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Topological methods typically take a simplicial complex as input.

However, objects of interest are often not provided in this form. The

first step in a topological treatment is thus frequently a creation of

simplicial complexes. In this lecture we will present various construc-

tions of complexes from a point cloud, i.e., from a finite collection of

points in a metric space. These points may represent a sample of our

shape, a collection of numerical data (a subset of Rn), etc.

Our discussion will include two properties we expect from such

a construction. The first one is a relationship with the underlying

shape, which is often guaranteed by the Nerve Theorem. The second

one describes stability to perturbations and proximity of various

constructions, as formalized by the interleaving property.

1 Rips complexes

Rips complexes represent perhaps the simplest construction of a

complex from a finite collection of points.

Definition 1.1. Let X be a metric space and let a sample S ⊂ X be

a finite subset. Choose a scale r ≥ 0. The Rips complex Rips(S, r)
is an abstract simplicial complex defined by the following rules:

1. The vertex set is S.

2. A subset σ ⊆ S is a simplex iff Diam(σ) ≤ r.

T Rips complexes are a special case
of clique complexes. Suppose G is

a graph with vertices V and edges

E. The clique complex of G is the
abstract simplicial complex with the

vertex set V, whose simplices satisfy

the following condition: a subset
σ ⊆ S is a simplex iff each pair of

vertices of σ is an edge in G. A Rips

complex is the clique complex of its
1-skeleton.

Figure 1: Five points in the plane and

three corresponding Rips complexes
Rips(S, r). Visualisation is assisted

by circles of radius r/2 around each

point. For much larger scales the Rips
complex is not planar and eventually

becomes 4-dimensional.

Remark 1.2. A few comments about the definition:

• Rips complexes are sometimes also called Vietoris-Rips complexes.

• Rips(S, r) represents a combinatorial snapshot of S at scale r.
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• Diam(σ) is the diameter of σ. Condition Diam(σ) ≤ r means that

the distance between each pair of vertices of σ is at most r.

• It is easy to verify that Rips complexes are indeed abstract simplicial

complexes: if σ is a simplex then so is each of its subsets.

Figure 2: Suppose we are given three
points in the plane. These three

points span a triangle in the Rips

complex for r greater or equal to the
maximal pairwise distance between

these points. Equivalently, the three

balls of radius r/2 should pairwise
intersect.

Remark 1.3. Some properties of the Rips complexes:

1. Rips complexes are often the preferred construction in TDA due to

their simplicity.

2. Rips(S, r) is an abstract simplicial complex, typically not embed-

dable in X.

3. For r smaller than the smallest pairwise distance between the points

in S, Rips(S, r) is a discrete set, i.e., a complex with no edges or

higher-dimensional simplices.

4. For r at least as large as the largest pairwise distance between the

points in S, Rips(S, r) is the (|S| − 1)-simplex, i.e., the simplicial

complex on S containing all subsets of S.

5. If r1 ≤ r2, then Rips(S, r1) ⊆ Rips(S, r2).

Definition 1.4. Let X be a metric space and let a sample S ⊂ X be

a finite subset. The Rips filtration of S is a collection of abstract

simplicial complexes {Rips(S, r)}r≥0 along with inclusions

ir1,r2 : Rips(S, r1) ↪→ Rips(S, r2) for all r1 ≤ r2.

A Rips filtration provides a collection of all Rips complexes on S.

While a single Rips complex depends on the choice of the scale, the

filtration does not. Filtrations will play a fundamental role later in the

definition of persistent homology.

2 Čech complexes

Definition 2.1. Let X be a metric space and let a sample S ⊂ X be

a finite subset. Choose a scale r ≥ 0. The Čech complex Cech(S, r)
is an abstract simplicial complex defined by the following rules:

1. The vertex set is S.

2. A subset σ ⊆ S is a simplex iff
⋂

x∈σ B(x, r) 6= ∅.

T Recall B(x, r) = {y ∈ X | d(x, y) ≤ r}
is a closed ball.

