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Surfaces are some of the simplest topological spaces appearing fre-

quently in science and data analysis. From each local perspective

appearing as a part of the plane, the global shape of a surface may

take many forms. Think of the surface of the earth: because it appears

to be “planar” at each point, it had long been believed that Earth is

actually a part of a plane or maybe a disc instead of a sphere.

Surprisingly enough, most surfaces of interest can be topologically

recognized fairly easily. In this lecture we explain this recognition

process and the accompanying theory, both of which will come handy

in the lectures to come.

1 Surfaces as manifolds

Ever since the ancient times people were wondering about the shape

of the world. They agreed that from the perspective of a human being,

the world looked like a plane, a part of a surface. What was much

harder to figure out was the global picture. The first and most obvious

idea was that the world was a flat disc. Later came indications, such

as deviations in the angle of the shadow depending on the latitude,

that the world might be curved. Magellan’s first circumnavigation

of the Earth does not constitute a rigorous proof that the world is a

sphere by modern mathematical standards, but at the time it was a

momentous achievement which confirmed that the Earth is indeed

round.

Figure 1: Some of the surfaces we

mentioned before: a planar set (top
left), a space homeomorphic to S2

(top right), Moebius band (center left)

and the usual band (center right),
torus (bottom).

While we will not be sailing around the world in this course, we will

be interested in the moral of this story: things that locally look like

a plane may globally not be a plane. We will want to determine the

global structure from local information.

Spaces that locally look like a plane are called surfaces and their

generalizations to other dimensions are called manifolds. Here is a

formal definition.

Definition 1.1. Let n ∈ {0, 1, 2, . . .}. A metric space X is an n-manifold,

if for each x ∈ X there exists r > 0, such that BX(x, r) is homeo-

morphic to the n-dimensional disc Dn.
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Figure 2: Klein bottle obtained by
identifying the edges of a square:

two along the same direction and
two along the opposite direction.

The resulting space (bottom right) is

not realizable in R3 due to the self-
intersection. However, Klein bottle

can be embedded into R4 without

self-intersections.

2-manifolds are called surfaces.

Point x on an n-manifold X is:

• a boundary point if a homeomorphism BX(x, r) → Dn from Defini-

tion 1.1 maps x to a point on the boundary of Dn.
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• an interior point if a homeomorphism BX(x, r) → Dn from Defini-

tion 1.1 maps x to a point in the interior of Dn.

These two notions are independent of the choice of homeomorphism

BX(x, r) → Dn. Each point of X is either a boundary point or an

interior point. The boundary of X consists of all the boundary points,

and the interior of X consists of all the interior points.

We say that a manifold X is without boundary, if it has no bound-

ary points. For an n-manifold Y its boundary is an (n − 1)-manifold

without boundary, as can be seen from the examples below. For our

purposes a closed manifold (closed surface) will be a manifold (surface)

without boundary admitting a (finite) triangulation.
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Figure 3: Projective plane obtained
by identifying the edges of a square:

both pairs along the opposite di-

rection. The resulting space is not
realizable in R3. However, it can

be embedded into R4 without self-

intersections.

Example 1.2. We provide some examples of connected n-manifolds

listed by dimension n.

• n = 0: This one is fairly unimpressive: a single point.

• n = 1: Circle and intervals (0, 1), [0, 1], (0, 1]. Each connected 1-

manifold is homeomorphic to one of these. A circle and an open

interval have no boundary, while the boundary of [0, 1] consists1 of 0 1 Also, the boundary of [0, 1) is 0.

and 1.

• n = 2: We will provide a list of all surfaces by the end of this

lecture. Here we list some of the more prominent ones. The already

mentioned ones are recapped in Figure 1: note that the boundary of

the band consists of two copies of S1, while the Moebius band has

a single boundary component. A closed disc D2 is also a surface,

whose boundary is S1.

Closely related to the torus are the Klein bottle (see Figure 2) and

the projective plane, neither of them has a boundary and neither

can be obtained as a subset of R3. However, they can be obtained as

subsets of R4. While these two spaces are challenging to imagine ge-

ometrically, it is fairy easy to provide their (abstract) triangulations

(see Figure 2) and compute some of their topological invariants,

such as the Euler characteristic. The Torus and the Klein bottle

have Euler characteristic 0, while the Euler characteristic of the

projective plane is 1.

The projective space is homeomorphic to the space of all 1-dimensional

subspaces in R3.
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Figure 4: Triangulations of the Klein
bottle (top) and the projective plane

(bottom).

• General n: Dn and Sn are both n-manifolds. The boundary of Dn is

Sn−1, while Sn has no boundary.

Combinatorial manifolds

We will mostly be working with triangulated manifolds. A natural

question that arises in this context is how to recognize whether a given
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simplicial complex is a triangulation of a manifold. Tackling this task

we first introduce nice combinatorial descriptions of manifolds.

Definition 1.3. Suppose K is a simplicial complex and n ∈ N. We

say that K is a combinatorial n-manifold, if for each vertex v ∈
K its link Lk(v) is homeomorphic either to Sn−1 or Dn−1.

Properties and notation:

• Each combinatorial n-manifold is a triangulation of an n-manifold.

• For n < 4, each n-manifold admits a triangulation as a combinato-

rial n-manifold2. 2 Surprisingly enough, this does not

hold for n ≥ 4
• Vertices of a combinatorial manifold K satisfying Lk(v) ∼= Bn−1 are

called boundary vertices.

• Vertices of a combinatorial manifold K satisfying Lk(v) ∼= Sn−1 are

called interior vertices.

• Edges of a combinatorial surface K that are contained in only one

triangle are called boundary edges. The union of the boundary

edges corresponds to the boundary of the manifold.

• Edges of a combinatorial surface K that are contained in two trian-

gles are called interior edges. No edge in a combinatorial surface is

contained in more than two triangles.

Figure 5: Triangulation of the Klein

bottle (top) and of the Moebius band
(bottom). In the top triangulation

each vertex is an interior vertex as

each link (bold) is homeomorphic to
S1. In the bottom case each vertex is

a boundary vertex as each link (bold)

is homeomorphic to B1.

Using these properties it is fairly easy to recognize whether a given

simplicial complex K is a combinatorial surface and thus a triangu-

lation of a surface: for each vertex v ∈ K we verify whether Lk(v)

is homeomorphic to S1 or D1. It is easy to see that a connected 1-

dimensional simplicial complex is homeomorphic to:

• S1 iff each of its vertices is contained in two edges.

• D1 iff two of its vertices are contained in one edge, and all other

vertices are contained in two edges.

We will leave the elementary proofs of these two facts to the reader.

2 Orientability

Orientability is about defining “up and down”. It is quite easy to

agree on the two directions on the surface of the earth. However, in

general that may not be the case for all surfaces. Consider a usual

band from Figure 1. It is orientable because we can define two differ-

ent sides of it. To put it into a more colorful language, we can color
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one side of the band in red and the other side in blue, without the

colors ever touching each other. The story is different on the Moebius

band : it has only one side. We could start coloring it in red at some

spot and keep expanding the color along the surface (but not across

the boundary): eventually we will color the whole band, i.e., there is

no “other” side. x

y
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y

Figure 6: The edge {x, y} (left) and

the oriented edges 〈x, y〉 (center) and

〈y, x〉 = −〈x, y〉 (right).
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Figure 7: The triangle {x, y, z} (left)
and the oriented triangles 〈x, y, z〉 =
〈y, z, x〉 = 〈z, x, y〉 (center) and

〈y, x, z〉 = 〈x, z, y〉 = 〈z, y, x〉 = −〈x, y, z〉
(right).

Orientability is an important property of surfaces. It will be re-

quired for our classification result. In order to fully understand it we

have to define orientation for simplices first. Besides its application

in this section orientation on simplices will feature prominently later

within the context of homology computation.

