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Homology and persistent homology detect holes in spaces through

the use of algebraic constructions: a simplicial complex generates a

chain complex and the resulting homology construction detects holes.

However, functions and vector fields also contain information about

the topology of the domain. In the smooth setting this information

is contained in critical points of functions and zeros of vector fields, a

situation which is beautifully described by the Morse Theory.

In this chapter we will describe discrete Morse Theory. As the

name suggests we will delve into the world of discrete functions and

discrete vector fields defined on simplicial complexes. Our main goal

will be to describe how these encode homology, often leading to sim-

plified representations and faster computations than the standard

methods.

1 Motivation

We first recall the definition of elementary collapses.

T If σ is a free face in a simplicial
complex K then its only coface is a

maximal simplex in K.

Definition 1.1. A simplex in a simplicial complex is a free face if

it is a face of precisely one simplex. This implies that the coface in

question is a maximal simplex

Let K be a simplicial complex, σ(k−1) ⊂ τ(k) ∈ K, and assume

σ is a free face in K. A removal K → K \ {σ, τ} is called an ele-

mentary collapse.

Complex K is collapsible to a subcomplex L ≤ K if there is

a collapse (i.e., a sequence of elementary collapses) resulting in the

subcomplex L. Complex K is collapsible if it is collapsible to a point.

Figure 1: An elementary collapse
indicated by an arrow from σ into τ.

Remark 1.2. We have already proved that an elementary collapse re-

sults in a homotopically equivalent space. As a result, if a simplicial

complex K is collapsible to a subcomplex L ≤ K then L ' K. In partic-

ular, each collapsible simplicial complex is contractible. The converse

does not hold as there exist contractible simplicial complexes without a

free face, for example Dunce hat (Figure 2) and Bing’s house.
a
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a

a
Figure 2: Dunce hat is obtained by

glueing the boundary of a disc along
a circle: twice alone one direction and

once along the other direction. The
obtained space can be triangulated
but contains no free face meaning it is
not collapsible. However, it turns out

to be contractible.

Given a simplicial complex K it would be of interest to simplify (i.e.

collapse) it as much as possible. This would, for example, simplify the

computation of homology groups. One would go about such simplifi-

cation by repeating the following sequence as long as possible: find a

free face and perform the corresponding collapse. An example is given
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in Figure 3, where the collapses of the first three steps are indicated by

the arrows. One can encode such a collapse by:

• drawing all the arrows1 indicating collapses, or 1 An example of a discrete vector field.

• annotate simplices by numbers2 so that the countdown-sequence 2 A rough example of a discrete Morse

function.encodes3 the collapsing sequence.
3 10 collapses to 9; 8 collapses to 7,

etc.
Both of these encodings are demonstrated on the right side of Figure

3.
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Figure 3: A simplification of a sim-
plicial complex using elementary

collapses and the encoding of the

resulting collapse by arrows (discrete
vector field) and annotations (discrete

Morse function).

Eventually a collapsing sequence ends when there are no more free

faces. At this point we can resort to another trick that will on one

hand change the structure of a complex, yet still simplify its descrip-

tion in a way. Choose any simplex, declare it to be a critical simplex,

remove it from the complex, and continue with collapsing. In the end

we will form a “complex” consisting of critical simplices. The details

of the construction will be described throughout this lecture. At this

point we only illustrate a geometric interpretation of this idea in terms

of “stretching” simplices.

a aa

Figure 4: Declaring the red edge to
be critical, we can collapse the other

two edges and obtain a representation

of a circle using only two critical
“simplices”.For our motivational purposes let us continue in Figure 4 with the

example from Figure 3. We are left with a triangle. We choose one of

its edges to be a critical edge and continue with collapsing. We can

imagine that each collapse stretches the critical edge until, at the end,

we are left with two critical simplices: and edge and a point jointly

forming a circle. The resulting space is homotopy equivalent to our

original simplicial complex of Figure 3, has a simple representation,

but is not a simplicial complex. However, its homology can be com-

puted in the same way as the simplicial homology so in effect, we have

transformed the 1-dimensional boundary matrix from 6 columns to 1
column, etc. For another example see Figure 5.

2 Discrete Morse functions and discrete vector fields

We start by defining functions that encode the collapsing sequences

and deformations.
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Figure 5: Stretching critical simplices

of a standard triangulation of the
torus (on the left) along the indicated

collapses results in a standard repre-

sentation of a torus as a square with
identified sides (on the right).

Critical simplices can be thought

of as zeros of the resulting discrete
vector field. We have already seen in

the Hairy ball Theorem that there is

a connection between zeros of smooth
vector fields and topology of the

domain.

Definition 2.1. Let K be an abstract simplicial complex. A function

f : K → R is a discrete Morse function [DMF] if ∀σ(k) ∈ K:

1. e1 = |{τ(k−1) ∈ K | f (τ) ≥ f (σ)}| ≤ 1 and

2. e2 = |{τ(k+1) ∈ K | f (τ) ≤ f (σ)}| ≤ 1.

T An abstract simplicial complex
is a collection of simplices hence a

real function defined on it maps each

simplex into a real number.

A function g : K → R respects dimension4 if for each σ(k−1) ⊂ 4 As an example think of g(σ) =
dim(σ).τ(k) ∈ K we have g(σ) < g(τ). Such a function is a DMF. On the

other hand, each DMF almost respects the dimension in the sense5 5 Putting it differently, for each
simplex the values of the function

strictly decrease by passing to its

faces with at most one exception,
and the values of the function strictly

increases by passing to its cofaces

with at most one exception.

that for each simplex τ(k) at most one exceptional facet and at most

one exceptional coface of dimension k + 1 are allowed. The follow-

ing proposition demonstrates that the two exceptions cannot occur

simultaneously.
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Figure 6: An example of a DMF and

the resulting discrete vector field in
blue.

Proposition 2.2. Given the notation of Definition 2.1 either e1 = 0
or e2 = 0.

Proof. Aiming for the contradiction assume that for σ ∈ K and for

vertices v1, v2 ∈ K(0) we have

f (σ) ≥ f (σ ∪ {v1}) ≥ f (σ ∪ {v1, v2}). (1)

But then σ ∪ {v2} ∈ K and we have:

1. f (σ ∪ {v2}) > f (σ) as the exceptional coface of σ is σ ∪ {v1}.

2. f (σ ∪ {v2}) < f (σ ∪ {v1, v2}) as the exceptional face of σ ∪ {v1, v2}
is σ ∪ {v1}.

These two conclusions combine into f (σ) < f (σ ∪ {v1, v2}) which

contradicts equation 1.
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Proposition 2.2 implies that simplices with exceptions form disjoint

pairs. We will refer to such pairs as regular pairs. A regular pair

consists of a simplex τ and its facet σ. It encodes an “arrow” σ → τ in

the sense of the motivational section and is thus presented as such, see

Figure 6 for an example. A simplex without any exception6 is called7 6 I.e., for which e1 = e2 = 0.
7 A critical simplex is not contained in

any regular pair.
critical simplex. Given a DMF on a simplicial complex, each simplex

is either critical or contained in a unique regular pair.

Definition 2.3. Let K be an abstract simplicial complex. A discrete

vector field is a disjoint collection of pairs (σi, τi) of simplices from

K such that for each i simplex σi is a facet of τi. Each pair of a dis-

crete vector field is referred to as an arrow.

Proposition 2.4. Let f be a

DMF on a simplicial complex
K. For each i let ni denote

the number of critical sim-

plices of dimension i. Then
χ = n0 − n1 + n2 − . . . .

Proof. Removing a regular pair of

simplices does not change χ because
simplices are of adjacent dimensions.

The disjointness condition means that each simplex can be the

member of at most one pair of a discrete vector field. The collection of

regular pairs of a DMF forms8 a discrete vector field, see Figure 6. A

8 The converse is not true in gen-

eral as we will explain the the next
subsection.

discrete vector field is called a gradient vector field9 if it is induced by

9 We will be omitting adjective “dis-
crete” when mentioning gradient

vector fields.

some DMF in this manner. The arrows constituting a discrete vector

field will be sometimes referred10 to as regular pairs.

10 The reason is twofold: to emphasize
that the pair is a part of the structure

of a discrete vector field, and to stress

the analogy with regular pairs of a
DMF.

