
Zupan, Demšar: Introduction to Data Mining January 2020

Lesson 18: Mapping the Data
Imagine a foreign visitor to the US who knows nothing about the
US geography. He doesn’t even have a map; the only data he has is
a list of distances between the cities. Oh, yes, and he attended the
Introduction to Data Mining.

If we know distances between the cities, we can cluster them.

How much sense does it make? Austin and San Antonio are closer
to each other than to Houston; the tree is then joined by Dallas.
On the other hand, New Orleans is much closer to Houston than
to Miami. And, well, good luck hitchhiking from Anchorage to
Honolulu.

As for Anchorage and Honolulu, they are left-overs; when there
were only three clusters left (Honolulu, Anchorage and the big
cluster with everything else), Honolulu and Anchorage were closer
to each other than to the rest. But not close — the corresponding
lines in the dendrogram are really long.

The real problem is New Orleans and San Antonio: New Orleans is
close to Atlanta and Memphis, Miami is close to Jacksonville and

61

For this example we retrieved
data from http://
www.mapcrow.info/
united_states.html, removed the
city names from the first line and
replaced it with “31 labelled”.

The file is available at http://
file.biolab.si/files/us-
cities.dst.zip. To load it, unzip the
file and use the File Distance
widget from the Prototypes add-
on.

http://www.mapcrow.info/united_states.html
http://www.mapcrow.info/united_states.html
http://www.mapcrow.info/united_states.html
http://file.biolab.si/files/us-cities.dst.zip
http://file.biolab.si/files/us-cities.dst.zip
http://file.biolab.si/files/us-cities.dst.zip
http://www.mapcrow.info/united_states.html
http://www.mapcrow.info/united_states.html
http://www.mapcrow.info/united_states.html
http://file.biolab.si/files/us-cities.dst.zip
http://file.biolab.si/files/us-cities.dst.zip
http://file.biolab.si/files/us-cities.dst.zip

Zupan, Demšar: Introduction to Data Mining January 2020

Tampa. And these two clusters are suddenly more similar to each
other than to some distant cities in Texas.

In general, two points from different clusters may be more similar
to each other than to some points from their corresponding
clusters.

To get a better impression about the physical layout of cities,
people have invented a better tool: a map! Can we reconstruct a
map from a matrix of distances? Sure. Take any pair of cities and
put them on paper with a distance corresponding to some scale.
Add the third city and put it at the corresponding distance from
the two. Continue until done. Excluding, for the sake of scale,
Anchorage, we get the following map.

We have not constructed this map manually, of course. We used a
widget called MDS, which stands for Multidimensional scaling.

It is actually a rather exact map of the US from the Australian
perspective. You cannot get the orientation from a map of
distances, but now we have a good impression about the relations
between cities. It is certainly much better than clustering.

62

We can’t run k-means clustering
on this data, since we only have
distances, and k-means runs on
real (tabular) data. Yet, k-means
would have the same problem as
hierarchical clustering.

Zupan, Demšar: Introduction to Data Mining January 2020

Remember the clustering of animals? Can we draw a map of
animals?

Does the map make any sense? Are similar animals together? Color
the points by the types of animals and you should see.

The map of the US was accurate: one can put the points in a plane
so that the distances correspond to actual distances between cities.
For most data, this is usually impossible. What we get is a
projection (a non-linear projection, if you care about mathematical
finesses) of the data. You lose something, but you get a picture.

The MDS algorithm does not always find the optimal map. You
may want to restart the MDS from random positions. Use the
slider “Show similar pairs” to see whether the points that are
placed together (or apart) actually belong together. In the above
case, the honeybee belongs closer to the wasp, but could not fly
there as in the process of optimization it bumped into the hostile
region of flamingos and swans.

63

Zupan, Demšar: Introduction to Data Mining January 2020

Lesson 19: Maps and Clusters
Remember the mixed cluster in the zoo data that contained
invertebrates, reptiles, amphibian, and even a mammal. Was this a
homogeneous cluster? Why the mammal there? And how far is this
mammal to other mammals? And why is this cluster close to the
cluster of mammals?

So many questions. But we can
answer them all with a combination
of clustering and multi-dimensional
scaling. We would like to show any
cluster that we selected from a
dendrogram to be shown on the map
of animals presented by MDS. And
we would like to use cosine distances,

so we need to take care of the composition of the workflow and
proper connections between widgets.

Clustering and two-dimensional
embedding make a great
combination for data exploration.
Clustering finds the coherent
groups, and embedding, such as
MDS, reveals the relations
between the clusters and
positions the cluster on the data
map. There are other
dimensionality reduction and
embedding techniques that we
could use, but for smaller data
sets, MDS is great because it tries
to preserve the distances from
the original data space.

Can you change the workflow to
explore the position of individual
clusters found by k-means?

64

Zupan, Demšar: Introduction to Data Mining January 2020

Lesson 20: Principal
Component Analysis
Which of the following three scatterplots (showing x vs. y, x vs. z
and y vs. z) for the same three-dimensional data gives us the best
picture about the actual layout of the data in space?

Yes, the first scatter plot looks very useful: it tells us that x and y
are highly correlated and that we have three clusters of somewhat
irregular shape. But remember: this data is three dimensional.
What if we saw it from another, perhaps better perspective?

Let's make another experiment. Go to https://in-the-sky.org/
ngc3d.php, disable Auto-rotate and Show labels and select Zoom to
show Local Milky Way. Now let's rotate the picture of the galaxy to
find the layout of the stars.

Think about what we've done. What are the properties of the best
projection?

We want the data to be as spread out as possible. If we look from
the direction parallel to the galactic plane, we see just a line. We
lose one dimension, keeping only a single coordinate for each star.
(This is unfortunately exactly the perspective we see on the night
sky: most stars are in the bright band we call the milky way, and we
only look at the outliers.) Among all possible projections, we
attempt to find the one with the highest spread across the scatter
plot. This projection may not be (and usually isn't) orthogonal to
any of the axis; it may be projection to an arbitrary plane.

We again talk about two-dimensional projection only for the sake
of illustration. Imagine that we have ten thousand dimensional
data and we would like, for some reason, keep just ten features.
Yes, we can rank the features and keep the most informative, but

65

https://in-the-sky.org/ngc3d.php
https://in-the-sky.org/ngc3d.php

Zupan, Demšar: Introduction to Data Mining January 2020

what if these are correlated and tell us the same thing? Or what if
our data does not have any target variable: with what should the
"good features" be correlated? And what if the optimal projection
is not aligned with the axes at all, so "good" features are
combinations of the original ones?

We can do the same reasoning as above: we want to find a 10-
dimensional (for the sake of examples) projection in which the data
points spread as widely as possible.

How do we do this? Let's go back to our every day's three-
dimensional world and think about how to find a two-dimensional
projection.

Imagine you are observing a swarm of flies; your data are their
exact coordinates in the room, so three numbers describe the
position of each fly. Then you discover that your flies fly in a
formation: they are (almost) on the same line. You could then
describe the position of each fly with a single number that
represents the fly's location along the line. Plus, you need to know
where in the space the line lies. We call this line the first principal
component. By using it, we reduce the three-dimensional space
into a single dimension.

After some careful observation, you notice the flies are a bit spread
in one other direction, so they do not fly along a line but along the
band. Therefore, we need two numbers, one along the first and one
along the — you guessed it — second principal component.

It turns out the flies are also spread in the third direction. Thus
you need three numbers after all.

Or do you? It all depends on how they spread in the second and in
the third direction. If the spread along the latter is relatively small
in comparison with the first, you are okay with a single dimension.
If not, you need two, but perhaps still not three.

Let's step back a bit: why would one who carefully measured
expressions of ten thousand genes want to throw most data away
and reduce it to a dozen dimensions? The data, in general, may not
and does not have as many dimensions as there are features. Say
you have an experiment in which you spill different amounts of
two chemicals over colonies of amoebas and then measure the
expressions of 10.000 genes. Instead of flies in a three-dimensional

66

Zupan, Demšar: Introduction to Data Mining January 2020

space, you now profile colonies in a 10,000-dimensional space, the
coordinates corresponding to gene expressions. Yet if expressions
of genes depend only on the concentrations of these two
chemicals, you can compute all 10,000 numbers from just two.
Your data is then just two-dimensional.

A technique that does this is called Principle Components
Analysis, or PCA. The corresponding widget is simple: it receives
the data and outputs the transformed data.

The widget allows you to select the
number of components and helps
you by showing how much
information (technically: explained
variance) you retain with respect to
the number of components
(brownish line) and the amount of
information (explained variance) in
each component.

The PCA on the left shows the scree
diagram for brown-selected data. Set
like this, the widget replaces the 80
features with just seven - and still

keeping 82.7% of information. (Note: disable "Normalize data"
checkbox to get the same picture.) Let us see a scatter plot for the
first two components.

67

Zupan, Demšar: Introduction to Data Mining January 2020

The axes, PC1 and PC2, do not correspond to particular features in
the original data, but to their linear combination. What we are
looking at is a projection onto the plane, defined by the first two
components. When you consider only two components, you can
imagine that PCA put a hyperplane into multidimensional space
and projecting all data into it.

Note that this is an unsupervised method: it does not care about
the class. The classes in the projection may be be well separated or
not. Let's add some colors to the points and see how lucky we are
this time.

The data separated so well that these two dimensions alone may
suffice for building a good classifier. No, wait, it gets even better.
The data classes are separated well even along the first
component. So we should be able to build a classifier from a
single feature!

68

Zupan, Demšar: Introduction to Data Mining January 2020

In the above schema we use the ordinary Test & Score widget, but
renamed it to “Test on original data” for better understanding of
the workflow.

On the original data, Logistic regression gets 98% AUC and
classification accuracy. If we select just single component in PCA,
we already get a 93%, and if we take two, we get the same result as
on the original data.

PCA is thus useful for multiple purposes. It can simplify our data
by combining the existing features to a much smaller number of
features without losing much data. The directions of these features
may tell us something about the data. Finally, it can find us good
two-dimensional projections that we can observe in scatter plots.

69

Zupan, Demšar: Introduction to Data Mining January 2020

Lesson 21: Image Embedding
Every data set so far came in the matrix (tabular) form: objects (say,
tissue samples, students, flowers) were described by row vectors
representing a number of features. Not all the data is like this;
think about collections of text articles, nucleotide sequences, voice
recordings or images. It would be great if we could represent them
in the same matrix format we have used so far. We would turn
collections of, say, images, into matrices and explore them with the
familiar prediction or clustering techniques.

Until very recently, finding useful
representation of complex objects
such as images was a real pain.
Now, technology called deep
learning is used to develop
models that transform complex
objects to vectors of numbers.
Consider images. When we,
humans, see an image, our neural
networks go from pixels, to spots,
to patches, and to some higher
order representations like
squares, triangles, frames, all the
way to representation of complex
objects. Artificial neural networks
used for deep learning emulate
these through layers of
computational units (essentially,

logistic regression models and some other stuff we will ignore
here). If we put an image to an input of such a network and collect
the outputs from the higher levels, we get vectors containing an
abstraction of the image. This is called embedding.

Deep learning requires a lot of data (thousands, possibly millions
of data instances) and processing power to prepare the network.
We will use one which is already prepared. Even so, embedding
takes time, so Orange doesn't do it locally but uses a server
invoked through the ImageNet Embedding widget.

70

This depiction of deep learning
network was borrowed from
http://www.amax.com/blog/?

Zupan, Demšar: Introduction to Data Mining January 2020

Image embedding describes the images with a set of 2048 features
appended to the table with meta features of images.

We have no idea what these features are, except that they
represent some higher-abstraction concepts in the deep neural
network (ok, this is not very helpful in terms of interpretation).
Yet, we have just described images with vectors that we can
compare and measure their similarities and distances. Distances?
Right, we could do clustering. Let’s cluster the images of animals
and see what happens.

To recap: in the workflow about we have loaded the images from
the local disk, turned them into numbers, computed the distance
matrix containing distances between all pairs of images, used the
distances for hierarchical clustering, and displayed the images that
correspond to the selected branch of the dendrogram in the image
viewer. We used cosine similarity to assess the distances (simply
because of the dendrogram looked better than with the Euclidean
distance).

71

Zupan, Demšar: Introduction to Data Mining January 2020

Even the lecturers of this course were surprised at the result.
Beautiful!

72

Zupan, Demšar: Introduction to Data Mining January 2020

Lesson 22: Images and
Classification
We can use image data for classification. For that, we need to
associate every image with the class label. The easiest way to do
this is by storing images of different classes in different folders.
Take, for instance, images of yeast protein localization. Screenshot
of the file names shows we have stored them on the disk.

Localization sites
(cytoplasm, endosome,
endoplasmic reticulum)
will now become class
labels for the images. We
are just a step away from
testing if logistic
regression can classify
images to their
corresponding protein
localization sites. The data
set is small: you may use
leave-one-out for
evaluation in Test & Score
widget instead of cross
validation.

At about 0.9 the AUC
score is quite high, and we
can check where the
mistakes are made and
visualize these in an Image

Viewer.

73

In this lesson, we are using
images of yeast protein
localization (http://file.biolab.si/
files/yeast-localization-small.zip)
in the classification setup. But
this same data set could be
explored in clustering as well.
The workflow would be the
same as the one from previous
lesson. Try it out! Do Italian cities
cluster next to American or are

http://file.biolab.si/files/yeast-localization-small.zip
http://file.biolab.si/files/yeast-localization-small.zip
http://file.biolab.si/files/yeast-localization-small.zip
http://file.biolab.si/files/yeast-localization-small.zip
http://file.biolab.si/files/yeast-localization-small.zip
http://file.biolab.si/files/yeast-localization-small.zip

Zupan, Demšar: Introduction to Data Mining January 2020

For the End
The course on Introduction to Data Mining at University of
Ljubljana and its installment in 2018 ends here. We covered quite
some mileage, and we hope we have taught you some essential
procedures that should be on the stack of every data scientists.
The goal was not to turn you into one but to get you familiar with
some basic techniques, tools, and concepts. Data science is a vast
field, and it takes years of study and practice to master it. You may
never become a data scientist, but as an expert in biomedicine, it
should now be more comfortable to talk and collaborate with
statisticians and computer scientists. And for those who want to go
ahead with data science, well, you now know where to start.

74

