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Automating Feature Engineering

• Feature engineering is challenging
– An infinite number of potential features (e.g. mean, 

variance, mean crossing rate, peak frequency, power 
in a certain frequency domain, entropy, etc.)

– Difficult to (visually) inspect feature and class values 
distribution in a dataset in order to get the idea about 
how informative each feature might end up being

– Don’t know how the extracted features will interplay 
with the selected machine learning algorithms 

• Deep learning: let the learning algorithm extract 
features by itself 



Automating Feature Engineering

• Example: recognize the animal in the photo
• You can extract a number of low-level features 

manually: 
– Contains blue; contains red; number of colours; 

colour diffusion; histogram; etc.
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Automating Feature Engineering

• Example: recognize the animal in the photo
• Idea: from low-level features we can train a 

classifier that infers something that will be 
useful for the final inference, e.g. has water, has 
ice, is a bird, etc. 
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Automating Feature Engineering

• Example: recognize the animal in the photo
• The method should automatically identify that 

something
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Basics – Perceptron

• Perceptron – a binary classifier:

• Inspired by the neuron:
x Σwx + b

wx

f(Σwx+b)



Basics – Perceptron

• Perceptron’s activation function is a simple 
Heaviside step function (0 or 1 output)

• Training is about adjusting weights:

• Perceptron is a linear classifier and cannot learn 
non-linear functions, e.g. XOR

• Stacking perceptrons without a non-linear 
activation function in a deep network makes no 
sense – why?



Activation Functions

• Sigmoid

• Hyperbolic tangent 

σ (x) = 1
1+ e−x

tanh(x) = e
x − e−x

ex + e−x

• Rectifier (ReLU)

• Leaky ReLU

max(0,x)

x x ≥ 0
α(ex −1) x < 0

⎧
⎨
⎪
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Multilayer Perceptron
(aka Neural network)

• We can construct a network where intermediate 
(hidden) layers represent that something – key 
features that characterize classes

• Each hidden/output layer consists of 
perceptrons with nonlinear activation functions 
and biases 



Multilayer Perceptron
(aka Neural network)

• Example (a 3-layer neural network):

f = lambda x: np.maximum(0,x)
x = np.random.rand(3,1)
h1 = f(np.dot(W1,x) + b1)
h2 = f(np.dot(W2,h1) + b2)
s = np.dot(W3, h2) + b3



Neural Network Training

• The results of the output layer are scores (s)
• Loss function quantifies how well these scores 

match the ground truth label 
– Example loss function

• for each training instance i:

• regularization 
(makes sure we use smaller weights):

• total loss
(we want to minimize this):

Li = max(0,s j − syi +1)j≠yi
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Neural Network Training

• Adjust the perceptrons’ weights so that 
the loss is minimized 

• Gradient descent: to find the weights that give 
the minimum loss, go in the opposite 
direction of the gradient
– Calculate the gradient
– Update the weights 
– Repeat the above steps until the stopping criterion is 

reached  

• Calculating the gradient is challenging!

Wnew =W − r ∂L
∂W



Gradient Calculation

• Idea 1: calculate the gradient numerically 
– Not perfectly accurate
– You need to do this 

for each variable
(each element of each of the W matrices) and for 
each output dimension -> prohibitively slow 

• Idea 2: calculate the gradient analytically 
– Gets quite complicated for larger networks
– Not modular – change one activation/loss function 

and you need to re-derive the expression 

df (x)
dx

=
h−>0
lim

f (x + h)− f (x)
h



Gradient Calculation

• Idea 3: computational graph & backpropagation
– Represent calculation as a graph, 

e.g. f(x,y,z) = x * y + z

– Calculate local gradients for each element, and then 
backpropagate to the previous element
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Gradient Calculation

• Idea 3: computational graph & backpropagation
– Represent calculation as a graph, 

e.g. f(x,y,z) = x * y + z

– Calculate local gradients for each element, and then 
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Gradient Calculation

• Idea 3: computational graph & backpropagation
– Represent calculation as a graph, 

e.g. f(x,y,z) = x * y + z

– Calculate local gradients for each element, and then 
backpropagate to the previous element
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Gradient Calculation

• Idea 3: computational graph & backpropagation
– Represent calculation as a graph, 

e.g. f(x,y,z) = x * y + z
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Neural Network Training

• But I have matrices (X, W1, b1, W2, b2, etc.)?

• The principle is the same – both forward and 
backward passes boil down to matrix algebra
– However, calculating the gradient on all training 

samples is extremely time consuming
– Stochastic gradient descent: a random subsample of 

the training data is used to calculate the gradient



Convolutional Neural Networks

• Inspiration: how the brain works
– Nearby cells in the cortex represent nearby regions in 

the visual field
– Hierarchical cell organization: 

• Simple cells – detect light
• Complex cells – detect light orientation and movement
• Hypercomplex cells – response to movement with endpoint

• Applications of CNNs:
– Image analysis (object recognition, segmentation, 

captioning)
– Sound analysis (speech recognition, generation)
– Many other purposes 



Convolutional Layer

• Convolves (slides and calculates a dot product) 
the filter with the input (image)

32x32x3 – image 5x5x3 – filter 
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One number goes to the result matrix
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Convolutional Layer

• Convolves (slides and calculates a dot product) 
the filter with the input (image)
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One number goes to the result matrix
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activation map 



Convolutional Layer

• Convolves (slides and calculates a dot product) 
the filter with the input (image)

32x32x3 – image 5x5x3 –
another filter 

28x28x1 –
activation map 



Convolutional Layer

• Convolves (slides and calculates a dot product) 
the filter with the input (image)

32x32x3 – image 5x5x3 –
another filter 

28x28x1 –
one more activation map 



Convolutional Layer

• Convolves (slides and calculates a dot product) 
the filter with the input (image)

32x32x3 – image four 5x5x3 filters
four 28x28x1 

activation maps 



Convolutional Neural Network Structure

• A sequence of convolutional layers with 
activation layers (ReLU)

32x32x3 – image 28x28x4 24x24x5

Conv
(four 
5x5x3 
filters)
ReLU

Conv
(five
5x5x4 
filters)
ReLU

…



Feature Construction in CNN

• Turns out that earlier layers detect simpler 
features (e.g. edges in an image), whereas 
further layers detect more complex features 
(e.g. specific blobs in an image)
– Just like with human vision!



Classification in CNN

• The structure is (usually) 
– Input -> N x {Conv, ReLU}
– Occasionally Pooling

• MaxPooling most often
– Finish with fully connected layer for classification 

Reducing dimensionality, from 
e.g. 32x32 activation map to 

16x16 activation map



Some Other Neural Network Types

• Recurrent Neural Networks (RNN)
– Unlike a feed-forward network, can internally process 

(loop) the result of the calculation
– Good for temporal data processing

• Long Short-Term Memory (LSTM)
– RNN with “forgetting”
– Great for speech processing

• Autoencoder
– A simple network used for feature compression


