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Žiga Virk

December 2, 2021

In the previous chapter we introduced persistent homology and its

basic method of computation in the discrete setting. However, it turns

out that the concept of persistent homology can be treated on a much

deeper theoretical level, through which many of its advantages become

apparent.

In this chapter we will delve further into the theoretical machinery

of persistent homology. We will introduce continuous filtrations and

the underlying algebraic structure of persistence modules. These

structures will be crucial in the formulation of the Stability theorem,

which states that, unlike homology, persistent homology behaves

continuously with respect to the underlying filtration. We conclude by

mentioning a series of interpretations and examples of our expanded

scope of persistence.

1 Continuous filtrations

Recall that a discrete filtration of a simplicial complex K is a se-

quence of subcomplexes

K1 ≤ K2 ≤ . . . ≤ Km = K.

An example of a filtration if given in Figure 1.

K1 K2 K3 K4
Figure 1: A discrete filtration.
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Figure 2: The annotation of simplices
encoding the filtration of Figures 1.

Discrete filtrations1 formalize finite nested sequences of complexes.

1 I.e., filtrations given by finitely many

nested simplicial complexes

While this approach is geometrically intuitive, there is an alternative

shorter description of a filtration. Rather than storing a sequence

of separate subcomplexes, we annotate each simplex σ ∈ K by the

index f (σ) at which σ first appears. Given such an annotation it is

easy to reconstruct Ki = {σ ∈ K | f (σ) ≤ i}. See Figure 2 for

an example. This observation motivates us to expand the scope of

filtrations in two ways: by considering continuous filtrations with

infinitely many subcomplexes; and by defining filtrations from an

appropriate annotation function.
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1. A continuous filtration of a finite simplicial complex K is a collec-

tion of subcomplexes2 {Kr}r≥0 of K such that 2 Throughout the book we will addi-

tionally require that for each simplex

σ ∈ K the minimum argminr{σ ∈ Kr}
exists, i.e., there exists the smallest

scale r at which σ appears. An equiv-

alent condition is the following: for
each r there exists r′ > r such that

Kr = Kr′ , i.e., if a simplex is absent

at scale r, it is also absent at slightly
larger scales.

Under this condition each continu-
ous filtration is the sublevel filtration

of its associated annotation function.

In particular, each sublevel filtration
is a continuous filtration and vice

versa. The Rips and Cech filtrations

as defined in Chapter 5 are continuous
filtrations of this sort.

∀r < q : Kr ≤ Kq ≤ K.

2. Given a simplicial complex K, let f be a filtration function, i.e., an

annotation of each of the simplices of K by a non-negative number

such that σ ≤ τ =⇒ f (σ) ≤ f (τ). The sublevel filtration

associated to f is a continuous filtrations consisting of sublevel

complexes3 Kr = {σ ∈ K | f (σ) ≤ r} ≤ K for r ≥ 0.

3 In this setting parameter r is often
referred to as the scale, a notion

arising from Rips and Cech filtrations,

or the level, a notion arising from the
filtration function.

There are two motivating reasons for the introduction of continuous

filtrations:

• Most of the standard constructions of filtrations actually yield

continuous filtrations: Cech filtration4, Rips filtration5, filtration by

4 The corresponding filtration function
on simplices being the radius of the

smallest enclosing ball of the vertices.
5 The corresponding filtration function
on simplices being the diameter of the

set of vertices.

alpha complexes, sublevel filtration, etc.

• The interleaving structure and the resulting stability theorem de-

pend6 on the continuous choice of parameter.

6 To be discussed in detail later. In a

nutshell, the continuous choice of the

parameter eventually results in the
continuity of persistent homology.

The definition of persistent homology groups for continuous filtra-

tions is the same, with the only difference being the continuous range

of the indices 0 ≤ s ≤ t, which results in nominally infinitely many

persistent homology groups. The matrix-reduction based computation

of persistent homology is unhindered by the expansion to continuous

filtrations as the computations depend only on filtration function de-

fined on (finitely many) simplices, and do not require all (infinitely

many) complexes of filtration separately. In a nutshell, we can com-

pute the same barcodes using the same procedure for continuous or

discrete filtrations.

Figure 3: An excerpt from the Rips

filtration on the five points on the left.
We next discuss the interpaly between discrete and continuous

filtrations:

1. Given a discrete filtration, there is an obvious extension of it as the

sublevel filtration of the annotation function.
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2. Given a continuous sublevel filtration {Kr}r≥0 associated to a fil-

tration function f there are two ways of generating a discrete filtra-

tion:

(a) By restriction to K1 ≤ K2 ≤ . . . ≤ Kdmax f e. While mathe-

matically convenient, this approach has many drawbacks7 and is 7 The corresponding continuous

filtration as defined by 1. may be
significantly different from {Kr}r≥0.

The information about the sequence
of changes between each pair of

integer scales is lost.

mostly avoided.

(b) A more beneficial way of thinking about the index i of a dis-

crete filtration is not as the scale parameter8 but rather as the

8 An interpretation prevalent in the

context of continuous filtrations.

index of the critical scale9 of the continuous filtration. Formally

9 A scale r of a continuous filtration is

critical, if at least one simplex appears

at r.

speaking we define critical scales r1 < r2 < . . . < rk as the

enumeration10 of the image of f and define

10 {r1, r2, . . . , rk} = Im f .Ki = {σ ∈ K | f (σ) ≤ ri}.

The corresponding finite filtration contains the information about

all changes in the original continuous filtration.

Continuous filtrations conveniently model the geometric setup of

the standard filtrations. On the other hand, discrete filtrations are

a convenient finite description on which we may develop algorithmic

approaches.

T From this point on, whenever we

mention an unspecified filtration, or
consider a transition from a finite to

continuous filtration or vice versa, the

underlying interplays we have in mind
are 1. and 2. (b). For an example see

Figure 4.

r = 0 r = 1/2 r = 1/
√
3

0 0

0

1/2 1/2

1/2

1/
√

3

Figure 4: The Cech filtration on

three vertices forming an equilateral

triangle of side length 1 nominally
consists of infinitely many simplices.

