. xr+1 = xr − α · grad(g(xr )).
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Quasi-Newtonov methods: Broyden’s method
I For large n, the Newton’s method is very expensive, since we need to evaluate n2

partial derivatives at each step and use O(n3) flops (+,−, ·, :) to solve the linear
system.

I Broyden’s method avoids computing derivatives. For n = m = 1 it replaces the
tangent by a secant throught the last two iterates. It mimicks this idea also for
larger n = m.

Let Br be an approximate for Jf (xr ). Broyden’s method works as follows:

1. Solve Br∆xr = −f (xr ),

2. xr+1 = xr + ∆xr ,

3. Determine Br+1.

The last step searches for a matrix Br+1, which fulfils the secant condition:

Br+1(xr+1 − xr ) = f (xr+1)− f (xr )

and is the closest to Br in the spectral norm ‖ · ‖2.

It turns out that

Br+1 = Br +
f (xr+1)(∆xr )T

‖∆xr‖22
.
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Application on the microwave oven example

Recall from above the microwave oven example. The system of equations
for the parameters α, a, b is:

α

1 +
√
a2 + b2

− 0.27 = 0

α

1 +
√

(1− a)2 + (1− b)2
− 0.36 = 0

α

1 +
√
a2 + (2− b)2

− 0.3 = 0.

https://zalara.github.io/Algoritmi/newtonsys.m

https://zalara.github.io/Algoritmi/broyden.m

https://zalara.github.io/Algoritmi/gradient_descent.m

https://zalara.github.io/Algoritmi/test_newtonsys_2.m
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Newton’s method for m > n > 0

We have an overdetermined system

f : Rn → Rm, f (x) = (0, . . . , 0) (20)

of m nonlinear equations for n unknowns, where m > n.

The system (20) generally does not have a solution, so we are looking for a
solution of (20) by the least squares method, i.e., α ∈ Rn such that the
distance of f (α) from the origin is the smallest possible:

‖f (α)‖2 = min{‖f (x)‖2}.
The Gauss-Newton method is a generalization of the Newton’s method,
where instead of the inverse of the Jacobian its MP inverse is used at each
step:

x0 . . . initial approximation, xk+1 = xk − Df (xk)+f (xk),

where Df (xk)+ is the MP inverse of Df (xk). If the matrix

(Df (xk)TDf (xk)) is nonsingular at each step k, then

xk+1 = xk − (Df (xk)TDf (xk))−1Df (xk)T f (xk).
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Newton’s method for m > n > 0 - continued

At each step xk+1 is the least squares approximation to the solution of the
overdetermined linear system Lxk (x) = 0, that is,

‖Lxk (xk+1)‖2 = min{‖Lxk (x)‖2, x ∈ Rn}.

Convergence is not guaranteed, but:

I if the sequence xk converges, the limit x = limk xk is a local (but not
necessarily global) minimum of ‖f (x)‖2.

It follows that the Gauss-Newton method is an algorithm for the local
minimum of ‖f (x)‖2.
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Example

We are given point (xi , yi ) ∈ R2 for i = 1, . . . ,m and are searching for the
function

f (x , a, b) = aebx

which fits this data best by the method of least squares.

So we have the overdetermined system F (a, b) = 0, where

F : R2 → Rm
, F (a, b) = (y1 − aebx1 , . . . , ym − aebxm ).

The Jacobian of F is

DF (a, b) =


−ebx1 ax1e

bx1

.

.

.

−ebxm axmebxm

 .

Using the Gauss-Newton method:

I We choose initianl approximation (a0, b0),

I Calculate iterates [
ar+1
br+1

]
=

[
ar
br

]
− DF (ar , br )

+F (ar , br )
T
.
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Chapter 4:

Curves and surfaces
I Curves

I Definition and examples
I Derivative
I Arc length and the natural parametrization
I Curvature
I Plotting plane curves
I Area bounded by plane curves
I Curves in the polar form
I Motion in R3

I Surfaces
I Definition and examples
I Cartesian, cylindrical and spherical coordinates
I Surface of revolution
I Tangent plane
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Curves - definition and examples

A parametric curve (or parametrized curve) in Rm is a vector function

f : I → Rm, f (t) =

 f1(t)
...

fm(t)

,
where I ⊂ R is a bounded or unbounded interval.

The independent variable (in this case t) is the parameter of the curve.

For every value t ∈ I , f (t) represents a point in Rm.

As t runs through I , f (t) traces a path, or a curve, in Rm.
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If m = 2, then for every t ∈ I ,

f (t) =

[
x(t)
y(t)

]
= r(t)

is the position vector of a point in the plane R2.

All points {f (t), t ∈ I} form a plane curve:

In this example x(t) = t cos t, y(t) = t sin t, t ∈ [−3π/4, 3π/4]
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If m = 3, then

f (t) =

x(t)
y(t)
z(t)

 = r(t)

is the position vector of a point in R3 for every t, and {f (t), t ∈ I} is a
space curve:

In this example x(t) = cos t, y(t) = sin t, z(t) = t/5, t ∈ [0, 4π]
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Example

f (t) =

[
2 cos t
2 sin t

]
, t ∈ [0, 2π]

a circle with radius 2 and center (0, 0)

f (t) = r0 + te, t ∈ R,
r0, e ∈ Rm, e 6= 0

line through r0 in the direction of e in
Rm

m=2:
slope k = e2/e1 if e1 6= 0
vertical if e = (0, e2)
horizontal if e = (e1, 0)

95/97



Example

f (t) =

[
t3 − 2t
t2 − t

]
, t ∈ R

f (t) =

[
t + sin(3t)
t + cos(5t)

]
, t ∈ R
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A parametric curve f (t), t ∈ [a, b] is closed if f (a) = f (b).

Example

f (t) =

[
cos 3t
sin 5t

]
, t ∈ [0, 2π]
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