Gradient vector fields

Definition 2.5. Let K be a simplicial complex and p ∈ N. Given a

discrete vector field on K consisting of pairs {(σi, τi)}i∈J, a p-path

is a sequence

σ
(p−1)
i1

→ τ
(p)
i1
≥ σ

(p−1)
i2

→ τ
(p)
i2
≥ σ

(p−1)
i3

→ · · · → τ
(p)
ik
≥ σ

(p−1)
ik+1

such that for each j:

• (σ
(p−1)
ij

, τ
(p)
ij

) is an arrow in the discrete vector field, and

• σ
(p−1)
ij

is a facet of τ
(p)
ij−1

.

Such a p-path is a cycle if σ1 = σk+1 and k ≥ 1.

A discrete vector field is acyclic if it admits no cycle.

Figure 7: A 2-path in blue ending in

a critical edge, a 2-path in red ending
in a non-critical edge, and a 1-path in

orange ending in a critical vertex.

A few observations concerning Definition 2.5:

1. A critical simplex can only appear as the last simplex of a p-path

in a discrete vector field.

2. Given a DMF f , function values decrease along any p-path in the

induced discrete vector field, i.e.:

f (σij ) ≥ f (τij ) > f (σij+1 ), ∀j.
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In particular, f (σi1 ) > f (σim ) for all m > 1.

3. Observation 2. implies that each gradient vector field is acyclic.

The following theorem proves the converse.
T Different DMFs on a simplicial

complex K may induce the same

discrete vector field. For example, if f
is a DMF, then so are e f and 3 f − 5,

and all of them induce the same

discrete vector field. Our primary
interest in discrete vector fields lies

in their encodings of collapses and

deformations-simplifications of a
simplicial complex. A DMF represents

a convenient but not unique way of

encoding a discrete vector field.

Theorem 2.6. Each acyclic discrete vector field on a simplicial com-

plex K is a gradient vector field, i.e. it is induced by some DMF.

A proof is given in the appendix. As a result we obtain the follow-

ing theorem.

Theorem 2.7. A discrete vector field is gradient vector field iff it is

acyclic.

We conclude this section by demonstrating how acyclic discrete

vector fields encode collapses.

Proposition 2.8. Suppose the critical simplices of an acyclic discrete

vector field on K form a subcomplex L ≤ K. Then there exists a col-

lapse K → L and thus K ' L.

Corollary 2.9. If an acyclic discrete

vector field on K has a single critical
simplex, then that simplex is a vertex

and K is collapsible.

Proof. The statement follows directly
from Proposition 2.8.Proof. We claim there exists a regular pair (σ, τ) such that σ is a free

face. Assuming for a moment this claim is true, we can remove pair

(σ, τ) by performing an elementary collapse and proceed by using the

claim on the resulting complex. Thus the inductive argument and the

claim suffice to prove the proposition.

We now turn our attention to proving the claim. Let n denote the

maximal dimension of a simplex in K \ L. There exists an n-path in

the discrete vector field. Take a maximal11 such path and let σ → 11 Such a path contains the first

regular pair because the discrete
vector field is acyclic.

τ denote the first regular pair in it. Simplex σ is a free face by the

following argument:

• σ ≤ τ as the simplices form a regular pair.

• If σ was a facet of another simplex τ′ in K \ L, then n-simplex τ′

would be contained in another regular pair12 (σ′, τ′), which could 12 There are no (n + 1)-simplices in

K \ L.be used to prolong our n-path. This contradicts the maximality of

the chosen n-path.

• If σ was a facet of another simplex τ′ in L, then σ ∈ L as L is a

subcomplex, a contradiction.
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3 Morse homology

In this section we will explain the proceedure that leads to the com-

putation of homology from a gradient vector field. The geometric idea

behind the theory has been presented at the beginning of this chapter:

collapsing regular pairs stretch critical simplices, with the resulting

space having the same homotopy type as the original simplicial com-

plex but fewer “simplices”. In our treatment we will refrain13 from 13 A formal definition of resulting

spaces would require a significant

amount of additional material from al-
gebraic topology. This would include

a formal treatment of CW complexes,

i.e., spaces obtained by inductively
glueing discs. We have actually men-

tioned several presentations of such

constructions when presenting Torus,
Klein Bottle and projective plane by

drawing a square with identifications
along the edges, when defining the

dunce hat, and in one of the previous

appendices in the context of relative
homology.

formally defining the resulting space and instead construct the result-

ing chain complex directly. However, it might still be helpful to keep

the geometric idea in mind to help navigate the algebraic construction.

Morse chain complex

For the rest of this section we fix a simplicial complex K, a gradient

vector field on K, and an (algebraic) field F to provide coefficients

algebraic constructions. For each i let ni denote the number of critical

i-simplices.

