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An application of SVD: principal component analysis or PCA

PCA is a very well-known and efficient method for data compression,
dimension reduction, . . .

Due to its importance in different fields, it has many other names: discrete

Karhunen-Loève transform (KLT), Hotelling transform, empirical orthogonal functions

(EOF), . . .

Let {X1, . . . ,Xm} be a sample of vectors from Rn.

In applications, often m << n, where n is very large, for example,
X1, . . . ,Xm can be

I vectors of gene expressions in m tissue samples or

I vectors of grayscale in images

I bag of words vectors, with components corresponding to the numbers
of certain words from some dictionary in specific texts, . . . ,

or n << m for example if the data represents a point cloud in a low
dimensional space Rn (for example in the plane).
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We will assume that m << n. Also assume that the data is centralized, i.e., the centeroid
is in the origin

µ =
1

m

m∑
i=1

Xi = 0 ∈ Rn.

If not, we substract µ from all vectors in the data set.

A matrix norm ‖ · ‖ : Rn×m → R is a function, which generalizes the notion
of the absolute value for numbers to matrices. It is used to measure a
distance between matrices. In contrast with the absolute value, which is
unique up to multiplication with a positive constant, there are many
different matrix norms.

Two important matrix norms are the following:

1. Spectral norm ‖ · ‖2:

‖A‖2 := max
‖x‖2=1

‖Ax‖2 = max
j=1,...,min(n,m)

σj(A).

2. Frobenius norm ‖ · ‖F :

‖A‖F :=

√∑
i ,j

a2i ,j =

√ ∑
j=1,...,min(n,m)

σj(A)2.
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Let
X =

[
X1 X2 · · · Xm

]T
be the matrix of dimension m × n with data in the rows.

Let XTX ∈ Rm×m and XXT ∈ Rn×n be the covariance matrices of the
data.

I The principal values of the data set {X1, . . . ,Xr} are the nonzero eigenvalues
λi = σ2

i of the covariance matrices (where σi are the singular values of X ).

I The principal directions in Rn are corresponding eigenvectors v1, . . . , vr , i.e. the
columns of the matrix V from the SVD of X . The remaining clolumns of V (i.e.
the eigenvectors correspondong to 0) form a basis of the null space of X .

I The first column v1, the first principal direction, corresponds to the direction in Rn

with the largest variance in the data Xi , that is, the most informative direction for
the data set, the second the second most important, . . .

I The principal directions in Rm are the columns u1, . . . , ur of the matrix U and
represent the coefficients in the linear decomposition of the vectors X1, . . . ,Xm

along the orthonormal basis v1, . . . vn of Rn.
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PCA provides a linear dimension reduction method based on a projection of
the data from the space Rn into a lower dimensional subspace spanned by
the first few principal vectors v1, . . . , vk in Rn.

The idea is to approximate

Xi = σ1u1,iv1 + · · ·+ σmum,ivm ∼= σ1u1,iv1 + · · ·+ σkuk,ivk

with the first k most informative directions in Rn and supress the last
m − k .

PCA has the following amazing property:

Theorem
Among all possible projections of p : Rn → Rk onto a k-dimensional
subspace, PCA provides the best in the sense that the errors

‖X − p(X )‖2F and ‖X − p(X )‖22,

where p(X ) =
[
p(X1) · · · p(Xm)

]T
, are the smallest possible.
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Chapter 3:

Nonlinear models
I Definition and examples

I Systems of nonlinear equations
I Vector functions of vector variables

I Derivative and Jacobian matrix
I Linear approximation

I Newton’s method for square systems
I Univariate case: Tangent method
I Use in optimization

I Gauss-Newton’s method for rectangular systems
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3. Nonlinear models
General formulation

Given is a sample of points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R.

The mathematical model is nonlinear if the function

y = F (x , a1, . . . , ap) (1)

is a nonlinear function of the parameters ai . This means it cannot be
written in the form

y = a1f1(x) + a2f2(x) + . . .+ apfp(x),

where each fi : Rn → R is some function.

Plugging each data points into (1) we obtain a system of nonlinear
equations

y1 = F (x1, a1, . . . , ap),

...

ym = F (xm, a1, . . . , ap),

(2)

in the parameters a1, . . . , ap ∈ R.
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Examples

1. Exponential decay or growth: F (x , a, k) = aekx , a and k are
parameters.

A quantity y changes at a rate proportional to its current value, which
can be described by the differential equation

dy

dx
= ky .

The solution to this equation (obtained by the use of separation of
variables) is y = F (x , a, k).
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Examples

2. Gaussian model: F (x , a, b, c) = ae−( x−b
c )

2

, a, b, c ∈ R parameters.

a is the value of the maximum obtained at x = b and c determines the
width of the curve.

It is used in statistics to describe the normal distribution, but also in
signal and image processing.

