Mobile Sensing: Learning from Sensor Data

Master studies, Winter 2021/2022

Dr Veljko Pejović Veljko.Pejovic@fri.uni-lj.si

Sensing and Learning Pipeline

Machine Learning Basics

- Machine learning (ML)
 - Build mathematical models explaining a higher-level concept based on the previously collected training data
 - Predict/infer the higher-level concepts from the newly-collected data using the above models

Machine Learning Basics

- (Some) types of ML
 - Supervised learning: training data contains both the input values as well as the output (labels)
 - The model is built to predict the labels from the future nonlabelled data that contains only inputs
 - E.g. a model that predicts physical activity (labels: walk, run, sit) from accelerometer data
 - Unsupervised learning: training data contains unlabelled data
 - The model finds structure in data
 - E.g. a model that finds top five commonly visited locations in GPS data

Machine Learning Basics

Supervised vs Unsupervised learning

University of Ljubljana Faculty of Computer and Information Science Source: https://lawtomated.com/supervised-vsunsupervised-learning-which-is-better/

Machine Learning in Mobile Sensing

- The goal is to obtain a mathematical description connecting sensed signals and a high-level concept
 - e.g. accelerometer data and a user's physical activity
- If the high-level concept has discrete values, we use classification
 - e.g. activity recognition ("running", "sitting", "walking")
- If the high-level concept is described by continuous values, we use regression

– e.g. depression level (0-24)

Running example – Activity Recognition

- Goal: activities from accelerometer data
- Approach: classifier for a well-defined set of activity types
- Steps:
 - Data collection
 - Data inspection
 - Feature engineering
 - Classifier construction
 - Model evaluation

Data Collection

- Prerequisite: obtain Institutional Review Board clearance and recruit volunteers
- Labelling: sample sensors while the participants are performing each of the activities and assign the correct label (ground truth) to each sample
 - Equal amounts of data for each activity
 - Equal amounts of data from each user
 - Varying device placement (in a pocket, bag, etc.)

TIP: sometimes it is difficult to get a balanced dataset (e.g. walking vs falls). Under- and oversampling might help

 The resulting dataset should be split into training, validation, and test dataset

Data Inspection

- Visualisation
 - Iteratively (before and after filtering, outlier removal)
 - Different classes
 - Different scales (e.g. duration intervals)

Data Inspection

Visualisation

Feature Engineering

- Summary representations of the data
 - Time domain features: mean, variance, mean crossing rate (MCR), minimum, maximum, etc.
 - Frequency domain features: dominant frequency, power in different frequency bands, entropy, etc.
 - Domain specific
 - Search the related work to get ideas for new ones or to identify proven features in the domain you are tackling
 - Ensure consistent treatment of the data:
 - Equal time-window for each sampling segment, etc.

University of Ljubljana Faculty of Computer and Information Science TIP: "Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges" contains an overview of features used in different domains. Find it on Ucilnica!

Classification/Regression

- Classification algorithms:
 - Tree-based
 - Bayesian
 - Ensemble methods
 - etc.
- Regression algorithms:
 - Linear and logistic regression
 - Multilevel models
 - etc.

Tree-Based Classification

• Example: distinguish between driving, sitting, standing, walking, jogging, cycling

Tree-Based Classification

- To construct a tree:
 - Find the feature that splits the data in the best possible manner – what does "best" mean?
 - Entropy (at a node t):

$$H(t) = -\sum_{i=0}^{c-1} p(i | t) \mathbf{log}_2 p(i | t)$$

More "pure" the nodes are after the split, the lower the entropy

- Information gain (when split on a certain feature):

$$\Delta = H(S) - \sum_{t=0}^{T} \frac{N(t)}{N(S)} H(t)$$

– Split on a feature that yields the highest Δ

Classifier Evaluation – Data Splitting

- Classifier must be built on one (training set) and evaluated on a separate dataset (test set)
 - You know the labels for the test set, but the classifier "sees" only the feature values and infers the labels
- Splitting datasets:
 - Holdout: x% of the data is held out for testing, (100-x)% of the data is used for training
 - N-fold cross validation: data divided into N equal subsets, one fold held out for testing, the rest used for training; calculate performance metrics and repeat N times, each time with a different subset held out

Classifier Evaluation – Data Splitting

Validation set

- If your classifier has a number of tunable parameters, further split the training set and use one part as a validation set
- Tune parameters, test performance on the validation set; repeat until the best tuning is found
- Think before splitting the dataset!
 - Is your model built on data randomly sampled from a wider time period?
 - If the target property changes over time, how will your model work once you release it?