However, only at scales 0, 1/2 and

1/
√

3 do the changes occur and hence
the corresponding discrete filtration

(according to 2 (b) above) consists of

simplices at those scales, depicted by
the first three complexes in the figure.

The annotation function is provided
on the right, its image consists of the

mentioned scales.

Example 1.1. [Topology of offsets] Given a finite collection of points

S ⊂ Rn we have already mentioned that the Nerve Theorem implies

that for each r > 0 the Cech complex Cech(X, r) is homotopy equiva-

lent to the r-neighborhood11 of X: 11 Also called the r-offset of S.

Cech(S, r) = N ({B(s, r)}s∈S) '
⋃
s∈S

B(s, r) = N(S, r).

It turns out that the Nerve Theorem behaves consistently12 with the 12 The formal term corresponding to
this consistency is “functoriality” and

the relevant extension of the Nerve

Theorem is referred to as “Persistent
Nerve Theorem” or “Functorial Nerve

Theorem”.

maps, which results in the following fact: if for r1 < r2 the inclusion

N(S, r1) ↪→ N(S, r2) is a homotopy equivalence, then13 so is the

13 At this point we crucially use the
fact the Euclidean balls always form

a good cover as required by the Nerve

Theorem.

inclusion Cech(S, r1) ↪→ Cech(S, r2).

The Cech filtration thus models the homotopy type of growing off-

sets: if on some interval the growth of r results in homotopy equivalent

growth of offsets, then it also results in a homotopy equivalent growth

of the Cech complexes.



persistent homology: stability theorem 4

Interleaving distance for filtrations

We conclude this section by recalling the interleaving distance be-

tween filtrations. The concepts has already been defined in Chapter 5

for Rips and Cech filtrations. With the established general notions we

can use the same definition for filtrations in general.

T Suppose filtrations {Kr}r≥0 and

{Lr}r≥0 consist of subcomplexes of a

simplicial complex K and let ε ≥ 0.
It is easy to see that if for each r we

have Kr ≤ Lr+ε and Lr ≤ Kr+ε, then
the filtrations are ε-interleaved. The

argument of this sort is used in the

proof of Proposition 1.3.

Definition 1.2. Choose ε > 0. Continuous filtrations {Kr}r≥0 and

{Lr}r≥0 are ε-interleaved if there exist simplicial maps ϕr : Kr →
Lr+ε and ψr : Lr → Kr+ε such that ϕr+ε ◦ψr : Lr → Lr+2ε and ψr+ε ◦
ϕr : Kr → Kr+2ε are equal to the corresponding inclusions.

· · · // Kr //

ϕr

!!

Kr+ε
//

##

Kr+2ε
// · · ·

· · · // Lr //

ψr

==

Lr+ε
//

;;

Lr+2ε
// · · ·

Given two filtrations their interleaving distance is defined as the

minimum14 of all values ε > 0, for which the filtrations are ε-interleaved. 14 It is not hard to prove that the
minimum exists due to the addi-

tional requirement imposed on our

filtrations.

It turns out that the interleaving distance is a metric15.

15 In order to maintain this view we

declare two filtrations to be isomorphic

if they are 0-interleaved. The inter-
leaving distance is a metric on the

isomorphy classes of filtrations.

In Chapter 5 we proved that Rips and Cech filtrations equipped

with the interleaving distance are continuous (stable) with respect

to perturbations of the underlying points. Generalizing this result

we now prove the sublevel filtrations are continuous with respect to

perturbations of the filtration function in the max metric16.
16 Given two functions f , g : K → R

defined on all simplices of a finite

simplicial complex K, the max distance

between them is

|| f − g||∞ = max
σ∈K
| f (σ)− g(σ)|.

Proposition 1.3. Let K be a simplicial complex. Assume f , g : K →
[0, ∞) are filtration functions. Then the sublevel filtrations of K cor-

responding to K and L are || f − g||∞ interleaved.

Proof. In order to align our notation with the diagram above for

ε = || f − g||∞ define Kr = {σ ∈ K | f (σ) ≤ r} ≤ K and Lr = {σ ∈ K |
g(σ) ≤ r} ≤ K. The interleaving maps ϕ, ψ are defined to be identities

on vertices. The maps are well defined by the following argument:

• For each vertex v ∈ K: if v ∈ Kr then v ∈ Lr+|| f−g||∞ by the

definition of the max distance. In a similar fashion, if v ∈ Lr then

v ∈ Kr+|| f−g||∞ . Hence maps ϕ, ψ are well defined on vertices.

• The same argument for simplices17 implies maps ϕ, ψ are simplicial. 17 For example, if a simplex σ ∈ K is

contained in Kr, it is also contained in
Lr+|| f−g||∞ .

2 Persistence modules

Persistent homology is obtained by applying homology to a filtra-

tion. In this section we present the properties of the resulting algebraic
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objects (persistence modules) which model persistent homology. Just

as filtrations model the growth of simplicial complexes, persistence

modules model the evolution18 of vector spaces19. 18 I.e., not only growth.
19 Which we interpret as holes in the
context of persistent homology

Throughout the rest of this chapter we fix a field F, which will

provide coefficients to all mentioned vector spaces, including homology

groups.

Persistence modules

T In general literature persistence

modules may consist of infinite dimen-
sional vector spaces.

Definition 2.1. A persistence module is a collection of (finite di-

mensional) vector spaces {Vr}r≥0 along with linear maps

hr,q : Vr → Vq, ∀r < q

satisfying hr,q = hr,s ◦ hs,q for all r < q < s.

Scale r ≥ 0 is said to be regular if there exists ε > 0 such that

maps hp,q are isomorphisms for all p, q ∈ (r − ε, r + ε) or (in the

case r = 0) or all p, q ∈ [0, ε), i.e., the maps h are isomorphisms

close to r. Scale r is critical if it is not regular.