In statistics a = 1
σ
√
2π

, b = µ, c =
√

2σ, where µ, σ are the expected

value and the standard deviation of a normally distributed random
variable.
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Examples

3. Logistic model: F (x , a, b, k) = a
(1+be−kx )

, k > 0

The logistic function was devised as a model of population size by
adjusting the exponential model which also considers the saturation of
the environment, hence the growth first changes to linear and then
stops.

The logistic function F (x , a, b, k) is a solution of the first order
non-linear differential equation

dy(x)

dx
= ky(x)

(
1− y(x)

a

)
.
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Examples

4. In the area around a radiotelescope the use of microwave ovens is forbidden, since
the radiation interferes with the telescope. We are looking for the location (a, b) of
a microwave oven that is causing problems.

The radiation intensity decreases with the distance r from the source according to

u(r) =
α

1 + r
. In cartesian coordinates:

u(x , y) =
α

1 +
√

(x − a)2 + (y − b)2
,

where (a, b) is a position of the microwave.

Task: Find the position of the microwave, if the measured values of the signal at
three locations are u(0, 0) = 0.27, u(1, 1) = 0.36 in u(0, 2) = 0.3.

This gives the following system of equations for the parameters α, a, b:

α

1 +
√
a2 + b2

= 0.27

α

1 +
√

(1− a)2 + (1− b)2
= 0.36

α

1 +
√

a2 + (2− b)2
= 0.3
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An equivalent, more convenient formulation of the nonlinear system

I Our goal is to fit the data points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R.

I We choose a fitting function

F (x , a1, . . . , ap)

which depends on the unknown parameters a1, . . . , ap.
I Equivalent formulation of the system (2) ( which will be more suitable for solving with

numerical algorithms) is:
1. For i = 1, . . . ,m define the functions

gi : Rp → R by the rule gi (a1, . . . , ap) = yi − F (xi , a1, . . . , ap).

2. Solve or approximate the following system by the least squares method

g1(a1, . . . , ap) = 0,

...

gm(a1, . . . , ap) = 0.

(3)
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An equivalent, more convenient formulation of the nonlinear system - continued

In a compact way (3) can be expressed by introducing a vector function

G : Rp → Rm, G (a1, . . . , ap) = (g1(a1, . . . , ap), . . . , gm(a1 . . . , ap)), (4)

and search for the tuples (a1, . . . , ap) that solve the system (or minimize
the norm of the left-hand side)

G (a1, . . . , ap) = (0, . . . , 0). (5)

Remark
Solving (5) is a difficult problem. Even if the exact solution exists, it is not easy
(or even impossible) to compute. For example, there does not even exist an
analytic formula to determine roots of a general polynomial of degree 5 or more.

But we will learn some numerical algortihms to approximate the solutions
of (5).
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3.1 Vector functions of a vector variable
Neccessary terminology to achieve our plan

G from (4) is an example of

I a vector function: since it maps into Rm, where m might be bigger
than 1.

I a vector variable: since it maps from Rp, where p might be bigger than
1.

Remark

I If m = 1 and p > 1, then G is a usual multivariate function.

I If m = 1 and p = 1, then G is a usual (univariate) function.

For easier reference in the continuation we call g1, . . . , gm from (4) the
component (or coordinate) functions of G .
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Examples

1. A linear vector function G : Rn → Rm is such that all the component
functions gi are linear:

gi (x1, . . . , xn) = ai1 · x1 + ai2 · x2 + . . .+ ain · xn, where aij ∈ R. (6)

In this case
G (x) = Ax ,

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 .
2. Adding constants bi ∈ R to the left side of (6) we get the definition of

an affine linear vector function,

gi (x1, . . . , xn) = ai1x1 + ai2x2 + . . . ainxn + bi ,

and then

G (x) = Ax + b, where b =
[
b1 b2 . . . bn

]T
.
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Examples

3. Most of the (vector) functions are nonlinear, e.g.,

f : R3 → R2, f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z),

g : R2 → R3, g(z ,w) = (zw , cos z + w2 − 2, e2z),

h : R→ R2, h(t) = (t + 3, e−3t).
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Derivative of a vector function - is needed in the algorithms we will use

The derivative of a vector function F : Rn → Rm in the point

a := (a1, . . . , an) ∈ Rn

is called the Jacobian matrix of F in a:

JF (a) = DF (a) =


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)

...
. . .

...
∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

 .
I If n = m = 1, the Df (x) = f ′(x) is the usual derivative.
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Derivative - continued

I For general n and m = 1, f is a function of n variables and

Df (x) = grad f (x)

is its gradient.

I For general m and n, Df (x) =

grad f1
...

grad fm

 is a vector of gradients of

component functions.
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Examples

1. For an affine linear function f : Rn → Rm, given by f (x) = Ax + b, it
is easy to check that

Df (x) = A.

2. For a vector function f : R3 → R2, given by

f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z),

then

Df (x) =

[
2x 2y 2z
1 1 1

]
.
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Application of the derivative - linear approximation

A linear approximation of the vector function f : Rn → Rm at the point
a ∈ Rn is the affine linear function

La : Rn → Rm, La(x) = Ax + b

that satisfies the following conditions:

1. It has the same value as f in a: La(a) = f (a).

2. It has the same derivative as f at a: DLa(a) = Df (a).

It is easy to check that

La(x) = f (a) + Df (a)(x − a).

