
Mobile Sensing:
Learning from Sensor Data

Master studies, Winter 2021/2022

Dr Veljko Pejović
Veljko.Pejovic@fri.uni-lj.si

Sensing and Learning Pipeline

Sensor
sampling Filtering Feature

Extraction Modelling

Acc.
GPS
Camera
Barometer
Gyroscope
Proximity
Mic.
BT
…

Emotion

Semantic
location

Activity

Gestures
…

Raw data

Data focused
on the target
phenomenon

Feature
values,
labels

Machine Learning Basics

• Machine learning (ML)
– Build mathematical models explaining a higher-level

concept based on the previously collected training
data

– Predict/infer the higher-level concepts from the
newly-collected data using the above models

Machine Learning Basics

• (Some) types of ML
– Supervised learning: training data contains both the

input values as well as the output (labels)
• The model is built to predict the labels from the future non-

labelled data that contains only inputs
• E.g. a model that predicts physical activity

(labels: walk, run, sit) from accelerometer data
– Unsupervised learning: training data contains

unlabelled data
• The model finds structure in data
• E.g. a model that finds top five commonly visited locations in

GPS data

Machine Learning Basics

• Supervised vs Unsupervised learning

Source: https://lawtomated.com/supervised-vs-
unsupervised-learning-which-is-better/

Machine Learning in Mobile Sensing

• The goal is to obtain a mathematical description
connecting sensed signals and a high-level
concept
– e.g. accelerometer data and a user’s physical activity

• If the high-level concept has discrete values, we
use classification
– e.g. activity recognition (“running”, “sitting”, “walking”)

• If the high-level concept is described by
continuous values, we use regression
– e.g. depression level (0-24)

Running example –
Activity Recognition

• Goal: activities from accelerometer data
• Approach: classifier for a well-defined set of

activity types
• Steps:
– Data collection
– Data inspection
– Feature engineering
– Classifier construction
– Model evaluation

Data Collection

• Prerequisite: obtain Institutional Review Board
clearance and recruit volunteers

• Labelling: sample sensors while the participants
are performing each of the activities and assign
the correct label (ground truth) to each sample
– Equal amounts of data for each activity
– Equal amounts of data from each user
– Varying device placement

(in a pocket, bag, etc.)

• The resulting dataset should be split
into training, validation, and test dataset

TIP: sometimes it is
difficult to get a

balanced dataset
(e.g. walking vs falls).

Under- and over-
sampling might help

Data Inspection

• Visualisation
– Iteratively (before and after filtering, outlier removal)
– Different classes
– Different scales (e.g. duration intervals)

Data Inspection

• Visualisation

TIP: Visualisation
helps you pinpoint

discriminating
characteristics of
different classes.

Feature Engineering

• Summary representations of the data
– Time domain features: mean, variance, mean

crossing rate (MCR), minimum, maximum, etc.
– Frequency domain features: dominant frequency,

power in different frequency bands, entropy, etc.
– Domain specific

• Search the related work to get ideas for new ones or to
identify proven features in the domain you are tackling

– Ensure consistent
treatment of the data:
• Equal time-window for each

sampling segment, etc.

TIP: “Anticipatory Mobile
Computing: A Survey of the

State of the Art and Research
Challenges” contains an

overview of features used in
different domains. Find it on

Ucilnica!

Classification/Regression

• Classification algorithms:
– Tree-based
– Bayesian
– Ensemble methods
– etc.

• Regression algorithms:
– Linear and logistic regression
– Multilevel models
– etc.

For this class, you
must know how a
simple tree-based,

Naïve Bayesian, and
linear regression
algorithms work!

Tree-Based Classification

• Example: distinguish between driving, sitting,
standing, walking, jogging, cycling

Tree-Based Classification

• To construct a tree:
– Find the feature that splits the data in the best

possible manner – what does “best” mean?
– Entropy (at a node t):

– Information gain (when split on a certain feature):

– Split on a feature that yields the highest Δ

H (t) = − p(i | t)
2log

i=0

c−1

∑ p(i | t)

More “pure” the nodes
are after the split, the

lower the entropy

Δ = H (S)− N (t)
N (S)

H (t)
t=0

T

∑

Classifier Evaluation – Data Splitting

• Classifier must be built on one (training set) and
evaluated on a separate dataset (test set)
– You know the labels for the test set, but the classifier