Definition 3.1. Let p ∈ {0, 1, . . .}. A Morse p-chain is a formal

sum ∑
np
i=1 λiσ

p
i with λi ∈ F and σ

p
i being an oriented critical sim-

plex of dimension p in K for each i.
The p-dimensional Morse chain group Cp is the vector space con-

sisting of all Morse p-chains.

T As with the usual homology, mul-
tiplying an oriented simplex by −1
changes its orientation.

Observe that Cp ∼= Fnp . In order to obtain a chain complex we

also need to define the boundary maps. These are based on oriented14 14 Paths in a discrete vector field are
directed by definition. The adjective

“orientable” refers to the fact that
the simplices forming the path are

oriented.

paths in discrete vector fields.

Definition 3.2. Let p ∈ {0, 1, . . .}. An oriented p-path from an ori-

ented simplex σ
(p−1)
1 to an oriented simplex σ

(p−1)
k+1 is a p-path

σ
(p−1)
1 → τ

(p)
1 ≥ σ

(p−1)
2 → τ

(p)
2 ≥ σ

(p−1)
3 → · · · → τ

(p)
k ≥ σ

(p−1)
k+1

consisting of oriented simplices, such that for each j the orientation

induced by τj on its facets:

1. matches σj, and

2. does not match σj+1.

T One could say that the simplices
τij in an oriented p-path are oriented
consistently along the path.

Given an oriented critical p-simplex τ let δ(τ) denote the collection

of all of its facets with the induced orientation arising from τ. For

each15 oriented critical (p− 1)-simplex σ define 15 Given an oriented critical (p− 1)-
simplex σ observe that ατ,σ counts
different paths than ατ,−σ.ατ,σ = ∑

σ′∈δ(τ)

|{ oriented paths from σ′ to σ}|
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as the number of oriented p-paths from elements of δ(τ) to σ.

Definition 3.3. The boundary map d of the Morse chain complex

is defined as follows: for each oriented critical p-simplex τ define

dpτ =

np−1

∑
i=1

(ατ,σi − ατ,−σi )σi,

where σ1, . . . , σnp−1 are critical (p− 1)-simplices with a fixed orien-

tation.

T The oriented paths constituting

the boundary map model how arrows

stretch the boundary of a p-critical
simplex towards critical (p − 1)-
simplices.

Examples will be provided below when demonstrating the compu-

tation of Morse homology, see also Figures 8 and 9. It turns out that

d2 = 0.

Definition 3.4. The Morse chain complex is the chain complex de-

fined as

· · · d→ Cn
d→ Cn−1

d→ · · · ∂→ C1
d→ C0

d→ 0.

Morse homology

We may now define the Morse homology as the homology arising

from the Morse chain complex.

Definition 3.5. Let p ∈ {0, 1, . . .}. The Morse homology of a gra-

dient vector field on K is defined as

Hp(K; F) = ker dp/ Im dp+1.

Theorem 3.6. The Morse homology is isomorphic to the standard (sim-

plicial) homology:

Hp(K; F) ∼= Hp(K; F).

Corollary 3.7 (Weak Morse inequality). For each p the number of crit-

ical p simplices is greater or equal to the corresponding Betti number:

np ≥ bp.

c

d

b

ae

Figure 8: A gradient vector field

on a simplicial complex. Critical

edges are colored in red. There is one
oriented 1-path from 〈e〉 to 〈a〉 and

one oriented 1-path from 〈b〉 to 〈a〉.

Example 3.8. Given the situation of Figure 8 there is one critical edge

〈b, e〉 and one critical vertex 〈a〉. Thus C1
∼= C0 ∼= F with the other

Morse chain groups being trivial.

Let us determine d〈b, e〉:

1. δ(〈b, e〉) = {〈e〉,−〈b〉}.
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2. There is one oriented 1-path from 〈e〉 to 〈a〉:

〈e〉 → 〈e, a〉 ≥ 〈a〉.

3. In a similar fashion there is one oriented 1-path from −〈b〉 to

−〈a〉.

4. Observations 2. and 3. imply α〈b,e〉,〈a〉 = 1 and α〈b,e〉,−〈a〉 = 1.

5. d〈b, e〉 = (α〈b,e〉,〈a〉 − α〈b,e〉,−〈a〉) · 〈a〉 = 0

The resulting Morse chain complex is of the form

· · · → 0→ F
0→ F→ 0.