- Does your training set include data from all users? University of Ljubliana Faculty of Complexium ill your model behave when a new user joins in? Information Science

Classifier Evaluation – Performance Metrics

- Accuracy:
 - Num of instances with correctly predicted labels/ Total number of instances
- Precision:
 - Accuracy of predicting a certain class
 - TP/(TP+FP)
- Recall
 - Ability to select instances of a certain class
 - TP/(TP+FN)
- F-measure

University of Linuter and

Ind

Classifier Evaluation – Performance Metrics

- Confusion matrix:
 - Rows: actual
 - Columns: predictions

าร	Correct predictions are on the diagonal		
	Easy	Medium	Difficult
Easy	158	101	65
Medium	98	163	63
Difficult	69	91	164
Precision	49%	46%	56%
Recall	49%	50%	51%
F1	49%	48%	53%
Accuracy	51%		

University of Ljubljana Faculty of Computer and Information Science

M. Gjoreski, M. Lustrek, and V. Pejovic

My Watch Says I'm Busy: Inferring Cognitive Load with Low-Cost Wearables

Classifier Evaluation – Performance Metrics

- Are the results good or not?
 - 90% accuracy means nothing
 - 90% accuracy is good if the user is equally likely to run, walk, sit, stand, go up/down the stairs
 - 90% is bad if the user is anyways sitting 90% of the time
- Always compare to the baseline!
- Baseline:
 - Mean value for regression
 - Majority class for classification

Orange Example

https://orange.biolab.si/

Is Classification Always Necessary?

- Some applications allow simpler approaches
 - e.g. step counting
- Collect raw accelerometer data (noisy)
- Filtered the data

 Detect steps by calculating the intensity and detecting when the mean is crossed

Machine Learning on Android

Machine Learning on Android

- On-device vs Cloud-based
 - Latency: c.b. depends on network speed
 - Energy: o.d. can deplete device resources
 - Privacy: o.d. preserves privacy
 - Model complexity: c.b. allows more complex models
- Cloud-based:
 - ML Kit, Google Cloud API
- On-device:
 - ML Toolkit very simple models
 - WEKA ports more complex traditional ML models

TensorFlow Lite and ML Kit – deep learning models Faculty of Computer and Information Science

ML Toolkit

github.com/vpejovic/MachineLearningToolkit

- Simple on-device learning
 - Tree-based, Naïve Bayes, and Density Clustering
- Features:
 - Classifier persistence (as an internal file)
 - Loading external classifier (as a file)
- Usage add as dependency:
 - 'si.uni_lj.fri.lrss.machinelearningtoolkit:mltoolkit:1.2'

ML Toolkit Example

Weka Ports

- Weka
 - A large collection of machine learning algorithms implemented in Java
 - https://www.cs.waikato.ac.nz/ml/weka/index.html
- For Android:
 - No official port, but it's all Java anyways
 - Download .jar and include it in your project
- Using pretrained Weka models in Android:
 - A great lab by prof Campbell, Darmouth College: https://www.cs.dartmouth.edu/~campbell/cs65/lect ure22/lecture22.html

ML Kit and TensorFlow Lite

- Firebase a framework supporting mobile app development
 - Messaging, authentication, database, monitoring, etc.
- ML Kit a part of Firebase dedicated to machine learning
 - On-device and cloud-based
 - Pretrained models for text recognition, face detection, object detection and tracking, barcode scanning, etc.
- TensorFlow a library for NN programming
 - ML Kit's models use TensorFlow Lite under the hood

- Create own models in TensorFlow and use in Andorid University of Ljubljana Faculty of Computer and Information Science

TODO

- Machine Learning lab from Platform Based Development course materials on Ucilnica
- Read the following article about building a classifier:
 - <u>Classification: Basic Concepts, Decision Trees, and</u> <u>Model Evaluation</u>, Tan et al.
- Complete the second lab
- Read the deep learning article for next week

