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Lesson 18: Mapping the Data
Imagine a foreign visitor to the US who knows nothing about the 
US geography. He doesn’t even have a map; the only data he has is 
a list of distances between the cities. Oh, yes, and he attended the 
Introduction to Data Mining.

If we know distances between the cities, we can cluster them.

How much sense does it make? Austin and San Antonio are closer 
to each other than to Houston; the tree is then joined by Dallas. 
On the other hand, New Orleans is much closer to Houston than 
to Miami. And, well, good luck hitchhiking from Anchorage to 
Honolulu.

As for Anchorage and Honolulu, they are left-overs; when there 
were only three clusters left (Honolulu, Anchorage and the big 
cluster with everything else), Honolulu and Anchorage were closer 
to each other than to the rest. But not close — the corresponding 
lines in the dendrogram are really long.

The real problem is New Orleans and San Antonio: New Orleans is 
close to Atlanta and Memphis, Miami is close to Jacksonville and 
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For this example we retrieved 
data from http://
www.mapcrow.info/
united_states.html, removed the 
city names from the first line and 
replaced it with “31 labelled”.  

The file is available at http://
file.biolab.si/files/us-
cities.dst.zip. To load it, unzip the 
file and use the File Distance 
widget from the Prototypes add-
on.
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Tampa. And these two clusters are suddenly more similar to each 
other than to some distant cities in Texas.

In general, two points from different clusters may be more similar 
to each other than to some points from their corresponding 
clusters.

To get a better impression about the physical layout of cities, 
people have invented a better tool: a map! Can we reconstruct a 
map from a matrix of distances? Sure. Take any pair of cities and 
put them on paper with a distance corresponding to some scale. 
Add the third city and put it at the corresponding distance from 
the two. Continue until done. Excluding, for the sake of scale, 
Anchorage, we get the following map.

We have not constructed this map manually, of course. We used a 
widget called MDS, which stands for Multidimensional scaling.

It is actually a rather exact map of the US from the Australian 
perspective. You cannot get the orientation from a map of 
distances, but now we have a good impression about the relations 
between cities. It is certainly much better than clustering.
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We can’t run k-means clustering 
on this data, since we only have 
distances, and k-means runs on 
real (tabular) data. Yet, k-means 
would have the same problem as 
hierarchical clustering.
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Remember the clustering of animals? Can we draw a map of 
animals?

Does the map make any sense? Are similar animals together? Color 
the points by the types of animals and you should see.

The map of the US was accurate: one can put the points in a plane 
so that the distances correspond to actual distances between cities. 
For most data, this is usually impossible. What we get is a 
projection (a non-linear projection, if you care about mathematical 
finesses) of the data. You lose something, but you get a picture.

The MDS algorithm does not always find the optimal map. You 
may want to restart the MDS  from random positions. Use the 
slider “Show similar pairs” to see whether the points that are 
placed together (or apart) actually belong together. In the above 
case, the honeybee belongs closer to the wasp, but could not fly 
there as in the process of optimization it bumped into the hostile 
region of flamingos and swans. 
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Lesson 19: Maps and Clusters
Remember the mixed cluster in the zoo data that contained 
invertebrates, reptiles, amphibian, and even a mammal. Was this a 
homogeneous cluster? Why the mammal there? And how far is this 
mammal to other mammals? And why is this cluster close to the 
cluster of mammals?

So many questions. But we can 
answer them all with a combination 
of clustering and multi-dimensional 
scaling. We would like to show any 
cluster that we selected from a 
dendrogram to be shown on the map 
of animals presented by MDS. And 
we would like to use cosine distances, 

so we need to take care of the composition of the workflow and 
proper connections between widgets.

Clustering and two-dimensional 
embedding make a great 
combination for data exploration. 
Clustering finds the coherent 
groups, and embedding, such as 
MDS, reveals the relations 
between the clusters and 
positions the cluster on the data 
map. There are other 
dimensionality reduction and 
embedding techniques that we 
could use, but for smaller data 
sets, MDS is great because it tries 
to preserve the distances from 
the original data space.

Can you change the workflow to 
explore the position of individual 
clusters found by k-means?
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Lesson 20: Principal  
Component Analysis
Which of the following three scatterplots (showing x vs. y, x vs. z 
and y vs. z) for the same three-dimensional data gives us the best 
picture about the actual layout of the data in space?

Yes, the first scatter plot looks very useful: it tells us that x and y 
are highly correlated and that we have three clusters of somewhat 
irregular shape. But remember: this data is three dimensional. 
What if we saw it from another, perhaps better perspective?

Let's make another experiment. Go to https://in-the-sky.org/
ngc3d.php, disable Auto-rotate and Show labels and select Zoom to 
show Local Milky Way. Now let's rotate the picture of the galaxy to 
find the layout of the stars.

Think about what we've done. What are the properties of the best 
projection?

We want the data to be as spread out as possible. If we look from 
the direction parallel to the galactic plane, we see just a line. We 
lose one dimension,  keeping only a single coordinate for each star. 
(This is unfortunately exactly the perspective we see on the night 
sky: most stars are in the bright band we call the milky way, and we 
only look at the outliers.) Among all possible projections, we 
attempt to find the one with the highest spread across the scatter 
plot. This projection may not be (and usually isn't) orthogonal to 
any of the axis; it may be projection to an arbitrary plane.

We again talk about two-dimensional projection only for the sake 
of illustration. Imagine that we have ten thousand dimensional 
data and we would like, for some reason, keep just ten features. 
Yes, we can rank the features and keep the most informative, but 
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what if these are correlated and tell us the same thing? Or what if 
our data does not have any target variable: with what should the 
"good features" be correlated? And what if the optimal projection 
is not aligned with the axes at all, so "good" features are 
combinations of the original ones?

We can do the same reasoning as above: we want to find a 10-
dimensional (for the sake of examples) projection in which the data 
points spread as widely as possible.

How do we do this? Let's go back to our every day's three-
dimensional world and think about how to find a two-dimensional 
projection.

Imagine you are observing a swarm of flies; your data are their 
exact coordinates in the room, so three numbers describe the 
position of each fly. Then you discover that your flies fly in a 
formation: they are (almost) on the same line. You could then 
describe the position of each fly with a single number that 
represents the fly's location along the line. Plus, you need to know 
where in the space the line lies. We call this line the first principal 
component. By using it, we reduce the three-dimensional space 
into a single dimension.

After some careful observation, you notice the flies are a bit spread 
in one other direction, so they do not fly along a line but along the 
band. Therefore, we need two numbers, one along the first and one 
along the — you guessed it — second principal component.

It turns out the flies are also spread in the third direction. Thus 
you need three numbers after all.

Or do you? It all depends on how they spread in the second and in 
the third direction. If the spread along the latter is relatively small 
in comparison with the first, you are okay with a single dimension. 
If not, you need two, but perhaps still not three.

Let's step back a bit: why would one who carefully measured 
expressions of ten thousand genes want to throw most data away 
and reduce it to a dozen dimensions? The data, in general, may not 
and does not have as many dimensions as there are features. Say 
you have an experiment in which you spill different amounts of 
two chemicals over colonies of amoebas and then measure the 
expressions of 10.000 genes. Instead of flies in a three-dimensional 
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space, you now profile colonies in a 10,000-dimensional space, the 
coordinates corresponding to gene expressions. Yet if expressions 
of genes depend only on the concentrations of these two 
chemicals, you can compute all 10,000 numbers from just two. 
Your data is then just two-dimensional.

A technique that does this is called Principle Components 
Analysis, or PCA. The corresponding widget is simple: it receives 
the data and outputs the transformed data.

The widget allows you to select the 
number of components and helps 
you by showing how much 
information (technically: explained 
variance) you retain with respect to 
the number of components 
(brownish line) and the amount of 
information (explained variance) in 
each component.

The PCA on the left shows the scree 
diagram for brown-selected data. Set 
like this, the widget replaces the 80 
features with just seven - and still 

keeping 82.7% of information. (Note: disable "Normalize data" 
checkbox to get the same picture.) Let us see a scatter plot for the 
first two components.
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The axes, PC1 and PC2, do not correspond to particular features in 
the original data, but to their linear combination. What we are 
looking at is a projection onto the plane, defined by the first two 
components. When you consider only two components, you can 
imagine that PCA put a hyperplane into multidimensional space 
and projecting all data into it.

Note that this is an unsupervised method: it does not care about 
the class. The classes in the projection may be be well separated or 
not. Let's add some colors to the points and see how lucky we are 
this time.

The data separated so well that these two dimensions alone may 
suffice for building a good classifier. No, wait, it gets even better. 
The data classes are separated well even along the first 
component. So we should be able to build a classifier from a 
single feature!

68



Zupan, Demšar: Introduction to Data Mining January 2020

In the above schema we use the ordinary Test & Score widget, but 
renamed it to “Test on original data” for better understanding of 
the workflow.

On the original data, Logistic regression gets 98% AUC and 
classification accuracy. If we select just single component in PCA, 
we already get a 93%, and if we take two, we get the same result as 
on the original data.

PCA is thus useful for multiple purposes. It can simplify our data 
by combining the existing features to a much smaller number of 
features without losing much data. The directions of these features 
may tell us something about the data. Finally, it can find us good 
two-dimensional projections that we can observe in scatter plots.  
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Lesson 21: Image Embedding
Every data set so far came in the matrix (tabular) form: objects (say, 
tissue samples, students, flowers) were described by row vectors 
representing a number of features. Not all the data is like this; 
think about collections of text articles, nucleotide sequences, voice 
recordings or images. It would be great if we could represent them 
in the same matrix format we have used so far. We would turn 
collections of, say, images, into matrices and explore them with the 
familiar prediction or clustering techniques.

Until very recently, finding useful 
representation of complex objects 
such as images was a real pain. 
Now, technology called deep 
learning is used to develop 
models that transform complex 
objects to vectors of numbers. 
Consider images. When we, 
humans, see an image, our neural 
networks go from pixels, to spots, 
to patches, and to some higher 
order representations like 
squares, triangles, frames, all the 
way to representation of complex 
objects. Artificial neural networks 
used for deep learning emulate 
these through layers of 
computational units (essentially, 

logistic regression models and some other stuff we will ignore 
here). If we put an image to an input of such a network and collect 
the outputs from the higher levels, we get vectors containing an 
abstraction of the image. This is called embedding.

Deep learning requires a lot of data (thousands, possibly millions 
of data instances) and processing power to prepare the network. 
We will use one which is already prepared. Even so, embedding 
takes time, so Orange doesn't do it locally but uses a server 
invoked through the ImageNet Embedding widget.
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This depiction of deep learning 
network was borrowed from  
http://www.amax.com/blog/?
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Image embedding describes the images with a set of 2048 features 
appended to the table with meta features of images.

We have no idea what these features are, except that they 
represent some higher-abstraction concepts in the deep neural 
network (ok, this is not very helpful in terms of interpretation). 
Yet, we have just described images with vectors that we can 
compare and measure their similarities and distances. Distances? 
Right, we could do clustering. Let’s cluster the images of animals 
and see what happens.

To recap: in the workflow about we have loaded the images from 
the local disk, turned them into numbers, computed the distance 
matrix containing distances between all pairs of images, used the 
distances for hierarchical clustering, and displayed the images that 
correspond to the selected branch of the dendrogram in the image 
viewer. We used cosine similarity to assess the distances (simply 
because of the dendrogram looked better than with the Euclidean 
distance).

71



Zupan, Demšar: Introduction to Data Mining January 2020

Even the lecturers of this course were surprised at the result. 
Beautiful!
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Lesson 22: Images and 
Classification
We can use image data for classification. For that, we need to 
associate every image with the class label. The easiest way to do 
this is by storing images of different classes in different folders. 
Take, for instance, images of yeast protein localization. Screenshot 
of the file names shows we have stored them on the disk. 

Localization sites 
(cytoplasm, endosome, 
endoplasmic reticulum) 
will now become class 
labels for the images. We 
are just a step away from 
testing if logistic 
regression can classify 
images to their 
corresponding protein 
localization sites. The data 
set is small: you may use 
leave-one-out for 
evaluation in Test & Score 
widget instead of cross 
validation.

At about 0.9 the AUC 
score is quite high, and we 
can check where the 
mistakes are made and 
visualize these in an Image 

Viewer.
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In this lesson, we are using 
images of yeast protein 
localization (http://file.biolab.si/
files/yeast-localization-small.zip) 
in the classification setup. But 
this same data set could be 
explored in clustering as well. 
The workflow would be the 
same as the one from previous 
lesson. Try it out! Do Italian cities 
cluster next to American or are 
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For the End
The course on Introduction to Data Mining at University of 
Ljubljana and its installment in 2018 ends here. We covered quite 
some mileage, and we hope we have taught you some essential 
procedures that should be on the stack of every data scientists. 
The goal was not to turn you into one but to get you familiar with 
some basic techniques, tools, and concepts. Data science is a vast 
field, and it takes years of study and practice to master it. You may 
never become a data scientist, but as an expert in biomedicine, it 
should now be more comfortable to talk and collaborate with 
statisticians and computer scientists. And for those who want to go 
ahead with data science, well, you now know where to start.
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