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Lesson 9: Linear Regression
For a start, let us construct a very simple data set. It will contain a 
just one continuous input feature (let’s call it x) and a continuous 
class (y). We will use Paint Data, and then reassign one of the 
features to be a class by using Select Column and moving the 
feature y from the list of “Features” to a field with a target variable. 
It is always good to check the results, so we are including Data 
Table and Scatter Plot in the workflow at this stage. We will be 
modest this time and only paint 10 points and will use Put instead 
of the Brush tool.

We would like to build a model that predicts the value of class y 
from the feature x. Say that we would like our model to be linear, 
to mathematically express it as h(x)=𝜃0+𝜃1x. Oh, this is the equation 
of a line. So we would like to draw a line through our data points. 
The 𝜃0 is then an intercept, and 𝜃1 is a slope. But there are many 
different lines we could draw. Which one is the best one? Which 
one is the one that is a best fit to our data?
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In the Paint Data widget, remove 
the Class-2 label from the list. If 
you have accidentally left it while 
painting, don’t despair. The class 
variable will appear in the Select 
Columns widget, but you can 
“remove” it by dragging it into 
the Available Variables list.
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The questions above require us to define what is a good fit. Say, 
this could be the error the fitted model (the line) makes when it 
predicts the value of y for a given data point (value of x). The 
prediction is h(x), so the error is h(x) - y. We should treat the 
negative and positive errors equally, plus, let us agree, we would 
prefer punishing larger errors more severely than smaller ones. 
Therefore, it is perfectly ok if we square the errors for each data 
point and then sum them up. We got our objective function! Turns 
out that there is only one line that minimizes this function. The 
procedure that finds it is called linear regression. For cases where 
we have only one input feature, Orange has a special widget in the 
educational add-on called Polynomial Regression.

Looks ok. Except that these data points do not appear exactly on 
the line. We could say that the linear model is perhaps too simple 
for our data sets. Here is a trick: besides column x, the widget 
Univariate Regression can add columns x2, x3… xn to our data set. 
The number n is a degree of polynomial expansion the widget 
performs.  Try setting this number to higher values, say to two, and 
then three, and then, say, to nine. With the degree of three, we are 
then fitting the data to a linear function h(x) = 𝜃0 + 𝜃1x + 𝜃1x2 + 𝜃1x3. 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Do not worry about the strange 
name of the widget Polynomial 
Regression, we will get there in a 
moment.
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The trick we have just performed (adding the higher order features 
to the data table and then performing linear regression) is called 
Polynomial Regression. Hence the name of the widget. We get 
something reasonable with polynomials of degree two or three, but 
then the results get really wild. With higher degree polynomials, 
we totally overfit our data.

Overfitting is related to the complexity of the model. In 
polynomial regression, the models are defined through parameters 
𝜃. The more parameters, the more complex is the model. 
Obviously, the simplest model has just one parameter (an 
intercept), ordinary linear regression has two (an intercept and a 
slope), and polynomial regression models have as many parameters 
as is the degree of the polynomial. It is easier to overfit with a 
more complex model, as this can adjust to the data better. But is 
the overfitted model really discovering the true data patterns? 
Which of the two models depicted in the figures above would you 
trust more?
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It is quite surprising to see that 
linear regression model can 
result in fitting non-linear 
(univariate) functions. That is,  
functions with curves, such as 
those on the figures. How is this 
possible? Notice though that the 
model is actually a hyperplane (a 
flat surface) in the space of many 
features (columns) that are 
powers of x. So for the degree 2, 
h(x)=𝜃0+𝜃1x+𝜃1x2 is a (flat) 
hyperplane. The visualization 
gets curvy only once we plot h(x) 
as a function of x.
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Lesson 10: Regularization

There has to be some cure for the overfitting. Something that 
helps us control it. To find it, let’s check what the values of the 
parameters 𝜃 under different degrees of polynomials actually are

With smaller degree polynomials values of 𝜃 stay small, but then as 
the degree goes up, the numbers get really large.

More complex models can fit the training data better. The fitted 
curve can wiggle sharply. The derivatives of such functions are 
high, and so need to be the coefficients 𝜃. If only we could force 
the linear regression to infer models with a small value of 
coefficients. Oh, but we can. Remember, we have started with the 
optimization function the linear regression minimizes, the sum of 
squared errors. We could simply add to this a sum of all 𝜃 squared. 
And ask the linear regression to minimize both terms. Perhaps we 
should weigh the part with 𝜃 squared, say, we some coefficient λ, 
just to control the level of regularization. 
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Which inference of linear model 
would overfit more, the one with 
high λ or the one with low λ? 
What should the value of λ be to 
cancel regularization? What if 
the value of λ is really high, say 
1000?
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Here we go: we just reinvented regularization, a procedure that 
helps machine learning models not to overfit the training data. To 
observe the effects of the regularization, we can give Polynomial 
Regression our own learner, which supports these kind of settings.

The Linear Regression widget provides two types of regularization. 
Ridge regression is the one we have talked about and minimizes 
the sum of squared coefficients 𝜃. Lasso regression minimizes the 
sum of absolute value of coefficients. Although the difference may 
seem negligible, the consequences are that lasso regression may 
result in a large proportion of coefficients 𝜃 being zero, in this way 
performing feature subset selection.


Now for the test. Increase the degree of polynomial to the max. 
Use Ridge Regression. Does the inferred model overfit the data? 
How does degree of overfitting depend on regularization strength?  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Internally, if no learner is present 
on its input, the Polynomial 
Regression widget would use 
just its ordinary, non-regularized 
linear regression.
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Lesson 11: Regularization and 
Accuracy on Test Set

Overfitting hurts. Overfit models fit the training data well, but can 
perform miserably on new data. Let us observe this effect in 
regression. We will use hand-painted data set, split it into the 
training (50%) and test (50%) data set, polynomially expand the 
training data set to enable overfitting, build a model on it, and test 
the model on both the (seen) training data and the (unseen) held-
out data:

Now we can vary the regularization strength in Linear Regression 
and observe the accuracy in Test & Score. For accuracy scoring, we 
will use RMSE, root mean squared error, which is computed by 
observing the error for each data point, squaring it, averaging this 
across all the data instances, and taking a square root. And we will 
also make use of coefficient of determination, denoted R2 or r2, the 
proportion of the variance in the dependent variable that is 
predictable from the independent variable(s).

The core of this lesson is to compare the error on the training and 
test set while varying the level of regularization. Remember, 
regularization controls overfitting - the more we regularize, the less 
tightly we fit the model to the training data. So for the training set, 
we expect the error to drop with less regularization and more 
overfitting, and to increase with more regularization and less 
fitting. No surprises expected there. But how does this play out on 
the test set? Which sides minimizes the test-set error? Or is the 
optimal level of regularization somewhere in between? How do we 
estimate this level of regularization from the training data alone? 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Paint about 20 to 30 data 
instances. Use attribute y as 
target variable in Select 
Columns. Split the data 50:50 in 
Data Sampler. Cycle between 
test on train or test data in Test & 
Score. Use ridge regression to 
build linear regression model.

Orange is currently not 
equipped with parameter fitting 
and we need to find the optimal 
level of regularization manually. 
At this stage, it suffices to say 
that parameters must be found 
on the training data set without 
touching the test data.
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Lesson 12: Prediction of Tissue 
Age from Level of Methylation

Enough painting. Now for the real data. We will use a data set that 
includes human tissues from subjects at different age. The tissues 
were profiled by measurements of DNA methylation, a mechanism 
for cells to regulate the gene expression. Methylation of DNA is 
scarce when we are young, and gets more abundant as we age. We 
have prepared a data set where the degree of methylation was 
expressed per each gene. Let us test if we can predict the age from 
the methylation profile - and if we can do this better than by just 
predicting the average age of subjects in the training set.

This workflow looks familiar and is similar to those for 
classification problems. The Test & Score widget reports on 
statistics we have not seen before. MAE, for one, is the mean 
average error. Just like for classification, we have used cross-
validation, so MAE was computed only on the test data instances 
and averaged across 10 runs of cross validation. The results 
indicate that our modeling technique misses the age by about 5 
years, which is a much better result than predicting by the mean 
age in the training set.
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Download the methylation data 
set from http://file.biolab.si/files/
methylation.tab. Predictions of 
age from methylation profile 
were investigated by Horvath 
(2013) Genome Biology 
14:R115.

Using other learners, like random 
forests, takes a while on this data 
set. But you may try to sample 
the features, obtain a smaller 
data set, and try various 
regression learners.

http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab
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Lesson 13: Evaluating Regression

The last lessons quickly introduced scoring for regression, and 
important measures such as RMSE and MAE. In classification, a 
nice addition to find misclassified data instances was the confusion 
matrix. But the confusion matrix could only be applied to discrete 
classes. Before Orange gets some similar for regression, one way to 
find misclassified data instances is through scatter plot!

We can play around with this workflow by painting the data such 
that the regression would perform well on blue data point and fail 
on the red outliers. In the scatter plot we can check if the 
difference between the predicted and true class was indeed what 
we have expected.
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This workflow visualizes the 
predictions that were performed 
on the training data. How would 
you change the widget to use a 
separate test set? Hint: The 
Sample widget can help.
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A similar workflow would work for any data set. Take, for instance, 
the housing data set (from Orange distribution). Say, just like 
above, we would like to plot the relation between true and 
predicted continuous class, but would like to add information on 
the absolute error the predictor makes. Where is the error coming 
from? We need a new column. The Feature Constructor widget 
(albeit being a bit geekish) comes to the rescue.

In the Scatter Plot widget, we can 
now select the data where the 
predictor erred substantially and 
explore the results further. 
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We could, in principle, also mine 
the errors to see if we can 
identify data instances for which 
this was high. But then, if this is 
so, we could have improved 
predictions at such regions. Like, 
construct predictors that predict 
the error. This is weird. Could we 
then also construct a predictor, 
that predicts the error of the 
predictor that predicts the error? 
Strangely enough, such ideas 
have recently led to something 
called Gradient Boosted Trees, 
which are nowadays among the 
best regressors (and are coming 
to Orange soon).
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Lesson 14: Feature Scoring and 
Selection

Linear regression infers a model that estimate the class, a real-
valued feature, as a sum of products of input features and their 
weights. Consider the data on prices of imported cars in 1985. 

Inspecting this data set in a Data 
Table, it shows that some 
features, like fuel-system, engine-
type and many others, are 
discrete. Linear regression only 
works with numbers. In Orange, 
linear regression will 
automatically convert all discrete 
values to numbers, most often 
using several features to represent 
a single discrete features. We also 
do this conversion manually by 

using Continuize widget. 


Before we continue, you 
should check what 
Continuize actually does 
and how it converts the 
nominal features into real-
valued features. The table 
below should provide 
sufficient illustration.
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For this lesson, load the data 
from imports-85.tab using the 
File widget and Browse 
documentation data sets.
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Now to the core of this lesson. Our workflow reads the data, 
coninuizes it such that we also normalize all the features to bring 
them the to equal scale, then we load the data into Linear 
Regression widget and check out the feature coefficients in the 
Data Table.


 


In Linear Regression, we will use L1 regularization. Compared 
to L2 regularization, which aims to minimize the sum of 
squared weights, L1 regularization is more rough and minimizes 
the sum of absolute values of the weights. The result of this 
“roughness” is that many of the feature will get zero weights. 

But this may be also exactly 
what we want. We want to 
select only the most 
important features, and want 
to see how the model that 
uses only a smaller subset of 
features actually behaves. 
Also, this smaller set of 
features is ranked. Engine size 
is a huge factor in pricing of 
our cars, and so is the make, 
where Porsche, Mercedes and 
BMW cost more than other 
cars (ok, no news here).


We should notice that the 
number of features with non-zero weights varies with 
regularization strength. Stronger regularization would result in 
fewer features with non-zero weights.
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