
Mobile Sensing:
Advanced Machine Learning

Master studies, Winter 2021/2022

Dr Veljko Pejović
Veljko.Pejovic@fri.uni-lj.si

Partly based on: “CS231n: Convolutional Neural Networks for Visual
Recognition” by FeiFei Li, Stanford University

Sensing and Learning Pipeline

Sensor
sampling Filtering Feature

Extraction Modelling

Acc.
GPS
Camera
Barometer
Gyroscope
Proximity
Mic.
BT
…

Emotion

Semantic
location

Activity

Gestures
…

Raw data

Data focused
on the target
phenomenon

Feature
values,
labels

Deep
learning

Automating Feature Engineering

• Feature engineering is challenging
– An infinite number of potential features (e.g. mean,

variance, mean crossing rate, peak frequency, power
in a certain frequency domain, entropy, etc.)

– Difficult to (visually) inspect feature and class values
distribution in a dataset in order to get the idea about
how informative each feature might end up being

– Don’t know how the extracted features will interplay
with the selected machine learning algorithms

• Deep learning: let the learning algorithm extract
features by itself

Automating Feature Engineering

• Example: recognize the animal in the photo
• You can extract a number of low-level features

manually:
– Contains blue; contains red; number of colours;

colour diffusion; histogram; etc.

Penguin Dolphin Parrot Human

Automating Feature Engineering

• Example: recognize the animal in the photo
• Idea: from low-level features we can train a

classifier that infers something that will be
useful for the final inference, e.g. has water, has
ice, is a bird, etc.

Penguin Dolphin Parrot Human

Automating Feature Engineering

• Example: recognize the animal in the photo
• The method should automatically identify that

something

Penguin

Dolphin

Parrot

Human

Contains blue

Contains red

of colours

…

Has feathers

Has skin

On ice

In water

Basics – Perceptron

• Perceptron – a binary classifier:

• Inspired by the neuron:
x Σwx + b

wx

f(Σwx+b)

Basics – Perceptron

• Perceptron’s activation function is a simple
Heaviside step function (0 or 1 output)

• Training is about adjusting weights:

• Perceptron is a linear classifier and cannot learn
non-linear functions, e.g. XOR

• Stacking perceptrons without a non-linear
activation function in a deep network makes no
sense – why?

Activation Functions

• Sigmoid

• Hyperbolic tangent

σ (x) = 1
1+ e−x

tanh(x) = e
x − e−x

ex + e−x

• Rectifier (ReLU)

• Leaky ReLU

max(0,x)

x x ≥ 0
α(ex −1) x < 0

⎧
⎨
⎪

⎩⎪

Multilayer Perceptron
(aka Neural network)

• We can construct a network where intermediate
(hidden) layers represent that something – key
features that characterize classes

• Each hidden/output layer consists of
perceptrons with nonlinear activation functions
and biases

Multilayer Perceptron
(aka Neural network)

• Example (a 3-layer neural network):

f = lambda x: np.maximum(0,x)
x = np.random.rand(3,1)
h1 = f(np.dot(W1,x) + b1)
h2 = f(np.dot(W2,h1) + b2)
s = np.dot(W3, h2) + b3

Neural Network Training

• The results of the output layer are scores (s)
• Loss function quantifies how well these scores

match the ground truth label
– Example loss function

• for each training instance i:

• regularization
(makes sure we use smaller weights):

• total loss
(we want to minimize this):

Li = max(0,s j − syi +1)j≠yi
∑

L = 1
N

Lii=1..N∑ + Wk
2

k∑

Wk
2

k∑

Neural Network Training

• Adjust the perceptrons’ weights so that
the loss is minimized

• Gradient descent: to find the weights that give
the minimum loss, go in the opposite
direction of the gradient
– Calculate the gradient
– Update the weights
– Repeat the above steps until the stopping criterion is

reached

• Calculating the gradient is challenging!

