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Case 3: Σ ∈ Rn×m is a diagonal matrix of the form

Σ =


σ1

σ2
. . .

σn

 or Σ̃ =



σ1
σ2

. . .

σm


.

The MP inverse is

Σ+ =



σ+1
σ+2

. . .

σ+n


or Σ̃+ =


σ+1

σ+2
. . .

σ+m

 ,

where σ+i =

{ 1
σi
, σi 6= 0,

0, σi = 0.
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Case 4: A general matrix A. (using SVD)

Theorem (Singular value decomposition - SVD)

Let A ∈ Rn×m be a matrix. Then it can be expressed as a product

A = UΣV T ,

where

I U ∈ Rn×n is an orthogonal matrix with left singular vectors ui as its
columns,

I V ∈ Rm×m is an orthogonal matrix with right singular vectors vi as its
columns,

I Σ =


σ1 0

. . .
...

σr 0

0 0

 =

[
S 0
0 0

]
∈ Rn×m is a diagonal matrix

with singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0

on the diagonal.
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Derivations for computing SVD

If A = UΣV T , then

ATA = (VΣTUT )(UΣV T ) = VΣTΣV T = V

[
S2 0
0 0

]
V T ∈ Rm×m,

AAT = (UΣV T )(UΣV T )T = UΣΣTUT = U

[
S2 0
0 0

]
UT ∈ Rn×n.

Let
V =

[
v1 v2 · · · vm

]
and U =

[
u1 u2 · · · un

]
be the column decompositions of V and U.

Let e1, . . . , em ∈ Rm and f1, . . . , fn ∈ Rn be the standard coordinate vectors
of Rm and Rn, i.e., the only nonzero component of ei (resp. fj) is the i-th
one (resp. j-th one), which is 1. Then

ATAvi = VΣTΣV T vi = VΣTΣei =

{
σ2i vi , if i ≤ r ,

0, if i > r ,

AATuj = UΣΣTUTuj = UΣΣT fj =

{
σ2i uj , if j ≤ r ,

0, if j > r .
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Further on,

(AAT )(Avi ) = A(ATA)vi =

{
σ2i Avi , if i ≤ r ,

0, if i > r ,

(ATA)(ATuj) = AT (AAT )uj =

{
σ2j A

Tuj , if j ≤ r ,

0, if j > r .

It follows that:

I ΣTΣ =

[
S2 0
0 0

]
∈ Rm×m (resp. ΣΣT =

[
S2 0
0 0

]
∈ Rn×n) is the

diagonal matrix with eigenvalues σ2i of ATA (resp. AAT ) on its
diagonal, so the singular values σi are their square roots.

I V has the corresponding eigenvectors (normalized and pairwise
orthogonal) of ATA as its columns, so the right singular vectors are
eigenvectors of ATA.

I U has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AAT as its columns, so the left singular vectors are
eigenvectors of AAT .
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I Avi is an eigenvector of AAT corresponding to σ2i and so

ui =
Avi
‖Avi‖

=
Avi
σi

is a left singular vector corresponding to σi , where in the second
equality we used that

‖Avi‖ =
√

(Avi )T (Avi ) =
√

vT
i ATAvi =

√
σ2
i v

T
i vi = σi‖vi‖ = σi .

I ATuj is an eigenvector of ATA corresponding to σ2j and so

vj =
ATuj
‖ATuj‖

=
ATuj
σj

is a right singular vector corresponding to σj , where in the second
equality we used that

‖ATuj‖ =
√

(ATuj)T (ATuj) =
√

uT
j AA

Tuj =
√
σ2
j u

T
j uj = σj‖uj‖ = σj .
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Algorithm for SVD computation

I Compute the eigenvalues and an orthonormal basis consisting of
eigenvectors of the symmetric matrix ATA or AAT (depending on
which is of them is of smaller size).

I The singular values of the matrix A ∈ Rn×m are equal to σi =
√
λi ,

where λi are the nonzero eigenvalues of ATA (resp. AAT ).

I The left singular vectors are the corresponding orthonormal
eigenvectors of AAT .

I The right singular vector are the corresponding orthonormal
eigenvectors of ATA.

I If u (resp. v) is a left (resp. right) singular vector corresponding to the
singular value σi , then v = Au (resp. u = AT v) is a right (resp. left)
singular vector corresponding to the same singular value.

I The remaining columns of U (resp. V ) consist of an orthonormal basis
of the kernel (i.e., the eigenspace of λ = 0) of AAT (resp. ATA).
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General algorithm for computation of A+ (long version)

1. For ATA compute its eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > λr+1 = . . . = λm = 0

and the corresponding orthonormal eigenvectors

v1, . . . , vr , vr+1, . . . , vm,

and form the matrices

Σ = diag(
√
λ1, . . . ,

√
λm) ∈ Rn×m,

V1 =
[
v1 · · · vr

]
, V2 =

[
vr+1 · · · vm

]
and V =

[
V1 V2

]
.

