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Now that we presented combinatorial and algebraic prerequisites, we

are ready to define homology. The notion of homology arose from the

need to detect the holes in a simplicial complex or a more general

space. Its definition is not as straight forward as one might hope, but

nonetheless results in a notion amenable to practical computations

and consistent with the geometric intuition we presented in the first

chapter.

In this chapter we will journey through a geometric introduction

and definition of homology, and study the basic methods of compu-

tation. We will provide examples of homologies, which should build

up our understanding and detection of holes of all dimension not only

in Euclidean spaces, but also within the combinatorial context of

abstract simplicial complexes.

1 Definition

Homology measures holes in simplicial complex. As the later is pro-

vided by a collection of simplices, we need to devise a computational

framework based on the simplices that will result in a meaningful re-

sult. The formal treatment of this section will be provided in parallel

to a simple example on the right.

Let K be an abstract simplicial complex of dimension n and choose

a field of coefficients F.
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Figure 1: Abstract simplicial complex

L.
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Figure 2: Two 1-chains in L: the

red chain on the left 〈c, a〉+ 〈a, b〉+
〈c, d〉 + 〈d, b〉 + 〈c, b〉 coincides with
the blue chain on the right 〈c, a〉 +
〈a, b〉 + 〈c, d〉 + 〈d, b〉 − 2〈c, b〉 =
〈c, a〉+ 〈a, b〉+ 〈c, d〉+ 〈d, b〉+ 2〈b, c〉 iff
the coefficients are from Z3.

Chains

Chains are formal sums of simplices along with coefficients from

F. They are an algebraic model of collections of simplices as demon-

strated in Figure 3.

For each p ∈ {0, 1, . . . , n} let np denote the number of simplices of

dimension p in K.

Definition 1.1. A p-chain is a formal sum ∑
np
i=1 λiσ

p
i with λi ∈ F

and σ
p
i being an oriented simplex of dimension p in K for each i.

This formalism incorporates the signatures of orientation: if σ is

an oriented simplex then (−1) · σ = −σ is the simplex σ with the

changed orientation.

We assume that {σp
2 , σ

p
2 , . . . , σ

p
np} is the collection of all p-simplices

of K, with the p-simplices that are ”absent” having coefficient 0. p-
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chains can be added/subtracted and multiplied by any scalar:

np

∑
i=1

λiσ
p
i +

np

∑
i=1

λ′iσ
p
i =

np

∑
i=1

(λi + λ′i)σ
p
i ∀λi, λ′i ∈ F.

k
np

∑
i=1

λiσ
p
i =

np

∑
i=1

(kλi)σ
p
i , ∀k, λi ∈ F.

Example 1.2. Consider simplicial complex L from Figure 1. Two

examples of 1-chains and their additions are presented in Figure 3.

• Working in Z2 (top of Figure 3) the 1-chains are merely subsets of

the collection of edges as the orientation does not matter (+1 = −1
in Z2). Adding the red chain {a, c} + {b, c} and the blue chain

{b, c}+ {b, d} results in the purple chain {a, c}+ {b, d}.

• Computing in any other field (bottom of Figure 3) the orientation

does matter. Adding the red chain 〈b, a〉+ 〈a, c〉+ 〈c, d〉 and the blue

chain 〈b, a〉+ 〈d, c〉 results in the purple chain 〈a, c〉+ 2〈b, a〉.
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Figure 3: Top row: addition of chains
in Z2. Bottom row: addition of chains

in any other field.

As a result the collection of all chains forms a vector space1.

1 For historical and practical reasons
we will match the established termi-

nology in the literature and call this

vector space a chain group, the reason
being that if the coefficients are in

a group (as is standard in classical
theoretical approaches, see also an

Appendix), the resulting chains form

only a group. In our case the chains
still form a group for addition, but

the overall structure along with the

multiplication by a scalar is that of a
vector space.

Definition 1.3. The chain group Cp(K; F) is the vector space of all

p-chains.

Thinking of p-simplices of K as an abstract collection of linearly

independent vectors, the resulting linear space (with coefficients in F)

spanned by them is the chain group. If np is the number of p-simplices

of K then Cp(K; F) ∼= Fnp .

Boundary

With the definition of chain groups in place, we can now express

the boundary relation as a linear map. The boundary map encodes the

assembly instruction for a simplicial complex.

x y

z

x y

z

Figure 4: Oriented triangle 〈x, y, z〉
and its boundary ∂2(〈x, y, z〉) =
〈x, y〉+ 〈y, z〉+ 〈z, x〉.

Definition 1.4. Let p ∈N. The boundary map

∂p : Cp(K; F)→ Cp−1(K; F)

is the linear map defined by the following rule on the basis of Cp(G; F):

for each oriented p-simplex σ = 〈v0, v1, . . . , vp〉 the image ∂pσ is the

sum of facets of σ equipped with the induced orientation from σ, i.e.,:

∂pσ =
p

∑
i=0

(−1)i〈v0, v1, . . . , vi−1, vi+1, . . . , vk p〉.

For technical reasons we additionally define ∂0 : C0(K; F)→ 0 to be
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the trivial map (actually, the only map) into the trivial vector space

(the space only containing the 0 vector).

" We will typically be dropping

the index of the boundary map ∂
whenever it will be evident either that

the statement relating to the use of ∂
refers to all indices p or to a specific
p. For example, when talking about

∂σp, it is apparent that the map in

question is ∂p. On the other hand,
notation ∂2 = 0 means that for each

p ∈ N, ∂p ◦ ∂p−1 is the trivial map

whose image is the zero vector.

A crucial fact for the algebraic formulation of a homology theory

is that the composition of two boundary maps is the trivial map. In

particular, this implies that the image of a boundary map is contained

in the kernel of the subsequent boundary map. See the note on the

right concerning the notation in the following statement.

Theorem 1.5. ∂2 = 0.

Proof. It suffices to prove that ∂2σ = 0 for an oriented p-simplex

σ = 〈v0, v1, . . . , vp〉. Note that ∂2σ is a formal sum of faces of σ of

dimension p− 2. Choose indices i < j from {0, 1, . . . , p} and consider

how does the face2 2 The following face is obtained from

σ by dropping vertices vi and vj.

σ′ = 〈v0, v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vp〉

appear in ∂2σ. Such a face appears from two terms:

x y

z
−

+

+−

+

−

Figure 5: An example of Theorem 1.5:

Oriented triangle 〈x, y, z〉 on the left,

its boundary ∂(〈x, y, z〉) = 〈x, y〉 +
〈y, z〉 + 〈z, x〉, and ∂2(〈x, y, z〉) =
〈x〉 − 〈x〉+ 〈y〉 − 〈y〉+ 〈z〉 − 〈z〉 = 0 as

indicated by the signs at the vertices
on the right.

• By first removing vertex vj from σ in the expression of ∂p and then

removing vertex vi from the resulting simplez in the expression of

∂p−1. The indices of removed vertices are j and i hence the sign in

from t of σ′ is (−1)i(−1)j.

• By first removing vertex vi from σ in the expression of ∂p and then

removing vertex vj from the resulting simplez in the expression of

∂p−1. The indices of removed vertices are i and3 (j− 1) hence the
3 As vertex vi has already been re-

moved and i < j, the vertex vj in now
on position j− 1.

sign in from t of σ′ is (−1)i(−1)j−1.

As the signs are the opposite, the total sum equals zero.

Corollary 1.6. Im(∂) ⊂ ker(∂).

Definition 1.7. The collection of chain groups bound together by the

boundary maps is called the chain complex:

· · · ∂→ Cn(K; F)
∂→ Cn−1(K; F)

∂→ · · · ∂→ C1(K; F)
∂→ C0(K; F)

∂→ 0

For computational purposes the boundary maps are typically rep-

resented as matrices with entries in F. For each p ∈ N a matrix Mp

corresponding to ∂p is obtained as follows:

• Columns are enumerated by oriented p-simplices of K.

• Rows are enumerated by oriented (p− 1)-simplices of K.
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• Entry at position (i, j) equals +1 or −1 if the i-th row appears with

orientation +1 or −1 correspondingly in the boundary of the j-th
column. All other entries are zero.

In particular, the boundary ∂α of a chain α is obtained by multiply-

ing the boundary matrix with the natural representation of α in the

chosen4 basis. 4 The same basis that is used to

enumerate rows.
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Figure 6: Abstract simplicial complex

L.

Example 1.8. Labeled boundary matrices5 for complex L of Figure 6:

5 Only non-zero entries are provided.

Matrix M0 has no formal rows as

it represents the zero-map into the
one-element vector space 0.

M2 =



〈a, b, c〉
〈a, b〉 1
〈b, c〉 1
〈a, c〉 −1
〈b, d〉 0
〈c, d〉 0

, M1 =



〈a, b〉 〈b, c〉 〈a, c〉 〈b, d〉 〈c, d〉
〈a〉 −1 −1
〈b〉 1 −1 −1
〈c〉 1 1 −1
〈d〉 1 1
〈e〉


Homology

We are now finally ready to define homology as a measure of holes.

Let us first build an intuition on simplicial complex L from Figure 6.

This will be followed up by a formal introduction in Definition 1.9.

Our task is to compute that L has one hole. In the figure the hole

seems to be enclosed by edges cd, db and bc. Following this observation

we decide that holes will be represented by a special kind of chains

called cycles, see Figure 7. These are the chains that model closed sim-

plicial loops in our simplicial complex, just as the one describing the

hole in L above. Formally, we define cycles to be those chains, whose

boundary is zero. These are our candidates for the representatives of

holes.
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Figure 7: Top row: Two cycles.

Bottom row: a chain that is not a

cycle (left) and the cycle, that is the
sum of the cycles of the top row.

However, not all cycles represent loops. For example, the top right

cycle in Figure 7 is a boundary of a triangle and thus does not en-

close any hole. Such cycles thus do not represent a hole and should be

treated as trivial. Similarly, if a cycle is obtained as the boundary of

a 2-chain, then it should be treated as trivial. Such cycles are called

boundaries6 and the structure formalizing the triviality of boundaries

6 At this point, the term “boundary”

can refer to a geometric boundary of a
simplex, a boundary map, or a chain,

that is the image of a boundary map.

is the quotient space.

Summing up the idea, the holes are represented by the quotient

group cycles/boundaries.

Recall that for each p ∈ {0, 1, . . .} we have Im ∂p+1 ≤ ker ∂p.

Definition 1.9. Let K be an abstract simplicial complex. Choose a field

F and q ∈ {0, 1, . . .}. We define

• q-cycles as Zq(K; F) = ker ∂q ≤ Cq(K; F).
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• q-boundaries as Bq(K; F) = Im ∂q+1 ≤ Zq(K; F) ≤ Cq(K; F).

• q-homology group as the quotient Hq(K; F) = Zq(K; F)/Bq(K; F).

The dimension of Hq(K; F) is called the q-Betti number (of K with

coefficients in F) and is denoted by bq = bq(K; F).

In particular, each element of a homology group is an equivalence

class7 of cycles. The homology group of example L from Figure 6 will 7 Given a cycle β, the corresponding
class in homology will be denoted by

[β].
depend on F. Defining α = 〈b, c〉+ 〈c, d〉+ 〈d, b〉 as the top left cycle

in Figure 7, we see that H1(L; F) is {k[α] | k ∈ F}. Even though we

have only one hole, the homology group typically has more elements.

However, the entire H1(L; F) is spanned by [α] and thus the number of

holes should be interpreted8 as the dimension of the homology group, 8 At this point we observe that it

is crucial to preserve the algebraic
structure (of a vector space) of the

homology group in order to compute

the dimension as the number of holes.

in this case 1.
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Figure 8: Top left: a simplicial com-
plex with two holes. Its first homology

group H1 with coefficients in Z2 has

three non-trivial elements, depicted
as the blue, the red, and the purple

chain. However, that does not mean

that the number of holes equals 3.
Along with the trivial homology class,
the homology groups consists of 4 ele-
ments. This means that its dimension
over Z2 equals 2, which is the number

of holes. We also observe that any two
of the three non-trivial chains above

could form the basis of H1. In fact,
each of the three non-trivial chains is
the sum of the other two.

More generally, each homology group with coefficients in a field

F is a vector space and thus isomorphic to Fr for some dimension r.

The main goal of our computations is thus to compute r = bq, which

represents the number of q-dimensional holes:

• b0 equals for all fields F and coincides with the number of compo-

nents (0-dimensional holes).

• b1 is the number of holes in the usual geometric sense (1-dimensional

holes), although various fields detect different9 holes in this setting.

9 See the example of the Klein bottle

later in this section.

For planar graphs however, b1 is always the number of the holes.

• b2 is the number of caves/enclosures.

These interpretations will be explored, demonstrated and partially

proved throughout the rest of this chapter. Before we do that let us

mention that homology groups are homotopy invariant even though

cycles and boundaries are not.

Theorem 1.10. Assume K and K′ are simplicial complexes. Then a

homotopy equivalence K ' K′ implies Hp(K; F) ∼= Hp(K′; F), for

each field F and for each p ∈ {0, 1, . . .}.

Zero-dimensional homology

In this subsection we prove that b0 is the number of components10

10 While there are alternative ways to
obtain the number of components em-

ploying a smaller amount of algebra,
there are no alternatives to homologi-

cal constructions when it comes to 1-

and higher-dimensional holes.

of the underlying simplicial complex. Let K be a simplicial complex

and F any field. The homology group H0(K; F) is computed from the

following piece of information:

C1(K; F)
∂1→ C0(K; F)

∂0→ 0.
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In order to compute H0(K; F) we need to determine ker ∂0 and Im ∂1.

Since ∂0 is trivial we have11 ker ∂0 = C0(K; F). In order to determine 11 Dimension 0 is the only case where

a single simplex forms a cycle.Im ∂1 we prove the following proposition.

Proposition 1.11. Let K be a simplicial complex, F any field and as-

sume x, y ∈ K(0) are vertices. Then 〈y〉 − 〈x〉 ∈ Im ∂1 iff x and y
lie in the same component of K.

Proof. Assume x and y lie in the same component of K. Then there

exists12 a path from x to y tracing edges. Let x = x0, x1, . . . , xk = y 12 ...by the simplicial approximation
Theorem.denote the sequence of vertices traced by one such path. Then the

chain 〈y〉 − 〈x〉 is the boundary of the 1-chain ∑k−1
i=0 〈xi, xi+1〉. See

Figure 9 for an example.
a
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Figure 9: The boundary of the de-

picted chain is 〈d〉 − 〈b〉, which is also

the boundary of 〈b, d〉. As a conse-
quence, the column corresponding to

〈b, d〉 in the matrix of ∂1 is the sum

of the columns corresponding to the
edges of the chain.

In order to prove the other direction assume 〈y〉 − 〈x〉 = ∂α for

some 1-chain α. Let K′ ≤ K be the component of K containing vertex

x and define α′ to be the part of α contained in K′. i.e., σ′ contains

all those terms of α whose edge is in K′. No vertex of K′(0) \ {x, y}
appears in ∂α′ as none appears in ∂α either and the terms containing

edges with such a vertex as an endpoint are the same in both α and α′.

Hence ∂α′ is either 〈y〉 − 〈x〉 in case y ∈ K′ or −〈x〉 otherwise. Since

the coefficients in front of vertices of any boundary add13 up to zero,

13 As ∂(k〈z, w〉) = k〈w〉 − k〈z〉 this

property holds for boundaries of single
terms. By linearity of ∂ the same also

holds for chains.

only the first of these two options is possible.

Assume K1, K2, . . . , Kn are the components of K with xi ∈ Ki, ∀i.
We now combine the following information that allows us to describe

H0(K; F):

1. Equality ker ∂0 = C0(K; F) means ker ∂0 = Z0(K; F) has a basis

{〈v〉}v∈K(0) .

2. For each edge 〈x, y〉 ∈ K we have ∂〈x, y〉 = 〈y〉 − 〈x〉, meaning that

〈x〉 and 〈y〉 get identified in the homology group, i.e., [〈x〉] = [〈y〉].

3. By Proposition 1.11 the equivalence classes of two vertices are

identified in homology iff the vertices lie in the same components.

4. By 1. {[〈v〉]}v∈K(0) span H0(K; F) and by 2. and 3. so do {[〈xi〉]}n
i=1.

5. The collection {[〈xi〉]}n
i=1 is linearly independent, the proof of this

claim being similar to the second part of the proof of Proposition

1.11.

As a result {[〈xi〉]}n
i=1 is a basis of H0(X; F) and thus the dimension of

H0(X; F) equals the number of components of K, i.e., b0 = n. For ex-

ample see Figure 10.

a
b
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e

d

Figure 10: Abstract simplicial

complex L. H0(L; F) is of di-
mension two (representing two

components) with a basis being

[< a >] = [< b >] = [< c >] = [< d >]
and [< e >]. H1(L; F) is of dimension

one representing one hole, with a basis

[〈c, d〉+ 〈d, b〉+ 〈b, c〉].
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Homology of a graph

Let K be a simplicial complex which is a connected planar graph,

and let F be any field. In this subsection we prove that b1 is the

number of holes K generates in the plane.

The homology group H1(K; F) is computed from the following piece

of information:

C2(K; F)
∂2→ C1(K; F)

∂1→ C0(K; F).

As 0 = C2(K; F) we have H1(K; F) = ker ∂1 so it suffices to determine

the kernel of ∂1.

1. Let K′ ≤ K be a maximal tree with edges e1, e2, . . . , en.

2. The collection ∂e1, ∂e2, . . . , ∂en is linearly independent by the

following argument14. As K′ ' 0 its first homology is trivial 14 For an alternative geometric argu-

ment see Figure 11.by Theorem 1.10 and as K′ contains no triangles, H1(K′; F) =

ker ∂1|C1(K′ ;F). In particular, ∂1|C1(K′ ;F) is injective. Its matrix con-

tains ∂e1, ∂e2, . . . , ∂en as columns and injectivity implies the columns

are linearly independent.

3. Let W denote the span of ∂e1, ∂e2, . . . , ∂en.

a

b

c

d
e

f

d
e

f

Figure 11: In this figure we demon-

strate a geometric reason why the

collection of the boundaries of all
edges of a tree is linearly independent.

Given a tree (on the left side of the

figure) assume a linear combination
of the boundaries of its edges is the

zero vector. Since vertex a only ap-
pears in edge 〈a, d〉, the coefficient in

front of that edge in the mentioned

linear combination equals 0. The same
argument holds for b and c and thus

the mentioned linear combination only

contains edges from the subtree on
the right. Repeating the argument

above, now for vertices d and e, we
conclude that the mentioned linear
combination is trivial and thus the

claim holds. The same inductive

argument works for any tree.

4. Let en+1, en+1, . . . , em be the edges of K that are not contained in

K′, with each ej being the edge from vertex xj to vertex yj.

5. Adding edges en+1, en+1, . . . , em to K′ inductively, each addition of

an edge increases the number of holes generated by the resulting

graph by one.

6. In a parallel fashion, each addition of an edge increases the dimen-

sion of the kernel of the first boundary map by 1 as ∂ej ∈ W, ∀j ∈
{n + 1, n + 1, . . . , m} by Proposition 1.11.

7. In the end of this process of adding edges we have generated m− n
holes and the dimension of ker ∂1 (and b1) turns out to be m− n.

8. For each j ∈ {n + 1, n + 1, . . . , m} let cj denote the (simplicial) path

in K′ from xj to yj represented as a 1-chain. The following form a

basis of H1(K; F): [ej − cj] for j ∈ {n + 1, n + 1, . . . , m}.

An example is displayed in Figure 12.

2 Computing homology

A systematic way to compute homology groups is through matrix

reduction which allows us to obtain the rank15 of a linear map. Before 15 Given a linear map of vector spaces,

its rank is the dimension of its image.we provide the details on the rank computation, let us explain how to

use it in order to compute the Betti numbers.
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a
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Figure 12: From left to right, the

pictures represent a planar graph, a
maximal tree, edges not contained

in the chosen maximal tree and two

cycles representing a basis of the
first homology. Note that the graph

induces two holes and thus b1 = 2.

Let K be an abstract simplicial complex of dimension n and choose

a field of coefficients F. For each p ∈ {0, 1, . . . , n} let np denote the

number of simplices of dimension p in K.

Proposition 2.1. Let f : A → B
be a linear map of vector spaces.

Then:

1. dim A = dim(ker f ) + rank f

2. dim(B/ Im f ) = dim B− rank f

Part 1. of Proposition 2.1 is a stan-
dard statement of linear algebra. Part

2. was proved in the previous chapter.

Proposition 2.2. 1. dim ker ∂p = np − rank ∂p

2. bp = np − rank ∂p − rank ∂p+1

Proof. Part 1. follows from 1. of Proposition 2.1 as np = dim Cp(K; F).

Part 2. follows from 2. of Proposition 2.1 and 1.

Thus the Betti numbers can be expressed only using the number

of simplices of a given dimension and the ranks of the corresponding

boundary maps. Now let us turn out attention to rank computations.

Given a boundary matrix, its rank16 is easily obtained17 from the row 16 And thus also the rank of the

boundary map. Equivalent definitions

of the rank of a matrix include:
the maximal number of linearly

independent columns; the maximal

number of linearly independent rows.
17 When using coefficients in R or Q

the numerical procedure to obtain

rank might in some cases result in
certain instabilities. When using coef-

ficients in Zp however such issues do

not arise, at least not for reasonably
modest p.

or column echelon form.

Echelon forms

In order to obtain a row echelon form of a matrix we can use the

following operations18:

18 Of course, operations are considered

in F.

R1: exchange two rows;

R2: multiply19 a row by a non-zero element of F;

19 Since F is a field, this means we
can also divide a row by a non-zero

element of F.

R3: add a multiple of one row to a different row.

C1: exchange two columns.

In the end we are aiming for the following transformation20 20 Symbols ∗ denote arbitrary ele-

ments of F. The first r elements of
the diagonal are declared to be 1 in

our case. This is one version of the

row echelon form and can always be
achieved. However, there is a variant

of a row echelon form in which these

diagonal entries are non-zero, with the
other ∗ entries still being arbitrary

(possibly zero) elements of F. Using

this variant the rank is still obtained
in the same way and as a benefit, the

number of row operations required to

reach it is typically smaller.
In the context of the Gaussian elim-

ination a slightly different (and in
general more common and slightly

faster) row echelon form is usually

computed without the use of opera-
tion C1.


a1,1 a1,n

am,1 am,n

 


1 ∗ ∗
0

1 ∗ ∗
0 0

0 0



r
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The number of the non-trivial diagonal entries, r, equals to the rank

of the matrix. In practice we will sometimes refrain from using C1 and

only reduce to the classical row echelon form that is typically obtained

through the Gaussian elimination.

In a similar way we can also compute the column echelon form

using the corresponding column operations C1, C2, C3 and (possibly)

R1.

a
b

c
e

d

Figure 13: Simplicial complex L.

Example 2.3. Let us compute the homology of simplicial complex L
from Figure 13. The boundary matrices are

M2 =



〈a, b, c〉
〈a, b〉 1
〈b, c〉 1
〈a, c〉 −1
〈b, d〉 0
〈c, d〉 0

, M1 =



〈a, b〉 〈b, c〉 〈a, c〉 〈b, d〉 〈c, d〉
〈a〉 −1 −1
〈b〉 1 −1 −1
〈c〉 1 1 −1
〈d〉 1 1
〈e〉

.

Performing only row operations we obtain21 21 The reduced form in this case

coincides for all fields F. Later we will

see, for example with the Klein bottle,
that the reduced forms and ranks in

general depend on F.


1
0
0
0
0

 and


1 1

1 1 1
1 1


These are the classical row echelon forms typically obtained through

the Gaussian reduction22 and the rank of such a matrix is the number 22 In order to obtain pivots only on

the diagonal, as the row echelon form
as we defined it requires, we would

need to exchange columns 3 and 4.

of pivots23. The corresponding ranks of the matrices are 1 and 3. We

23 Equivalently, the number of non-
zero rows.

thus have rank ∂2 = 1, rank ∂1 = 3, n2 = 1, n1 = 5, n0 = 5 and we

conclude:

• b2 = n2 − rank ∂2 = 0, the complex encloses no “void”.

• b1 = n1 − rank ∂1 − rank ∂1 = 1, which is the number of holes.

• b0 = n0 − rank ∂1 = 2, which is the number of components.

T Row and column operations geo-
metrically amount to changes in the

bases of the domain and target vector
spaces. These changes can be encoded
in transformation matrices and in
fact, most special forms or reductions

of matrices are often expressed in
terms of matrix factorizations. For

our illustrative purposes though we
will stick with the annotations.

Smith normal form and representatives

While the computation of the echelon forms suffices to compute the

Betti numbers, we are often interested in the representing cycles24 of 24 There are also other ways to com-

pute the representing cycles although,
at the end of the day, most of them
use a similar amount of linear algebra.
A high-level approach would be the

following. First compute the basis of
Im ∂p+1, which is the column space
of the corresponding boundary ma-

trix. Then complete it to the basis
of ker ∂p. The vectors forming the

completion represent the basis of p-

homology. As mentioned, there are
many ways to practically formalize

these steps, including the presented
one through the Smith normal form.

homology groups as well. To that end we employ a different canonical

form of a matrix: the Smith normal form. It is obtained from the row

echelon form by eliminating the ∗ entries to zero using the mentioned
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row and column operations R1, R2, R3, C1, C2, C3.


a1,1 a1,n

am,1 am,n

 


1 0 0
0

1 0 0
0 0

0 0



r

In order to obtain the representing cycles though, we need to use

the annotated rows and columns:

• The annotations of columns from index r + 1 on form the basis of

the kernel.

• The boundaries of annotations of columns of index up to r on form

the basis of the image.



1 0 0
0

1 0 0
0 0

0 0



ker

a
b

c
e

d

Figure 14: Abstract simplicial com-

plex L.

Example 2.4. Let us compute the representatives of the homology

groups of simplicial complex L from Figure 14. The annotated bound-

ary matrices are

M2 =



〈a, b, c〉
〈a, b〉 1
〈b, c〉 1
〈a, c〉 −1
〈b, d〉 0
〈c, d〉 0

, M1 =



〈a, b〉 〈b, c〉 〈a, c〉 〈b, d〉 〈c, d〉
〈a〉 −1 −1
〈b〉 1 −1 −1
〈c〉 1 1 −1
〈d〉 1 1
〈e〉


with the annotated row echelon forms being25 25 Only the column annotations will

be displayed as the row annotations

are not required.

〈a, b, c〉
1
0
0
0
0

 and



〈a, b〉 〈b, c〉 〈b, d〉 〈a, c〉 〈c, d〉
1 1

1 1 1
1 1

.
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The first of these two matrices is already in the Smith normal form.

The Smith normal form of the second matrix is:



〈a,b〉 〈b,c〉 〈b,d〉−〈b,c〉 〈a,c〉−〈b,c〉−〈a,b〉 〈c,d〉−〈b,d〉+〈b,c〉

1
1

1

.

a
b

c
e

d

Figure 15: Obtained representatives

of bases of the homology groups of

L. Representatives 〈a〉 and 〈e〉 in red
spanning H0(L; F), and representative

〈c, d〉 − 〈b, d〉+ 〈b, c〉 in blue spanning

H0(L; F).

We now construct the homology representatives by dimension:

Dimension 0:

1. ker ∂0 has a basis 〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉.
2. Im ∂1 has a basis formed by the images of the first three anno-

tated columns of the Smith normal form, i.e., 〈a, b〉, 〈b, c〉, and

〈b, d〉 − 〈b, c〉. The basis obtained in this way is

〈b〉 − 〈a〉, 〈c〉 − 〈b〉, and 〈d〉 − 〈b〉+ 〈c〉 − 〈b〉.

3. We may complete the basis from 2. to the basis of ker ∂0 by, for

example, adding 〈a〉 and 〈e〉 and thus 〈a〉 and 〈e〉 represent the

two 0-holes26 spanning H0(L; F). 26 I.e., components.

Dimension 1:

1. ker ∂1 has a basis 〈a, c〉 − 〈b, c〉 − 〈a, b〉 and 〈c, d〉 − 〈b, d〉+ 〈b, c〉.
2. Im ∂1 has a basis formed by the images (boundaries) of the first

annotate column of the Smith normal form, i.e., 〈a, b, c〉. The

basis obtained in this way is

〈a, b〉+ 〈b, c〉 − 〈a, c〉.

3. We may complete27 the basis from 2. to the basis of ker ∂0 by, 27 The fact that the basis element
from 2. is a member from the basis

of 1. helps us to see this completion
immediately. However, such a situa-

tion is an exception and a completion

of basis typically involves some work
with linear algebra.

for example, adding 〈c, d〉 − 〈b, d〉 + 〈b, c〉 and thus 〈c, d〉 −
〈b, d〉+ 〈b, c〉 represents a 1-holes spanning H1(L; F).

Incremental expansion and elementary collapse

We conclude the section by analysing how a minimal change to a

simplicial complex, an addition of one or two simplices, affects the

homology.

We first discuss the incremental expansion, or how an addition28 of 28 Or a removal, which can be analy-
ized in a similar fashion.a simplex to a simplicial complex changes the homology. Let K be a

simplicial complex and let σ(n) /∈ K be an n-simplex on vertices of K
such that K ∪ {σ} is29 also a simplicial complex. The addition of σ to 29 In particular, all faces of σ should

be present in K.K has the following effect to the homology computation scheme:
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1. The number of n-simplices increases30 by 1. 30 This means that either the dimen-
sion of the kernel of ∂n or the rank of

∂n increases by 1.2. If chain ∂α is already contained in ker ∂n, then the addition of

σ to the boundary matrix of ∂n adds a column, which is linearly

dependent on other columns and in effect, the dimension of the

kernel is increased by 1.

3. If chain ∂α is not in ker ∂n, then the addition of σ to the boundary

matrix of ∂n adds a column, which is linearly independent on other

columns and in effect, the rank of the matrix is increased by 1.

Figure 16: A demonstration of incre-
mental expansion. Adding an edge

to a simplicial complex may either

reduce b0 (the number of components)
by 1 (blue case) or increase b1 (the

number of holes) by 1 (red case).

As a result (see Figure 16), an incremental expansion either in-

creases bn by 1 (case 2.), or decreases bn−1 by 1 (case 3.).

We next discuss the elementary collapse. We have already men-

tioned it in the chapter on simplicial complexes. Let K be a simplicial

complex, τ(k−1) ⊂ σ(k) ∈ K, and assume σ is the only coface of τ.

A removal K → K \ {τ, σ} is called an elementary collapse. It is a

modification that does not change the homotopy type, and hence the

homology is preserved.

Figure 17: An elementary collapse.

Let us see how an elementary collapse effects the computation of

homology.

• The boundary of σ is not a linear combination of boundaries of

other k-simplices as σ is the only31 coface of τ. Hence removing σ 31 Meaning that ∂σ is the only bound-
ary of a k-simplex containing a term

with τ.
decreases rank ∂k by 1.

• The boundary of τ is a linear combination of boundaries of other

(k − 1)-simplices by the following argument. Simplex τ is con-

tained32 in the chain ∂σ. Since the boundary of this chain equals 32 ...with coefficient +1 or −1.

zero33, we can express ∂τ as a sum of boundaries of other facets of 33 ∂2σ = 0

σ with the appropriate coefficients ±1. Hence τ is a linear combina-

tion of boundaries of other (k − 1)-simplices and thus removing it

decreases ker ∂k−1 by 1.

In total, the dimensions of the homology groups do not34 change. 34 Recall that the only homology

group that may potentially change is
Hk−1. It is defined as ker ∂k−1/ Im ∂k
and since the dimension of both

ker ∂k−1 and Im ∂k decreases by one,
the dimension of the quotient is

preserved.

3 Examples of homology

In this section we present some further aspects of homology that

should aid our understanding of the concept.

Disjoint unions

Two abstract simplicial complexes are said to be disjoint if their

collections are disjoint35. Two geometric simplicial complexes are 35 I.e., if there is no intersection

between the sets of vertices. Formally
speaking, if such an intersection
existed it would mean that we are

treating both collection of vertices as
subsets of some larger set.

said to be disjoint if their bodies are disjoint. The union of disjoint
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simplicial complexes K, L is called a disjoint union and is denoted by

K ä L.

Given two disjoint simplicial complexes K, L, the homology of their

disjoint union is the cartesian product36 of the individual homologies: 36 In our setting, the term “direct
sum” could also be used.Hi(K ä L; G) ∼= Hi(K; G)× Hi(K; G). Computationally we can see this

by observing that the boundary map ∂ has block-diagonal matrices:

boundaries of chains from K lie in K and the same holds for L. Since

each simplicial complex is the disjoint union of its components, the

technical computations and treatments of homology are typically

restricted to connected simplicial complexes.

Example 3.1. Given a planar graph K and any field F:

• b0 is the number of components of K.

• b1 is the number of holes of K induces in the plane.

Figure 18: A planar graph with four

components: b0 = 4, b1 = 7, χ = −3.

Euler characteristic

Suppose K is a simplicial complex and let ni denote the number

of i-simplices in K. Recall that the Euler characteristic χ(K) ∈ Z is

defined as χ(K) = n0 − n1 + n2 − n3 + . . . .
This invariant has an interesting interpretation in terms of homol-

ogy.

Proposition 3.2. χ(K) = b0 − b1 + b2 − b3 + . . ..

Proof. By 2. of Proposition 2.2 we have bp = np − rank ∂p −
rank ∂p+1. Substituting these equality into b0 − b1 + b2 − b3 + . . .
we obtain χ.

Example 3.3. Given a planar graph K and any field F, χ(K) equals the

number of components subtracted by the number of holes K generates

in the plane.

Spheres
Figure 19: S0 demonstrates non-
trivial H0, S1 represents a one-

dimensional hole, and S2 encloses
a two-dimensional hole.Holes as measured by homology are represented by cycles and the

fundamental examples of holes are provided37 by spheres. In this sub- 37 The homology of a metric space is,

for our purposes, the homology of any

triangulation of that space.
section we prove that given a triangulation of an n-sphere for n ≥ 1,

the consistently oriented collection of n-simplices represents an n-hole.

In fact, this is the only hole a sphere has. A convenient triangulation

of Sn we will be using will be the one38 consisting of all faces of an 38 To be precise: take an (n + 1)-
simplex, add all of its faces to obtain
a simplicial complex called the full

simplex on n + 2 points (sometimes also

called the full (n + 1)-simplex), and
then remove the (n + 1)-simplex to

obtain a trianagulation of Sn.

(n + 1)-simplex.
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Proposition 3.4. For each F and n ∈ {1, 2, . . .} we have:

• H0(Sn; F) ∼= Hn(Sn; F) ∼= F;

• Hi(Sn; F) = 0, ∀i /∈ {0, n}.

Proof. The full simplicial complex on n + 2 points is contractible

hence all its homology groups are trivial except for H0, which is of

rank 1. Removing the only (n + 1)-simplex reduces rank ∂n+1 by

one and hence increases bn by 1, as was explained in the context of

incremental expansions and removals.

T Fun observation: The full simplex
on n points is contractible hence its

Euler characteristic equals 1. On
the other hand, computing its Euler

characteristic by definition we get

n points −(n
2) edges + (n

3) triangles
. . . (−1)n · 1 n-simplex. Summing it up

we get:(
n
1

)
−
(

n
2

)
+

(
n
3

)
− . . . (−1)n

(
n
n

)
= 1,

which is a special case of the binomial

formula.

Given that S0 is a collection of two points it is easy to see39 that

39 ..by a direct computation or by the
argument of Proposition 3.4.

the only non-trivial homology group of S0 is H0(S0; F) ∼= F2.

Surfaces

A beautiful demonstration of the two-dimensional homology is

provided by surfaces.

Proposition 3.5. Let K be a triangulation of a closed (i.e., without

boundary) connected orientable surface. For each group F we have

H2(K; F) ∼= F.

Figure 20: Examples of closed con-
nected surfaces: they all enclose one

2-dimensional hole in the form of a

“cave”, which is manifested in the fact
that b2 = 1.

" The statement of Proposition 3.5

does not hold for connected surfaces
with boundary. If there was a non-
trivial 2-cycle in such a case, the
same argument as in the proof of the
proposition would imply that the

cycle would be the oriented sum of
all triangles (possibly multiplied by

a single non-trivial factor λ ∈ F).
Since a presence of a boundary of a
manifold implies the existence of an
edge, which is a face of precisely one

triangle, such a triangle (multiplied by
λ) would thus appear in the boundary

of the cycle, a contradiction.
The second homology of a connected

manifold with a boundary is thus
always trivial.

Proof. Recall that K being orientable means there exists a consistent

choice of orientations on all triangles of K. Let us fix such an orienta-

tion on them.

1. The structure of a surface implies that each edge of K is a face of at

most two triangles.

2. The structure of a closed surface implies that each edge of K is a

face of precisely two triangles.

3. Consistency of orientations on triangles implies that whenever two

triangles intersect in an edge, the induced orientations on the edge

are the opposite.

Let us define chain α as the sum of all oriented triangles. By 1.-3.

above each edge appears in ∂α twice, once with each orientation (see

Figure 21), and thus ∂α = 0, meaning that α is a chain. As the image

of ∂3 is trivial, α represents a non-trivial homology class.

On the other hand, whenever a 2-cycle β contains a term40 +σ

40 If σ appear in the term λσ for some

non-zero λ ∈ F, we repeat the same

argument for the chain divided by λ.

where σ an oriented triangle, observations 2. and 3. imply that all

oriented simplices sharing an edge with σ also appear in α with coeffi-

cient 1. Inductively expanding this conclusion to further neighbors we
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reach all triangles as K is connected and thus deduce that β = α. The

proposition is thus proved.

Homology class [α] generating H2(K; F) as defined41 in the proof 41 Formally speaking, there are two

fundamental classes, one for each
orientation of triangles...except when

F = Z2. If F = Z2 there is only one

non-trivial homology class which is its
own converse.

is called the fundamental class of a surface. In the same way we can

prove that if K is a closed connected orientable manifold of dimen-

sion n, then Hn(K; F) ∼= F with the generator, which is again called

the fundamental class, being the sum of all consistently oriented n-

simplices of K.

The case of non-orientable surfaces is the first presented situation in

which the choice of coefficients matters.

T Proposition 3.6 also generalizes to

the n-dimensional homology of closed

connected non-orientable n-manifolds.

Proposition 3.6. Let K be a triangulation of a closed connected non-

orientable surface. Then H2(K; Z2) ∼= Z2 and H2(K; F) ∼= 0 for

each F 6∼= Z2.

Proof. As in the proof of Proposition 3.5, the fact that K is a sur-

face means that if a 2-cycle α contains a term +σ for some oriented

triangle σ, it also contains a term +σ′ for each oriented triangle σ′

sharing42 an edge with σ. Again, as K is connected, this means that 42 Sharing in the sense of consistent

orientation, meaning that the induced
orientation on the shared edge are the

opposite.

α is the sum of all oriented triangles. However, as K is non-orientable,

there is no consistent orientation on triangles and thus43 some edges
43 As each edge appears twice in the
boundary of such a chain and not all

such appearances may cancel each

other out by the non-orientability.

appear with coefficient 2 in the boundary, see Figure 21. Thus if44

44 Equivalently, if F 6= Z2.

0 6= 2 the boundary is non-trivial and the assumed 2-cycle does not

have the empty boundary, a contradiction. Hence the only cycle is the

trivial cycle.

However, if F = Z2, the obtained boundary equals zero and thus α

is the only non-trivial cycle. As a result, H2(K; Z2) ∼= Z2.

We may summarize these two propositions and the corresponding

comments as follows:

• A connected surface K is closed iff H2(K; Z2) 6= 0.

• Given any field F 6= Z2, a closed connected surface is orientable if

H2(K; F) ∼= F.

Figure 21: Top: The boundary of a
chain consisting of all consistently

oriented triangles of a surface without
boundary is zero, as the induced ori-

entations on edges cancel out. Bot-
tom: The boundary of a chain con-
sisting of a not-consistently oriented

collection of all triangles of a surface
without boundary contains each edge

between two non-consistently oriented

triangles twice.

Impact of coefficients: the Klein bottle

Another example where the choice of coefficients makes a difference

in homology computations is the Klein bottle, which will be denoted

by K in this subsection. It is depicted in Figure 22. Its triangulation is

given by the black portion in Figure 24. We already know that b0 = 1
as K is connected. However, the second Betti number of this closed

surface depends on the coefficients due to the non-orientability:
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• b2(K; Z2) = 1.

• For F 6∼= Z2, b2(K; F) = 0.

Figure 22: The Klein bottle.

From this information and the expression of the Euler characteristic

as the alternative sum of Betti numbers we conclude:

• b1(K; Z2) = 2, i.e., H2(K; Z2) ∼= Z2
2.

• For F 6∼= Z2, b1(K; F) = 1.

These Betti numbers can also be computed through the matrix re-

duction. Instead of computing them, we will rather demonstrate the

geometric reason for the difference in b1 depending on the coefficients.

The explanation will be based on Figure 24. On each of the five parts

of the figure a triangulation of K is provided by the black/grey por-

tion. The black arrows indicate the direction in which the identifica-

tions are performed. A single red horizontal directed line represents

a cycle α generating the extra dimension of H2(K; Z2). It is also de-

picted in Figure 22. It turns out that [α] is homologically non-zero iff

the used coefficients are Z2. In order to prove this statement we first

present a claim.

We claim that 2[α] is the trivial homology class. In order to prove

the claim the leftmost part of Figure 24 has two copies of α drawn

slightly apart from each other for better distinguishability. The cor-

responding homology class does not change if we move45 each of the 45“Moving” in this setting can be
thought of as a homotopic change.

Formally speaking, a moved chain

represents the same homology class
if the difference between the original

and the new chain is in the boundary
group, see Figure 23.

copies of α separately. So let’s move them as on the Figure:

Figure 23: Excerpt from the trans-
formation in Figure 24. The blue

and the red chain represent the same

homology class because their differ-
ence (blue − red) is the boundary of
the 2-chain consisting of the strip of

depicted oriented triangles.

• move the upper copy slightly higher;

• move the lower copy to the bottom of the side. Due to the reversed

orientation, the chain then appears on the top of the square with

(in the plane seemingly) reversed orientation. Moving this repre-

sentative lower to the first copy of α we see, that the copies cancel

each other out: they consist of the same edges with converse orien-

tations.

As a result, the claim holds, i.e, 2[α] is the trivial homology class.

Depending on the coefficients of our computation this has the follow-

ing ramifications:

• if F 6∼= Z2 then we can divide equation 2[α] = 0 by 2 and obtain

that [α] = 0 ∈ H1(K; F).

• if F ∼= Z2 then we can’t divide equation 2[α] = 0 by 2 as 2 = 0. It

turns out that [α] 6= 0 ∈ H1(K; Z2) and thus α provides an extra

dimension to H1(K; Z2).

For an alternative argument proving the claim see Figure 25.
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Figure 24: The Klein bottle.

Figure 25: Another proof of the fact

that 2[α] is homologically trivial
within the Klein bottle. The chain

2[α] is depicted in red and is the
boundary of the 2-chain consisting of

all depicted oriented triangles.

Alexander duality

Homology is defined for any abstract simplicial complex. However,

if there is an underlying geometric simplicial complex K embedded in

a sphere or an Euclidean space, there is a connection between the ho-

mology of K and that of its complement. The relationship is formally

known as the Alexander duality.

Before we state the duality we should elucidate a few technical de-

tails of the complement construction. Let K ⊂ R2 be a geometric sim-

plicial complex. In particular, K consists46 of finitely many simplices.

46 Formally, the body of K is the

union of finitely many simplices.

The complement of K, denoted by KC = R2 \ K, is unfortunately not

homeomorphic to a (finite47) simplicial complex. As a proof of this

47 Recall that all simplicial complexes

considered here are finite. Within

the context of infinite simplicial
complexes though, the complement

can be triangulated and the treatment

of complements presented here is
immaterial.

claim observe that K is a closed48 subset of the plane, while KC is usu-

48 In particular, this means that the

limit of each converging sequence in K
lies in K.

ally49 not. However, KC is homotopic to a finite simplicial complex.

49 Except if K is empty.

For example see Figure 26. At his point we defer from specifying de-

tails of triangulation of KC or its homotopy type and rather conclude

with the geometrically declaration: KC is homotopy equivalent to a

finite simplicial complex K′ and so whenever we will be talking about

the homology of KC, we will formally be thinking of the homology of

K′. The same discussion applies if K is a geometric simplicial complex

in any Euclidean space of a sphere.

Figure 26: Simplicial complex K in

the plane in black, and a simplicial

complex K′ homotopy equivalent
to its complement in red. Note the

number of holes of K is one less than
the number of components of K′, i.e.,

b1(K) = b0(K′) − 1. Also, number

of holes of K′ equals the number of
components of K, i.e., b1(K′) = b0(K).

The Alexander duality provides a connection between the homolo-

gies of K and its complement.

Theorem 3.7 (Alexander duality). Let n ∈ N and suppose K ⊂ Sn

is a geometric simplicial complex. Then for any coefficients F we have:

1. b0(K; F)− 1 = bn−1(KC; F).

2. bn−1(K; F) = b0(KC; F)− 1.

3. bq(K; F) = bn−q−1(KC; F) for all q ∈ {1, 2, . . . , n− 1}.

From the Alexander duality we may draw a similar conclusion for

complexes in Euclidean spaces by taking into account that removing a
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point50 from Sn results in a space homeomorphic to Rn. 50 A removal of a point from KC ⊂ Sn

increases bn−1 by one.

Corollary 3.8. Let n ∈ N and suppose K ⊂ Rn is a geometric simpli-

cial complex. Then for any coefficients F we have:

1. b0(K; F) = bn−1(KC; F).

2. bn−1(K; F) = b0(KC; F)− 1.

3. bq(K; F) = bn−q−1(KC; F) for all q ∈ {1, 2, . . . , n− 1}.
T Proofs of Alexander duality are

quite technical and typically involve
cohomology.

Alexander duality is handy when computing homology groups of

simplicial complexes in Euclidean spaces or spheres. For example,

instead of computing the one-dimensional homology of a planar sim-

plicial complex, we can51 compute the number of components of its 51 Provided there is an easy descrip-
tion of a complement. Such examples

would include bitmap images.
complement, which is typically much faster.

Figure 27: A demonstration of

Alexander duality: given a bounded

subset X of the plane, each compo-
nent of X corresponds to a hole in
XC, and each hole in X corresponds to
bounded component of XC.

4 Concluding remarks

Recap (highlights) of this chapter

• Cycles, boundaries, homology

• Detecting components and holes with homology

• Computing homology through matrix reduction

• Euler characteristic

• Alexander duality

Background and applications

Homology is one of the focal invariants in topology and geometry.

Homological conditions and constructions can be found throughout

mathematics. We will present one of them in the appendix (Cubical

homology). The version presented here is usually called “simplicial

homology” as it arises from the structure of a simplicial complex. For

non-triangulated spaces a version called “singular homology” can be

defined. In general though, any reasonable boundary map ∂ satisfying

∂2 induces its own homology structure. Examples52 include cubical 52 Another example is the De Rham
cohomology and exterior derivative.
While the theory itself is quite in-

volved, a snapshot of the fact that

∂2 = 0 can be observed in low dimen-
sions via specific derivatives: gradient,

divergence, and curl, are specific
boundary maps as the composition
of a consecutive pair amongst them

equals zero.

homology (see appendix) and cohomology.

Amenability to algorithmic computations through matrix reductions

and, as we will see later, Discrete Morse Theory makes homology an

obvious tool with which we could determine topological properties

of data. In practice though the usual homology is often superseded

by persistent homology, which is a richer, parameterized version of

homology described in later chapters.
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Appendix: Homology with coefficients in Abelian groups

Classical introductions of homology typically consider coefficients

from an Abelian group rather than a field. By far the most popular

choice among non-fields is the group of integers Z. In this subsection

we review the construction and properties of homology using coeffi-

cients53 in a group Z. 53 The presented treatment would be

practically identical for any Abelian
group as the coefficient group.

Let K be an abstract simplicial complex of dimension n. For each

q ∈ {0, 1, . . . , n} let nq denote the number of simplices of dimension q
in K.

The definition of homology in this case remains the same with the

only difference being that the structure of algebraic invariants is that

of Abelian groups, and the boundary operator ∂ is a homomorphism:

1. A q-chain is a formal sum ∑
nq
i=1 aiσ

q
i where ai ∈ Z and σ

q
i is an

oriented simplex of dimension q in K.

2. The chain group Cq(K; Z) ∼= Znq is the group of all q-chains. Its

generators are oriented q-simplices of K.

3. For each p ∈N the boundary map

∂p : Cp(K; Z)→ Cp−1(K; Z)

is the homomorphism defined by

∂p〈v0, v1, . . . , vp〉 =
p

∑
i=0

(−1)i〈v0, v1, . . . , vi−1, vi+1, . . . , vp〉.

As before, ∂2 = 0. Additionally define ∂0 = 0.

4. The collection of chain groups bound together by the boundary

homomorphisms is called the chain complex:

· · · ∂→ Cn(K; Z)
∂→ Cn−1(K; Z)

∂→ · · · ∂→ C1(K; Z)
∂→ C0(K; Z)

∂→ 0

5. For each q ∈ {0, 1, . . .}. We define groups:

• q-cycles as Zq(K; Z) = ker ∂q ≤ Cq(K; Z).

• q-boundaries as Bq(K; Z) = Im ∂q+1 ≤ Zq(K; Z) ≤ Cq(K; Z).

• q-homology group as the quotient Hq(K; Z) = Zq(K; Z)/Bq(K; Z).

Proposition 4.1. Suppose G, H
are Abelian groups, a map
f : G → H is a homomorphism,

and G′ ≤ G. Then:

1. Im( f ) ∼= G/ ker( f ).

2. rank(G/G′) = rank(G) −
rank(G′).

Up to this point the introduction has been analogous to the one

where coefficients form a field. However, as Hq(K; Z) is an Abelian

group, its rank does not completely determine it. In particular,

Hq(K; Z) ∼= Zr︸︷︷︸
free part of G

⊕Zp
q1
1
⊕Zpq2

2
⊕ . . .⊕Zp

qk
k︸ ︷︷ ︸

torsion of G

,
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where the rank of the group r = bq(K; Z), referred to as the q-Betti

number, only determines54 the free part of the group. 54 Two of the cases when homology

group has no torsion:

• For any simplicial complex K we

have H0(K; Z) ∼= Zb0 , where b0 is

the number of components of K.

• If K is a planar graph then

H1(K; Z) ∼= Zb1 , where b1 is

the number of holes K generates in
the plane.

Let rank ∂q be the rank of the image of ∂q. By Proposition 4.1,

numbers bq can be deduced55 from the ranks of ∂q, ∂q+1 and nq. How-

55 I.e., bp = np − rank ∂p − rank ∂p+1.

ever, in order to compute torsion we need to delve deeper into the

structure of the boundary maps.

For example, suppose the ranks of the two maps in the following

diagram are 1:

Z
ϕ→ Z

ψ→ Z,

and assume Im ϕ ⊆ ker ψ. Defining H = ker ψ/ Im ϕ, we know that

rank H = 0. However, depending on maps ϕ, ψ group H could be any

cyclic group. For example, if ψ(n) = k · s · n for some k, s ∈ N and

ϕ(n) = k · n, then H ∼= Zs.

T It turns out that amongst all pos-

sible choices of coefficients, homology
with coefficients in Z contains the

most information. Details of this

statement are formalized in the Uni-
versal coefficient Theorem, which

explains the connection between coef-

ficients Z and all other coefficients.

In order to compute homology with coefficients on Z we may re-

duce each boundary matrix to its Smith normal form. Given a matrix

with entries in Z, its Smith normal form is:

D =



a1 0 0
0 a2

ar 0 0
0 0

0 0


,

where each diagonal entry ai divides56 the next one. The diagonal 56 I.e., ai |ai+1, ∀i ∈ {1, 2, . . . , r− 1}.
entries ai are called elementary divisors and r is the rank57 of the 57 The rank of the matrix correspond-

ing to a boundary map coincides with
the rank of the boundary map.

matrix.

Some properties of the Smith normal form for matrices with entries

in Z:

1. Each matrix with entries in Z has58 a Smith normal form. 58 Formally, speaking, a Smith normal

form of a matrix A with entries in
Z is a factorization A = UDV,
where D is a matrix of the mentioned

form, and U and V are matrices with
entries in Z with determinant ±1. In

particular, the last condition means

that U and V are invertible, and that
its inverses have entries in Z.

2. The form is obtained through the combination59 of row reduction

59 At this point the shortcoming of
the structure of a group as compared
to that of a field becomes prominent.

When coefficients were in a field,
we could always divide a row by a

non-zero entry. When working with
coefficients in Z that is not allowed
(except for ±1, which doesn’t really
help). As a result, obtaining the

desired form of a matrix requires us to
involve greatest common divisors and
even then, not all non-trivial diagonal
entries can be transformed to 1.

and the Euclidean algorithm for computing greatest common divi-

sors.

3. The form is unique up to the signs of the elementary divisors.

The elementary divisors generate the torsion part of homology.

We now describe how to obtain homology groups using the Smith

normal form.

• Choose q ∈ {0, 1, . . .}.

• Assume matrix D above is the Smith normal form of ∂q+1 with all

diagonal entries being positive.
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• Compute also the rank of ∂q, Possibly also through the Smith nor-

mal form.

• Then:

Hq(K; Z) ∼= Znq−rank ∂q−rank ∂q+1 ⊕
r⊕

i=1

Zai .

Note that this form may potentially be simplified60 further. 60 If s1, s2 are relatively prime, then

Zs1 ·s2
∼= Zs1 ⊕Zs2 . Also, if some ai =

1, then Zai is the trivial group, i.e., it

can be omitted from the expression.

We conclude by providing analogues of the examples of homology:

• The formula for disjoint union holds as before: Hi(K ä L; Z) ∼=
Hi(K; Z)× Hi(K; Z).

• The expression of the Euler characteristic with integer Betti num-

bers holds by the same argument: χ(K) = b0 − b1 + b2 − b3 + . . ..

• For each n ∈ {1, 2, . . .} we have:

– H0(Sn; Z) ∼= Hn(Sn; Z) ∼= Z;

– Hi(Sn; Z) = 0, ∀i /∈ {0, n}.

• For each connected manifold K of dimension n we have:

– Hn(K; Z) = 0 if K has boundary.

– Hn(K; Z) ∼= Z if K is closed orientable.

– Hn(K; Z) ∼= Z2 if K is closed non-orientable.

• If K is the Klein bottle, then H1(K; Z) ∼= Z⊕Z2.

Appendix: The cubical homology

Figure 28: A 4× 4 image consisting of
grey pixels.

The homology construction we described above is called simplicial

homology as it is based on the structure of a simplicial complex: a

space assembled using simplices. However, there are settings in which

alternative shapes of basic building blocks appear to be more suitable.

One such setting is the image analysis, where we work with an image

or a video consisting of pixels. In this setting it would be natural to

consider pixels as the building blocks. This leads us to a new con-

struction61 of complexes and homology: cubical complexes and cubical 61 Actually, we could build complexes
and the corresponding theory from

any shape of basic building blocks.
homology. We will restrict ourselves to the setting of two-dimensional

images, meaning the pixels are chosen from a fixed grid. The construc-

tion could easily be generalized to three-dimensional (movies of 2-D

images or a 3-D image) four-dimensional (movies of 3-D images) or

highere-dimensional images with different shapes of grids and cubes, or

even without a fixed grid.

Let n ∈ N and consider a square grid of size n× n, where n refers

to the number of squares along each side, see Figure 28. Our image is

given by a collection of pixels (grey squares). The first task is to define

cubical simplices:
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• 0-dimensional simplices are the vertices appearing on the grid.

There are (n + 1)2 vertices.

• 1-dimensional simplices are the vertical and horizontal edges be-

tween vertices appearing on the grid. There are 2n(n + 1) edges.

• 2-dimensional simplices are the squares of the grid. There are n2

squares.

Figure 29: The collection of all poten-

tial cubical simplices.
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0

1

2

3

4

5

6

7

8

Figure 30: The assignment scheme.

A cubical complex K on an n × n grid is a collection of cubical

simplices such that if σ ∈ K and τ ⊆ σ, then τ ∈ K.

Our next task is to determine a convenient systematic labelling for

the squares, edges and vertices. In the context of simplicial complexes

the labels were just the oriented collections of vertices. While the same

approach could62 be used here, there is a more elegant enumeration of

62 Although, the approach would

be cumbersome. We would need 4
vertices to describe a square.

the simplices.

Instead of thinking about coordinates in terms of the n × n grid,

we systematically imagine all potential simplices of a complex drawn

in a table-like pattern as Figure 29 demonstrates. Each simplex can

be assigned coordinates (x, y) where x, y ∈ {0, 1, 2, . . . , 2n} according

to this pattern. Drawing the corresponding coordinate axes superim-

posed over the original n × n grid (Figure 30) we see that a pair of

coordinates (x, y) represents the simplex63, whose center is (x, y). We

63 A square, and edge, or a vertex.

additionally define the orientations:

• Each square is oriented with the ordering of its vertices in the

positive-rotational order.

• Vertical edges are oriented upwards, horizontal to the right.

The resulting assignment of coordinates/labels has the following prop-

erties (see Figure 31):

• If x, y are both odd, then (x, y) is a square.

• If exactly one of x, y is odd, then (x, y) is an edge.

• If x, y are both even, then (x, y) is a vertex.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

(3, 5)

(7, 4)

(4, 2)

square

vertex

edge

edge

(0, 1)

Figure 31: The assignment scheme.

We are now in a position to define the cubical homology. The struc-

ture of the definition is the same as for the simplicial homology with

the only essential difference being the way in which we define the

boundary map.

Let K be a cubical complex and choose64 a a field of coefficients F.

64 We could also choose the coeffi-
cients from an Abelian group, the
construction would be analogous.

For each q ∈ {0, 1, 2} let nq denote the number of cubical q-simplices

in K.

1. A q-chain is a formal sum ∑
nq
i=1 aiσ

q
i where ai ∈ F and σ

q
i is an

oriented cubical simplex of dimension q in K.
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2. The chain group Cq(K; F) ∼= Fnq is the vector space of all q-chains.

Its generators are oriented cubical q-simplices of K.

3. For each p ∈N the boundary map

∂p : Cp(K; F)→ Cp−1(K; F)

is the linear map defined65 by the following rules: 65 The map encodes the geometric
boundary.

If x and y are both even (vertex): ∂p(x, y) = 0.

If x is odd and y is even (horizontal edge):

∂p(x, y) = (x + 1, y)− (x− 1, y).

If x is even and y is odd (vertical edge):

∂p(x, y) = (x, y + 1)− (x, y− 1).

If x and y are both odd (square):

∂p(x, y) = (x + 1, y)− (x, y + 1)− (x− 1, y) + (x, y− 1).

" The operations between the co-

ordinates in the expression of the
boundary map are the formal sum-

mations and subtractions of the chain
group and should not be considered as

operations of pairs. The coordinates

(x, y) are only labels of cubical sim-
plices and shouldn’t be added to or

subtracted from each other. For ex-

ample, (0, 0)− (2, 0) is a formal chain
consisting of two vertices with coeffi-

cients 1 and −1, while label (−2, 0) is

undefined.
As before, ∂2 = 0.

4. The collection of chain groups bound together by the boundary

homomorphisms is called the chain complex:

· · · ∂→ Cn(K; F)
∂→ Cn−1(K; F)

∂→ · · · ∂→ C1(K; F)
∂→ C0(K; F)

∂→ 0

5. For each q ∈ {0, 1, . . .}. We define groups:

• q-cycles as Zq(K; F) = ker ∂q ≤ Cq(K; F).

• q-boundaries as Bq(K; F) = Im ∂q+1 ≤ Zq(K; F) ≤ Cq(K; F).

• cubical q-homology group as the quotient

Hq(K; F) = Zq(K; Z)/Bq(K; F).

It turns out that the cubical homology of a cubical simplex K is

isomorphic to the homology of the union of the cubical simplices of

K. In particular, the homology detects components, holes, and (in the

case of higher dimensional cubical complexes) higher-dimensional holes

as the usual homology would.

Figure 32: The cubical homology of

the above image is given by H0 ∼= F

(one component) and H1 ∼= F (one
hole).


	Definition
	Computing homology
	Examples of homology
	Concluding remarks

