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Case 3: X € R™"™ js a diagonal matrix of the form

01
02

The MP inverse is
‘g;r

+
)

o; # 0,

g =0.

M
Il

or

or Y=

01

02

Om
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Case 4: A general matrix A. (using SVD)
Theorem (Singular value decomposition - SVD)

Let A € R™™ be a matrix. Then it can be expressed as a product

A=UzVT,
where
» U € R™" js an orthogonal matrix with left singular vectors u; as its
columns,
» V € R™™ js an orthogonal matrix with right singular vectors v; as its
columns,
o1 0
- : S0 nxm . .
> 3 = | = eR is a diagonal matrix
g, | 0 0 0
0 |0

with singular values

on the diagonal. 3/21



Derivations for computing SVD

If A= UZVT, then

2
ATA=(vzTuTyuzv=vITzv’ =v [ 50 8 ] vl e R™m
T T T T S? 01,7 poxn
AAT =(UZV ) (UZV') =Ux2'U’' =U 0 0 U' e R™"
Let
V:[Vl Vo - Vm] and U:[Ul u - Un]
be the column decompositions of V' and U.
Let e1,...,em € R™ and f1,...,f;, € R" be the standard coordinate vectors

of R™ and R”, i.e., the only nonzero component of e; (resp. f;) is the i-th

one (resp. j-th one), which is 1. Then

2y, if i <
ATAv = VETsVTv = vsTse =4 iV Hfisr,
0, ifi>r,
2 . .
T T T, _ T, ) ofu, ifj<r,
AATy; = USETUT u; = UST 5_{ o iy

4/21



Further on,

2. if i<
(AAT)(Av)) = A(AT A); = { o2Av;, ifi<r,

0, ifi>r,

24T e
T T N AT aaTy.,. _ J OjA U, ifj<r,
(ATA)(ATuj) = AT (AA )uj—{ 0. ifj>r.

It follows that:
S2 0 S0 .
> Ty — mxm T _ nxn
Y'Yy {0 O}ER (resp. XX [O O]ER ) is the

diagonal matrix with eigenvalues o,-z of ATA (resp. AAT) on its
diagonal, so the singular values o; are their square roots.

» V has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AT A as its columns, so the right singular vectors are
eigenvectors of AT A.

» U has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AAT as its columns, so the left singular vectors are
eigenvectors of AAT.
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» Av; is an eigenvector of AAT corresponding to a,-2 and so

Av; Av;
u, = = —
O lAv] o

is a left singular vector corresponding to o;, where in the second
equality we used that

JAvi|| = v (Avi) T (Avi) = \/ TATAv;, = \/O‘ vilvi = ai||vi|]| = 0.

> ATuJ- is an eigenvector of AT A corresponding to sz and so

ATUJ' ATUJ'
[ATwll o

is a right singular vector corresponding to o;, where in the second
equality we used that

ATl = VATu)T(ATw) = \/ul ATy = \Jo2uT uj = o ]| = .
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Algorithm for SVD computation

» Compute the eigenvalues and an orthonormal basis consisting of
eigenvectors of the symmetric matrix AT A or AAT (depending on
which is of them is of smaller size).

» The singular values of the matrix A € R"*™ are equal to g; = V/;,
where )\; are the nonzero eigenvalues of AT A (resp. AAT).

» The left singular vectors are the corresponding orthonormal
eigenvectors of AAT.

» The right singular vector are the corresponding orthonormal
eigenvectors of ATA.

» If u (resp. v) is a left (resp. right) singular vector corresponding to the
singular value o;, then v = Au (resp. u= ATv) is a right (resp. left)
singular vector corresponding to the same singular value.

