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Machine Learning Basics

« Machine learning (ML)

— Build mathematical models explaining a higher-level
concept based on the previously collected training
data

— Predict/infer the higher-level concepts from the
newly-collected data using the above models
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Machine Learning Basics

« (Some) types of ML

— Supervised learning: training data contains both the
input values as well as the output (labels)

* The model is built to predict the labels from the future non-
labelled data that contains only inputs

» E.g. a model that predicts physical activity
(labels: walk, run, sit) from accelerometer data

— Unsupervised learning: training data contains
unlabelled data
« The model finds structure in data

* E.g. a model that finds top five commonly visited locations in
L GPS data
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Machine Learning Basics

« Supervised vs Unsupervised learning
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Machine Learning in Mobile Sensing

The goal is to obtain a mathematical description
connecting sensed signals and a high-level
concept

— e.g. accelerometer data and a user’s physical activity

If the high-level concept has discrete values, we
use classification

— e.g. activity recognition (“running”, “sitting”, “walking”)
If the high-level concept is described by
continuous values, we use regression

— e.g. depression level (0-24)
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Running example —
Activity Recognition
 Goal: activities from accelerometer data

» Approach: classifier for a well-defined set of
activity types
¢ Steps:
— Data collection
— Data inspection
— Feature engineering
— Classifier construction
— Model evaluation
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Data Collection

* Prerequisite: obtain Institutional Review Board
clearance and recruit volunteers

 Labelling: sample sensors while the participants
are performing each of the activities and assign

the correct label (ground truth) to each sample

— Equal amounts of data for each activity )
TIP: sometimes it is
— Equal amounts of data from each user difficult to get a
. . balanced dataset
— Varying device placement (e.g. walking vs falls).

. Under- and over-
(in a pocket, bag, etc.) sampling might help

» The resulting dataset should be split \-

a4 into training, validation, and test dataset
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Data Inspection

* Visualisation
— lteratively (before and after filtering, outlier removal)

— Different classes
— Different scales (e.g. duration intervals)
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Data Inspection

e Visualisation
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TIP: Visualisation
helps you pinpoint
discriminating
characteristics of
different classes.
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Feature Engineering

« Summary representations of the data

— Time domain features: mean, variance, mean
crossing rate (MCR), minimum, maximum, etc.

— Frequency domain features: dominant frequency,
power in different frequency bands, entropy, etc.
— Domain specific

« Search the related work to get ideas for new ones or to
identify proven features in the domain you are tackling

— Ensure consistent TIP: “Anticipatory Mobile )

treatment Of the da'ta. Computing: A Survey of the

. . State of the Art and Research

« Equal time-window for each Challenges” contains an
R sampling segment, etc. overview of features used in
DEB different domains. Find it on
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Classification/Regression

 Classification algorithms:
— Tree-based
— Bayesian
— Ensemble methods
— etc.

* Regression algorithms:

— Linear and logistic regression
— Multilevel models
— etc.
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must know how a
simple tree-based,
Naive Bayesian, and
linear regression
algorithms work!
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Tree-Based Classification

« Example: distinguish between driving, sitting,
standing, walking, jogging, cycling

meanH < 8.48

stdV < 0.95

meanV < 5454 stdV < 22.395

Driving BicyCling

meanV < 58 465

Siting Running
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Tree-Based Classification

e To construct a tree:

— Find the feature that splits the data in the best
possible manner — what does “best” mean?

— Entropy (at a node t): { More “pure” the nodes ]
c-1 are after the split, the
H(1)=~ p(i|Hlog pil)
i=0

lower the entropy

— Information gain (when split on a certain feature):

A= (s)- TN

2ns) T

=+ — Split on a feature that yields the highest A
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Classifier Evaluation — Data Splitting

« Classifier must be built on one (training set) and
evaluated on a separate dataset (test set)

— You know the labels for the test set, but the classifier
“sees” only the feature values and infers the labels

« Splitting datasets:

— Holdout: x% of the data is held out for testing,
(100-x)% of the data is used for training

— N-fold cross validation: data divided into N equal
subsets, one fold held out for testing, the rest used
for training; calculate performance metrics and repeat

| N times, each time with a different subset held out
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Classifier Evaluation — Data Splitting

Validation set

— If your classifier has a number of tunable parameters,
further split the training set and use one part as a
validation set

— Tune parameters, test performance on the validation
set; repeat until the best tuning is found

Think before splitting the dataset!

— Is your model built on data randomly sampled from a
wider time period?

« If the target property changes over time, how will your model
work once you release it?

— Does your training set include data from all users?
University of Ljupljana . . .
Faculty of conil@WeWIll your model behave when a new user joins in?
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Classifier Evaluation —
Performance Metrics

Accuracy:

— Num of instances with correctly predicted labels/
Total number of instances

Precision:

— Accuracy of predicting a certain class
— TP/(TP+FP)

Recall

— Ability to select instances of a certain class
— TP/(TP+FN)

- F-measure
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Classifier Evaluation —
Performance Metrics

« Confusion matrix:
— Rows: actual Correct predictions are
o on the diagonal
— Columns: predictions

Easy Medium Difficult
Easy 158 101 65
Medium 08 163 63
Difficult 69 91 164
Precision 49% 46% 56%
Recall 49% 50% 51%
F1 49% 48% 53%
1 Accuracy S1%

. University of Liubljana M. Gjoreski, M. Lustrek, and V. Pejovic
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Classifier Evaluation —
Performance Metrics

 Are the results good or not?
— 90% accuracy means nothing

— 90% accuracy is good if the user is equally likely to
run, walk, sit, stand, go up/down the stairs

— 90% is bad if the user is anyways sitting 90% of the
time

« Always compare to the baseline!
 Baseline:

— Mean value for regression
— Majority class for classification
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Orange Example

https://orange.biolab.si/
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https://orange.biolab.si/

|s Classification Always Necessary?

« Some applications allow simpler approaches
— e.g. step counting

e Collect raw accelerometer e%\ .
data (noisy)

-18

* Filtered the data

6:29:14PM  6:29:116 PM  6:29:18 PM  6:29:20 PM  6:29:22 PM

Time

» Detect steps by calculating the intensity and
.. detecting when the mean is crossed
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Machine Learning on Android
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Machine Learning on Android

* On-device vs Cloud-based
— Latency: c.b. depends on network speed
— Energy: o0.d. can deplete device resources
— Privacy: o.d. preserves privacy
— Model complexity: c.b. allows more complex models

* Cloud-based:
— ML Kit, Google Cloud API
* On-device:
— ML Toolkit — very simple models
. — WEKA ports — more complex traditional ML models
Mt TensprFlow Lite and ML Kit — deep learning models

Universi
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ML Toolkit

github.com/vpejovic/MachinelLearningToolkit

Simple on-device learning

— Tree-based, Naive Bayes, and Density Clustering
Features:

— Classifier persistence (as an internal file)

— Loading external classifier (as a file)

Usage - add as dependency:
— 'si.uni_lj.fri.Irss.machinelearningtoolkit:mltoolkit:1.2’
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ML Toolkit Example
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Weka Ports

« Weka

— A large collection of machine learning algorithms
implemented in Java

— https://www.cs.waikato.ac.nz/ml/weka/index.html

* For Android:
— No official port, but it's all Java anyways
— Download .jar and include it in your project

 Using pretrained Weka models in Android:

— A great lab by prof Campbell, Darmouth College:
https://www.cs.dartmouth.edu/~campbell/cs65/lect
et ure22/lecture22.html
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ML Kit and TensorFlow Lite

» Firebase — a framework supporting mobile app
development

— Messaging, authentication, database, monitoring, etc.

« ML Kit — a part of Firebase dedicated to
machine learning
— On-device and cloud-based

— Pretrained models for text recognition, face detection,
object detection and tracking, barcode scanning, etc.

* TensorFlow — a library for NN programming
— ML Kit's models use TensorFlow Lite under the hood
wl — Create own models in TensorFlow and use in Andorid
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TODO

Machine Learning lab from Platform Based
Development course materials on Ucilnica
Read the following article about building a

classifier:
— Classification: Basic Concepts, Decision Trees, and

Model Evaluation, Tan et al.

Complete the second lab
Read the deep learning article for next week
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http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf

