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The material presented up to this point mostly falls into the premise

of geometric topology and combinatorics: we introduced metric spaces

and their combinatorial descriptions, simplicial complexes. Our even-

tual goal however is to compute meaningful topological invariants from

these combinatorial descriptions. Within mathematics the field dealing

with operations is called algebra and our milestone on the path to

computational implementation is an algebraic formulation based on

simplicial complexes. With that intention in mind we first review and

introduce some algebraic concepts.

In this lecture we will present fields and vector spaces. Specific

cases of the first two notions are probably familiar to the reader: real

numbers and vectors in Euclidean space. We will introduce a few

more fields and vector space constructions, which will provide us with

enough structure to introduce homology in the next chapter.

1 Fields

Within the context of algebra, a field is a set with two operations

satisfying a number of properties. For our purposes we will deflect a

formal introduction and rather introduce specific fields which will be of

our interest.

We will think of a field as our number system. We will want to

be able to add, subtract, multiply and divide (except by zero) in our

field. The fields a reader is most familiar1 with are probably Q, R, 1 N is not a field as it does not con-

tain all results of subtractions, for

example, 3− 5 /∈ N. Z is is not a field
as it does not contain all quotients

by non-zero numbers, for example

3/5 /∈ Z.

and C. However, there is also a family of finite fields (consisting of

finitely many numbers) which often provides convenient examples: the

reminders.

The fields of remainders Zp

Definition 1.1. Let p ∈ 2, 3, 5, . . . be a prime number. Define:

(a) pZ = {p · n | n ∈ Z} = {. . . ,−2p,−p, 0, p, 2p, 3p, . . .};

(b) Zp = Z/(pZ) as the quotient consisting of remainders when

dividing by p.

Let us discuss (b)2 in detail. The quotient Z/(pZ) consists of 2 I.e., the fields of remainders and the
quotient construction that defines it.classes, each of which can be represented by a number from the “nu-

merator” Z. If a ∈ Z then the corresponding class is represented by

[a]. Two such numbers represent the same class in the quotient iff

their difference is3 in the “denominator” Zp. To phrase it differently4, 3 I.e., iff their difference is a multiple
of p. In particular this means [a] = [b]
if the remainder after dividing by p is
the same for both a and b.
4 What we just described is a general

construction of an algebraic quotient
structure. We will come across it

again in the context of vector spaces.
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[a] = [b] ⇔ b− a ∈ pZ.

Example 1.2. Let p = 5. In Z5 two numbers represent the same class

iff their difference is divisible by 5. Classes [0], [1], [2], [3], [4] are all

distinct but5: 5 A few more examples in Z5:

[−4] = [1], [8] = [3], [17] = [2],
[1346134523451] = [1], [3457] = [2],
[−23513252] = [3].

• [5] = [0] as 5− 0 = 1 · 5.

• [6] = [1] as 6− 1 = 1 · 5.

• [−1] = [4] as −1− 4 = −1 · 5.

• [126] = [1] as 126− 1 = 25 · 5.

In particular, two numbers represent the same class iff their remainder

when dividing by 5 is the same.

T A few examples in Z7: [8] = [1] =
[15], [−5] = [2] = [72].

We can draw another conclusion from Example 1.2: the most con-

venient representation6 of Zp is given by p classes [0], [1], . . . , [p− 1]. 6 We will actually be using this repre-

sentation almost exclusively from now
on.

These classes are all distinct7 and together form Zp.

7 They form all possible remainders

after division by p.
Example 1.3. The structure of Z2 encodes parity: for a ∈ Z we

observe that [a] = 0 iff a is even, and [a] = 1 iff a is odd.

Defining the addition, subtraction and multiplication in Zp These

three operations are defined in the obvious way:

[a] + [b] = [a + b], [a]− [b] = [a− b] and [a] · [b] = [a · b].

It turns out that the operations is well defined8 in the following sense: 8 Let us prove that addition is well

defined.

Proof.

[a] = [a′], [b] = [b′] =⇒

∃ka, kb ∈ Z : a′ = a + ka p, b′ = b + kb p.

Thus

[a′ + b′] = [a + ka p + b + kb p] =

= [(a + b) + (ka + kb)p] = [a + b].

[a] = [a′], [b] = [b′] =⇒ [a + b] = [a′ + b′]

and the same holds for the subtraction and multiplication.

Example 1.4. Addition:

In Z5: [3] + [4] = [2], [3]− [4] = [4], [1] + [2] = [3].

In Z7: [3] + [4] = [0], [3]− [4] = [6], [1] + [2] = [3].

Multiplication:

In Z5: [3] · [4] = [2], [2] · [4] = [3], [2] · [3] = [1].

In Z7: [3] · [4] = [5], [2] · [4] = [1], [2] · [3] = [6].

Example 1.5. Note that in Z2 = {[0], [1]} we have [a] = [−a] hence

addition is the same as subtraction. In fact, if we identify [0] and [1]

with their Boolean values, the addition and multiplication encode9 9 Which means, amongst others,
that these operations in Z2 are fairly

natural in computer, exact, and fast.
In fact, computations in topological
data analysis are often performed

using Z2.

logical operations “Exclusive or” (XOR) and “Conjunction” (AND):

[a] + [b] = [a XOR b], [a] · [b] = [a AND b].

Defining the division in Zp

Up to this point the described structure of Zp did not require10 10 ...as assumed in Definition 1.1.
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p to be prime. This assumption however is required11 if we want 11 If q is not a prime then Zq contains
divisors of zero, i.e., non-zero classes,

whose product is the zero class. For

example, [2] ∈ Z4 is a non-zero class,
but [2] · [2] = [4] = [0] ∈ Z4 is the zero

class. If we wanted to find an inverse

of [2] in Z4 we would need to find an
integer k ∈ Z, so that [2k] = [1] ∈ Z4,

an unattainable feat as 2k is always
even. A divisor of zero has no inverse.

to define division by classes, which are different than [0]. From the

number theory we know that if p is a prime, then for each number a ∈
Z with [a] 6= [0], the classes [a], [2a], . . . [pa] = [0] represent the entire

Zp. In particular, we can choose a coefficient k representing [1] = [kp]

and define the inverse of p by [p]−1 = [k]. We can consequently define

the division by

[a]/[b] = [a] · [b]−1,

which turns out to be well defined if p is prime and [b] 6= [0].

Example 1.6. In Z5 we have [1 · 3] = [3], [2 · 3] = [1], [3 · 3] =

[4], [4 · 3] = [2], [5 · 3] = [0 · 3] = [0]. The products [k · 3] exhaust entire

Z5 and [3]−1 = [2]. Similarly, [2]−1 = [3].
In Z7 we have [2]−1 = [4], [3]−1 = [5], ...

1 2

3 0

Figure 1: Quotient Zp models ro-
tations by 2π/p. Adding p such

rotations we arrive at the original sit-

uation 0 ∈ Zp. The Figure represents
Z4. Given any situation the addition

of 1 is represented by a rotation by

π/2 in the positive direction.

We are now able to add, subtract, multiply and divide (except by

zero) in Zp, which makes Zp a field.

Remark 1.7. Counting and computing in Zp is surprisingly common in

everyday life. It appears whenever we have a periodic behaviour.

• Z2 is a model for true/false in logic, odd/even numbers, etc.

• We use Z4 when thinking about seasons of the year.

• We use Z7 when thinking about days of the week (if today is the ath

day of the week then b days from today it will be [a + b]th day of the

week).

• We use Z10 whenever we are computing in decimal numbers. Given

a, b ∈ N, the first digit of a + b equals [a + b] in Z10 and the same

goes for multiplication.

• We use Z10 whenever we are converting in the metric system12. 12 As the reader might imagine, there
is no reasonable algebraic explanation

for the imperial system.• We use Z24 when thinking about hours in a day13.
13 When thinking about hours coupled

with the am/pm prefixes we actually

do a combination of Z2 and Z12

• We use Z60 when thinking about minutes and seconds.

As a summary let us recall all the fields we mentioned: Q, R, C,
and Zp for any prime number p. These are the only fields we will be

considering14. 14 In particular, whenever we will
be talking about a field we will only

consider Q, R, C, and Zp, even though
all the concerned treatment will hold
for any algebraic field (which we have

not defined in general).

2 Vector spaces

A prototype of a vector space over field R a reader is familiar with

is Rn for any n ∈ N. It consists of n-tuples (vectors) of real numbers,

which we can add, subtract, and multiply by any element of our field

R. In a similar way Fn is a vector field over F: it consists of n-tuples
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(vectors) of numbers from F, which we can add, subtract, and mul-

tiply by any element of our field F. While all our vector spaces will

essentially15 be of the form Fn, some of our constructions will require 15 I.e., up to isomorphism, which will

defined later.us to use a more formal definition.

Definition 2.1. Let F be a field. A vector space V over field F is

a collection of elements (vectors) equipped with two operations,

1. addition + : V ×V → V and

2. scalar multiplication · : F×V → V

satisfying the following properties:

• addition is associative, commutative, contains the identity (zero)

vector 0, and V contains the opposite element of each vector;

• scalar multiplication is compatible, distributive, and normalized.

T Glossary of algebraic properties

mentioned in Definition 2.1:

• associativity: (u + v) + w =
u + (v + w), ∀u, v, w ∈ V

• commutativity: u + v = v +
u, ∀u, v ∈ V

• zero vector: 0 + v = v, ∀v ∈ V
[it should always be clear from
the context whether 0 denotes a

number in F or the zero vector in

V]

• the opposite element of v ∈ V is

denoted by −v ∈ V and satisfies

v− v = 0

• compatibility: (ab)v = a(bv), ∀a, b ∈
F, ∀v ∈ V

• distributivity: (a + b)v = av + bv
and a(v + w) = av + aw, ∀a, b ∈
F, ∀v, w ∈ V

• normality: 1 · v = v, ∀v ∈ V.

Roughly speaking, if we have a collection of vectors we can reason-

ably add, subtract, and multiply by elements of some field, then this

collection forms a vector space.

Example 2.2. Let n ∈ N. Given symbols v1, . . . , vn and a field F, all

formal16 sums ∑n
i=1 aivi where ai ∈ F form a vector space. Operations 16 A “formal sum” in this setting

means that vi + vj is not defined

as a single element (as a result of a

summation) in a vector space, but
is rather thought of as an abstract

element in itself. For example, if we

want to shop for an apple and a pear,
our result should be apple + pear,

which does not equal any other single

fruit.

are defined in the obvious way:

n

∑
i=1

aivi +
n

∑
i=1

a′ivi =
n

∑
i=1

(ai + a′i)vi, and b
n

∑
i=1

aivi =
n

∑
i=1

(bai)vi.

When F = Z2 the corresponding vector space models the power set

of v1, . . . , vn. A subset {vi+1, . . . , vik} corresponds do vi+1 + . . . + vik .

The sum of two formal sums in this setting models the symmetric

difference17 between the corresponding sets. 17 The symmetric difference of sets

A, B equals A ∪ B \ A ∩ B.

T Let X be a metric space and
m, n ∈ N. The following are vec-
tor spaces over F: the collection of

all m× n matrices with entries in F,
the collection of all functions X → F,

the collection of all continuous func-
tions X → F, the collection of all
differentiable functions X → F if
F ∈ {Q, R, C}, ... Operations on func-

tions in these examples are defined
pointwise.

For a prime number p and n ∈ N the vector space (Zp)n = Zn
p

is a finite vector space consisting of pn elements. While this vector

space appear much different than Rn, the formal theory, concepts, and

proofs are the same in both cases. We next recast the familiar notions

from Rn in the setting of vector spaces over F.

Let V, W be a vector space over field F.

1. A linear combination of vectors in V is any expression of the form

k

∑
i=1

aivi, ai ∈ F, vi ∈ V

2. A collection of vectors {v1, v2, . . . , vk} ⊂ V is linearly indepen-

dent18 if the only coefficients ai ∈ F satisfying ∑k
i=1 aivi = 0 ∈ V are 18 For example, vectors (1, 3) and

(2, 1) are linearly independent in
R2, Q2, Z2

13, but not in Z2
5.

the zero coefficients, i.e., ai = 0, ∀i.
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3. A basis of V is a maximal19 linearly independent set in V. A a 19 In particular, each element of V
can be expressed uniquely as a linear

combination of the basis vectors.
vector space typically has many different bases. However, if V is

finite dimensional20, then the cardinality of each basis is the same. 20 I.e., if it admits a finite basis.

This number is called the dimension of V.

4. A subset U ⊂ V is a vector subspace [notation: U ≤ V] of V if it is

itself a vector space over F.

5. A map f : V → W is linear if it is additive21 and multiplicative22. 21 f (v + w) = f (v) + f (w), ∀v, w ∈ V
22 f (av) = a f (v), ∀a ∈ F, v ∈ VA linear map is completely determined23 by the images of its basis.
23 Consequently, a linear map can
be represented by a matrix M with

coefficients in F is we chose bases

of V and W, with the matrix-vector
product M · v representing f (v).

6. A bijective linear map is called an isomorphism [notation: ∼=].

Every vector space over F of dimension d ∈N is isomorphic to Fd.

7. Let f : V →W be a linear map.

(a) The kernel of f is defined as

ker( f ) = {v ∈ V; f (v) = 0} ≤ V

(b) The image of f is defined as

Im( f ) = { f (v); v ∈ V} ≤W.

The dimension of Im( f ) is called the rank of f .

(c) Given bases {v1, v2, . . . , vk} of V and {w1, w2, . . . , wl} of W,

map f may be represented by an l × k matrix with entries in F.

If f (vi) = ∑
j
j=1 ai,jwj, then the entry at (j, i) equals ai,j.

8. Given a matrix with coefficients in F, we can still preform the

Gauss reduction to, for example, compute the rank of a linear map,

solve systems of linear equations, ... The procedure is the same as

in Rn.

9. Given U ≤ V, the quotient V/U is defined as the vector space over

F consisting of classes [v] for v ∈ V under the following identifica-

tion24: 24 The operations of addition [u] +
[v] = [u + v] and multiplication by a
scalar a[u] = [au] for a ∈ F, u, v ∈ V
are well defined by the same argument

that was provided in the previous
section for the fields.

[u] = [v]⇔ u− v ∈ U.

In particular, [v] = 0 iff v ∈ U.

Our forthcoming descriptions of holes in simplicial complexes will

be expressed in terms of dimensions and bases of vector spaces, for

which the following proposition will turn out to be very handy.
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Proposition 2.3. Assume U, V, W are vector spaces over a field F.

1. Let f : V →W be a linear map. Then Im( f ) ∼= V/ ker( f ).

2. Let U ≤ V be a subspace. Then dim(V/U) = dim(U)−dim(V).

Proof. 1. Consider the map g : V/ ker( f ) → Im( f ) defined by [u] 7→
f (u). The map is:

• well defined because [u] = [v] =⇒ u− v ∈ ker( f ) =⇒ f (u− v) =

0 =⇒ f (u) = f (v) =⇒ g([u]) = g([v]);

• surjective by the definitions of Im f and g;

• injective as g([u]) = f (u) = 0 implies u ∈ ker( f ) and thus

[u] = [0].

We conclude that g is an isomorphism.

2. Let {w1, . . . , wk} be a basis25 if U. Complete it by B1 = {v1, . . . , vl} 25 This implies dim(U) = k.

to a basis26 of V. Observe that B2 = {[v1], . . . , [vl ]} is a basis27 of 26 This implies dim(V) = k + l.
27 This implies dim(V) = l and thus

proves our claim. Furthermore, it
demonstrates a way to obtain a basis

of U/V.

U/V:

• B2 is linearly independent: if a linear combination of B2 was the

zero vector in V/U then the corresponding combination of the

elements of B1 was in U. This can only happen if the later com-

bination equals 0 by the choice of B1 and thus all the coefficients

equal 0 by the linear independence of B1

• B2 spans the whole V/U because28 B1 and U span the whole V. 28 Take any v ∈ V and express it as

v = v′ + v′′, where v′ ∈ U and v′′

is a linear combination of B1. Then

[v] = [v′′].

3 Concluding remarks

Recap (highlights) of this chapter

• fields, vector spaces

• quotients and dimension

Background and applications

Fields and abstract vector spaces have a long presence in mathe-

matics going back centuries. Finite fields are attractive for computa-

tional implementation for their simplicity, they are easier to handle,

computations in them are typically faster than in real numbers, and

are resistant to some numerical issues present in reals and floating

point computations. Algebraic a predecessor of fields and vector spaces
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are (algebraic) groups, another classical subject of algebra, which is

now present in virtually every corner of mathematics. Homology of the

forthcoming section is typically introduced through groups in the theo-

retical setting, while the practical aspects of fields motivated exclusive

use of fields for practical reasons. A short recap of groups is given in

the appendix.

Appendix: A very short introduction to Abelian groups

Many definitions concerning groups are the same as those of fields

and vector spaces.

Definition 3.1. An Abelian group (G, +) is a set G with an asso-

ciative commutative operation + : G× G → G, such that:

1. there exists the zero element 0 ∈ G satisfying 0 + g = g + 0, ∀g ∈
G;

2. for each g ∈ G there exists its converse −g ∈ G satisfying

g + (−g) = 0.

T The term ”Abelian” refers to com-

mutativity. If the commutativity con-

dition is not satisfied, the structure is
called a (non-Abelian) group. These

include the groups of permutations
(with the operation being the compo-

sition) on n elements, the groups of

isometries of a metric space (with the
operation being the composition), the

group of invertible matrices (with the

operation being the product), etc.

T We will typically shorten a + (−b)
to a− b.Examples of Abelian groups include (R, +), (C, +), (Q, +), (Z, +),

(Zq, +) for any q, (R \ {0}, ·), (C \ {0}, ·), (Q \ {0}, ·), (Zq \ {0}, ·) for

any prime p, etc.

Definition 3.2. Suppose G, H are Abelian groups. A map f : G → H
is a homomorphism if f (a + b) = a(a) + b(b), ∀a, b ∈ A. A bi-

jective homomorphism is called an isomorphism [notation: ∼=].

Suppose G, H are Abelian groups and map f : G → H is a homo-

morphism.

1. A subset G′ ⊂ G is a subgroup [notation: G′ ≤ G] of G′ if it is

itself a group.

2. The kernel of f is defined as

ker( f ) = {a ∈ G; f (a) = 0} ≤ G

3. The image of f is defined as

Im( f ) = { f (a); a ∈ G} ≤ H.

4. A collection of elements a1, a2, . . . , ak ∈ G is called a generating

set29 of G, if each element of G can be expressed30 as a sum31 29 Or just “generators”.
30 As opposed to vector spaces, such
expressions in groups are often not

unique, which is why the expression
“generating set” is used instead of
“basis”.
31 For n ∈N and a ∈ G we define

n · a = a · a · . . . · a︸ ︷︷ ︸
n−times

and (−n) · a = −(n · a).

∑k
i=1 niai for some ni ∈ Z.
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5. Group G is finitely generated if there exists a finite generating set.

6. If G′ ≤ G, the quotient G/G′ is defined as the group consisting of

classes [a] for a ∈ G under the following identification:

[a] = [b]⇔ a− b ∈ G′.

7. The direct sum of groups G and H is the group denoted by G⊕ H
and defined as

G⊕ H = {(a, b); a ∈ G, b ∈ H}

and the operation being defined coordinate-wise.

A remarkable fact about finitely generated Abelian groups is that

the can be classified in a wonderful way.

" A comment to Theorem 3.3: A
finite Abelian group can, in particular,

be decomposed into groups Zsi , where

each si is a power of some prime.
To see that such a decomposition

does not work for other factors of

the group cardinality observe that
Z12 ∼= Z3 ⊕Z4, while Z4 6∼= Z2 ⊕Z2:

for each element a ∈ Z2 ⊕Z2 we have
a + a = 0, while the same does not

hold in Z4.

Theorem 3.3. [Classification Theorem for finitely generated Abelian

groups] Let G be a finitely generated Abelian group. Then there ex-

ist :

• k, r ∈ {0, 1, . . .},

• q1, q2, . . . , qk ∈N, and

• prime numbers p1, p2, . . . , pk ∈N,

such that G is isomorphic to

Zr︸︷︷︸
free part of G

⊕Zp
q1
1
⊕Zpq2

2
⊕ . . .⊕Zp

qk
k︸ ︷︷ ︸

torsion of G

.

Number r = rank(G) is called the rank of G.

Proposition 3.4. Suppose G, H are Abelian groups, a map f : G →
H is a homomorphism, and G′ ≤ G. Then:

1. Im( f ) ∼= G/ ker( f ).

2. rank(G/G′) = rank(G)− rank(G′).
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