» The remaining columns of U (resp. V') consist of an orthonormal basis
of the kernel (i.e., the eigenspace of A = 0) of AAT (resp. AT A).
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General algorithm for computation of AT (long version)

1. For AT A compute its eigenvalues
AL > A > 72)\r>)\r+1:--~:/\m:0
and the corresponding orthonormal eigenvectors
Vi ooy Vi Vet ds o+ 5 Vi,

and form the matrices

¥ =diag(v/ AL, .o VAm) € R,

Vi=[w o v, Vo=|vgr -+ vm] and V=[Vi V.
2. Let
Avi Avy Av,
u=—, u=—-—, s ur = y
01 g2 Or
and uy41,. .., U, vectors, such that {uy,..., u,} is an ortonormal basis
for R”. Form the matrices
Ulz[ul ur], U2:[Ur+1 un] and U= [Ul UQ].
3. Then
At =vyityuT.
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General algorithm for computation of A" (short version)

1. For AT A compute its nonzero eigenvalues
AM>X> 2N >0
and the corresponding orthonormal eigenvectors
Vi, ooy Vr,

and form the matrices

S= diag(\/)\»l, cey \/)T,) e R™",

Vi = [Vl Vr] e R™*,
2. Put the vectors
Avi Avo Av,
n=—, Wh=— ... , U=
o1 02 Or
in the matrix
U = [ul u,].
3. Then
At =wvixtul.
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Correctness of the computation of A™

Step 1. VXTUT is equal to A™.
(i) AATA = A;

AATA=(UzZvT)(vZtuT)uzvh =vuz(vT Vst uzv’
=Urrtrv’T =uzv’ = A
(i) ATAAT = AT: Analoguous to (i).
(i) (AAT)T = AAT:

(AAD)T = ((Usz)(vsz))T - (Uzsz)T
=(ufs Jor) =[5 G
= (UzVvT)(vEZtuT) = AT,

(iv) (ATA)T = ATA: Analoguous to (iii).
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Step 2. VZtUT is equal to ViXTU; .

VEUT = [V V) [5 O] [UlT] ~ (WS 0] {Uq — sy

T T
0 0] |U; U,
Example
N . 3 2 2
Compute the SVD and A™ of the matrix A = > 3 _o|
17 8
> T = i
AA {8 17] has eigenvalues 25 and 9.
> The eigenvectors of AA” corresponding to the eigenvalues 25, 9 are
_[x a7 _[x _a77
mw=\1vz =1 Vil -
» The left singular vectors of A are
A,ATulgr 1 L) T AVATW T 1 .17
1= gl_[ﬁ V2 ]’ va = o9 _[37\/5 T3V2 ﬁ]
T
V3=V1><V2:|:% —% —%:| .
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1 1 0
L L[5 0 0] |2 V2
. VARV, 1 1 4
A=UsVi=1T i) 5 ol |3E TnE s
V2 V2 2 2 1
V3 -3 -3
1L 1 2-9rl g
VR EEEEES
1 1 2 1 V2 V2
At=vsUT =% s s |0 5|y L
0 ;% -il]o ofLv
r’ 2
3% 35
2 s
=\ 5
2 2
L9 9
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1.3 The MP inverse and systems of linear equations

Let A€ R™™ where m > n. A system of equations Ax = b that has more
variables than constraints. Typically such system has infinitely many
solutions, but it may happen that it has no solutions. We call such system
an underdetermined system.

Theorem

1. An underdetermined system of linear equations
Ax=b (1)

is solvable if and only if AATb = b.

2. If there are infinitely many solutions, the solution A™ b is the one with
the smallest norm, i.e.,

|ATb|| = min {||x||: Ax = b}.

Moreover, it is the unique solution of smallest norm.
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Proof of Theorem.

We already know that Ax = b is solvable iff Gb is a solution, where G is
any generalized inverse of A. Since AT is one of the generalized inverses,
this proves the first part of the theorem.