Up to now a simplex was given by a set of its vertices. An oriented

simplex is a simplex with a choice of orientation. For an edge that

means direction, for a triangle that means “a normal” (see Figures 6

and 7). This direction/orientation will be described by a choice of an

order on vertices.

Definition 2.1. An oriented simplex on vertices v0, v1, . . . , vk is an

ordered (k + 1)-tuple σ = 〈v0, v1, . . . , vk〉. For a permutation π on

{0, 1, . . . , k} we identify:

σ = (−1)sgn(π)〈vπ(0), vπ(1), . . . , vπ(k)〉,

where sgn(π) is the signature of permutation π, i.e., value 0 if π is

even and value 1 if π is odd.

A 0-dimensional simplex with vertex v can also be oriented in two

ways: as 〈v〉 and as −〈v〉.

Figures 6 and 7 provide examples of descriptions of oriented edges

and triangles, and their geometric interpretations. Here are some

properties that follow from Definition 2.1:

• Each simplex on vertices v0, v1, . . . , vk can be oriented in two differ-

ent ways: σ = 〈v0, v1, . . . , vk〉 and −σ.

• An oriented simplex has a sign + or − prepended.

• Exchanging two vertices in an oriented simplex τ changes the orien-

tation of τ by changing the prefixed sign.

An important property of an oriented simplex is that it induces an

orientation on each of its facets.

Definition 2.2. Suppose σ = 〈v0, v1, . . . , vk〉 is an oriented simplex

and p ∈ {0, 1, . . . , k}. Then the induced orientation on the facet
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σ of obtained by dropping vp is

(−1)p〈v0, v1, . . . , vp−1, vp+1, . . . , vk〉.

x y

z

x y

z

Figure 8: Oriented triangle 〈x, y, z〉
(left) and induced orientation on the
edges (right): 〈x, y〉, 〈y, z〉, and 〈z, x〉.
Note that the edges are oriented

along the direction of the circular
arrow indicating the orientation of the

triangle.

Oriented edge 〈x, y〉 induces orientations 〈y〉 and −〈x〉 on its facets

(vertices). Oriented triangle 〈x, y, z〉 induces orientations 〈y, z〉,−〈x, z〉
and 〈x, y〉 on its facets (edges), see Figure 8.

Figure 9: Consistent orientation: note

that the orientations of the triangles

agree (both directed circular arrows
point counter-clockwise). This implies

that the induced orientations on the

common edge are opposite to each
other.

Now that we established a way to orient a single simplex, we turn

our attention to orienting the whole surface.

Definition 2.3. Suppose oriented 2-simplices σ and σ′ share a com-

mon edge. Simplices σ and σ′ are oriented consistently, if they in-

duce the opposite orientation on the common edge. (see Figure 9)

Definition 2.4. Let K be a triangulation of a surface |K|. We say that

|K| is oriented, if all triangles of K are oriented (as simplices) so

that the following holds: each pair of oriented triangles with a com-

mon edge is oriented consistently.

A surface is orientable if it can be oriented.

Orientability of a surface does not depend on a triangulation but on

the topological type of the surface only. The following are two basic

examples that demonstrate the underlying geometric idea.

Example 2.5. The usual band S1 × [0, 1] is orientable as Figure 10

demonstrates. To the contrary, the Moebius band is not orientable as

Figure 11 demonstrates. Since the Klein bottle and the projective plane

both contain a copy of the Moebius band (any of the three horizontal

strips of triangulations in Figure 4), neither of them is orientable.
x

y

x

y

Figure 10: Orientable triangulation of

a usual band. The oriented simplices

induce the opposite orientation on all
the edges, including the edge {x, y},
along which the glueing occurs.

As Example 2.5 and Figure 11 suggest it is fairly easy to check

whether a connected triangulated surface is orientable. This can be

done directly by orienting one triangle and then inductively orienting

all neighboring triangles with shared edges, while checking that each

newly oriented triangle is oriented consistently with respect to the

already oriented triangles.
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Figure 11: A proof that the Moebius

band is not orientable. Assume we
want to orient a triangulation of

the Moebius band on the left. We

first choose an orientation of one
triangle (far left) and then inductively

induce consistent orientation on

the neighboring triangles. In the
end (far right) we obtain conflicting

requirements on the orientation on

the last (bold) triangle, which means
there is no consistent way to orient all

the triangles in this triangulation.

3 Connected sum of surfaces

Figure 12: Two tori (top) and their

connected sum (bottom) obtained by

identifying the boundaries of the two
removed discs (center).

One of the basic operations on surfaces (and actually on manifolds

in general) is the connected sum.

Definition 3.1. Suppose X and Y are connected surfaces. Choose topo-

logical 2-discs DX ⊂ X and DY ⊂ Y, neither of which contains any

boundary point of the surfaces. The corresponding boundaries of these

discs are topological 1-spheres (circles) SX ⊂ X and SY ⊂ Y re-

spectively. The connected sum X#Y is obtained by removing the in-

teriors of discs DX and DY from X and Y, and gluing the resulting

spaces by identifying SX with SY.

See Figure 12 for a sketch of this construction. A few technical re-

marks about connected sums as defined above:

• It turns out that the topological type of X#Y does not depend on

the choice of discs DX , DY.

• A connected sum is a surface, whose boundary components cor-

respond to the union of the boundary components of X and the

boundary components of Y.

• Surfaces X and Y are both orientable iff X#Y is orientable.
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• For each surface X, the following holds: X#S2 ∼= X.

If abstract simplicial complexes K and L are triangulations of sur-

faces X and Y respectively and K ∩ L = ∅, we can obtain a triangula-

tion M of X#Y in the following way:

1. Choose triangles ∆X and ∆Y in K and L respectively, so that no

point of these two triangles lies on the boundary of X or Y.

2. Define

M = (K \ {∆X}) ∪ (L \ {∆Y})/ ∼,

where ∼ stands for the identification of each of the boundary edges

of ∆X with an appropriate boundary edge of ∆Y.

In short, M is obtained by removing ∆X and ∆Y from the union of K
and L, and then identifying the boundaries of the removed triangles.

This procedure is a discrete version of the one in Definition 3.1.

Proposition 3.2. χ(X#Y) = χ(X) + χ(Y)− 2.

Proof. Assume abstract simplicial complexes K and L are triangula-

tions of surfaces X and Y respectively and K ∩ L = ∅. It is obvious

that χ(K ∪ L) = χ(K) + χ(L). In order to obtain a triangulation of

X#Y from K ∪ L, we:

• Remove two triangles (change −2 to the Euler characteristic);

• Identify three pairs of vertices, meaning we have three vertices less

(change −3 to the Euler characteristic);

• Identify three pairs of edges, meaning we have three edges less

(change +3 to the Euler characteristic);

The total change to the Euler characteristic after these steps is −2.

4 Classification of surfaces

We can now describe the classification of surfaces. Let T denote the

torus and let P denote the projective plane.

a

a

b b

a

a

b b

Figure 13: The three closed connected
surfaces (the sphere S2, the torus T

and the projective plane P), that are

used to construct any other closed
connected surface using the connected

sum operation.

Theorem 4.1. [Classification Theorem for closed connected surfaces]

Suppose X is a closed connected surface. Then X is homeomorphic

to one of the following:

1. S2.

2. n-torus nT = T#T# . . . #T︸ ︷︷ ︸
n

for some n ∈N.
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3. nP = P#P# . . . #P︸ ︷︷ ︸
n

for some n ∈N.

It turns out that the surfaces appearing in Theorem 4.1 can be

distinguished using orientability and the Euler characteristic. From the

properties of the connected sum recall that (for each n ∈ N) S2 and

nT are orientable while nP are not. Furthermore, using Proposition

3.2 and we can inductively deduce3 : 3 Using Proposition 3.2 we can deduce

χ(2T) = χ(T#T) = χ(T) + χ(T)− 2 =
0 + 0 − 2 = −2, χ(3T) = χ(T) +
χ(T#T)− 2 = 0 +−2− 2 = −4, and

proceed inductively. The proof for nP

is analogous.

• χ(nT) = 2− 2n as χ(T) = 0.

• χ(nP) = 2− n as χ(P) = 1.

Consequently we obtain the following table.

Surface χ

S2 2
orientableT 0

nT 2− 2n

P 1
}

not orientable
nP 2− n

Table 1: A list of closed connected
surfaces along with their Euler charac-

teristic and orientability.

Theorem 4.1 motivates the following classification algorithm for a

closed connected surface given as an abstract simplicial complex4 K: 4 I.e., we assume the triangulation K is

a connected combinatorial 2-manifold
and has no boundary components.1. Check for orientability of K.

2. Compute the Euler characteristic.

3. Consult Table 1.
T A shortcut to computing χ: while
the Euler characteristic is formally

defined on a triangulation, it turns

out is can also be obtained from the
representation of a surface in terms

of a polygon with identified sides.

For example, the representations of
torus in Figure 13 and Klein bottle

of Figure 2 have one 2-dimensional

square, two 1-dimensional edges,
and one vertex, yielding χ = 2. The

representation of the projective plane
in Figure 3 has one 2-dimensional

square, two 1-dimensional edges, and
two vertices, yielding χ = 1. This
trick could assist with Figure 14. A
justification will be provided in the

context of discrete Morse theory.

Example 4.2. Which of the surfaces in Theorem 4.1 is the Klein bottle?

We have already discovered that it is not orientable and that its Euler

characteristic is 0. By the Classification Theorem the Klein bottle is

homeomorphic to P#P.

General surfaces

Theorem 4.1 can also be used to classify general surfaces admitting

a finite triangulation. Suppose X is a surface:

1. If X is not connected, it is a disjoint union of connected surfaces

and it obviously suffices to recognize each of its components.

2. If X is connected and has a boundary Y, then Y is a 1-manifold

without boundary, meaning Y is a disjoint union of k copies of S1

for some k ∈ N. By glueing a disc along each component of Y we

obtain a closed connected surface X′, which we can recognize 5. We 5 Such a gluing of discs does not
change the orientation, i.e., X is

orientable iff X′ is. However, an
addition of each disc increases the
Euler characteristic by 1.

conclude that X is homeomorphic to X′ with k discs removed6.

6 It turns out that the homeomorphic

type does not depend on the discs
we remove from X′, only on their

number.
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Example 4.3. It is easy to see that S1 × [0, 1] is obtained from S2 by

removing two discs. It is a bit harder to see how to get the Moebius

band M this way. It is easy to see that M has one boundary compo-

nent and has Euler characteristic7 0. Gluing a disc along the boundary 7 We could count the simplices in
Figure 11.component we obtain a closed connected non-orientable surface of Eu-

ler characteristic 1, which is P. Hence the Moebius band is obtained by

removing a disc from the projective plane.

a
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c

c

d

d

f

e

f e

Figure 14: Which surfaces are these?

We are now ready to state a classification algorithm for a surface

given as an abstract simplicial complex K:

1. Partition K into its connected components and classify each of

them.

2. For each component K′:

(a) Count the number n(K′) of boundary components of K′.

(b) Check for orientability of K′.

(c) Compute the Euler characteristic of K′.

(d) Let Y be the surface matching the orientability of K′ and of

Euler characteristic8 χ(K′) + n(K′) by Table 1.

8 χ(K′) + n(K′) is the Euler character-
istic of a surface obtained from K by

gluing n(K′) discs along the boundary

components of K′.

(e) Surface K′ is homeomorphic to Y with n(K′) many discs re-

moved.

With this classification algorithm we can always determine whether

two surfaces are homeomorphic or not.

5 Concluding remarks

Recap (highlights) of this chapter

• Surfaces, combinatorial surfaces;

• Orientation and orientability;

• Connected sum of surfaces;

• Classification of surfaces;

Background and applications

For most of the practical purposes, we live in a three-dimensional

space. Objects in our everyday life are often modelled by surfaces

enclosing the objects. Outputs of many 3-D scans are given in terms of

triangulated surfaces (for example, as .stl files).

Surfaces and other higher-dimensional manifolds are also often

assumed to be the underlying spaces in specific settings. A randomly
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generated bitmap image will seldom represent something reasonable,

and yet there is a huge number of images that convey an information

to the human eye. A space of “recognizable” images is a huge subspace

(perhaps a manifold) in the space of all bitmap images. Manifold

recognition approaches attempt to detect the underlying manifolds

from sample data.

Figure 15: Spheres S0 (two points), S1

(a circle), and S2 (a sphere).

Figure 16: Discs D1 (a line segment),

D2, and D3.

The third source of surfaces and manifolds are spaces described

with two or more degrees of freedom: configuration spaces of molecules,

robotic arms, etc. For example, the configuration space of a robotic

arm (i.e., the space of all possible positions of the arm) with two in-

dependent joins, each of which allows a full rotational motion, is the

torus S1 × S1. On a similar note, given two annotated9 points on S1,
9 The annotation refers to the fact

that each point has a name in the

sense that if the two points lie at
different positions, then exchanging

them changes the configuration. The

situation is sometimes also described
using “ordered pairs” of points (x, y)
for which x, y ∈ S1.

the configuration space of all possible positions of the two points is

again a torus S1 × S1, since the degree of freedom of each point is S1.

It is interesting to observe the difference that appears if the points are

not annotated10: in such a case all possible configurations actually

10 In particular, if two non-annotated

points lie at different positions, then

exchanging them does not change the
configuration as the pair represents

the same collection of points on S1.

The situation is sometimes also de-
scribed using “unordered pairs” of

points (x, y) by additionally identi-

fying (x, y) ∼ (x′, y′) if x = y′ and
y = x′.

form the projective plane.

On a more theoretical note, the question of whether each manifold

admits a triangulation had been one of the focal points of topology

in the previous century. It turns out that every manifold in dimen-

sion 3 or less admits a triangulation. Surprisingly enough, there are

manifolds in higher dimensions that do not admit any triangulation.

Appendix: imagining S3

In this appendix we will try to explain two ways of thinking about

the three-dimensional sphere S3 and spheres in general.

1. The first observation has to do with the relationship between discs

and spheres. We have already mentioned that Sn−1 appears as

the boundary of Dn. It should also be apparent (see Figure 17)

that gluing two copies of a disc Dn along their boundaries (copies

of Sn−1) results in Sn. In particular, we obtain S3 by taking two

3-discs (solid balls) and gluing them along the boundary.

Figure 17: Gluing two copies of a disc
together results in a sphere.

2. As for the second observation we will refer to Figure 18. It turns

out that Sn can be obtained in the following way: pick two oppo-

site points (the north pole and the south pole) and span an inter-

val’s worth of copies of the sphere Sn−1 between them, so that the

spheres are shrinking as they are approaching the poles.

Note that if we only take one point and have the spheres shrinking

only as they approach that point (and have them increase other-

wise) we obtain Dn (see Figure 19 for some low-dimensional exam-

ples).

It may come as a surprise that these points of view can be observed
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in Dante’s Divine Comedy, written about seven centuries ago. Dante’s

description of the universe coincides with the topology of S3: on one

extreme are the depths of Hell (part of Inferno), from which Dante

is guided by Beatrice through the spheres of Inferno, Purgatory, and

Paradise, until he reaches Empyrean, the place which contains the

essence of God.

Figure 18: Obtaining Sn as a col-
lection of spheres Sn−1 between two

points.

This description coincides with 2. above in terms of spheres. Equiv-

alently, we may consider Inferno and Purgatory together as one 3-disc

with center at Hell, and Paradise as another 3-disc with center at

Empyrean: in this setup the Universe consists of both 3-discs that

intersect along the surface of the Earth (which coincides with the

boundary S2).

Figure 19: Obtaining R2 (left) and

R3 (right) as a collection of concentric

spheres of all positive radii. In the
same way we can decompose Rk for

any k ∈ {1, 2, . . .}.
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