T Critical scales of a continuous
filtration are a supset of critical scales

of its persistent homology as any

change in homology requires a change
of the underlying complex, but not

vice versa.
Our interest in persistence modules stems from the fact that they

are the underlying algebraic structure of persistent homology of con-

tinuous filtrations. In order to simplify our treatment we thus restrict

to persistence modules that appear as persistent homology of continu-

ous filtrations as defined above. In particular, each persistence module

treated here will be assumed to have the following properties:

1. There exists R > 0 such that for each R ≤ r < q maps hr,q are

isomorphisms20, i.e., eventually all maps h are isomorphisms. 20 An analogous property holds for the
continuous filtrations as they filter a

finite simplicial complex, i.e., given

a filtration function f , all sublevel
complexes Kr for r > max | f | coincide.

2. For each r > 0 there exists r′ > r such that for all q ∈ [r, r′) the

maps hr,q are isomorphisms21.

21 This corresponds to the analogous
property assumed for our continuous

filtrations.

3. There exist finitely22 many critical scales.

22 This property corresponds to the
fact that continuous filtrations filter a

finite simplicial complex.

T Properties 2. and 3. imply that
the interval [0, ∞) can be decomposed

into finitely many intervals of the

form [∗1, ∗2) on which all maps h are
isomorphisms.

Definition 2.2. Persistence modules {Vr}r≥0 and {Wr}r≥0 are iso-

morphic if for each r ≥ 0 there exist isomorphisms Vr →Wr such

that for each 0 ≤ r1 < r2 < . . . the following diagram commutes

· · · // Vrj
//

∼=
��

Vrj+1
//

∼=
��

Vrj+2
//

∼=
��

· · ·

· · · // Wrj
// Wrj+1

// Wrj+2
// · · ·



persistent homology: stability theorem 6

Decomposition

It is often advantageous to decompose23 mathematical objects 23 Functions are decomposed into

monomials (Taylor series) or trigono-

metric functions (Fourier series).
Closed connected surfaces other than

the sphere can be decomposed as a
direct sum of tori or projective planes.

Every n-dimensional vector space is

of a form Fn and in one of the pre-
vious appendices we mentioned how

finitely generated Abelian groups can

be decomposed into smallest indecom-
posable groups: groups of the form Zp
and Z.

into simple pieces and thus obtain a canonical form. In the previous

chapter we decomposed persistent homology into pieces represented

by bars. In this subsection we will formalize such a decomposition for

persistence modules.

We first explain what we mean by a “decomposition”.

Definition 2.3. The direct sum of persistence module {Vr}r≥0 and

{V′r }r≥0 along with respective linear maps hr,q and h′r,q, is a persis-

tence module consisting of:

• spaces Wr = Vr ⊕Vr and

• maps h̃r,q = (hr,q, h′r,q)

for all 0 ≤ r < q.

We next present elementary intervals, which are the pieces repre-

sented by bars.

Definition 2.4. Let 0 ≤ p < q. An elementary interval Fp,q cor-

responding to the pair (p, q) is a persistence module {Vr}r≥0 defined

as follows:

• Vr = F for r ∈ [p, q) and Vr = 0 else.

• Maps hs,s′ are isomorphisms whenever possible.

T Rewriting condition on maps in
Definition 2.4:

• for p ≤ s < s′ < q map hs,s′ is the

identity on F.

• else hs,s′ is the zero map.

T It is easy to verify that elementary

intervals Fp,q and Fp′ ,q′ are isomorphic
iff p = p′ and q = q′.Theorem 2.5. [Structure Theorem for persistent homology] Each per-

sistence module is isomorphic to a direct sum of elementary intervals.

The decomposition is unique up to the permutation of the intervals.

Barcodes and bars introduced in the previous chapter correspond

to this decomposition and elementary intervals. Theorem 2.5 is an

algebraic expression of the existence of barcodes. It states that the

persistence module can be decomposed into the intervals and is com-

pletely determined24 by the elementary intervals of its decomposition. 24 And as a result, barcodes and
persistence diagrams are complete

descriptions of persistence modules.
Interleaving distance for persistence modules

The interleaving distance has already been defined for filtrations.

Conceptually the same definition applies to persistence modules.
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Definition 2.6. Choose ε > 0. Persistence modules {Vr}r≥0 and {Wr}r≥0

along with respective linear maps hr,q and h′r,q are ε-interleaved if

there exist linear maps ϕr : Vr → Wr+ε and ψr : Wr → Vr+ε such

that ϕr+ε ◦ ψr : Wr → Wr+2ε and ψr+ε ◦ ϕr : Vr → Vr+2ε are equal

h′r,r+ε and hr,r+ε correspondingly.

Given two persistence modules their interleaving distance dI is

defined as the minimum of all values ε > 0, for which the filtrations

are ε-interleaved.

· · · // Vr //

ϕr

""

Vr+ε
//

##

Vr+2ε
// · · ·

· · · // Wr //

ψr

<<

Wr+ε
//

;;

Wr+2ε
// · · ·

It is not hard to prove that the minimum in the definition of the

interleaving distance exists due to the additional requirement imposed

on persistence modules. It is easy to verify that the interleaving dis-

tance is a metric on the isometry classes of persistence modules. As

such the interleaving distance is the metric25 of choice on persistent 25 At this point it should be clear that

continuity and small perturbations of

persistent homology depend on the
ability to perform continuous and

small steps in the index set. An inter-

leaving distance defined on persistent
homology of discrete filtrations or a

single complex would have been, in

the best of cases, restricted to the
integer values, that do not accommo-

date the idea of continuity.

homologies.

The functoriality of homology implies that ε-interleaved filtrations26

26 We have already discussed how
these appear by perturbing points

when using Rips or Cech complexes,

and by perturbing the filtration
function when using the sublevel

filtration.

induce ε-interleaved persistence modules. Another setting in which

ε-interleaved persistence modules (but not necessarily ε-interleaved

filtrations) are obtained is that of spaces, which are “close” to each

other. Let us first define closeness.

Definition 2.7. Let (X, d) be a metric space and assume A, B ⊂ X
are finite subsets. The Hausdorff distance dH(A, B) is defined as

dH(A, B) = max
{

max
b∈B

min
a∈A

d(a, b), max
a∈A

min
b∈B

d(a, b)
}

.

The Hausdorff distance is a metric on all finite subspaces of a met-

ric space X. It has a natural geometric meaning. Given the setting of

Definition 2.7 find:

• The minimal rA such that N(A, rA) ⊃ B, i.e., the rA-neighborhood

of A contains B.

• The minimal rB such that N(B, rB) ⊃ A.

We conclude that dH(A, B) = min{rA, rB}. Note that for each a ∈ A
there exists b ∈ B such that d(a, b) ≤ dH(a, b), and vice versa. An

example is given in Figure 5, where a black set A and a red set B are

displayed on top, while their respective neighborhoods are displayed in

the middle and on the bottom.

N(A, rA)

N(B, rB)

BA

Figure 5: dH(A, B) = rB > rA.
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Hausdorff distance measures the distances between finite subspaces

of a metric space and heavily depends on a way in which these sub-

spaces are embedded. For example, different isometric subspaces will

be at a positive Hausdorff distance.

Similar to Hausdorff distance is the Gromov-Hausdorff distance.

Definition 2.8. Suppose A, B are finite metric spaces. The Gromov-

Hausdorff distance dGH(A, B) is defined as

dGH(A, B) = inf
µ,ν
{dH(µ(A), ν(B))},

where the infimum is over all isometric embeddings µ : A→ X and

ν : B→ X into a metric space X.
T Observe that dGH(A, B) ≤ dH(A, B)
for finite subspaces of a metric space

X. As a result Proposition 2.9 also
holds for dH . However, Gromov-

Hausdorff distance is typically harder

to compute and thus it is occasionally
more convenient to use dH as the

easily computable parameter of

interleaving.

It turns out that the infimum in Definition 2.8 is always attained

and that dGH is a metric on the isometry classes27 of finite metric

27 In particular, dGH(A, B) = 0 iff the

spaces are isometric.

spaces.

Proposition 2.9. Let A, B be finite metric spaces with ε = dGH(A, B).

Then for each q ∈ {0, 1, . . .}:

1. {Hq(Rips(A, r))}r≥0 and {Hq(Rips(B, r))}r≥0 are 2ε-interleaved.

2. {Hq(Cech(A, r))}r≥0 and {Hq(Cech(B, r))}r≥0 are ε-interleaved.

Proof. We will only sketch the proof for q = 1 and Rips filtrations.

The proof of other cases follows the same idea but requires some tech-

nical diligence. Without loss of generality we may assume A and B are

subspaces of a metric space X and ε = dH(A, B).
We aim to define maps ϕ and ψ that constitute a commutative

diagram:

· · · // H1(Rips(A, r)) //

ϕr

))

H1(Rips(A, r + 2ε)) //

))

H1(Rips(A, r + 4ε)) // · · ·

· · · // H1(Rips(B, r)) //

ψr

55

H1(Rips(B, r + 2ε)) //

55

H1(Rips(B, r + 4ε)) // · · ·

We first define maps on the vertices of the Rips complexes:

• For each a ∈ A choose ba ∈ B such that d(a, ba) ≤ ε and define

ϕr(a) = ba, ∀r.

• For each b ∈ B choose ab ∈ A such that d(b, ab) ≤ ε and define28 28 As defined, maps ϕr and ψr do not
define an interleaving between the

Rips filtrations as in general aba 6= a.
ψr(b) = ab, ∀r.

Given a 1-cycle α = ∑i〈ai, ai+1〉 in Rips(A, r) define ϕr([α]) =

[∑i〈bai , bai+1〉]. This gives well defined maps ϕr (and also ψr) by the

following arguments:
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• ∑i〈bai , bai+1〉 is a cycle in Rips(B, r + 2ε) as d(ai, ai+1) ≤ r implies

d(bai , bai+1 ) ≤ r + 2ε.

• If [∑i〈ai, ai+1〉] = [∑i〈a′i, a′i+1〉] holds29, then ϕ([∑i〈ai, ai+1〉]) = 29 This means ∑i〈ai , ai+1〉 −
∑i〈a′i , a′i+1〉 = ∂ ∑j〈xj, yj, zj〉.ϕ([∑i〈a′i, a′i+1〉]) as well30.
30 This holds as ∑i〈bai , bai+1 〉 −
∑i〈ba′i

, ba′i+1
〉 = ∂ ∑j〈bxj , byj , bzj 〉

and 〈bxj , byj , bzj 〉 are triangles in

Rips(B, r + 2ε).

At last we need to show that[
∑

i
〈ai, ai+1〉

]
=
[
∑

i
〈a′′i , a′′i+1〉

]
in H1(Rips(A, r + 4ε)) where a′′i = abai

. First note that d(ai, a′′i ) ≤
2ε, ∀i. The difference ∑i〈ai, ai+1〉 − ∑i〈a′′i , a′′i+1〉 is a boundary as

demonstrated by the blue 2-chain in Figure 6. ai

ai+1ai−1

a′′i

a′′i+1

a′′i−1

Figure 6: An excerpt from the proof

of Proposition 2.9. Each edge con-

nects points at distance at most
r + 2ε.

3 Bottleneck distance and Stability theorem

The many versions of the Stability Theorem for persistent homology

state that persistent homology is continuous with respect to continu-

ous change of the input parameters31. We have already seen examples 31 With various versions discussing
various forms of input.of this sort: through Propositions 2.9 and 1.3 we can conclude that

persistent homology behaves “continuously” in the interleaving dis-

tance. One of the main advantages of persistent homology though is

its visualization and so the final step towards a geometrically conve-

nient form of the Stability Theorem is to interpret32 the interleaving 32 A brief idea about a transition

from the interleaving distance to the
bottleneck distance is provided in

appendix.

distance in geometric terms as a distance on persistence diagrams33.

33 For this setting, the visualization
with persistence diagrams is much

preferred to the visualization with the

barcodes.

The resulting distance on persistence diagrams is called the bottleneck

distance.

Bottleneck distance

We start by explaining notions and setting needed to define the bot-

tleneck distance. Suppose A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn)

are persistence diagrams, i.e.:

• each ai and bi is a point above the diagonal in the first quadrant in

the plane, and

• each point may appear multiple times in any of the diagrams.

For a point v = (x, y) ∈ R2 let34 v̄ = ((x + y)/2, (x + y)/2) ∈ R2. 34 v̄ represents the point on the diag-
onal ∆ = {(z, z) | z ∈ R} which is

the closest to v in d∞ (and also in d2)
metric.

A partial matching between A and B is a bijective map ϕ : A′ → B′
where35 A′ ⊆ A and B′ ⊆ B. The matching distance of such a ϕ is

35 Again, a point can appear in A′ or
B′ multiple times but not more times
than in A or B respectively.

defined as

T Recall that the max distance

d∞((x1, y1), (x2, y2)) between points in
the plane is defined as

max{|x1 − x2|, |y1 − y2|}.

dM(ϕ) = max
{

max
v∈A′
{d∞(v, ϕ(v))}, max

v∈A\A′
{d∞(v, v̄)}, max

v∈B\B′
{d∞(v, v̄)}

}
.

Let µ(A,B) denote the collection of all partial matchings between A
and B.
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Definition 3.1. The bottleneck distance between persistence diagrams

A and B is the minimal matching distance between them, i.e.,

dB(A,B) = min
ϕ∈µ(A,B)

dM(ϕ).

Figure 7: Examples of partial match-

ings between the red and the blue
persistence diagrams with with points

unmatched by ϕ being matched to the

closest diagonal point.

Examples of partial matchings are given in Figure 7. In order to

demonstrate the additional pairs used in the definition of the bottle-

neck distance, the unmatched points are connected to the closest point

on the diagonal. The matching with the smallest matching distance is

the second from the left, a fact that can be verified in Figure 8, which

illustrates the matching distances for matchings of three diagrams of

Figure 7. The d∞(a, b) distance between points a and b can be thought

to represent one half of the side-length of the square centered at a
which has b on its boundary. The maximal length of such sides is the

smallest in the second case and the resulting quantity is the bottleneck

distance dB.

T At this point it should become

apparent why it is geometrically

convenient to consider points on
the diagonal represent the trivial

persistence module. A side effect of

this approach is that any two points
on the diagonal represent the same

trivial persistence module. In a way,

the entire diagonal should thus be
treated as a single point.

dB

Figure 8: The distances between the
matched pairs are demonstrated by

the squares arising as the balls of the

d∞ metric. The diagram with the
smallest maximal square amongst

all matchings (even the ones not dis-
played here) is the middle one. Hence
the resulting bottleneck distance dB
arises from the middle diagram.

Theorem 3.2 (Isometry Theorem). The interleaving distance between

persistence modules equals the bottleneck distance between the corre-

sponding persistence diagrams.

2ε ε

Figure 9: A schematic representation
of the ε-neighborhood of the diagram

consisting of blue points as discusses

in Example 3.3.
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Example 3.3. Let A be the persistence diagram presented by the four

blue points in Figure 9. If persistence diagram B satisfies dB(A,B) ≤
ε, then B consists of the following:

• For each blue point there exists one designated36 red point within 36 If some of the squares had non-

empty intersection, then within that
intersection there might be more

points of B, so a single square might
contain more red points. However,

one of them, potentially a diagonal

point, has to be the designated one,
i.e., the point to which the blue point

in question is matched in an optimal

matching.

the grey square (i.e., the ε-ball in d∞) around it.

• Arbitrarily many points within the grey ε-band37 along the diagonal.

37 This band is actually the ε-
neighborhood of the trivial (empty)
persistence diagram. Again, this im-

plies that the squares intersecting the

band may contain more points.

Stability Theorem

T The stated version combines several
separate version of the Stability The-

orem found throughout the literature

by stating several different initial
assumptions.

T While the presented results explain

stability in terms of the bottleneck
distance, there is another family of

distances on persistence diagrams
called the Wasserstein distances. For

example, the 1-Wasserstein distance is

obtained by defining the matching dis-
tance as the sum (rather than max) of

individual terms. Under appropriate

assumptions the persistence diagrams
are also stable when using Wasserstein

distances.

Theorem 3.4. [Stability Theorem] Assume persistence diagrams A and

B represent persistent homologies of filtrations V and W obtained by

one of the following procedures:

1. As the sublevel filtrations of filtration functions f and g satisfy-

ing condition || f − g||∞ ≤ ε, see Proposition 1.3.

2. As the Rips filtrations of metric spaces X and Y satisfying con-

dition dGH(X, Y) ≤ ε/2, see 1. of Proposition 2.9.

3. As the Cech filtrations of metric spaces X and Y satisfying con-

dition dGH(X, Y) ≤ ε, see 2. of Proposition 2.9.

Then dB(A,B) ≤ ε.

Figure 10 is a schematic representation of the discussion leading to

the Stability Theorem as presented here.

ε− interleaving of

V and W
filtrations

ε− interleaving of

modules

persistence dB(A,B) ≤ ε
functoriality Isometry

Theorem

Filtration

functions

||f − g||∞ ≤ ε

Rips

filtration

dGH(X,Y ) ≤ ε/2

Cech

filtration

dGH(X,Y ) ≤ ε

Figure 10: The diagram summarizing
the Stability Theorem and strategy of

its proof that have been discussed.
The moral of the theorem is that small perturbations of the input

lead to small changes in persistence diagrams. On the other hand,

critical simplices and homology representatives may be unstable.
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4 Interpretations and examples

With the Stability Theorem, persistent homology may be thought

of as a stable description of a geometric shape. The stability itself

justifies the following observations:

• Given a geometric shape, ever better approximating point-clouds

induce persistent diagrams ever closer (converging) the the persis-

tence diagram of the shape.

• The points of higher persistence38 represent more stable39 features 38 I.e., the longer bars in the barcode.
39 I.e., they remain non-trivial under

larger perturbations.
and are thus typically deemed to be of higher importance, leading

to simplification40 schemes on data. 40 I.e., denoising.

In this section we will present several examples41 of persistent ho- 41 Generated by Ripserer.jl, with

coefficients in Z2.mology arising via Rips complexes and comment on their structure.

1-dimensional persistence of geodesic spaces

Let X be a closed42 geodesic manifold or, more generally, the body 42 This implies it admits a finite

triangulation.of a finite simplicial complex equipped with a geodesic metric. Assume

Sn is a sequence43 of finite metric spaces converging towards X in the 43 Such a sequence may be, roughly

speaking, obtained by constructing

ever finer finite approximations of X
and inducing an approximation of a

geodesic metric on them.

Gromov-Hausdorff metric. Let An denote the 1-dimensional persis-

tence diagram obtained from Sn via Rips filtration and coefficients in

F. It turns out that the limiting diagram44 A = limn→∞An encodes
44 A can be obtained as persistence
diagram of the Rips filtration of X, a

construction which involves infinite

simplicial complexes and is formally
beyond the scope of this book.

a shortest base of H1(X; F): for each member45 α of a shortest ho-

45 Members are formally cycles whose

length in this case is the length of
the corresponding loop in X. One can

choose a triangulation for which these

simplicial loops are shortest possible.

mology base of X we obtain a bar [0, |α|/3), where |α| is the length of

α, see Figure 11. Without going through all the details let us demon-

strate the situation through examples.

α

β

|α|/3 |β|/3
Figure 11: The 1-dimensional persis-

tent homology of a torus detects its

shortest homology basis.

Figures 12, 13, and 14 represent three surfaces in R3 approximated

by a finite collection of points. An approximation of a geodesic metric

is induced on the points and used to compute 1-dimensional persistent

homology. The right part od the figures represents the longest one

or two bars obtained from each of the computations. Starting with a

discrete set of points a multitude of short bars is also generated but

are the artefact of a finite approximation rather than topologically

significant features. By the Stability Theorem their lifespans decrease

(although their numbers increase) as we improve the approximation

density.

Let us interpret the results:

1. Our chosen samples are dense enough for the longest bars to de-

tect the shortest 1-dimensional homology bases, which in this case

coincide for all coefficients.

2. The bars would ideally be born at 0 and run until one-third of the

lengths of the corresponding homology generators. With increased

density the resulting barcode would approach this scenario.
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3. The visualizations of approximating points also contain a loop or

two: these are obtained by connecting the vertices of the critical

triangles by the shortest paths through our points. Note that for

bars corresponding to the basis, this gives an approximation of the

shortest homology bases. Again, in the spirit of Stability Theorem,

the finer the approximation by points, the closer approximation of

the loops we obtain.

4. Going beyond the basis, we see that the next bar in Figure 14

detected a hole in our approximating points. The lifespan of this

bar would decrease towards zero with ever better approximations.

Figure 12: The longest bar of 1-

dimensional persistent homology.

Figure 13: The longest two bars of

1-dimensional persistent homology.

Figure 14: The longest two bars of

1-dimensional persistent homology.
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Stability demonstrated

Figure 15: Four approximations

of a circle and the corresponding
persistence diagrams.

Figure 15 contains four approximations of a circle by discrete sets

and the corresponding persistence diagrams arising from the Rips fil-

tration. The Stability Theorem states that as the induced persistence

diagrams should be close to each other, and the figure demonstrated

this is indeed the case. A few comments on the diagrams:

• There is a point (0, 3) representing (0, ∞) indicating the one persis-

tent component.

• The main dominating feature is the very persistent point termi-

nating at around 1.5. It represents the 1-dimensional hole, i.e.,

the homology of S1. Its precise coordinates tell us more about the

geometry of the sample.

– The birth is between 0 and .5. The precise birth depends on

the edges of the Rips complex going “around the circle”46. The 46 ...and thus generating the 1-cycle.

maximal gap needed for such circumcision is the birth time.

We can see that such a gap is smallest in the upper-right case

resulting in early birth. On the other hand, the gap is largest in

the upper-left case47 and results in a later birth. 47 The gap of this sample appears in

the upper-right part
– The terminal scale of this feature is the minimal diameter of an

“almost equilateral triangle” reaching “around the circle”.

• The other points on persistence diagrams are of low persistence and

appear48 as an artefact of discretization. 48 For example, as the Rips complex

on n points is a discrete collection of
n points at small scales, each such

diagram will have n many points

indicating persistent 0-dimensional
homology.
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Spheres

We next present examples approximating spheres. On Figure 16 we

present persistence diagrams via Rips complexes of a sample of 100
points on unit spheres: S2 (on left) and S3 (on right); using Euclidean

(top) or geodesic distance (bottom).

4

3 S3(1)

5

Figure 16: Persistence diagrams via

Rips complexes of samples of one

hundred points sampled from unit
S2 (on left) and S3 (on right) using

Euclidean or intrinsic (geodesic)
distance.

T In persistence diagrams in Figure

16 there are a lot of short bars. Some
of these are artefacts of discretization,

other indicate a more complex struc-

ture of persistent homology reaching
beyond the interpretation of the size

of homology representatives of the

underlying space. Interpreting such
bars is a very active research topic.

As the only non-trivial homology (except for dimension 0) of S2 is

H2(S2; F) ∼= F, we expect a long persistent line in that dimension,

which is indeed the case. In fact, the long 2-dimensional bar clearly

indicates that in both cases the most prominent homology is of rank 1
in dimension 2. The same holds for S3 although a denser sample would

have made the same observation easier in the geodesic case.

To demonstrate the improvement induced by larger density we

present in Figure 18 a sequence of diagrams with increasing density.

The underlying space is a cut-off sphere, i.e., a 2-dimensional sphere

with a cap above the parallel of circumference approximately 1.5 re-

moved, see Figure 17. We take a sample of 100, 200, and 400 points,

generate a geodesic distance, and generate persistence diagrams via

Rips filtrations.

FOOTPRINTS OF GEODESICS IN PERSISTENT HOMOLOGY 25

Figure 9. PD described in Section 9.

(3) Note that the long 2-dimensional bar above is born slightly earlier than
the 3-dimensional bar. This is always the case, as generating the two-
dimensional bar only requires a 2-dimensional portion of the generator of
the 3-dimensional bar, that spans the sample of ↵.

(4) A pairing of a 3-dimensional bar with 2-dimensional bar indicates that ↵ is
contractible in X.

(5) We speculate the other short 3-dimensional bars are induced by other ge-
odesic circles (i.e., equator and its rotations) in X. We will delve deeper
into them in our future work.

Note that, except for small values of r, there is essentially no noise in the PD.
We are able to interpret almost all of the bars. Initial 1-dimensional bars are
unavoidable as we always start with a finite sample (discrete subset). They shorten
as the density of our sample increases. The only other unmentioned bar is the short
2-dimensional bar appearing at about the same time as the long 2-dimensional
bar. It can be explained by the e↵ect of discretisation and the structure of the
3-dimensional bar born at about the same time.

During our experimentation we have generated several instances of the PD using
the mentioned procedure. The obtained diagrams are qualitatively the same in all
instances (and aligned with the interpretation above) with the only exception being
the short isolated 3-dimensional bar, which did not appear in all attempts due to
its short length.
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Figure 17: A cut-off sphere as an
underlying space leading to diagrams

in Figure 18.

Here is what we would expect from resulting persistence diagrams:

1. The cut-off sphere is contractible for small scales and thus initial

clutter of 1-dimensional bars should be decreasing in size as we

increase density.

2. As certain scale an offset of the cut-off sphere will fill in the top

and create a void and hence49 a 2-dimensional homology in the 49 See Example 1.1.

Cech complex. As Rips complexes are interleaved with Cech com-

plexes50, we might hope that the same 2-dimensional bar might 50 ...and hence the persistence dia-

grams are not too different.appear in our case. That is indeed the case and the mentioned long

bar grows with increasing density of the sample.
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3. As is frequently the case, there appear multitudes of short bars we

choose to ignore at this point.

Figure 18: Four persistence diagrams

via Rips complexes of a cut-off sphere,

based on samples of 100, 200, and 400
points.De-noising a function

Suppose we are given an approximation of a function f in the form

of a discrete set of equally spaced measurements. We can connect the

resulting points by edges and obtain a graph G representing our mea-

surements, see the left side of Figure 19. Suppose we want to extract

the global behaviour of f as in the center of Figure 19 by removing the

local oscillations we consider to be noise. A way to achieve it would

be to construct the sublevel51 filtration of the simplicial complex G 51 A vertex of G appears at the func-
tion value it represents. An edge of G
appears as soon as both of its vertices
appear.

and choose the threshold ε for the noise level. We would then draw the

corresponding 0-dimensional persistence diagram and ignore the points

in the shaded ε-neighborhood52 of the diagonal, see the right side of 52 Each local minimum in our approxi-
mation except for • and � generates a

point in this neighborhood.
Figure 19. As a result we obtain two prominent points •,� in the

persistence diagram. The de-noised function presented in the center

of Figure 19 can now be obtained by connecting the critical simplices

corresponding to these points:

T By adjusting the threshold ε we can

adjust the level of details we want to

preserve.

1. Blue birth simplices get connected to the higher endpoint of the red

terminal simplex.

2. The only exception is �, which is not a terminal simplex, but gets

added as the highest point in the graph in order to finalize53 our 53 The component represented by �
can not get terminated as a homology
element.

approximation by connecting it to �.

∞

Figure 19: A noisy function, its re-
construction and the corresponding

persistence diagram. The shaded re-
gion contains a multitude of points we

choose to ignore in our reconstruction.
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5 Concluding remarks

Recap (highlights) of this chapter

• continuous filtrations;

• persistence modules;

• interleaving;

• Stability Theorem;

Background and applications

There are three different proofs of the Stability Theorem in the

literature. The initial proof was combinatorial54 and did not include 54 By Cohen-Steiner, Edelsbrunner,

and Harer.the Isometry theorem or interleavings but rather just the continuity of

persistence diagrams. It motivated a more algebraically oriented proof

using interleavings55. The third and most direct proof uses explicit 55 By Chazal, Cohen-Steiner, Glisse,
Guibas, and Oudot.matching56. There is also a recent treatment simplifying some of these
56 By Bauer and Lesnick.

ideas57. 57 By Skraba and Turner
The existence of a decomposition of a persistence module into inde-

composable parts is a particular case of a standard approach referred

to as the Krull Remak Schmidt Principle. The fact that the indecom-

posable are precisely the elementary intervals is a special case of the

Gabriel’s Theorem. The fact that the indecomposable parts of multi-

parameter persistent homology are not as simple as the elementary

intervals is the major obstacle to exhaustive applications of multi-

parameter persistence.

The material presented up to this point represents the core ideas

and properties of persistent homology. From this point on the topics

diverge, with some of the major motivations being:

• Theoretical treatment: persistent homology represents a param-

eterized version of homology and as such there are many ways to

explore the structure further, either by generalizing the frame-

work58, determining what geometrical properties it encodes59 and 58 For example, with Zig-Zag persis-
tence, multi-parameter persistence,
introduction of new constructions of
complexes (Witness, selective Rips
complex), etc.
59 For example it encodes, at least to
some degree, shortest homology bases,
intrinsic volumes, geometric shapes,

curvatures, dimension, etc.

expanding the ideas into other theoretical contexts.

• Practical treatment, mostly associated with data analysis: in this

context persistent homology is often viewed as a stable shape de-

scriptor. As a result considerable effort is being invested to incor-

porate persistent homology into the flow of data analysis, either by

adjusting it to specific data types60, establishing meaningful proba- 60 Besides point-clouds, these include

time series, high-dimensional data,
dynamical systems, sensor networks,

etc.

bilistic61 and statistical62 analysis, and to extract relevant features.

61 It turns out there are significant
phase transitions in persistent homol-

ogy of random processes, etc.
62 This is typically done by mapping
persistence diagrams into Hilbert

space via any of the multitude maps
available, for example persistence
landscapes, persistence silhouette,

persistence images, etc.

• Computational treatment: the aim of this context is to optimize the

computational resources required to obtain persistence (or at least
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a part of it) by developing faster algorithms often incorporating

various shortcuts63 or additional structure64. Currently available 63 For example, the twist.
64 For example, when computing one-

dimensional persistence of geodesic
spaces.

software for computing persistent homology includes (but is not

restricted to) Ripser and related Ripserer.jl, Ripser.py, and Cubical

Ripser, Dionysus, PHAT, GUDHI, javaPlex, Perseus, Eirene, etc.

This list of topics and software is by no means exhaustive.

Appendix: From the interleaving distance to the bottleneck distance

In this appendix we will provide an explanation that leads to the

bottleneck distance by determining the interleaving distance between

pairs of elementary intervals.

Case 1: distance between an elementary interval and the zero per-

sistence module. The situation is presented in Figures 20 and 21. For

0 ≤ p < q let us discuss the interleaving of the elementary inter-

val Fp,q (the bold portion of the figures) and the trivial persistence

module (the grey portion below).

p q

ε

Figure 20: Elementary interval Fp,q
is not ε-interleaved with the trivial
interval if ε < (q− p)/2.

p q

Figure 21: Elementary interval Fp,q is

ε-interleaved with the trivial interval if
ε ≥ (q− p)/2.

• If the interleaving parameter was ε < (q− p)/2 as in Figure 20, the

composition of the red diagonal maps:

– is the trivial map as it factors through the trivial vector space

below;

– should have been identity on F by the interleaving condition, as

its domain and target are in [p, q).

These two observations contradict each other hence the interleaving

parameter is at least (q− p)/2.

• For ε = (p − q)/2 though, the composition of the diagonal maps

increases the scale parameter by p− q, and any such structure map

of Fp,q is trivial, hence the ε-interleaving consisting of trivial maps

exists, see Figure 21.

We conclude that the interleaving distance is ε = (p− q)/2.
p q

ε

Figure 22: ε-interleaving implies

the orange part is non-trivial as the

interleaving maps in the blue region
have to be non-trivial.

p q

p q

p′ q′

p′ q′

Figure 23: Condition of Figure 22

induces two shapes. The interleaving
distance is the larger ε parameter
these shapes induce.

Case 2: general case. From Case 1 we can conclude that for 0 ≤
p′ < q′ the following holds: If Fp,q is ε-interleaved with Fp′ ,q′ for

ε < (p − q)/2, then [p′, q′) ⊃ [p + ε, q − ε) see Figure 22. By sym-

metry the opposite also holds: [p, q) ⊃ [p′ + ε, q′ − ε). It is easy to

see these conditions are also sufficient. For minimal ε for which these

two conditions hold we obtain the ε-interleaving by mapping the desig-

nated generator of Fp,q to the designated generator of Fp′ ,q′ whenever

possible, with other maps being trivial, see Figure 24. It should be ap-

parent from Figure 23 that the ε in question is max{|p− q|, |p′ − q′|}.
We conclude that Fp,q and Fp′ ,q′ are max{|p− q|, |p′ − q′|} inter-

leaved. However, since Fp,q and Fp′ ,q′ are also max{(p − q)/2, (p′ −
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q′)/2}-interleaved by the trivial maps65, the interleaving distance

65 As was demonstrated in Case 1

between Fp,q and Fp′ ,q′ is

min{max{|p− q|, |p′ − q′|}, max{(p− q)/2, (p′ − q′)/2}}.

p q

p′ q′ε

Figure 24: The interleaving for ε =
max{|p− q|, |p′ − q′|}. The non-trivial

maps are in the shaded region.

We now interpret the obtained distanced in the context of persis-

tence diagrams representing elementary intervals. First note that

(p− q)/2 = d∞

(
(p, q),

(
p + q

2
,

p + q
2

))
is the d∞ distance between (pq) and the diagonal ∆.

Case 1. The interleaving distance between Fp,q and the zero persis-

tence module is realized by matching point (p, q) to the closest point

on the diagonal and computing the resulting d∞ distance, see Figure

25.

Figure 25: Matching a point to ∆.

Figure 26: Matching two points.

Figure 27: Matching each of the two

points to ∆.

Case 2. The distance between Fp,q and Fp′ ,q′ is the smaller of the

following two:

1. Either max{|p− q|, |p′ − q′|} = d∞((p, q), (p′, q′)), which is the d∞

distance between the points, see Figure 26.

2. Or max{(p− q)/2, (p′− q′)/2} which can be interpreted as follows:

match each of the points to the closest point on the diagonal ∆ and

take the maximal d∞ distance, see Figure 27.

We have thus interpreted the interleaving distance between ele-

mentary intervals in the context of persistence modules and obtained

the bottleneck distance for diagrams containing at most one point.

The crucial ingredients of the interpretation are the matching and d∞.

Theorem 3.2 essentially states that an optimal interleaving between

any pair of persistence modules essentially consists of such matchings:

match some pairs of elementary intervals from both persistence mod-

ules, and then match the remaining elementary intervals to ∆. The

interleaving distance (and thus the bottleneck distance) corresponds to

the matching whose d∞-distance of its maximal matching is minimal.
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