I n = m = 1:
La(x) = f (a) + f ′(a)(x − a)

The graph y = La(x) is the tangent to the graph y = f (x) at the point a.
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Application of the derivative - linear approximation continued

I If n = 2 and m = 1, then

L(a,b)(x , y) = f (a, b) + gradf (a, b)

[
x − a
y − b

]
.

The graph
z = L(a,b)(x , y)

is the tangent plane to the surface z = f (x , y) at the point (a, b).
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Example

The linear approximation of the function

f : R3 → R2, f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z)

at a = (1,−1, 1) is the affine linear function

La(x , y , z) = f (1,−1, 1) + Df (1,−1, 1)

x − 1
y + 1
z − 1


=

[
2
1

]
+

[
2 −2 2
1 1 1

] x − 1
y + 1
z − 1


=

[
2 + 2(x − 1)− 2(y + 1) + 2(z − 1)

1 + (x − 1) + (y + 1) + (z − 2)

]

=

[
2 −2 2
1 1 1

]xy
z

+

[
−4
0

]
.
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3.2 Solving systems of nonlinear equations

Let f : D → Rm be a vector function, defined on some set D ⊂ Rn.

We will study the Gauss-Newton method to solve the system f (x) = 0 in
terms of least squares. This is one of the numerical methods for searching
approximate solution of this system. It is based on linear approximations of
f .
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Newton’s method for n = m = 1

We are searching zeroes of the function f : D → R, D ⊆ R, i.e., we are
solving f (x) = 0.

Newton’s or tangent method:

We construct a recursive sequence with:

I x0 is an initial term,

I xk+1 is a solution of

Lxk (x) = f (xk) + f ′(xk)(x − xk) = 0, so xk+1 = xk − f (xk )
f ′(xk )

.
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Newton’s method for n = m = 1 - continued

Theorem
The sequence xi converges to a solution α, f (α) = 0, if:

(1) 0 6= |f ′(x)| for all x ∈ I , where I is some interval containing α,

(2) x0 is sufficiently close to α.

Under these assumptions the convergence is quadratic, meaning that:

If we denote by εj = |xj − α|, then εi+1 ≤ Mε2i ,

where M is some constant. If f is twice differentiable, then

M ≤ max
x∈I
|f ′′(x)|/min

x∈I
|f ′(x)|.
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Proof.
Condition (1) implies in particular that α is a simple zero of f . Plugging α
in the Taylor expansion of f around xi we get

0 = f (α) = f (xi ) + f ′(xi )(α− xi ) +
f ′′(η)

2
(α− xi )

2

= f (xi ) + f ′(xi )(α− xi ) +
f ′′(η)

2
(α− xi )

2

(7)

where η is between α and xi . Dividing (7) with f ′(xi ) we get

0 =
f (xi )

f ′(xi )
− (α− xi ) +

f ′′(η)

2f ′(xi )
e2i

and hence (
xi −

f (xi )

f ′(xi )

)
− α = xi+1 − α =

f ′′(η)

2f ′(xi )
e2i .

Thus,

ei+1 =

∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ e2i
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Now ∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ ≤ maxx∈I |f ′′(x)|
minx∈I |f ′(x)|

.

To prove that the sequence converges note that there exists δ0 > 0 such
that

Mδ0 <
1

2
.

Hence, if ei ≤ δ0, then

ei+1 =

∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ e2i =
1

2
ei .

Therefore

lim
n→∞

en = lim
n→∞

1

2n
· e0 = 0.
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Newton’s method for n = m > 1

Newton’s method generalizes to systems of n nonlinear equations in n
unknowns:

I x0 – initial approximation,

I xk+1 – solution of

Lxk (x) = f (xk) + Df (xk)(x − xk) = 0,

so
xk+1 = xk − Df (xk)−1f (xk).

In practice inverses are difficult to calculate (require to many operations)
and the linear system for ∆xk = xk+1 − xk

Df (xk)∆xk = −f (xk)

is solved at each step (using LU decomposition of Df (xk)) and hence

xk+1 = xk + ∆xk .
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Example

Derive Newton’s method for solving the system of quadratic equations:

x2 + y2 − 10x + y = 1,

x2 − y2 − x + 10y = 25.

We are searching for the zero of the vector function

F : R2 → R2, F (x , y) = (x2 + y2 − 10x + y − 1, x2 − y2 − x + 10y − 25).

The Jacobian of F in (x , y) is

DF (x , y) =

[
2x − 10 2x − 1
2y + 1 −2y + 10

]
.

Using Newton’s metod we:

I Choose an initial term (x0, y0).

I Calculate xr+1 = xr + ∆xr , where DF (xr , yr )∆xr = −F (xr , yr )
T .
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