To prove the second part of the theorem, first recall that all the solutions of
the system are precisely the set

{ATh+ (ATA—-1)z: z€ R™}.
So we have to prove that for every z € R,
|IATB| < [[ATh + (ATA = 1)z].
We have that:
|ATh+ (ATA - )z||? =
— (ATb+ (ATA—=1)z)T (ATb+ (ATA—1)z)
— (A*h)T (ATh) +2(ATH) T (ATA— Dz + (ATA=1)2) (ATA=1)2)
— |ATB|2+2(ATh) T (ATA =Dz + [(ATA = I)z|?
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Now,
(ATh) T (AYA— 1)z =bT(AN)T(ATA— 1)z

=bT(ANT(ATA) T z-b" (A2
—bT (ATA)AT) 2 = bT(AT)T2
—bT (ATAAT)T 2 — b (AM)7 2
=b" (AN z-bT(AT)Tz =0,

where we used the fact (AT A)T = ATA in the second equality.

Thus,

IA*b + (ATA = 1)z||* = | A*b||* + [|(A*A — 1)z|* > || A" b]?,

with the equality iff (AT A — 1)z = 0. This proves the second part of the
theorem. n
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Example

» The solutions of the underdetermined system x + y = 1 geometrically
represent an affine line. Matricially, A = [1 1], b = 1. Hence,
AThb = AT1 is the point on the line, which is the nearest to the origin.
Thus, the vector of this point is perpendicular to the line.

» The solutions of the underdetermined system x +2y +3z =5
geometrically represent an affine hyperplane. Matricially,
A=[1 2 3], b=5. Hence, A¥b = AT5 is the point on the
hyperplane, which is the nearest to the origin. Thus, the vector of this
point is normal to the hyperplane.

» The solutions of the underdetermined system x + y 4+ z =1 and
x + 2y + 3z = 5 geometrically represent an affine line in R3.

Matricially, A = E ; ;] b= [é] Hence, AT b is the point on the

line, which is the nearest to the origin. Thus, the vector of this point is
perpendicular to the line.
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Example
Find the point on the plane 3x 4 y 4+ z = 2 closest to the origin.

» |n this case,
A=[3 1 1] and b=[2].

> We have that AA” = [11] and hence its only eigenvalue is A = 11 with eigenvector
u = [1], implying that

U=[1] and =[+V11 0 0 ].

» Hence,
ATu ATy 1 T
V= = =—1[3 1 1]".
VAT T o VAL ]
>
3
3 11
Af—vstuT = L | i[l]: L
Vil | | | V11 N
11
»
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Overdetermined systems

Let A € R™™ where n > m. This system is called overdetermined, since
here are more constraints than variables. Such a system typically has no
solutions, but it might have one or even infinitely many solutions.

Least squares approximation problem: if the system Ax = b has no
solutions, then a best fit for the solution is a vector x such that the error
||Ax — b|| or, equivalently in the row decomposition

a1
A=,

Qp

its square
n

|Ax = bl[> = (cvix — bi)?,

i=1
is the smallest possible.
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Theorem
If the system Ax = b has no solutions, then x™ = AT b is the unique
solution to the least squares approximation problem:

[|[AxT — b|| = min{||Ax — b||: x € R"}.
Proof.
Let A= UX VT be the SVD decomposition of A. We have that
IAx = b]| = UZVT = bl| = [IZVT — U b,

where we used that
-
(U vl =]v]

in the second equality (which holds since U7 is an orthogonal matrix). Let

S0
2:[0 0], U=[U; W], V=[Vi V], where

SER™X U € Rnxr’ U, € Rnx(n—r), Vi € R™XT VY, € Rmx(m—r)'
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Thus,
S o] [v, Ul
T T _ 1 o 1
v o= g of Vi) (U]
sV x— U b
- Uj b '

But this norm is minimal iff
SVi'x— U b=0

or equivalently
x=WVS'Ub=ATb.

O

Remark

The closest vector to b in the column space C(A) = {Ax: x € R™} of A is
the orthogonal projection of b onto C(A). It follows that A*b is this
projection. Equivalently, b — (AT b) is orthogonal to any vector Ax,

x € R™, which can be proved also directly.
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Example

Given points {(x1,¥1),...,(Xn, ¥n)} in the plane, we are looking for the line

ax + b = y which is the least squares best fit.
If n > 2, we obtain an overdetermined system

xp 1 %1

Ym

The line y = ax + b in the regression line.
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