T Čech complexes are a special case

of nerve complexes, a connection that
will be explained below.
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Figure 3: Five points in the plane and

three corresponding Čech complexes

Cech(S, r). Visualisation is assisted
by circles of radius r around each

point. For much larger scales the Čech

complex is not planar and eventually
becomes 4-dimensional.

Remark 2.2. A few comments about the definition:

• Čech complexes are a classical topological construction used in many

contexts throughout topology.

• Cech(S, r) represents a combinatorial snapshot of S at scale r.

• It is easy to verify that Čech complexes are indeed abstract simpli-

cial complexes.

Remark 2.3. Some properties of the Čech complexes:

1. While harder to compute1, Čech complexes are attractive due to a 1 See the MiniBall algorithm in the
Appendix.well understood geometric interpretation, which will be explained in

the next section within the context of nerve complexes.

2. Cech(S, r) is an abstract simplicial complex, typically not embed-

dable in X, although it is often homotopy equivalent2 to a subset of 2 See Nerve Theorem below for de-
tails.X.

3. For r smaller than one half of the smallest pairwise distance be-

tween the points in S, Cech(S, r) is a discrete set.

4. For r at least as large as twice the largest pairwise distance between

points in S, Cech(S, r) is the (|S| − 1)-simplex.

5. If r1 ≤ r2, then Cech(S, r1) ⊆ Cech(S, r2).

6. It is easy to verify3 that Cech(S, r) ⊆ Rips(S, 2r). 3 If balls of radius r intersect then the

pairwise distances between the centers
are at most 2r.7. In is also easy to see that Rips(S, r) ⊆ Cech(S, r). A non-trivial

inclusion Rips(S, r
√

2) ⊆ Cech(S, r) holds in Euclidean spaces by

the Jung’s Theorem4. 4

Theorem 2.4 (Jung’s Theorem).
If D is the diameter of a fi-
nite subset F ⊂ Rn, then F is

contained in a ball of radius at

most D
√

n
2(n+1)

.

For X = Rn we actually obtain

Rips

(
S, r

√
2(n + 1)

n

)
⊆ Cech(S, r).

The factor r
√

2 in 7 of Remark 2.3 is
thus only the smallest upper bound
that holds for all n.

Definition 2.5. Let X be a metric space and let a sample S ⊂ X be

a finite subset. The Čech filtration of S is a collection of abstract
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simplicial complexes {Cech(S, r)}r≥0 along with inclusions

ir1,r2 : Cech(S, r1) ↪→ Cech(S, r2) for all r1 ≤ r2.

Figure 4: Suppose we are given three

points in the plane. These three

points span a triangle in the Čech
complex iff the three balls of radius r
intersect. The left complex consisting

of three edges and no triangle does
not appear as a Rips complex of any

triple of points.

3 Nerve complexes

Cech complexes are a special case of a classical topological construc-

tion called the nerve.

Definition 3.1. For k ∈ N let U = {U1, U2, . . . , Uk} be a collection

of subsets of X. The nerve of U is the abstract simplicial complex

N (U ) defined by the following rules:

1. The vertex set is U = {U1, U2, . . . , Uk}, consisting of k elements.

2. A subset σ ⊆ U is a simplex iff
⋂

i∈σ Ui 6= ∅.

U N (U) Figure 5: An example of a nerve.

A Čech complex is the nerve of the corresponding collection of r-

balls, i.e., Cech(S, r) = N ({B(s, r)}s∈S). Another example is the

Delaunay triangulation, which is the nerve of the Voronoi diagram.
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Figure 6: Two examples of Čech com-

plexes: balls and the corresponding
complex superimposed (left), complex

only (center) and the union of balls

homotopy equivalent by the Nerve
Theorem(right).

One of the main advantages of nerve complexes is that their ho-

motopy type often represents the union of the elements of U . This is

formalized within the context of the Nerve Theorem, of which we now

state a special case.

Theorem 3.2. [Nerve Theorem] Let n ∈N and assume a collection

U = {U1, U2, . . . , Uk} consists of closed convex subsets of Rn. Then

U1 ∪U2 ∪ . . . ∪Uk ' N (U ).

T Nerve Theorem actually holds

much more generally. For example,

assume each finite intersection of sets
of U (including each member U ∈ U ,

since it appears as the intersection

of {U} ⊆ U) is either empty or con-
tractible. If U is a finite collection of

closed subsets in Rn, or an arbitrary

collection of open sets in a metric
space, then ⋃

U∈U
U ' N (U ).

This is a stronger statement than
Theorem 3.2 by Lemma 3.3.

Lemma 3.3. Let n ∈ N. Each convex

subset of Rn is contractible.

Proof. Assume A ⊂ Rn is convex and

fix x0 ∈ A. We can slide each a ∈ A
into x0 along the line segment from
a to x0. This results in a homotopy

H(a, t) = (1− t)a + t x0 between the

identity map on A and the constant
map at x0, hence A is contractible.

x0

Figure 7: A sketch of Lemma 3.3.

An idea of a proof is given in Appendix. The Nerve Theorem does

not hold for an arbitrary collection of subsets as Figure 5 demon-

strates.

For Delaunay triangulations the Nerve Theorem provides no addi-

tional information. As the Voronoi cells are convex, the Nerve The-

orem implies that the Delaunay triangulation is contractible, a fact

we already know as it triangulates a convex (hence contractible by

Lemma 3.3) planar region.

On the other hand, the Nerve Theorem provides a homotopical

description of the Čech complex. As Euclidean balls are convex, we

obtain

Cech(S, r) = N ({B(s, r)}s∈S) '
⋃
s∈S

B(s, r) = N(S, r),

i.e., the Čech complex Cech(S, r) has the homotopy type of the r-

neighborhood of S. This fact is the foremost reason for the computa-

tional utilisation of Čech complexes: while they are hader to compute
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than Rips complexes, we know that the obtained homotopy type rep-

resents the r-neighborhood of S. In this spirit we can interpret Figure

6. Furthermore, this observation can be used to prove reconstruction

results: given a closed connected surface X in an Euclidean space, for

each sufficiently small scale parameter r ≥ 0 and for each sufficiently

dense finite subset S ⊂ X we have X ' Cech(S, r), i.e., the homotopy

type of a space X can be reconstructed using Čech complexes (in Eu-

clidean or geodesic metric)5. In the Euclidean metric this holds as6 5 The same result holds for more
general spaces and under appropriate

conditions also for Rips complexes.
However, almost all of the proofs are

based on the application of the Nerve

Theorem to Čech complexes.
6 Imagine a circle in the plane, a knot

in R3 or a surface in R3: its small

thickening is homotopy equivalent to
the space itself.

X ' N(X, r) for small r.

Alpha complexes

Alpha complexes are a fusion between planar Čech complexes and

Delaunay triangulations.

Definition 3.4. Let r ≥ 0 and assume S ⊂ R2 is a finite collection

of points satisfying a general position property: no four points of S
lie on the same circle. For each s ∈ S let Vs denote the correspond-

ing Voronoi cell. The alpha complex of S at scale r is the follow-

ing nerve: N
(
{Vs ∩ B(s, r)}s∈S

)
.

Assume S is as in Definition 3.4. While Cech(S, r) may be of arbi-

trarily high dimension7, the Nerve Theorem guarantees it is homotopy 7 This implies, amongst other things,

that it may be computationally
inefficient.

equivalent to a planar subset. The alpha complex of S at scale r is a

planar8 complex, which is homotopy equivalent to Cech(S, r). To see 8 Note that it is a subcomplex of the

Delaunay triangulation on S.this note that by the Nerve Theorem9 both are homotopy equivalent
9 Sets Vs ∩ B(s, r) are intersections of

closed convex sets thus closed and

convex themselves.

to ⋃
s∈S

B(s, r) =
⋃
s∈S

(
Vs ∩ B(s, r)

)
.

Thus alpha complexes may be seen as an efficient way of obtaining
T To see

⋃
s∈S B(s, r) =

⋃
s∈S
(
Vs ∩

B(s, r)
)
, take any x ∈ ⋃s∈S B(s, r) and

note that if s ∈ S is a closest point to

x in S, then x ∈ Vs ∩ B(x, r).
the homotopy type of a Čech complex in the plane.

Another way of thinking of alpha complexes is as a model for

molecules. Each atom in a molecule has a radius10 and touches (rather 10 Assume all the radii are the same.
For different radii there is a well

studied concept of a weighted alpha
complex.

than intersects) other atoms within the range.

Mapper

Another example of a construction based on the idea of the nerve is

Mapper. In contrast to the constructions above it is typically11 a one- 11 By the definition that will be

provided, a Mapper is a simplicial

complex of arbitrary dimension.
However, our discussion and examples

will focus on one-dimensional case, as

do the practical applications in which
Mapper is used.

dimensional simplicial complex, i.e., a graph. Mapper can be thought

of as a one-dimensional sketch of a space X as detected through the

lens of a single map on X.

We first describe a theoretical setup. Assume:

• X is a metric space;
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Figure 8: Alpha complexes corre-

sponding to the situation in Figure
6. Note that the alpha complexes are

smaller (or equal) yet still homotopy

equivalent to the corresponding Čech
complexes. For larger r the Čech

complexes become higher-dimensional

while the alpha complexes maintain
the dimensionality bound 2.

A decomposition into regions of

the form Vs ∩ B(s, r) (on the left) mim-
ics the decomposition of molecules

into atoms.

• f : X → [0, 1] is a (continuous) map12; 12 In accordance with standard prac-
tice we restrict ourselves to the cases

when the target space is [0, 1]. How-

ever, there is no theoretical reason
for doing so and the construction is

well defined even if we replace [0, 1] by
some more complicated space.

• U is a collection13 of subsets of [0, 1], whose union is [0, 1].

13 Typically we restrict to cases

when no three subsets of U inter-
sect. In such cases Mapper is a one-

dimensional simplicial complex.

Definition 3.5. For each U let VU denote the collection of all com-

ponents of f−1(U) and define V =
⋃

U∈U VU as the collection of all

subsets of X that appear as a component of a preimage f−1(U) for

some U ∈ U . Mapper is defined as M(X, f ,U ) = N (V).

An example is provided by Figure 9.

f

U1

U3

U2

f−1(U1)

f−1(U2)

f−1(U3)

Mapper

X

Figure 9: The construction of a
Mapper: a space (the torus on the

left), a continuous map (projection
f onto the vertical axis), cover U =
{U1, U2, U3} of the interval [0, 1], a

decomposition of the preimages into
the four components and the resulting

graph (right).
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In practice data is often given as a finite set of points along with

certain measurements. For example, we may have a collection of pa-

tients along with their heart rate and blood pressure, or a collection

of basketball players along with their statistics, etc. In this case a

modified practical setup comes into play. Assume:

• X is a finite set;

• f : X → I is a map (measurement);

• U is a chosen partition of [0, 1] into intervals, typically of fixed

length ε > 0.

• Π is a chosen clustering scheme14 on X. 14 This step possibly includes addi-

tional choices of clustering parame-

ters.

Definition 3.6. For each U ∈ U let VU denote the collection of all

clusters of f−1(U) with respect to Π and define V =
⋃

U∈U VU as

the collection of all subsets of X that appear as a cluster of a preim-

age f−1(U) for some U ∈ U . Mapper is defined as M(X, f ,U ) =

N (V).

f

U1

U2

f−1(U1)

f−1(U2)

Mapper

Figure 10: The construction of a
Mapper when X is a point cloud.

While a point could and a number of measurements on it are often

given, one typically has to construct a single function f and a par-

tition U , and choose other parameters very carefully to extract the

desired information. Mapper is usually not analyzed further with topo-

logical tools but rather visualized, which is why the one-dimensionality

is preferable.



constructions of simplicial complexes 9

4 Interleaving properties

Given a finite subset of a metric space we have described how to

associate various complexes with that set. If we think for a moment

about finite abstract complexes we note that these objects are discrete:

it would be hard to define an obvious distance between abstract sim-

plicial complexes. On the other hand, we have a continuous selection

of inputs and input parameters: scale r is typically positive and there

are reasonable notions of a distance between finite subsets of a met-

ric space. As a result any assignment of a single complex is bound to

have discontinuities15 (instabilities) of some sort, see Example 4.1 for 15 Unless it assigns a constant com-
plex, of course.a demonstration.

Example 4.1. Let X = {0, 1} ⊂
R. Note that Rips(X, r) changes

discontinuously at r = 1: while
Rips(X, 1) is a single edge (along with

the two boundary points), for each

r < 1 the complex Rips(X, 1) consists
of only two vertices.

However, it turns out we can define a distance on filtrations, for

which the assignment of a filtration16 becomes a continuous function 16 Of course, this eliminates the
dependency on the scale parameter r.of the input set and the scale parameter. 17
17 For the sake of simplicity we will

restrict ourselves to the mentioned
Rips and Čech filtrations although the

concept can be defined more generally.
Definition 4.2. Choose ε > 0. Filtrations {Ar}r≥0 and {Br}r≥0 (ob-

tained by the Rips or the Čech construction) are ε-interleaved if there

exist simplicial maps ϕr : Ar → Br+ε and ψr : Br → Ar+ε such that

ϕr+ε ◦ ψr : Br → Br+2ε and ψr+ε ◦ ϕr : Ar → Ar+2ε are equal to the

corresponding inclusions.

Maps of Definition 4.2 can be visualised by drawing the following

commutative18 “ladder” diagram. 18 Adjective “commutative” refers to

the fact that all maps commute, i.e.,
going from one complex to another

through any viable sequence of maps

results in the same inclusion map.

· · · // Ar //

ϕr

!!

Ar+ε
//

##

Ar+2ε
// · · ·

· · · // Br //

ψr

==

Br+ε
//

;;

Br+2ε
// · · ·

Definition 4.3. Given two filtrations their interleaving distance is

defined as the infimum of all values ε > 0, for which the filtrations

are ε-interleaved.

Example 4.4. Let X = {0, 1} ⊂ R and
Y = {0.1, 1.2} ⊂ R. Rips(X, r) consists

of:

• two points for r < 1;

• one edge for r ≥ 1.

Rips(Y, r) consists of:

• two points for r < 1.1;

• one edge for r ≥ 1.1.

The filtrations are 0.1-interleaved.

It turns out that in our context (Rips and Čech filtrations on finite

collections of points) the interleaving distance is a metric on the set of

filtrations. In contrast, recall that there seems to be no geometrically

meaningful metric on the set of single finite simplicial complexes.

The concept of interleaving will play a prominent role later in the

context of the stability of persistent homology. At this point we can

use it to phrase two proximity results.



constructions of simplicial complexes 10

Theorem 4.5 (Stability with respect to spaces). Choose ε > 0 and

assume X = {x1, x2, . . . , xk} and Y = {y,y2, . . . , yk} with d(xi, yi) ≤
ε, ∀i, i.e., X and Y each consist of k points, such that the correspond-

ing distances are at most ε. Then:

• The Rips filtrations of X and Y are 2ε-interleaved.

• The Čech filtrations of X and Y are ε-interleaved.

Proof. It follows directly from the triangle inequality (see Figure

11) that if a subset σ ⊂ X is of diameter r, then the corresponding

subset19 τ ⊂ Y is of diameter at most r + 2ε. Hence if σ is a simplex 19 Subset τ is formed by taking the

points of Y with the same indices as
appear in the points of σ.

in Rips(X, r), then τ is a simplex in Rips(Y, r + 2ε). Consequently we

may deduce that:

• maps Rips(X, r)→ Rips(Y, r + 2ε) defined by xi 7→ yi are simplicial;

x1 x2

y2y1

≤ r≤ ε ≤ ε

Figure 11: If d(x1, x2) ≤ r and
d(xi , yi) ≤ ε then it is apparent

that d(y1, y2) ≤ r + 2ε.

• maps Rips(Y, r)→ Rips(X, r + 2ε) defined by yi 7→ xi are simplicial;

• as the above two maps obviously commute with the inclusions we

conclude that the Rips filtrations of X and Y are 2ε-interleaved;

• in a similar fashion we may conclude that the Čech filtrations of X
and Y are ε-interleaved.

These conclusions tell us that if we perturb our point set slightly,

the resulting filtration does not change much in terms of the inter-

leaving distance, i.e., the construction of a filtration is stable. In a

similar fashion we can express the relationship between Rips and Čech

filtrations.

Rips-Čech correlation

Recall that Cech(S, r) ⊆ Rips(S, 2r) and Rips(S, r) ⊆ Cech(S, r) ⊆
Cech(S, 2r). This implies that the Rips and Čech filtrations, when

constructed with logarithmic scales20, are (log 2)-interleaved, i.e., 20 Note that Cech(S, er) ⊆
Rips(S, 2er) = Rips(S, elog 2+r) and
similarly Rips(S, er) ⊆ Cech(S, er) ⊆
Cech(S, elog 2+r). These inclusions are
the interleaving maps.

{Rips(S, er)}r≥0 and {Cech(S, er)}r≥0

are (log 2)-interleaved.
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5 Concluding remarks

Recap (highlights) of this chapter

• Complexes: Rips, Čech, nerve, alpha, Mapper;

• Nerve Theorem;

• Interleaving;

Background and applications

Constructions of simplicial complexes greatly depend on the pro-

jected use. Rips and Čech complexes along with the nerve construc-

tion are relatively well understood and have been originally introduced

for theoretical purposes in the first half of the twentieth century. Their

use has recently been extended to the applied setting. They are the

complexes most exposed to the curse of dimensionality21. Alpha com- 21 The curse of dimensionality: an
annoying fact that the number of

simplices typically grows fast with the

dimension of a simplicial complex.
This presents challenges for their

computational applications, which

are partially addressed by alternative
constructions of complexes.

plexes arose decades later within the realm of computational geometry

and are intended for computationally intense applications. Mapper is

one of the most recent constructions. It is often thought of as a low-

dimensional projection method and has turned out to be a commercial

success. At about the same time the interleaving distance emerged as

a measure of stability of filtrations and persistent homology, although

equivalent concepts have been known in pure topology for a long time.

Appendix: the MiniBall algorithm

Given a finite subset σ ⊂ X ⊂ Rn the MiniBall algorithm is a recur-

sive algorithm that returns the miniball of σ, i.e., the minimal22 ball 22 Minimality is considered with

respect to the radius. Such a ball is

unique.
in Rn containing σ. As such, the algorithm provides a computational

verification of the containment of σ in a Čech complex: σ ∈ Cech(X, r)
iff23 the radius of the miniball is at most r. As the radius of the ball is 23 z ∈ ⋂x∈σ B(x, r)⇔ σ ⊂ B(z, r).

also provided, the algorithm actually provides the lower bound for the

scales r at which σ is a simplex in Cech(X, r), hence a single execution

of the algorithm suffices for the entire filtration.

• Input: disjoint finite sets τ, ν ⊂ Rn.

• Output: the minimal ball with:

– τ in the ball;

– ν on the boundary of the ball.

" Given random finite τ, ν ⊂ Rn,
there typically exists no ball contain-
ing τ and having ν on the boundary.

The algorithm is designed so that
only the pairs (τ, ν), for which this

condition is satisfied are called.

The algorithm is initiated by calling Miniball(σ, ∅) 24 and termi- 24 I.e., τ = σ, ν = ∅

nates with the miniball B when τ = ∅. It inductively scans through

the points of τ, either removing25 a point or putting26 it into ν. When 25 If removing the point from the set

does not change the miniball of the
set.
26 If removing the point decreases the

miniball.
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Algorithm 1: Miniball(τ, ν).

if τ = ∅ then
compute miniball B directly

else

choose u ∈ τ;

B =miniball(τ − {u}, ν);

if u /∈ B then
B =miniball(τ − {u}, ν ∪ {u})

return B

τ = ∅ the set ν consists of at most n + 1 points that lie on the bound-

ary of the miniball of σ and determine it. In this case we can use the

standard27 circumsphere and circumradius formulas to get the mini- 27 The expressions in terms of deter-

minant are quite lengthy and at this
point omitted.

ball.

Appendix: a sketch of a proof of the Nerve Theorem 3.2

A special case of the proof is illustrated by Figures 12, 13, and 14.

A sketch of a proof of the Nerve Theorem. For the sake of simplicity28 28 A complete general proof is much

more technical but broadly follows the

same steps as are presented here.
let us assume the nerve is of dimension 1, i.e., all triple intersections of

sets of U are empty. Define Z ⊂ X×N (U ) as:

Z =
⋃

σ∈N (U )

( ⋂
s∈σ

Us × σ
)

.

We will prove that Z ' X and Z ' N (U ).

In order to prove Z ' X note that for each x ∈ X the section

({x} × N (U )) ∩ Z is a simplex29 in the nerve spanned by all s ∈ S, 29 In our case, either an edge or a

vertex.for which x ∈ Us. Contracting each such simplex to a point in a

synchronized manner for each x ∈ X we obtain a deformation of Z to

X, hence Z ' X.

In order to prove Z ' N (U ) note that for each y ∈ N (U ) the

section (X × {y}) ∩ Z is a contractible set by assumptions. Contract

first the sections of this form for all non-vertices y, and then conclude

by contracting all the sections for vertices. We obtain a deformation of

Z to N (U ), hence Z ' N (U ).
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U N (U) Z Figure 12: A collection U of subsets

of a circle X = S1 (left), the corre-

sponding nerve (center) and space Z
constructed in the proof (right). The

sets of U are illustrated as subsets of
the plane for greater clarity, while for-

mally U consists of their intersections

with X.

Z S1 Figure 13: Proving Z ' S1 we contract

the sections above points of x ∈ X in

Z corresponding to edges in the nerve
complex (contract along the indicated

arrows on the left) to obtain S1.

Z N (U) Figure 14: Proving Z ' N (U ) we

first contract the sections above non-
vertices y ∈ N (U ) in Z (contract

along the indicated arrows on the

left) to obtain the space in the cen-
ter. Conclude by contracting the

sections above vertices y ∈ N (U ) in Z
(contract along the indicated dashed
arrows in the center) to obtain N (U )
on the right.
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Appendix: Dowker duality

Nerve complexes are natural complexes arising from a collection

of subsets. There is another similar construction, called the Vietoris

complexes, that is in a way dual to the nerve construction.

Definition 5.1. For k ∈ N let U = {U1, U2, . . . , Uk} be a collection

of subsets of a finite space X, whose union is X. The Vietoris com-

plex of U is the abstract simplicial complex V(U ) defined by the fol-

lowing rules:

1. The vertex set is X.

2. A set σ ⊆ X is a simplex iff there exists U ∈ U containing σ.

T Dowker duality actually holds for

an arbitrary collection of subsets U
of an arbitrary set X, no additional
structure is necessary. Even in such

generality it can be proved with ease

using a general form of the Nerve
Theorem.

We see that maximal simplices of V(U ) are determined by (inclusion-

wise) maximal sets of U . There is a surprising connection between the

nerve complexes and Vietoris complexes.

Theorem 5.2 (Dowker Duality). For k ∈N let U = {U1, U2, . . . , Uk}
be a collection of subsets of a finite space X, whose union is X. Then

N (U ) ' V(U ).

Proof. Consider V(U ) as a subspace of a Euclidean space. Each Ui

determines a simplex ∆Ui spanned by all points of Ui. Note that

{∆U1 , ∆U2 , . . . , ∆U2} are closed convex sets whose union is V(U ). By

the Nerve Theorem 3.2 V(U ) is homotopy equivalent to the nerve of

{∆U1 , ∆U2 , . . . , ∆U2}. This nerve, on the other hand, is actually N (U )

via the correspondence ∆Ui 7→ Ui, see Figure 15 for a visual sketch of

the proof.

U V(U) N (U)
Figure 15: A cover of six points by

four colored sets (left), its Vietoris
complex (center) and nerve (right).

Colored simplices on the central
picture provide a collection of subsets
satisfying the conditions of the Nerve
Theorem. On the other hand, their

nerve is actually N (U ) on the right.
By the Nerve Theorem we conclude

the Dowker Duality.

While Čech complexes are nerves associated to a collection of balls

of radius r, Rips complexes are Vietoris complexes associated to a

collection of sets of diameter at most r.
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