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Introduction

Tha task of mathematical modelling is to find and evaluate solutions to real
world problems with the use of mathematical concepts and tools.

In this course we will introduce some (by far not all) mathematical tools
that are used in setting up and solving mathematical models.

We will (together) also solve specific problems, study examples and work on
projects.
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What should we pay attention to?

I Simplification: relevant assumptions of the model (distinguish
important features from irrelevant)

I Generalization: choice of mathematical representations and tools (for
example: how to represent an object - as a point, a geometric shape,
. . . )

I Solution: as simple as possible and well documented

I Conclusions: are the results within the expected range, do they
correspond to ”facts” and experimantal results?

A mathematical model is not universal, it is an approximation of the real
world that works only within a certain scale where the assumptions are at
least approximately realistic.
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Example

An object (ball) with mass m is thrown vertically into the air. What should
we pay attention to when modelling its motion?

I The assumptions of the model: relevant forces and parameters
(gravitation, friction, wind, . . . ), how to model the object (a point, a
homogeneous or nonhomeogeneous geometric object, angle and
rotation in the initial thrust, . . . )

I Choice of mathematical model: differential equation, discrete model,
. . .

I Computation: analytic or numeric, choice of method,. . .

I Do the results make sense?
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Errors

An important part of modelling is estimating the errors!

Errors are an integral part of every model.

Errors come from: assumptions of the model, imprecise data, mistakes in
the model, computational precision, errors in numerical and computational
methods, mistakes in the computations, mistakes in the programs, . . .

Absolute error = Approximate value - Correct value

∆x = x̄ − x

Relative error = Absolute error
Correct value

δx =
∆x

x
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Example: quadratic equation

x2 + 2a2x − q = 0

Analytic solutions are

x1 = −a2 −
√

a4 + q and x2 = −a2 +
√
a4 + q.

What happens if a2 = 10000, q = 1? Problem with stability in calculating
x2.

More stable way for computing x2 (so that we do not subtract numbers
which are nearly the same) is

x2 = −a2 +
√

a4 + q =
(−a2 +

√
a4 + q)(a2 +

√
a4 + q)

a2 +
√

a4 + q

=
q

a2 +
√

a4 + q
.

8/33



Example of real life disasters

I Disasters caused because of numerical errors:
(http://www-users.math.umn.edu/~arnold//disasters/)

I The Patriot Missile failure, Dharan, Saudi Arabia, February 25
1991, 28 deaths: bad analysis of rounding errors.

I The explosiong of the Ariane 5 rocket, French Guiana, June 4,
1996: the consequence of overflow in the horizontal velocity.
https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=W3YJeoYgozw

https://www.arianespace.com/vehicle/ariane-5/

I The sinking of the Sleipner offshore platform, Stavanger, Norway,
August 12, 1991, billions of dollars of the loss: inaccurate finite
element analysis, i.e., the method for solving partial differential
equations.
https://www.youtube.com/watch?v=eGdiPs4THW8
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1. Linear mathematical models

Given points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R,

the task is to find a function F (x , a1, . . . , ap) that is a good fit for the data.

The values of the parameters a1, . . . , ap should be chosen so that the
equations

yi = F (x , a1, . . . ap), i = 1, . . . ,m,

are satisfied or, if this is not possible, that the error is as small as possible.

Least squares method: the parameters are determined so that the sum of
squared errors

m∑
i=1

(F (xi , a1, . . . ap)− yi )
2

is as small as possible.
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The mathematical model is linear, when the function F is a linear function
of the parameters:

F (x , a1, . . . , ap) = a1ϕ1(x) + ϕ2(x) + · · ·+ apϕp(x),

where ϕ1, ϕ2, . . . ϕp are functions of a specific type.

Examples of linear models:

1. linear regression: x , y ∈ R, ϕ1(x) = 1, ϕ2(x) = x ,

2. polynomial regression: x , y ∈ R, ϕ1(x) = 1, . . . , ϕp(x) = xp−1,

3. multivariate linear regression: x = (x1, . . . , xn) ∈ Rn, y ∈ R,

ϕ1(x) = 1, ϕ2(x) = x1, . . . , ϕn(x) = xn,

4. frequency or spectral analysis:

ϕ1(x) = 1, ϕ2(x) = cosωx , ϕ3(x) = sinωx , ϕ4(x) = cos 2ωx , . . .