2. Let

u1 =
Av1
σ1

, u2 =
Av2
σ2

, . . . , ur =
Avr
σr

,

and ur+1, . . . , un vectors, such that {u1, . . . , un} is an ortonormal basis
for Rn. Form the matrices

U1 =
[
u1 · · · ur

]
, U2 =

[
ur+1 · · · un

]
and U =

[
U1 U2

]
.

3. Then
A+ = VΣ+UT .

Remark
Note that the eigenvectors vr+1, . . . , vn corresponding to the eigenvalue 0
of ATA do not need to be computed.
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General algorithm for computation of A+ (short version)

1. For ATA compute its nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > 0

and the corresponding orthonormal eigenvectors

v1, . . . , vr ,

and form the matrices

S = diag(
√
λ1, . . . ,

√
λr ) ∈ Rr×r ,

V1 =
[
v1 · · · vr

]
∈ Rm×r .

2. Put the vectors

u1 =
Av1
σ1

, u2 =
Av2
σ2

, . . . , ur =
Avr
σr

in the matrix
U1 =

[
u1 · · · ur

]
.

3. Then
A+ = V1Σ+UT

1 .
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Correctness of the computation of A+

Step 1. VΣ+UT is equal to A+.

(i) AA+A = A:

AA+A = (UΣV T )(VΣ+UT )(UΣV T ) = UΣ(V TV )Σ+(UTU)ΣV T

= UΣΣ+ΣV T = UΣV T = A.

(ii) A+AA+ = A+: Analoguous to (i).

(iii) (AA+)T = AA+:

(AA+)T =
(

(UΣV T )(VΣ+UT )
)T

=
(
UΣΣ+UT

)T
=

(
U

[
Ir 0
0 0

]
UT

)T

= U

[
Ir 0
0 0

]
UT

= (UΣV T )(VΣ+UT ) = A+.

(iv) (A+A)T = A+A: Analoguous to (iii).
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Step 2. VΣ+UT is equal to V1Σ+UT
1 .

VΣUT =
[
V1 V2

] [S 0
0 0

] [
UT
1

UT
2

]
=
[
V1S 0

] [UT
1

UT
2

]
= V1SU

T
1 .

Example

Compute the SVD and A+ of the matrix A =

[
3 2 2
2 3 −2

]
.

I AAT =

[
17 8
8 17

]
has eigenvalues 25 and 9.

I The eigenvectors of AAT corresponding to the eigenvalues 25, 9 are

u1 =
[

1√
2

1√
2

]T
, u2 =

[
1√
2
− 1√

2

]T
.

I The left singular vectors of A are

v1 =
ATu1
σ1

=
[

1√
2

1√
2

0
]T
, v2 =

ATu2
σ2

=
[

1

3
√
2
− 1

3
√
2

4

3
√
2

]T
.

v3 = v1 × v2 =
[

2√
3
− 2

3
− 1

3

]T
.
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I

A = UΣV T =

 1√
2

1√
2

1√
2
− 1√

2

5 0 0

0 3 0




1√
2

1√
2

0

1

3
√
2
− 1

3
√
2

4

3
√

2

2√
3

− 2
3

− 1
3

 .
I

A+ = VΣ+UT =


1√
2

1

3
√
2

2√
3

1√
2
− 1

3
√
2
− 2

3

0 4

3
√
2
− 1

3




1
5

0

0 1
3

0 0


 1√

2

1√
2

1√
2
− 1√

2



=


7
45

2
45

2
45

7
45

2
9
− 2

9

 .
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1.3 The MP inverse and systems of linear equations

Let A ∈ Rn×m, where m > n. A system of equations Ax = b that has more
variables than constraints. Typically such system has infinitely many
solutions, but it may happen that it has no solutions. We call such system
an underdetermined system.

Theorem

1. An underdetermined system of linear equations

Ax = b (1)

is solvable if and only if AA+b = b.

2. If there are infinitely many solutions, the solution A+b is the one with
the smallest norm, i.e.,

‖A+b‖ = min {‖x‖ : Ax = b} .

Moreover, it is the unique solution of smallest norm.
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Proof of Theorem.
We already know that Ax = b is solvable iff Gb is a solution, where G is
any generalized inverse of A. Since A+ is one of the generalized inverses,
this proves the first part of the theorem.

To prove the second part of the theorem, first recall that all the solutions of
the system are precisely the set

{A+b + (A+A− I )z : z ∈ Rm}.

So we have to prove that for every z ∈ Rm,

‖A+b‖ ≤ ‖A+b + (A+A− I )z‖.

We have that:

‖A+b + (A+A− I )z‖2 =

=
(
A+b + (A+A− I )z

)T (
A+b + (A+A− I )z

)
=
(
A+b

)T (
A+b

)
+ 2

(
A+b

)T
(A+A− I )z +

(
(A+A− I )z

)T (
(A+A− I )z

)
= ‖A+b‖2 + 2

(
A+b

)T
(A+A− I )z + ‖(A+A− I )z‖2
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Now, (
A+b

)T
(A+A− I )z = bT (A+)T (A+A− I )z

= bT (A+)T (A+A)T z − bT (A+)T z

= bT
(
(A+A)A+

)T
z − bT (A+)T z

= bT
(
A+AA+

)T
z − bT (A+)T z

= bT (A+)T z − bT (A+)T z = 0,

where we used the fact (A+A)T = A+A in the second equality.

Thus,

‖A+b + (A+A− I )z‖2 = ‖A+b‖2 + ‖(A+A− I )z‖2 ≥ ‖A+b‖2,

with the equality iff (A+A− I )z = 0. This proves the second part of the
theorem.

15/21



Example

I The solutions of the underdetermined system x + y = 1 geometrically
represent an affine line. Matricially, A =

[
1 1

]
, b = 1. Hence,

A+b = A+1 is the point on the line, which is the nearest to the origin.
Thus, the vector of this point is perpendicular to the line.

I The solutions of the underdetermined system x + 2y + 3z = 5
geometrically represent an affine hyperplane. Matricially,
A =

[
1 2 3

]
, b = 5. Hence, A+b = A+5 is the point on the

hyperplane, which is the nearest to the origin. Thus, the vector of this
point is normal to the hyperplane.

I The solutions of the underdetermined system x + y + z = 1 and
x + 2y + 3z = 5 geometrically represent an affine line in R3.

Matricially, A =

[
1 1 1
1 2 3

]
, b =

[
1
5

]
. Hence, A+b is the point on the

line, which is the nearest to the origin. Thus, the vector of this point is
perpendicular to the line.
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Example

Find the point on the plane 3x + y + z = 2 closest to the origin.

I In this case,
A =

[
3 1 1

]
and b = [2].

I We have that AAT = [11] and hence its only eigenvalue is λ = 11 with eigenvector
u = [1], implying that

U = [1] and Σ =
[ √

11 0 0
]
.

I Hence,

v1 =
ATu

‖ATu‖ =
ATu

σ1
=

1√
11

[
3 1 1

]T
.

I

A+ = VΣ+UT =
1√
11

 3
1
1

 1√
11

[1] =


3
11

1
11

1
11

 .
I

x+ = A+b =
[

6
11

2
11

2
11

]T
.
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Overdetermined systems

Let A ∈ Rn×m, where n > m. This system is called overdetermined, since
here are more constraints than variables. Such a system typically has no
solutions, but it might have one or even infinitely many solutions.

Least squares approximation problem: if the system Ax = b has no
solutions, then a best fit for the solution is a vector x such that the error
||Ax − b|| or, equivalently in the row decomposition

A =

α1
...
αn

 ,
its square

||Ax − b||2 =
n∑

i=1

(αix − bi )
2,

is the smallest possible.
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Theorem
If the system Ax = b has no solutions, then x+ = A+b is the unique
solution to the least squares approximation problem:

||Ax+ − b|| = min{‖Ax − b‖ : x ∈ Rn}.

Proof.
Let A = UΣV T be the SVD decomposition of A. We have that

‖Ax − b‖ = ‖UΣV T − b‖ = ‖ΣV T − UTb‖,

where we used that
‖UT v‖ = ‖v‖

in the second equality (which holds since UT is an orthogonal matrix). Let

Σ =

[
S 0
0 0

]
, U =

[
U1 U2

]
, V =

[
V1 V2

]
, where

S ∈ Rr×r , U1 ∈ Rn×r ,U2 ∈ Rn×(n−r), V1 ∈ Rm×r , V2 ∈ Rm×(m−r).
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Thus,

‖ΣV T − UTb‖ =

∥∥∥∥[S 0
0 0

] [
V T
1

V T
2

]
x −

[
UT
1

UT
2

]
b

∥∥∥∥
=

∥∥∥∥[SV T
1 x − UT

1 b
UT
2 b

]∥∥∥∥ .
But this norm is minimal iff

SV T
1 x − UT

1 b = 0

or equivalently
x = V1S

−1UT
1 b = A+b.

Remark
The closest vector to b in the column space C (A) = {Ax : x ∈ Rm} of A is
the orthogonal projection of b onto C (A). It follows that A+b is this
projection. Equivalently, b − (A+b) is orthogonal to any vector Ax ,
x ∈ Rm, which can be proved also directly.
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Example

Given points {(x1, y1), . . . , (xn, yn)} in the plane, we are looking for the line
ax + b = y which is the least squares best fit.

If n > 2, we obtain an overdetermined system x1 1
...
xn 1

[ a
b

]
=

 y1
...
yn

 .

The solution of the least squares approximation problem is given by

[
a
b

]
= A+

 y1
...
ym

.

The line y = ax + b in the regression line.
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