Wnew =W − r ∂L
∂W

Gradient Calculation

• Idea 1: calculate the gradient numerically
– Not perfectly accurate
– You need to do this

for each variable
(each element of each of the W matrices) and for
each output dimension -> prohibitively slow

• Idea 2: calculate the gradient analytically
– Gets quite complicated for larger networks
– Not modular – change one activation/loss function

and you need to re-derive the expression

df (x)
dx

=
h−>0
lim

f (x + h)− f (x)
h

Gradient Calculation

• Idea 3: computational graph & backpropagation
– Represent calculation as a graph,

e.g. f(x,y,z) = x * y + z

– Calculate local gradients for each element, and then
backpropagate to the previous element

*
+

x

y

z

f

Gradient Calculation

• Idea 3: computational graph & backpropagation
– Represent calculation as a graph,

e.g. f(x,y,z) = x * y + z

– Calculate local gradients for each element, and then
backpropagate to the previous element

*
+

x

y

z

f

-2

4

3

-8
-5

q
Forward pass

Gradient Calculation

• Idea 3: computational graph & backpropagation
– Represent calculation as a graph,

e.g. f(x,y,z) = x * y + z

– Calculate local gradients for each element, and then
backpropagate to the previous element

*
+

x

y

z

f

-2

4

3

-8
-5

q
∂f
∂f

=1
1

Derivatives

Gradient Calculation

• Idea 3: computational graph & backpropagation
– Represent calculation as a graph,

e.g. f(x,y,z) = x * y + z

*
+

x

y

z

f

-2

4

3

-8
-5

q
∂f
∂f

=1
1

∂f
∂q

=1 ∂f
∂z

=1
∂q
∂x

= y
∂q
∂y

= x

1

1
4
-2

∂f
∂x

=
∂f
∂q

∂q
∂x

Chain rule: ∂f
∂x

= 4
∂f
∂y

= −2

Neural Network Training

• But I have matrices (X, W1, b1, W2, b2, etc.)?

• The principle is the same – both forward and
backward passes boil down to matrix algebra
– However, calculating the gradient on all training

samples is extremely time consuming
– Stochastic gradient descent: a random subsample of

the training data is used to calculate the gradient

Convolutional Neural Networks

• Inspiration: how the brain works
– Nearby cells in the cortex represent nearby regions in

the visual field
– Hierarchical cell organization:

• Simple cells – detect light
• Complex cells – detect light orientation and movement
• Hypercomplex cells – response to movement with endpoint

• Applications of CNNs:
– Image analysis (object recognition, segmentation,

captioning)
– Sound analysis (speech recognition, generation)
– Many other purposes

Convolutional Layer

• Convolves (slides and calculates a dot product)
the filter with the input (image)

32x32x3 – image 5x5x3 – filter

Convolutional Layer

• Convolves (slides and calculates a dot product)
the filter with the input (image)

32x32x3 – image 5x5x3 – filter

One number goes to the result matrix

Convolutional Layer

• Convolves (slides and calculates a dot product)
the filter with the input (image)

32x32x3 – image 5x5x3 – filter

One number goes to the result matrix

Convolutional Layer

• Convolves (slides and calculates a dot product)
the filter with the input (image)

32x32x3 – image 5x5x3 – filter

One number goes to the result matrix

28x28x1 –
activation map

Convolutional Layer

• Convolves (slides and calculates a dot product)
the filter with the input (image)

32x32x3 – image 5x5x3 –
another filter

28x28x1 –
activation map

Convolutional Layer

• Convolves (slides and calculates a dot product)
the filter with the input (image)

32x32x3 – image 5x5x3 –
another filter

28x28x1 –
one more activation map

Convolutional Layer

• Convolves (slides and calculates a dot product)
the filter with the input (image)

32x32x3 – image four 5x5x3 filters
four 28x28x1

activation maps

Convolutional Neural Network Structure

• A sequence of convolutional layers with
activation layers (ReLU)

32x32x3 – image 28x28x4 24x24x5

Conv
(four
5x5x3
filters)
ReLU

Conv
(five
5x5x4
filters)
ReLU

…

Feature Construction in CNN

• Turns out that earlier layers detect simpler
features (e.g. edges in an image), whereas
further layers detect more complex features
(e.g. specific blobs in an image)
– Just like with human vision!

Classification in CNN

• The structure is (usually)
– Input -> N x {Conv, ReLU}
– Occasionally Pooling

• MaxPooling most often
– Finish with fully connected layer for classification

Reducing dimensionality, from
e.g. 32x32 activation map to

16x16 activation map

Some Other Neural Network Types

• Recurrent Neural Networks (RNN)
– Unlike a feed-forward network, can internally process

(loop) the result of the calculation
– Good for temporal data processing

• Long Short-Term Memory (LSTM)
– RNN with “forgetting”
– Great for speech processing

• Autoencoder
– A simple network used for feature compression