The resulting homology is trivial in dimensions two and above, and

nontrivial below: H0(K) ∼= H1(K) ∼= F.

Example 3.9. Let us compute the Morse homology of a torus.
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Figure 9: A triangulation of a torus,

a gradient vector field, and paths
generating the Morse boundary from

Example 3.8.

Given the triangulation and the gradient vector field on a torus

presented on the leftmost part of Figure 9 we determine the following

critical simplices:

• critical vertex x in purple;

• critical edges a (red) and b (blue);

• critical triangle τ.

We orient the critical simplices according to visualizations in the other

parts in Figure 9. The resulting Morse chain complex is of the form

· · · → 0→ F→ F2 → F→ 0.

We next determine the Morse boundary of τ. Only two simplices of

δ(τ) are the starting simplices of oriented 2-chains ending in a critical

edge:

• From the diagonal edge of δ(τ) there are two oriented 2-paths16 to 16 Drawn in black on the center-left
part of Figure 9.critical edges17 −〈a〉 and −〈b〉.
17 The center-right part of Figure

9 contains opaque green arrows

indicating the orientations of the
edges contained in the oriented 2-

paths. The terminal edges of the

oriented 2-paths are −〈a〉 and −〈b〉.
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• From the top edge of δ(τ) there are two oriented 2-paths18 to criti-

18 Drawn in black on the rightmost
part of Figure 9.

cal edges19 〈a〉 and 〈b〉.

19 The two oriented 2-paths differ only

in the last simplex.

• There are oriented 2-paths starting in the vertical edge of δ(τ) but

none of them ends in a critical edge.

Combining these three cases we conclude

d(τ) = −〈a〉 − 〈b〉+ 〈a〉+ 〈b〉 = 0.

In a similar way we conclude that da = db = 0. The resulting Morse

chain complex is of the form

· · · → 0→ F
0→ F2 0→ F→ 0.

The resulting homology is trivial in dimensions three and above, and

nontrivial below: H0(K) ∼= H2(K) ∼= F and H1(K) ∼= F2.

Figure 10: In this figure we provide a

geometric justification for the way the
orientation carries forward through

oriented 2-paths. The bottom-right

part is a snapshot from the center-
right part Figure 9 indicating how

the orientation of the diagonal edge
carries on through the arrow to the

other two edges of the triangle. The

first three parts of this figure indicate
how such an orientation on the two

edges is obtained by deforming the

oriented diagonal edge along the
arrow of a discrete vector field.

Generating DMFs and gradient vector fields

Using discrete Morse theory depends on the ability to generate

DMFs and gradient vector fields with as few critical simplices as pos-

sible. The weak Morse inequalities show that the lower bounds for the

numbers of critical simplices are Betti numbers. A DMF on a simpli-

cial complex is perfect, if the number of critical p-simplices coincides

with the pth Betti number. In terms of the numbers of critical sim-

plices, perfect DMFs are optimal DMFs. Not every simplicial complex

admits a perfect DMF: an example is the Dunce hat.

There is a simple algorithm to generate a perfect DMF on a graph.

For each component generate a gradient vector field as follows:

• Find a spanning tree.

• Choose a critical vertex.

• Define a gradient vector field pointing towards the critical vertex

along the spanning tree, see Figure 11.

The mentioned construction can be generalized to higher dimen-

sional simplicial complexes: keep adding arrows while making sure

that the acyclicity condition is preserved. However, better results are

typically obtained through more elaborate designs.

Figure 11: A graph (left) and a blue

spanning tree (right) with a gradient
vector field pointing to the chosen

critical vertex (red). The edges not

contained in the tree (red) are the
critical edges.

4 Concluding remarks

Recap (highlights) of this chapter

• Discrete Morse functions

• Gradient vector fields

• Morse homology
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Background and applications

The smooth Morse theory was developed in the first part of the

twentieth century. Amongst its results it relates critical points and

gradient flows of a generic function on a manifold to the homology of

a manifold. Its discrete version has been introduced at the turn of the

millennium. The past two decades saw a considerable development of

the discrete Morse theory from various directions, including compu-

tational aspects, developing analogies between discrete and smooth

results, etc.

