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Application of Newton’s method for n = m > 1 to optimization

Newton optimization method:

We would like to find the extrema of the function F : Rn → R.

Since the extrema are critical (or stationary) points, the candidates are
zeroes of the gradient, i.e.,

G (x) := grad F (x) =
[
Fx1(x) · · · Fxn(x)

]
= 0. (1)

(1) is a system of n equations for n variables, the Jacobian of the vector
function G is the so called Hessian of F :

DG (x) = H(x) =

Fx1x1 . . . Fx1xn
...

. . .
...

Fxnx1 . . . Fxnxn

 .
If the sequence of iterates

x0, xk+1 = xk − H−1(xk)G (xk)

converges, the limit is a critical point of F , i.e., a candidate for the
minimum (or maximum).
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Gradient descent
Optimization methods can also be used to ensure a sufficiently accurate starting

approximation for the Newton-based techniques. (Like bisection does for a single

one-variable equation.)

Finding solutions of the system F (x) = 0, where

F = [F1, . . . ,Fn]T : Rn → Rn

is equivalent to finding global minima of

g(x) := ‖F‖2 = F1(x)2 + . . .+ Fn(x)2 : Rn → R.

We search for the local minima (which are not necessarily global minima!) of g
as follows:

1. Choose x0.

2. Determine the constant α in xr − α · grad(g(xr )) which mimimizes

h(α) = g(xr − α · grad(g(xr )).

(Or is significantly smaller than h(0) = g(xr ).)

3. xr+1 = xr − α · grad(g(xr )).
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Quasi-Newtonov methods: Broyden’s method
I For large n, the Newton’s method is very expensive, since we need to evaluate n2

partial derivatives at each step and use O(n3) flops (+,−, ·, :) to solve the linear
system.

I Broyden’s method avoids computing derivatives. For n = m = 1 it replaces the
tangent by a secant throught the last two iterates. It mimicks this idea also for
larger n = m.

Let Br be an approximate for Jf (xr ). Broyden’s method works as follows:

1. Solve Br∆xr = −f (xr ),

2. xr+1 = xr + ∆xr ,

3. Determine Br+1.

The last step searches for a matrix Br+1, which fulfils the secant condition:

Br+1(xr+1 − xr ) = f (xr+1)− f (xr )

and is the closest to Br in the spectral norm ‖ · ‖2.

It turns out that

Br+1 = Br +
f (xr+1)(∆xr )T

‖∆xr‖22
.
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Application on the microwave oven example

Recall from above the microwave oven example. The system of equations
for the parameters α, a, b is:

α

1 +
√
a2 + b2

− 0.27 = 0

α

1 +
√

(1− a)2 + (1− b)2
− 0.36 = 0

α

1 +
√
a2 + (2− b)2

− 0.3 = 0.

https://zalara.github.io/Algoritmi/newtonsys.m

https://zalara.github.io/Algoritmi/broyden.m

https://zalara.github.io/Algoritmi/gradient_descent.m

https://zalara.github.io/Algoritmi/test_newtonsys_2.m
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Newton’s method for m > n > 0

We have an overdetermined system

f : Rn → Rm, f (x) = (0, . . . , 0) (2)

of m nonlinear equations for n unknowns, where m > n.

The system (2) generally does not have a solution, so we are looking for a
solution of (2) by the least squares method, i.e., α ∈ Rn such that the
distance of f (α) from the origin is the smallest possible:

‖f (α)‖2 = min{‖f (x)‖2}.
The Gauss-Newton method is a generalization of the Newton’s method,
where instead of the inverse of the Jacobian its MP inverse is used at each
step:

x0 . . . initial approximation, xk+1 = xk − Df (xk)+f (xk),

where Df (xk)+ is the MP inverse of Df (xk). If the matrix

(Df (xk)TDf (xk)) is nonsingular at each step k, then

xk+1 = xk − (Df (xk)TDf (xk))−1Df (xk)T f (xk).
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Newton’s method for m > n > 0 - continued

At each step xk+1 is the least squares approximation to the solution of the
overdetermined linear system Lxk (x) = 0, that is,

‖Lxk (xk+1)‖2 = min{‖Lxk (x)‖2, x ∈ Rn}.

Convergence is not guaranteed, but:

I if the sequence xk converges, the limit x = limk xk is a local (but not
necessarily global) minimum of ‖f (x)‖2.

It follows that the Gauss-Newton method is an algorithm for the local
minimum of ‖f (x)‖2.
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Example

We are given point (xi , yi ) ∈ R2 for i = 1, . . . ,m and are searching for the
function

f (x , a, b) = aebx

which fits this data best by the method of least squares.

So we have the overdetermined system F (a, b) = 0, where

F : R2 → Rm
, F (a, b) = (y1 − aebx1 , . . . , ym − aebxm ).

The Jacobian of F is

DF (a, b) =


−ebx1 ax1e

bx1

.

.

.

−ebxm axmebxm

 .

Using the Gauss-Newton method:

I We choose initianl approximation (a0, b0),

I Calculate iterates [
ar+1
br+1

]
=

[
ar
br

]
− DF (ar , br )

+F (ar , br )
T
.
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Chapter 4:

Curves and surfaces
I Curves

I Definition and examples
I Derivative
I Arc length and the natural parametrization
I Curvature
I Plotting plane curves
I Area bounded by plane curves
I Curves in the polar form
I Motion in R3

I Surfaces
I Definition and examples
I Cartesian, cylindrical and spherical coordinates
I Surface of revolution
I Tangent plane
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Curves - definition and examples

A parametric curve (or parametrized curve) in Rm is a vector function

f : I → Rm, f (t) =

 f1(t)
...

fm(t)

,
where I ⊂ R is a bounded or unbounded interval.

The independent variable (in this case t) is the parameter of the curve.

For every value t ∈ I , f (t) represents a point in Rm.

As t runs through I , f (t) traces a path, or a curve, in Rm.
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If m = 2, then for every t ∈ I ,

f (t) =

[
x(t)
y(t)

]
= r(t)

is the position vector of a point in the plane R2.

All points {f (t), t ∈ I} form a plane curve:

In this example x(t) = t cos t, y(t) = t sin t, t ∈ [−3π/4, 3π/4]
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If m = 3, then

f (t) =

x(t)
y(t)
z(t)

 = r(t)

is the position vector of a point in R3 for every t, and {f (t), t ∈ I} is a
space curve:

In this example x(t) = cos t, y(t) = sin t, z(t) = t/5, t ∈ [0, 4π]
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Example

f (t) =

[
2 cos t
2 sin t

]
, t ∈ [0, 2π]

a circle with radius 2 and center (0, 0)

f (t) = r0 + te, t ∈ R,
r0, e ∈ Rm, e 6= 0

line through r0 in the direction of e in
Rm

m=2:
slope k = e2/e1 if e1 6= 0
vertical if e = (0, e2)
horizontal if e = (e1, 0)
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Example

f (t) =

[
t3 − 2t
t2 − t

]
, t ∈ R

f (t) =

[
t + sin(3t)
t + cos(5t)

]
, t ∈ R
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A parametric curve f (t), t ∈ [a, b] is closed if f (a) = f (b).

Example

f (t) =

[
cos 3t
sin 5t

]
, t ∈ [0, 2π]
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