(there can be infinitely many functions ϕi (x) in this case)

Examples of nonlinear models: F (x , a, b) = aebx and F (x , a, b, c) =
a+ bx

c + x
.
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Given the data points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R, the
parameters of a linear model

y = a1ϕ1(x) + a2ϕ2(x) + · · ·+ apϕp(x)

should satisfy the system of linear equations

yi = a1ϕ1(xi ) + a2ϕ2(xi ) + · · ·+ apϕp(xi ), i = 1, . . . ,m,

or, in a matrix form,
ϕ1(x1) ϕ2(x1) . . . ϕp(x1)
ϕ1(x2) ϕ2(x2) . . . ϕp(x2)
. . . . . . . . . . . .

ϕ1(xm) ϕ2(xm) . . . ϕp(xm)




a1
a1
...
ap

 =


y1
y1
...
yp

 .
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1.1 Systems of linear equations and generalized inverses

A system of linear equations in the matrix form is given by

Ax = b,

where

I A is the matrix of coefficients of order m× n where m is the number of
equations and n is the number of unknowns,

I x is the vector of unknowns and

I b is the right side vector.
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Existence of solutions:

Let A = [a1, . . . , an], where ai are vectors representing the columns of A.

For any vector x =

 x1
...
xn

 the product Ax is a linear combination

Ax =
∑
i

xiai .

The system is solvable if and only if the vector b can be expressed as a
linear combination of the columns of A, that is, it is in the column space of
A, b ∈ C(A).
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By adding b to the columns of A we obtain the extended matrix of the
system

[A | b] = [a1, . . . , an | b],

Theorem
The system Ax = b is solvable if and only if the rank of A equals the rank
of the extended matrix [A | b], i.e.,

rank A = rank [A | b] =: r .

The solution is unique if the rank of the two matrices equals the number of
unknowns, i.e., r = n.

An especially nice case is the following:

If A is a square matrix (n = m) that has an inverse matrix A−1, the system
has a unique solution

x = A−1b.
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Let A ∈ Rn×n be a square matrix. The following conditions are equivalent
and characterize when a matrix A is invertible or nonsingular:

I The matrix A has an inverse.

I The rank of A equals n.

I det(A) 6= 0.

I The null space N(A) = {x : Ax = 0} is trivial.

I All eigenvalues of A are nonzero.

I For each b the system of equations Ax = b has precisely one solution.
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A square matrix that does not satisfy the above conditions does not have
an inverse.

Example

A =

 1 0 1
0 1 −1
1 1 1

 , B =

 1 0 1
0 1 −1
1 1 0


A is invertible and is of rank 3, B is not invertible and is of rank 2.

For a rectangular matrix A of dimension m × n, m 6= n, its inverse is not
defined (at least in the above sense...).
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Definition
A generalized inverse of a matrix A ∈ Rn×m is a matrix G ∈ Rm×n such that

AGA = A. (1)

Remark
Note that the dimension of A and its generalized inverse are transposed to each
other. This is the only way which enables the multiplication A · ∗ · A.

Proposition

If A is invertible, it has a unique generalized inverse, which is equal to A−1.

Proof.
Let G be a generalized inverse of A, i.e., (1) holds. Multiplying (1) with
A−1 from the left and the right side we obtain:

Left hand side (LHS): A−1AGAA−1 = IGI = G ,

Right hand side (RHS): A−1AA−1 = IA−1 = A−1,

where I is the identity matrix. The equality LHS=RHS implies that
G = A−1. 18/33



Theorem
Every matrix A ∈ Rn×m has a generalized inverse.

Proof.
Let r be the rank of A.

Case 1. rankA = rankA11, where

A =

[
A11 A12

A21 A22

]
and A11 ∈ Rr×r ,A12 ∈ Rr×(m−r),A21 ∈ R(n−r)×r , A22 ∈ R(n−r)×(m−r).
We claim that

G =

[
A−1
11 0
0 0

]
,

where 0s denote zero matrices of appropriate sizes, is the generalized
inverse of A. To prove this claim we need to check that

AGA = A.
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AGA =

[
A11 A12

A21 A22

] [
A−1
11 0
0 0

] [
A11 A12

A21 A22

]
=

[
I 0

A21A
−1
11 0

] [
A11 A12

A21 A22

]
=

[
A11 A12

A21 A21A
−1
11 A12

]
.

For AGA to be equal to A we must have

A21A
−1
11 A12 = A22. (2)

It remains to prove (2). Since we are in Case 1, it follows that every column

of

[
A12

A22

]
is in the column space of

[
A11

A21

]
. Hence, there is a cofficient

matrix W ∈ Rr×(m−r) such that[
A12

A22

]
=

[
A11

A21

]
W =

[
A11W
A21W

]
.

We obtain the equations A11W = A12 and A21W = A22. Since A11 is
invertible, we get W = A−1

11 A12 and hence A21A
−1
11 A12 = A22, which is (2).
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Case 2. The upper left r × r submatrix of A is not invertible.

One way to handle this case is to use permutation matrices P and Q, such

that PAQ =

[
Ã11 Ã12

Ã21 Ã22

]
, Ã11 ∈ Rr×r and rank Ã11 = r . By Case 1 we

have that the generalized inverse (PAQ)g of PAQ equals to

[
Ã−1
11 0
0 0

]
.

Thus,

(PAQ)

[
Ã−1
11 0
0 0

]
(PAQ) = PAQ. (3)

Multiplying (3) from the left by P−1 and from the right by Q−1 we get

A

(
Q

[
Ã−1
11 0
0 0

]
P

)
A = A.

So, Q

[
Ã−1
11 0
0 0

]
P =

(
PT

[(
Ã−1
11

)T
0

0 0

]
QT

)T

is a generalized inverse of

A.
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Algorithm for computing a generalized inverse of A
Let r be the rank of A.

1. Find any nonsingular submatrix B in A of order r × r ,
2. in A substitute

I elements of the submatrix B for corresponding elements of (B−1)T ,
I all other elements with 0,

3. the transpose of the obtained matrix is a generalized inverse G .

Example

Compute at least one generalized inverse of

A =

0 0 2 0
0 0 1 0
2 0 1 4

 .
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I Note that rankA = 2. For B from the algorithm one of the possibilities is

B =

[
1 0
1 4

]
,

i.e., the submatrix in the right lower corner.

I Computing B−1 we get B−1 =

[
1 0
− 1

4
1
4

]
and hence

(
B−1

)T
=

[
1 − 1

4
0 1

4

]
.

I A generalized inverse of A is then

G =

0 0 0 0
0 0 1 − 1

4
0 0 0 1

4

T

=


0 0 0
0 0 0
0 1 0
0 − 1

4
1
4

 .
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Generalized inverses of a matrix A play a similar role as the usual inverse
(when it exists) in solving a linear system Ax = b.

Theorem
Let A ∈ Rn×m and b ∈ Rm. If the system

Ax = b (4)

is solvable (that is, b ∈ C(A)) and G is a generalized inverse of A, then

x = Gb (5)

is a solution of the system (4).

Moreover, all solutions of the system (4) are exaclty vectors of the form

xz = Gb + (GA− I )z , (6)

where z varies over all vectors from Rm.
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Proof.
We write A in the column form

A =
[
a1 a2 . . . am

]
,

where ai are column vectors of A. Since the system (4) is solvable, there
exist real numbers α1, . . . , αm ∈ R such that

m∑
i=1

αiai = b. (7)

First we will prove that Gb also solves (4). Multiplying (7) with G we get

Gb =
m∑
i=1

αiGai . (8)

Multiplying (9) with A the left side becomes A(Gb), so we have to check
that

m∑
i=1

αiAGai = b. (9)
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Since G is a generalized inverse of A, we have that AGA = A or restricting
to columns of the left hand side we get

AGai = ai for every i = 1, . . . ,m.

Plugging this into the left side of (9) we get exactly (??), which holds and
proves (9).

For the moreover part we have to prove two facts:

(i) Any xz of the form (6) solves (4).

(ii) If Ax̃ = b, then x̃ is of the form xz for some z ∈ Rm.

(i) is easy to check:

Axz = A (Gb + (GA− I )z) = AGb + A(GA− I )z

= b + (AGA− A)z = b.
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To prove (ii) note that
A(x̃ − Gb) = 0,

which implies that
x̃ − Gb ∈ kerA.

It remains to check that

kerA = {(GA− I )z : z ∈ Rm} . (10)

The inclusion (⊇) of (10) is straightforward:

A((GA− I )z) = (AGA− A)z = 0.

For the inclusion (⊆) of (10) we have to notice that any v ∈ kerA is equal
to (GA− I )z for z = −v :

(GA− I )(−v) = −GAv + v = 0 + v = v .
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Example

Find all solutions of the system

Ax = b,

where A =

0 0 2 0
0 0 1 0
2 0 1 4

 and b =

2
1
4

.

I Recall from the example a few slides above that G =


0 0 0
0 0 0
0 1 0

0 − 1
4

1
4

.

I Calculating Gb and GA − I we get

Gb =


0
0
1
3
4

 and A =


−1 0 0 0
0 −1 0 0
0 0 0 0
1
2

0 0 0

 .

I Hence,

xz =
[
−z1 −z2 1 3

4
+ 1

2
z1

]T
where z1, z2 vary over R.
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1.2 The Moore-Penrose generalized inverse

Among all generalized inverses of a matrix A, one has especially nice
properties.

Definition
The Moore-Penrose generalized inverse, or shortly the MP inverse of
A ∈ Rn×m is any matrix A+ ∈ Rm×n satifying the following four conditions:

1. A+ is a generalized inverse of A: AA+A = A.

2. A is a generalized inverse of A+: A+AA+ = A+.

3. The square matrix AA+ ∈ Rn×n is symmetric: (AA+)T = AA+.

4. The square matrix A+A ∈ Rm×m is symmetric: (A+A)T = A+A.

Remark
There are two natural questions arising after defining the MP inverse:

I Does every matrix admit a MP inverse? Yes.

I Is the MP inverse unique? Yes.
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Theorem
The MP inverse A+ of a matrix A is unique.

Proof.
Assume that there are two matrices M1 and M2 that satisfy the four
conditions in the definition of MP inverse of A. Then,

AM1 = (AM2A)M1 by property (1)
= (AM2)(AM1) = (AM2)T (AM1)T by property (3)
= MT

2 (AM1A)T = MT
2 AT by property (1)

= (AM2)T = AM2 by property (3)

A similar argument involving properties (2) and (4) shows that

M1A = M2A,

and so
M1 = M1AM1 = M1AM2 = M2AM2 = M2.
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Remark
Let us assume that A+ exists (we will shortly prove this fact). Then the
following properties are true:

I If A is a square invertible matrix, then it A+ = A−1.

I (A+)+ = A.

I (AT )+ = (A+)T .

In the rest of this chapter we will be interested in two obvious questions:

I How do we compute A+?

I Why would we want to compute A+?

To answer the first question, we will begin by three special cases.
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Construction of the MP inverse of A ∈ Rn×m:

Case 1: ATA ∈ Rm×m is an invertible matrix. (In particular, m ≤ n.)

In this case A+ = (ATA)−1AT .

To see this, we have to show that the matrix (ATA)−1AT satisfies
properties (1) to (4):

1. AMA = A(ATA)−1ATA = A(ATA)−1(ATA) = A.

2. MAM = (ATA)−1ATA(ATA)−1AT = (ATA)−1AT = M.

3.

(AM)T =
(
A(ATA)−1AT

)T
= A

((
ATA

)−1
)T

AT =

= A

((
ATA

)T)−1

AT = A(ATA)−1AT = AM.

4. Analoguous to the previous fact.
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Case 2: AAT is an invertible matrix. (In particular, n ≤ m.)

In this case AT satisfies the condition for Case 1, so (AT )+ = (AAT )−1A.

Since (AT )+ = (A+)T it follows that

A+ =
(

(A+)T
)T

=
(

(AAT )−1A
)T

= AT
(

(AAT )−1
)T

= AT
(

(AAT )−T
)−1

= AT (AAT )−1.

Hence, A+ = AT (AAT )−1.
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