“sees” only the feature values and infers the labels
• Splitting datasets:
– Holdout: x% of the data is held out for testing,

(100-x)% of the data is used for training
– N-fold cross validation: data divided into N equal

subsets, one fold held out for testing, the rest used
for training; calculate performance metrics and repeat
N times, each time with a different subset held out

Classifier Evaluation – Data Splitting

• Validation set
– If your classifier has a number of tunable parameters,

further split the training set and use one part as a
validation set

– Tune parameters, test performance on the validation
set; repeat until the best tuning is found

• Think before splitting the dataset!
– Is your model built on data randomly sampled from a

wider time period?
• If the target property changes over time, how will your model

work once you release it?
– Does your training set include data from all users?

• How will your model behave when a new user joins in?

Classifier Evaluation –
Performance Metrics

• Accuracy:
– Num of instances with correctly predicted labels/

Total number of instances
• Precision:
– Accuracy of predicting a certain class
– TP/(TP+FP)

• Recall
– Ability to select instances of a certain class
– TP/(TP+FN)

• F-measure
– 2/(1/precision + 1/recall)

Classifier Evaluation –
Performance Metrics

• Confusion matrix:
– Rows: actual
– Columns: predictions

Easy Medium Difficult
Easy 158 101 65
Medium 98 163 63
Difficult 69 91 164
Precision 49% 46% 56%
Recall 49% 50% 51%
F1 49% 48% 53%
Accuracy 51%

Correct predictions are
on the diagonal

M. Gjoreski, M. Lustrek, and V. Pejovic
My Watch Says I'm Busy: Inferring Cognitive Load with Low-Cost Wearables

Classifier Evaluation –
Performance Metrics

• Are the results good or not?
– 90% accuracy means nothing
– 90% accuracy is good if the user is equally likely to

run, walk, sit, stand, go up/down the stairs
– 90% is bad if the user is anyways sitting 90% of the

time
• Always compare to the baseline!
• Baseline:
– Mean value for regression
– Majority class for classification

Orange Example
h"ps://orange.biolab.si/

https://orange.biolab.si/

Is Classification Always Necessary?

• Some applications allow simpler approaches
– e.g. step counting

• Collect raw accelerometer
data (noisy)

• Filtered the data

• Detect steps by calculating the intensity and
detecting when the mean is crossed

Machine Learning on Android

Machine Learning on Android

• On-device vs Cloud-based
– Latency: c.b. depends on network speed
– Energy: o.d. can deplete device resources
– Privacy: o.d. preserves privacy
– Model complexity: c.b. allows more complex models

• Cloud-based:
– ML Kit, Google Cloud API

• On-device:
– ML Toolkit – very simple models
– WEKA ports – more complex traditional ML models
– TensorFlow Lite and ML Kit – deep learning models

ML Toolkit
github.com/vpejovic/MachineLearningToolkit

• Simple on-device learning
– Tree-based, Naïve Bayes, and Density Clustering

• Features:
– Classifier persistence (as an internal file)
– Loading external classifier (as a file)

• Usage - add as dependency:
– 'si.uni_lj.fri.lrss.machinelearningtoolkit:mltoolkit:1.2’

ML Toolkit Example

Weka Ports

• Weka
– A large collection of machine learning algorithms

implemented in Java
– https://www.cs.waikato.ac.nz/ml/weka/index.html

• For Android:
– No official port, but it’s all Java anyways
– Download .jar and include it in your project

• Using pretrained Weka models in Android:
– A great lab by prof Campbell, Darmouth College:

https://www.cs.dartmouth.edu/~campbell/cs65/lect
ure22/lecture22.html

ML Kit and TensorFlow Lite

• Firebase – a framework supporting mobile app
development
– Messaging, authentication, database, monitoring, etc.

• ML Kit – a part of Firebase dedicated to
machine learning
– On-device and cloud-based
– Pretrained models for text recognition, face detection,

object detection and tracking, barcode scanning, etc.
• TensorFlow – a library for NN programming
– ML Kit’s models use TensorFlow Lite under the hood
– Create own models in TensorFlow and use in Andorid

TODO

• Machine Learning lab from Platform Based
Development course materials on Ucilnica

• Read the following article about building a
classifier:
– Classification: Basic Concepts, Decision Trees, and

Model Evaluation, Tan et al.

• Complete the second lab
• Read the deep learning article for next week

http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf

