
Persistent homology: definition and computation
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The concept of persistent homology along with its variations is at

the forefront of topological data analysis. Mathematically speaking,

persistent homology is an obvious extension of homology: the functori-

ality of homology is applied to a sequence of inclusions. The resulting

structure is, somewhat surprisingly, not harder to compute than or-

dinary homology. When coupled with the standard constructions of

complexes, persistent homology contains not only topological but also

geometric information.

We will start this chapter by explaining geometric intuition on

persistent homology. We will continue by presenting formal and con-

venient visualisation techniques. We will conclude with a fairly simple

algorithm for computation one could call a “labelled matrix reduc-

tion”.

1 Definition

We start by describing a geometric intuition of persistent homology.

Given a “growing” simplicial complex persistent homology describes

the evolution of its holes. As an illustrative example we consider four

simplicial complexes K1 ≤ K2 ≤ K3 ≤ K4 of Figures 1 and 2.

K1 K2 K3 K4 Figure 1: Nested simplicial complexes

K1 ≤ K2 ≤ K3 ≤ K4 are divided by

vertical lines. The horizontal arrows
below are called “bars” and form a

barcode. They indicate the persistence

of zero-dimensional homology classes:
components. The left endpoint of each

bar corresponds to the birth complex

of a component. The right endpoint of
each bar corresponds to the terminal
complex of a component. The color of

each bar also appears on one vertex
(the representative of the component)

and potentially on one edge (the edge,
that kills the component).

Here is how we interpret the corresponding zero-dimensional bar-

code1 described by Figure 1: 1 I.e., the indicated evolution of the

components.

K1 : There are two components of K1. This fact is visualised by the

fact that there are two bars (blue and red) starting at that time.

The corresponding homology generators2 (points) are colored ac- 2 Note that the generator of the red
component is unique. On the other
hand, we could have chosen any
vertex of the other component as a

generator and color it blue.

cordingly.

K2 : There are three components of K1: this fact is visualised by the
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fact that there are three bars (blue, purple and green) passing from

that time on. The corresponding homology generators of the new

components are colored accordingly. However, the two components

of K1 merge, which we interpret as one of the components of K1

disappearing. We declare3 that the component disappearing is the 3 As the components appeared at the

same time, we might as well have cho-

sen to have the blue bar terminated
and keep the red bar going. The un-

colored barcode would have remained

the same. However, whenever there
is a merger of components with dif-

ferent birth times we act according to

the elder rule: the older component
survives. This will be apparent at K3.

The reader may rest assured this is

not a product of discrimination but
rather a rule that is consistent with

the mathematical structure of persis-
tence (especially the interleaving and

stability) that will be described later.

red component, which is visualised by the fact that the red bar

terminates just before K2. The edge making the connection between

the two components is colored in red.

K3 : The purple component terminates by connecting to the blue

component via two edges, one of which is indicated by the purple

color.

K4 : There is no change in components as compared to K3, both bars

are passing through to infinity.

K1 K2 K3 K4 Figure 2: Nested simplicial complexes

K1 ≤ K2 ≤ K3 ≤ K4 and the corre-

sponding one-dimensional homology
barcode.

In a similar fashion we interpret the corresponding one-dimensional

barcode4 described by Figure 2: 4 I.e., the indicated evolution of the

holes.

K1 : There are no holes and hence no bars passing on.

K2 : A blue hole appears inducing a blue bar.

K3 : The blue hole becomes trivial by the blue triangle and hence the

blue bar terminates. However, two new holes appear, the red one

and the green one. Consequently, there are two bars passing from

K3 on.

K4 : The red hole becomes trivial while the green hole lives on for-

ever, just as the corresponding bar.

The goal of this chapter is to present the theoretical background

formalizing the presented geometric idea of persistent homology, and

to introduce the computational procedure to obtain the barcodes.
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Formal definition

We first formally introduce a filtration: a nested sequence of ever

larger simplicial complexes modelling a growing simplicial complex.

Definition 1.1. Let K be a simplicial complex. A (discrete) filtration

of K is a sequence of subcomplexes

K1 ≤ K2 ≤ . . . ≤ Km = K.

An example of a filtration is given in Figures 1 and 2.

Persistent homology measures how homology elements5 persist6 5 I.e., components, holes, etc.
6 I.e., remain non-trivialthrough steps of a filtration. A filtration

K1 ≤ K2 ≤ . . . ≤ Km = K

of a simplicial complex K can be expressed as a sequence of natural

inclusion maps denoted by map7 i , : 7 For example, is,t : Ks ↪→ Kt.

K1
i1,2
↪→ K2

i2,3
↪→ . . .

im−1,m
↪−→ Km = K.

Given a field F and q ∈ {0, 1, 2, . . .} we can apply homology

Hq( ; F) to obtain a sequence8 of homology groups connected by 8 By the functoriality of the homology
we have (iu,t)∗ ◦ (is,u)∗ = (is,t)∗.maps:

Hq(K1; F)
(i1,2)∗−−−→ Hq(K2; F)

(i2,3)∗−−−→ . . .
(im−1,m)∗−−−−−→ Hq(Km; F) = Hq(K; F)

T In each step of a filtration we add

simplices. The addition of a single
d-dimensional simplex in one step may

either “kill” a non-trivial homological
element of dimension d− 1 or create

a non-trivial homological element of

dimension d.

Definition 1.2. Assume K is a simplicial complex, F is a field, and

q ∈ {0, 1, 2, . . .}. Given a filtration

K1 ≤ K2 ≤ . . . ≤ Km = K

of K, the corresponding q-dimensional persistent homology groups

with coefficients in F are images of the maps

(is,t)∗ : Hq(Ks; F)→ Hq(Kt; F)

for all 0 ≤ s ≤ t ≤ m. The corresponding ranks β
q
s,t = rank(is,t)∗

are called persistent Betti numbers.

T Note that β
q
s,t is a non-increasing

function in t and a non-decreasing

function in s.

As is the case with the ordinary homology, each persistent homol-

ogy group is determined9 up to isomorphism by its Betti number. A 9 While the rank of (is,t)∗ determines

the image of the map is,t up to iso-
morphism, it does not determine a
specific βs,t-dimensional subspace of

Hq(Kt; F). In this aspect persistent

homology as a specific subgroup of
Hq(Kt; F) contains more information

that persistent Betti numbers, i.e.,
its basis consists of homology rep-
resentatives spanning the persistent

homology group.

single filtration results in a table of persistent Betti numbers.

Example 1.3. Given any field F the following are the tables of the

zero-dimensional and one-dimensional persistent Betti numbers of the

filtration of Figure 3:
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β0
s,t →

s
t 1 2 3 4

1 2 1 1 1

2 / 3 2 2

3 / / 2 2

4 / / / 2

β1
s,t →

s
t 1 2 3 4

1 0 0 0 0

2 / 1 0 0

3 / / 2 1

4 / / / 1

Table 1: The table of persistent Betti

numbers corresponding to the filtra-
tion of Figure 3. The diagonal entries

coincide with the Betti numbers of

the corresponding stages of the fil-
tration. The sub-diagonal entries are

undefined.

Let us demonstrate how to interpret these numbers geometrically:

• β0
2,3 = 2 means that two of the different components of K2 are still

disconnected from each other in K3.

• β1
3,4 = 1 roughly means that only one homologically non-trivial loop

of K3 is still10 homologically non-trivial in K4. 10 A mathematically correct state-
ment would be: the space of one-

dimensional homology elements in

H1(K4; F) which have represenatives in
C1(K3; F) is of dimension one.

• β1
2,3 = 0 means all one-dimensional homology elements in H1(K2; F)

are homologically trivial in K3.

K1 K2 K3 K4

β0 = 2 β0 = 3 β0 = 2 β0 = 2

β1 = 0 β1 = 1 β1 = 2 β1 = 1

Figure 3: A filtration K1 ≤ K2 ≤ K3 ≤
K4 along with the corresponding Betti
numbers of each of the stage and the

zero-dimensional barcode.

While the tables of persistent Betti numbers are useful, there are

other ways to visualize the evolution of homology groups through a

filtration. One such visualization we have already presented is the

barcode.

2 Visualization

Throughout this section we fix a field F, q ∈ {0, 1, . . .}, a filtration

K1 ≤ K2 ≤ . . . ≤ Km = K,

and 1 ≤ s < t ≤ m.

Barcodes

The barcodes have been geometrically introduced above. In this

subsection we will provide their formal definition.
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Persistent Betti number β
q
s,t represents the dimension of the sub-

space of homology elements in Kt that have a representative in Ks.

Putting it differently, β
q
s,t indicates the dimension of the collection11 11 This collection is formally not a

linear subspace. In a formal setting
we represent it as the quotient linear

subspace appearing at the end of the

sentence.

of homology elements in Ks that are still non-trivial in Kt in the sense

that β
q
s,t = dim Hq(Ks; F)/ ker(is,t)∗. Barcodes as indicated above

however have a more specific information: a bar [s, t) represents a ho-

mology element that is born precisely at s and terminates precisely at

t. Let us phrase this formally:

1. The number of bars containing s and passing through t equals12 12 Through the rest of the section we
will drop the supscript q indicating

the fixed dimension.
β

q
s,t.

2. Homology born at s is defined as13 Hq(Ks; F)/(Im is−1,s)∗. Its 13 For formal reasons we define (i0,t)∗
to be the trivial map.dimension is βs,s − βs−1,s and represents the number of bars starting

at s.

3. Homology terminating at t is defined as ker(it−1,t)∗. Its dimen-

sion14 is βt−1,t−1 − βt−1,t and represents the number of bars termi- 14 Using the fact that ker(it−1,t)∗ ∼=
Hq(Kt−1; F)/ Im(it−1,t)∗.nating at t.

4. Quantity βs,t − βs−1,t represents15 the dimension of homology 15 Compare to the interpretation

of persistent Betti numbers above.
Also note that βs,t − βs−1,t =
dim((Im is,t)∗/ Im(is−1,t)∗), i.e., the

dimension of the homology elements
in Hq(Kt; F) that have a representative

in Ks module the ones that have a

representative in Ks−1.

born at s which is still alive at t. It represents the number of bars

starting at s which are passing through t.

5. Quantity ns,t = βs,t−1 − βs−1,t−1 − (βs,t − βs−1,t) represents16

16 Observation 4. interprets this for-

mula as [the dimension of homology
born at s which is alive at t − 1] -

[the dimension of homology born at s
which is still alive at t] .

the dimension of homology born at s which terminates at t. It

represents the number of bars starting at s and terminating at t.

6. We additionally define ns,∞ = βs,m − βs−1,m, which represents the

dimension of homology born at s which is still alive at the end of

filtration.

The q-dimensional barcode17 consists of intervals18 of the form 17 ...of the chosen filtration with

coefficients in F...
18 In the setting of a barcode these

intervals will be called bars.
i. [s, t) for 1 ≤ s < t ≤ m, and

ii. [s, ∞) for 1 ≤ s < m.

A barcode can have multiple19 copies20 of each interval. Fixing 19 ...or none...
20 Alternatively, we could think of

the barcode as the collection of all
possible intervals of the forms (i) and

(ii), each with an assigned multiplicity
from {0, 1, 2, . . .}.

1 ≤ s < t ≤ m:

• The number of the intervals [s, t), denoted by ns,t.

• The number of the intervals [s, ∞), denoted by ns,∞.

Example 2.1. We again turn our attention the familiar filtration in

Figure 3. From the table on the right we can deduce that n2,3 = 1−
1− (2− 3) = 1 and as a result there is 1 bar of the form [2, 3), as

displayed in the figure. In a similar fashion we compute n1,2 = n1,∞ =

n2,∞ = 1 and n1,3 = n1,4 = n2,4 = n3,4 = n3,∞ = n4,∞ = 0.

β0
s,t →

s
t 1 2 3 4

1 2 1− 1+ 1

2 / 3+ 2− 2
3 / / 2 2

4 / / / 2

Computing n2,3 of Figure 3: the
coloring corresponds to the defining

formula and the subscripts to the

signs within.
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A barcode represents the persistences of homology elements. The

longer a bar, the longer the corresponding homology element persists.

In most settings the longer persistence of a homology element also

means higher importance21. However, there are also settings in which 21 I.e., a more prominent topological
feature.information is contained in shorter bars, especially when the bars are

numerous and specifically distributed.

Persistence diagrams

Another established method of visualisation of persistent homology

is persistence diagram defined as follows. Given a barcode as defined

above we can think of an interval [s, t) as a pair of numbers and visu-

alize22 it as a point (s, t) ∈ R2. A point of the form (s, ∞) obviously 22 Just as there can be more bars with

the same endpoints in a persistence

diagram, there can be more copies of
the same point visualized at the same

location in a persistence diagram.

While multiple such intervals can
be visualized in a vertical stack, the

same can not be done with points.

For this reason we always consider a
point (s, t) in a persistence diagram

as a weighted point with weight

(multiplicity) ns,t.

can’t be drawn in a plane so we choose a y-coordinate above k, per-

haps most conveniently as k + 1, to act as a representative of ∞, i.e.,

a bar [s, ∞) corresponds to a point (s, k + 1). Each point (s, t) of a

persistence diagram has an assigned multiplicity ns,t, which represents

the number of bars of the form [s, t). In the case of (s, k + 1), the

multiplicity is ns,∞.

The result is a collection of weighted points in the plane called

persistence diagram. An example is provided in Figure 4.

K1 K2 K3 K4

1 2 3 4

∞

4

3

2

1

Figure 4: A filtration along with

the corresponding zero-dimensional
barcode and persistence diagram.

The colors of bars match the colors

of the corresponding points in the
persistence diagram.

A barcode encodes precisely the same information as a persistence

diagram. While the persistence of a bar is measured by its length,

the persistence of a point on a persistence diagram is measured by its

distance from the diagonal ∆ = {(x, x) | x ∈ R}. All points of a

persistence diagram lie above ∆. T Theoretically speaking, if there
existed bars [s, s) of length zero, then
these would have been the shortest

bars. They would have corresponded

to diagonal points (s, s). This point
of view will come handy in the next

chapter in the context of stability.

Persistence diagrams are often the method choice of visualization

when it comes to representations of persistent homology. Especially

when the number of points and bars is large, their distribution seems

to be well represented by persistence diagrams. On the other hand,

when the number of points and bars is low, a barcode is often more
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descriptive.

The fundamental lemma of persistent homology

Numbers ns,t are defined using persistent Betti numbers βs,t. It

turns out that the reverse expression also exists.

Lemma 2.2. [The fundamental lemma of persistent homology]

βs,t = ∑
s′≤s, t′>t

ns,t
" In this setting, condition t′ > t
implies that t′ as an index in n could
also take the value ∞.

T Lemma 2.2 has a geometric inter-

pretation in the context of persistence
diagrams, see Figure 5. It essentially

states that βs,t is the sum of all mul-

tiplicities of points of a persistence
diagram, which lie in the upper-left

quadrant [0, s]× (t, ∞] with the apex

at (s, t). In the context of this inter-
pretation, the formula for multiplicity

ns,t = βs,t−1 − βs−1,t−1 − βs,t + βs−1,t
is the expression of the square
(s − 1, s] × [t − 1, t) in terms of such

quadrants.

The formula in the lemma can be verified explicitly. However, the

statement is apparent from the definitions, as

• βs,t represents the homology born at s or before and terminating

after t;

• ns,t represents the homology born precisely at s and terminating

precisely at t.

Lemma 2.2 implies that the information encoded in a barcode or in

a persistence diagram is precisely the same as the information encoded

by persistent Betti numbers.

1 2 3 4

∞

4

3

2

1

β2,3 = 2

Figure 5: The sum of multiplicities of

points in the blue quadrant with apex
(2, 3) is β2,3 by Lemma 2.2. It equals 2
as the point (2, 3) is not contained in
it, see also the table in Example 1.3.

3 Computation

While the multiplicities ns,t of points of persistence diagrams are

formally expressed by persistent Betti numbers, there is an algorithm

to obtain them directly without referring to the Betti numbers and

the corresponding k(k + 1)/2 ranks of maps. In this section we will

present perhaps the simplest23 version of the algorithm, which is also

23 There exist many improvements of

this algorithm which may significantly

improve the computing time.

the most illustrative. We will proceed in two steps:

• compute the matrix reduction, and

• extract the persistent homology.

We will conclude the section with an example.

Throughout this section we fix a field F and filtration

K1 ≤ K2 ≤ . . . ≤ Km = K.

Parameter q ∈ {0, 1, . . .} will denote the dimension of a considered

object.

Matrix reduction

This part could be called an annotated matrix reduction using only

column operation from the left.
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1. Order simplices consistently with the filtration. For each q order

all q-simplices in an order in which they appear in the filtration.

If more simplices appear at the same time their internal order is

immaterial24 24 It would eventually effect the
obtained critical simplices and rep-

resentatives, but not the persistent

homology.
2. For each q construct the boundary matrix Mq using the order

chosen in 1 to label columns and rows.

3. For each q reduce Mq from the left using a single type of column

operations: the addition of an F-multiple of any of the previous25 25 In the chosen order from 1.

columns to a treated column. Specifically, starting with the leftmost

column go through all the columns by passing to the right and for

each column:

(a) Determine the pivot26. 26 The lowest non-trivial entry in the
column

(b) If any of the previous columns on the left has a pivot in the

same row, subtract the appropriate multiple of that column so

that the pivot of the current column either disappears or its

location is moved up.

(c) Repeat as long as there are matching pivots on the left.

For each q the resulting matrix is denoted by M′q. Each of its

columns is either trivial or has a pivot, whose row is unique amongst

all pivots.

Extracting persistence

At this point we have sufficient information to extract homology

of Km from the number of pivots27. However, we can also use the 27 Note that the rank of a matrix is

the number of its pivots in a reduced

form, and the ranks themselves suffice
to compute the Betti numbers.

locations of pivots to extract numbers ns,k required to construct the

barcode and persistence diagram. In order to explain the extraction

process we first recall the incremental expansion we have discussed in

a previous chapter.

Given a simplicial complex, an addition of a single q-simplex can

change the homology in two ways:

• If its boundary is a linear combination of boundaries of other

q-simplices28, then the simplex gives birth to a non-trivial q- 28 I.e., if, after adding the simplex to

the boundary matrix as the rightmost
column, its column gets reduced

to the trivial column by the above
reduction.

dimensional homology element. In this case we call the simplex a

birth simplex.

• If its boundary is not a linear combination of boundaries of other q-

simplices29, then the simplex kills to a non-trivial (q− 1)-dimensional 29 I.e., if, after adding the simplex to
the boundary matrix as the rightmost

column, its column does not reduce to
the trivial column.

homology element. In this case we call the simplex a terminal sim-

plex.
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A filtration can be considered to be a sequence30 of incremental 30 A specific sequence should respect
the ordering given by a filtration as

in 1. above, and also the structure of

a simplicial complex, i.e., a simplex
cannot be added before all of its faces

are present.

expansions. At each stage of the filtration we may assume we first

add all vertices according to the ordering in 1., the all edges, etc.

Combining such an ordering through all stages we get a sequence of

incremental expansions inducing boundary matrices Mq and their

reduced forms M′q.

Based on such an ordering each simplex of K is either a terminal

simplex or a birth simplex. We are now in a position to extract persis-

tent Betti numbers:

T As each row contains at most one
pivot, each birth simplex is paired

to at most one terminal simplex. A

terminal simplex cannot appear as the
label of a pivot column.

• For each terminal q-simplex τ there exists a paired birth (q − 1)-

simplex σ, which is the label of the pivot in the column τ. Such a

pair induces a bar [s, t) in the corresponding barcode or, equiva-

lently, a point (s, t) in the corresponding persistence diagram, where

s, t are the stages of the filtration at which σ and τ appear31. 31 Note that if s = t we obtain an

empty interval in the barcode and
a point on the diagonal in the per-

sistence diagram, both of which we
ignore in the visualization as they

represent elements of persistence

zero. This is consistent with our in-
terpretation of persistent homology,

which measures only holes that per-

sist through at least one stage of the
filtration.

• Each birth simplex which is not paired to a terminal simplex in-

duces a bar [s, ∞) in the corresponding barcode or, equivalently, a

point (s, m + 1) in the corresponding persistence diagram, where s is

the stage of the filtration at which σ appears.

T It turns out that the presented defi-

nition and computation of the barcode
respects the Elder rule mentioned at

the beginning of the chapter.

As a result we obtain a barcode and a persistence diagram as

demonstrated in the example in the last subsection.

Representatives

Occasionally we are also interested in homology representatives of

the bars and points of persistence diagrams. These can be extracted

from the reduction process. In this subsection we present the most

direct way of generating representatives. Given a bar with the birth

simplex σ and the terminal simplex τ we define:

• The birth representative of σ as the chain formulated32 by the re- 32 For example, in the next subsection
we provide an example in which the

column 〈c, d〉 is reduced to the zero

column by subtracting the column
〈b, d〉 and adding the column 〈b, c〉.
This means ∂〈c, d〉 − ∂〈b, d〉+ ∂〈b, c〉 =
0 and hence 〈c, d〉 − 〈b, d〉+ 〈b, c〉 is the
chain that is our birth representative.

duction of the column corresponding to σ to the zero column in the

column reduction scheme. In particular, if the linear combination

turning column σ into the zero column in our column reduction

scheme is encoded in terms of columns as ∂σ − ∑i λi∂σi = 0, then

the birth representative is α = σ−∑i λiσi. The birth representative

gives a homology [α] class that is born33 by the addition of σ. 33 " Homology class [α] is not the

only homology class born by the ad-
dition of σ. If [β] is another homology

class of the same dimension that has
existed before the addition of σ, then
[α + β] is also a homology class born

by adding σ.

• The terminal representative is encoded by the column correspond-

ing34 to τ in the reduced matrix.

34 For example, in the next subsection
we provide an example in which the
column corresponding to 〈b, c, d〉 in

M′2 encodes the terminal representa-
tive 〈b, c〉+ 〈d, b〉+ 〈c, d〉.

The birth representative and the terminal representative typically

do not represent the same homology class. The birth representative

may net even be a good representative of the corresponding bar in

the sense that it may remain homologically non-trivial beyond35 the

35 See the discussion on the represen-
tatives of 0-dimensional bars below for

an example.
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appearance of the corresponding terminal simplex. On the other hand

infinite intervals do not have a terminal representative. As a result we

define the representative of a bar as follows:

1. If the bar is a finite interval, the representative of the bar is the

terminal representative.

2. If the bar is an infinite interval, the representative of the bar is the

birth representative.

U There is no guarantee that these

representatives are geometrically
the most convenient. There are

more involved ways of obtaining

representatives that optimize given
criterion function. For example, we

may want to obtain the shortest

1-dimensional representatives, etc..

T Let us prove that the lifespan of

the homology class of the terminal

representative β corresponds to the
lifespan of the corresponding bar:

• [β] appears by the time σ appears
by construction;

• if a representative β′ of [β] ap-

peared before σ, then the column
corresponding to τ could have

been reduced further to β′ thus

eliminating the pivot labeled as σ,
a contradiction.

• [β] becomes trivial by the time τ
emerges by definition;

• if [β] became trivial sooner, its

expression as a boundary could be

used to reduce the τ column to the
zero column, a contradiction.

This choice of representatives is algebraically sound in the sense

that the representatives form a basis of the elementary intervals of the

decomposition described in the structure theorem for persistent homol-

ogy, a result we discuss in details in the next chapter. This statement

includes the fact that the lifespan of each representative matches the

lifespan of the corresponding bar, and that the representatives are

linearly independent36 at all times.

36 ...or trivial beyond their lifespans

In practice we sometimes deviate from the algebraically orthodox

choice by making an exception when declaring the representatives

of 0-dimensional bars: we choose the birth representative as a bar

representative even if the bar is bounded. Let us explain this geomet-

rically motivated declaration on the example of the next subsection,

where pair (〈b〉, 〈a, b〉) induces a 0-dimensional bar. Sometimes we

would geometrically like to think of this bar as a representation of the

component containing b merging with a larger component, hence the

choice of the birth representative 〈b〉 which fits into this geometric

intuition. However, we should be aware that homological element [〈b〉]
does not become trivial37 after adding 〈a, b〉. In terms of homology the 37 The terminal representative 〈b〉 −

〈a〉 does become trivial. In fact [〈b〉]
never becomes trivial.

appearance of 〈a, b〉 identifies38 [〈a〉] = [〈b〉] rather than sets [〈b〉] = 0.
38 In this sense the terminal represen-

tative tells us which two components
merge.

Example

As an example we compute persistent homology of our standard

example, see Figure 4. The annotation of simplices we will be using is

provided in Figure 6. The chosen order is apparent from the follow-

ing boundary matrices, in which vertical and horizontal lines divide

simplices from different stages of filtration.

a

b

c

d

e

f

Figure 6: The annotation of simplices

of K.

M1 =



〈b, c〉 〈b, d〉 〈a, b〉 〈c, d〉 〈a, c〉 〈a, e〉 〈b, e〉
〈a〉 −1 −1 −1
〈b〉 −1 −1 1 −1
〈c〉 1 −1 1
〈d〉 1 1
〈e〉 1 1
〈 f 〉


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M2 = M′2 =



〈b, c, d〉 〈a, b, e〉
〈b, c〉 1
〈b, d〉 −1
〈a, b〉 1
〈c, d〉 1
〈a, c〉
〈a, e〉 −1
〈b, e〉 1


We now perform the labelled matrix reduction as described above.

U Green entries are the pivots.

T In the matrices below a blue col-

umn is modified using red columns.

U ∂〈c, d〉 = ∂〈b, d〉 − ∂〈b, c〉.M1 =



〈b, c〉 〈b, d〉 〈a, b〉 〈c, d〉 〈a, c〉 〈a, e〉 〈b, e〉
〈a〉 −1 −1 −1
〈b〉 −1 −1 1 −1
〈c〉 1 −1 1
〈d〉 1 1
〈e〉 1 1
〈 f 〉



U ∂〈a, c〉 = ∂〈a, b〉+ ∂〈b, c〉.



〈b, c〉 〈b, d〉 〈a, b〉 〈c, d〉 〈a, c〉 〈a, e〉 〈b, e〉
〈a〉 − 1 − 1 −1
〈b〉 −1 −1 1 −1
〈c〉 1 1
〈d〉 1
〈e〉 1 1
〈 f 〉



U ∂〈b, e〉 = ∂〈a, e〉 − ∂〈a, b〉.



〈b, c〉 〈b, d〉 〈a, b〉 〈c, d〉 〈a, c〉 〈a, e〉 〈b, e〉
〈a〉 − 1 − 1
〈b〉 −1 −1 1 −1
〈c〉 1
〈d〉 1
〈e〉 1 1
〈 f 〉



M′1 =



〈b, c〉 〈b, d〉 〈a, b〉 〈c, d〉 〈a, c〉 〈a, e〉 〈b, e〉
〈a〉 −1 −1
〈b〉 −1 −1 1
〈c〉 1
〈d〉 1
〈e〉 1
〈 f 〉


We can now extract the barcode from the birth-terminal pairs and

unpaired birth simplices. We start by extracting the zero-dimensional

barcode from the pivots of M′1 and unpaired vertices.
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• Pairs (〈c〉, 〈b, c〉) and (〈d〉, 〈b, d〉) provide no contribution39. 39 Formally, they contribute the empty
interval [1, 1) as all involved simplices

appear at K1.• Pair (〈b〉, 〈a, b〉) induces a 0-dimensional (component) bar40 [1, 2)
40 Recall that 〈b〉 appears at K1 while
〈a, b〉 appears at K2, hence the values

of the endpoints.

representedby [〈b〉].

• Pair (〈e〉, 〈a, e〉) induces a 0-dimensional (component) bar [2, 3)

represented by [〈e〉].

• Vertices a and f are unpaired and thus induce 0-dimensional bars

[1, ∞) (generated by [〈a〉]) and [2, ∞) (generated by [〈 f 〉]).

U In this example the 1-dimensional

birth and terminal representatives

coincide. This is not generally the
case.

We next extract the one-dimensional barcode from the pivots of M′2
and unpaired edges.

• Pair (〈c, d〉, 〈b, c, d〉) induces a 1-dimensional bar [2, 3) repre-

sented41 by [〈c, d〉 − 〈b, d〉+ 〈b, c〉].
41 Recall that 〈c, d〉 appears at K2
while 〈b, c, d〉 appears at K3, hence the
values of the endpoints. The linear

combination that made the column

corresponding to 〈c, d〉 trivial in M′1
was ∂〈c, d〉 − ∂〈b, d〉+ ∂〈b, c〉 and hence

the representative.

• Pair (〈b, e〉, 〈a, b, e〉) induces a 1-dimensional bar [3, 4) represented

by [〈b, e〉 − 〈a, e〉+ 〈a, b〉].

• Edge 〈a, c〉 is unpaired and thus induce the 1-dimensional bar [3, ∞)

generated by [〈a, c〉 − 〈a, b〉 − 〈b, c〉].

Computational tricks

We conclude by mentioning a trick that speeds up the computation

of persistent homology. It based on an observation that boundary

matrices Mi that are being reduced in the reduction process are not

completely independent of each other.

If the reduction process of Mq reduces the column corresponding

to q-simplex τ to a non-trivial column, we can extract the following

information

1. τ is a terminal simplex and hence the row corresponding to τ in

Mq+1 will have been reduced to the zero-row, which means we can

set it to zero immediately.

2. The pivot location reveals the corresponding birth simplex σ. As

a result the column corresponding to σ in Mq−1 will have been re-

duced to the zero-column and can hence be set to zero immediately.
T Overview: reducing a τ-column to
a non-zero column reveals:

• τ is a terminal simplex;

• τ-row is trivial;

• pivot label σ is a birth simplex;

• σ-column is trivial.

Hence a single reduction of a column in Mq corresponding to a

terminal simplex also reveals a zero-row in Mq+1 and a zero-column

in Mq−1. Of course, this information can’t be of much help if it has

already been extracted from previous reductions. For this reasons the

matrices Mq can be reduced in the order of decreasing dimension: this

way no column in Mq−1 has been reduced by the time Mq has been

reduced and as a result we avoid reducing almost half42 the columns 42 This estimate depends on a filtra-

tion but seems to hold for most of the
practical cases.

resulting in a significant speedup.
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4 Concluding remarks

Recap (highlights) of this chapter

• Persistent homology;

• Barcode;

• Persistence diagram;

• Computing persistent homology.

Background and applications

Persistent homology is perhaps the most popular and fruitful con-

struction of topological data analysis. For the past two decades it has

been inspiration to extensive theoretical and practical treatments,

spanning from purely mathematical theoretical foundations43 to com- 43 We will mention two ideas of gen-

eralizations of the standard persistent

homology in the appendix.
putable aspects and applications in numerous fields of science and

engineering. When coupled with standard constructions of complexes,

persistent homology contains information about geometry of data. As

such, the method is applied whenever the geometric shape of data is

thought to contain significant information.

Applications include de-noising schemes, dimension reduction

schemes, feature extraction methods, and specific data analysis of

materials, molecular structures, medical images, weather patterns, etc.

The combinatorial treatment of this chapter will be complemented

by further properties in the following chapter. While the definition of

persistent homology could have been expressed using coefficients in

an Abelian group, the existence of the visualizations44 and efficient 44 I.e., barcodes and persistence
diagrams.implementations45 crucially depend on the structure of a field.
45 I.e., matrix reductions.

Appendix: Zig-Zag persistence and Multi-parameter persistence

In this appendix we will sketch the ideas of two generalizations of

the standard persistent homology as presented throughout the chapter.

In both cases the generalization refers to the type of filtration used.

The first generalization is based on the Zig-Zag filtration. While

a standard filtration models a growing simplicial complex, a Zig-Zag

filtration models a changing simplicial complex, in which the simplices

may be appearing or disappearing.

T In case L1, L2, . . . , Lm are subcom-
plexes of a simplicial complex L not

satisfying the condition of a Zig-Zag
filtration, and we still want to com-
pute a meaningful Zig-Zag homology,

a standard way to construct a cor-

responding Zig-Zag filtration is to
connect them either by unions or

intersections:

K1 ↪→ K1 ∪ K2 ←↩ K2 ↪→ . . .←↩ Km,

K1 ←↩ K1 ∩ K2 ↪→ K2 ←↩ . . . ↪→ Km.

Interestingly enough, while the two
options induce generally different
barcodes, they encode precisely the

same information.

Definition 4.1. Let K be a simplicial complex. A Zig-Zag filtration

of K is a sequence of subcomplexes K1, K2, . . . , Km of K, such that for

each i ∈ {1, 2, . . . , m− 1} either Ki ≤ Ki+1 or Ki+1 ≤ Ki.
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For example, a Zig-Zag filtration may be of the following sort:

K1 ↪→ K2 ←↩ K3 ←↩ K4 ↪→ K5 ←↩ K6 ↪→ K7.

It turns out that even in this setting there exists an algorithm based

on matrix reductions which will produce a well defined barcode46 de- 46 Or, equivalently, a persistence
diagram.scribing what is called a Zig-Zag persistence. An example is displayed

in Figure 7.

↪→←↩ ←↩

K1 K2 K3 K4

K1 K2 K3 K4

Figure 7: A Zig-Zag filtration and

the corresponding zero-dimensional
barcode, visualized as a table for

technical reasons (i.e., the absence of
a designated direction of all arrows as

endpoints of bars). In the same way

we could have presented the barcodes
of the ordinary persistent homology as

well.

The second generalization is based on the multi-parameter filtra-

tion. While a standard persistent homology models a one-parameter47 47 I.e., a sequential.

growth of a simplicial complex, a multi-parameter filtration models

growth with more degrees of freedom. For our demonstrative purposes

it suffices to formally introduce only a 2-parameter filtration.

Definition 4.2. Let K be a simplicial complex. A 2-parameter fil-

tration of K is a collection of subcomplexes Kj,k ≤ K parameterized

with j, k ∈ {1, 2, . . . , m}, such that for each j ∈ {1, 2, . . . , m − 1}
and for each k the following containments hold (see Figure 8):

• Kj,k ≤ Kj+1,k, and

• Kk,j ≤ Kk,j+1.

K1,1 ↪→ K2,1 ↪→ · · · ↪→K3,1 ↪→ Km,1

↪→ ↪→ ↪→ ↪→
K1,2 ↪→ K2,2 ↪→ · · · ↪→K3,2 ↪→ Km,2

↪→ ↪→ ↪→ ↪→

...
...

...
...

↪→ ↪→ ↪→ ↪→

K1,m ↪→ K2,m ↪→ · · · ↪→K3,m ↪→ Km,m

Figure 8: A scheme of a 2-parameter
filtration.

There are theoretical and practical settings in which multi-parameter

filtrations arise naturally. A multi-parameter persistent homology is

the object obtained by applying the homology to spaces and maps

of such a filtration. Unfortunately, there exists no convenient48 vi- 48 While a 1-parameter persistent

homology “decomposes” into simple
pieces called bars (we will explain this
statement in detail in the next chap-

ter), the pieces of a multi-parameter

persistent homology can be quite com-
plicated and not easily visualized or

encoded.

sualtization49 in this setting. As a result, theoretical treatments of

49 Such as multi-dimensional barcode
or persistence diagram.

multi-parameter persistent homology typically deal with a multi-

dimensional grid of interconnected homology groups, while practical

applications of the same object use incomplete information about it

such as multi-parameter tables of Betti numbers, restrictions to a

1-parameter filtrations yielding a standard barcode, etc.
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