An echo of the smooth Morse theory is the Hairy ball theorem: the

topology of a domain is connected to zeros of vector fields and thus to

extrema of functions. In a similar way, an echo of the discrete Morse

theory is our proof of the Euler-Poincaré formula, where we essentially

only counted the maxima of the x-coordinate function. Theorem 2.6

is a discrete variant of the assigning of a potential function to a vector

field.

Generalized discrete Morse theories can be used to prove20 that the 20 By Bauer and Edelsbrunner.

Cech complexes collapse onto alpha complexes in Euclidean spaces.

Several computer programs use discrete Morse theory to a different

degree to assist21 with computations of homology. The theory can also 21 For example, using simplification

using emergent pairs in Ripser. On
the other hand Perseus is actually

based on a discrete Morse theory.

be used as a preprocessing tool or a framework within which to analize

discrete functions.

A proof of Theorem 2.6

We first introduce some preliminary notions. Given a simplicial

complex K the Hasse diagram of K is a directed graph defined as

follows:

1. The nodes are the simplices of K;

2. Directed edges correspond to pairs (simplex, a facet). In particular,

each n-simplex is the source of n + 1 directed edges.

An example is provided in Figure 12. The directed edges in the graph

represent the containment of a facet.

c

d

b

ae

〈b, d, e〉

〈b, d〉 〈b, e〉 〈d, e〉 〈a, b〉〈a, e〉〈c, d〉

〈b〉 〈d〉 〈e〉 〈c〉 〈a〉

Figure 12: A simplicial complex and

its Hasse diagram. Hasse diagrams are
typically drawn in levels correspond-

ing to the dimensions of simplices.

Given an empty discrete vector space on a simplicial complex K,

the directed edges also represent the direction of descent of the corre-

sponding DMF. In this trivial case all the simplices are critical, there

are no exceptions and the DMF respects dimension. An obvious choice

of a DMF in this case is the dimension function of a simplex. For il-

lustrative purposes let us discuss how we could obtain such a function

from the Hasse diagram in an inductive manner:

• Assign the smallest value, say 0 to all minimal nodes of a directed

graph;
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• Assign the second smallest value, say 1 to all nodes whose lower

set22 has already been enumerated; 22 The lower set of a node σ is the

collection of all nodes which appear as

the target of a directed edge starting
at σ.

• Proceed by induction: In step number n assign the nth smallest

value, say n− 1 to all nodes whose lower set has already been enu-

merated;

This inductive construction of function works for any acyclic di-

rected graph and will be used in our eventual proof.

c

d

b
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〈b, d, e〉

〈b, d〉 〈b, e〉 〈d, e〉 〈a, b〉〈a, e〉〈c, d〉

〈b〉 〈d〉 〈e〉 〈c〉 〈a〉

Figure 13: The modified Hasse dia-

gram, the reverted edges are red.

Given a non-trivial discrete vector field on a simplicial complex K
we define a modified Hasse diagram of K by reverting the direction

of the directed edges corresponding to the regular pairs, see Figure

12 for an example. A modified Hasse diagram encodes the sufficient

conditions on a DMF to generate the initial discrete vector field. The

above inductive procedure on such a diagram will produce a required

DMF iff the diagram itself is acyclic as a directed graph.

Lemma 4.1. The modified Hasse diagram of an acyclic discrete vector

field is acyclic.

Proof. Since each simplex can be a member of at most one regular

pair in a discrete vector field, a cycle in the modified Hasse diagram

H can’t contain consecutive directed edges corresponding to regular

pairs. As directed edges of H either end in a simplex of dimension

1 higher (in the case of regular pairs) or lower (in the case of edges

encoding the facet relation) than the dimension of the initial simplex,

any cycle in H has to be an alternating concatenation of these two

types. As a result, a cycle in H corresponds to a p-cycle in the initial

discrete vector field, which is non-existent by the main assumption.
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〈b, d, e〉

〈b, d〉 〈b, e〉 〈d, e〉 〈a, b〉〈a, e〉〈c, d〉

〈b〉 〈d〉 〈e〉 〈c〉 〈a〉
0
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Figure 14: The modified Hasse di-

agram and the DMF (in red) con-

structed by the inductive proceedure.

A proof of Theorem 2.6. Given an acyclic discrete vector field, the

corresponding modified Hasse diagram is acyclic by Lemma 4.1. Thus

the inductive procedure above results in a suitable DMF, see Figure

14.
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