
Zupan, Demšar: Introduction to Data Mining University of Ljubljana

Lesson 9: Linear Regression
For a start, let us construct a very simple data set. It will contain a
just one continuous input feature (let’s call it x) and a continuous
class (y). We will use Paint Data, and then reassign one of the
features to be a class by using Select Column and moving the
feature y from the list of “Features” to a field with a target variable.
It is always good to check the results, so we are including Data
Table and Scatter Plot in the workflow at this stage. We will be
modest this time and only paint 10 points and will use Put instead
of the Brush tool.

We would like to build a model that predicts the value of class y
from the feature x. Say that we would like our model to be linear,
to mathematically express it as h(x)=𝜃0+𝜃1x. Oh, this is the equation
of a line. So we would like to draw a line through our data points.
The 𝜃0 is then an intercept, and 𝜃1 is a slope. But there are many
different lines we could draw. Which one is the best one? Which
one is the one that is a best fit to our data?

22

In the Paint Data widget, remove
the Class-2 label from the list. If
you have accidentally left it while
painting, don’t despair. The class
variable will appear in the Select
Columns widget, but you can
“remove” it by dragging it into
the Available Variables list.

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

The questions above require us to define what is a good fit. Say,
this could be the error the fitted model (the line) makes when it
predicts the value of y for a given data point (value of x). The
prediction is h(x), so the error is h(x) - y. We should treat the
negative and positive errors equally, plus, let us agree, we would
prefer punishing larger errors more severely than smaller ones.
Therefore, it is perfectly ok if we square the errors for each data
point and then sum them up. We got our objective function! Turns
out that there is only one line that minimizes this function. The
procedure that finds it is called linear regression. For cases where
we have only one input feature, Orange has a special widget in the
educational add-on called Polynomial Regression.

Looks ok. Except that these data points do not appear exactly on
the line. We could say that the linear model is perhaps too simple
for our data sets. Here is a trick: besides column x, the widget
Univariate Regression can add columns x2, x3… xn to our data set.
The number n is a degree of polynomial expansion the widget
performs. Try setting this number to higher values, say to two, and
then three, and then, say, to nine. With the degree of three, we are
then fitting the data to a linear function h(x) = 𝜃0 + 𝜃1x + 𝜃1x2 + 𝜃1x3. 

23

Do not worry about the strange
name of the widget Polynomial
Regression, we will get there in a
moment.

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

The trick we have just performed (adding the higher order features
to the data table and then performing linear regression) is called
Polynomial Regression. Hence the name of the widget. We get
something reasonable with polynomials of degree two or three, but
then the results get really wild. With higher degree polynomials,
we totally overfit our data.

Overfitting is related to the complexity of the model. In
polynomial regression, the models are defined through parameters
𝜃. The more parameters, the more complex is the model.
Obviously, the simplest model has just one parameter (an
intercept), ordinary linear regression has two (an intercept and a
slope), and polynomial regression models have as many parameters
as is the degree of the polynomial. It is easier to overfit with a
more complex model, as this can adjust to the data better. But is
the overfitted model really discovering the true data patterns?
Which of the two models depicted in the figures above would you
trust more?

24

It is quite surprising to see that
linear regression model can
result in fitting non-linear
(univariate) functions. That is,
functions with curves, such as
those on the figures. How is this
possible? Notice though that the
model is actually a hyperplane (a
flat surface) in the space of many
features (columns) that are
powers of x. So for the degree 2,
h(x)=𝜃0+𝜃1x+𝜃1x2 is a (flat)
hyperplane. The visualization
gets curvy only once we plot h(x)
as a function of x.

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

Lesson 10: Regularization

There has to be some cure for the overfitting. Something that
helps us control it. To find it, let’s check what the values of the
parameters 𝜃 under different degrees of polynomials actually are

With smaller degree polynomials values of 𝜃 stay small, but then as
the degree goes up, the numbers get really large.

More complex models can fit the training data better. The fitted
curve can wiggle sharply. The derivatives of such functions are
high, and so need to be the coefficients 𝜃. If only we could force
the linear regression to infer models with a small value of
coefficients. Oh, but we can. Remember, we have started with the
optimization function the linear regression minimizes, the sum of
squared errors. We could simply add to this a sum of all 𝜃 squared.
And ask the linear regression to minimize both terms. Perhaps we
should weigh the part with 𝜃 squared, say, we some coefficient λ,
just to control the level of regularization.

25

Which inference of linear model
would overfit more, the one with
high λ or the one with low λ?
What should the value of λ be to
cancel regularization? What if
the value of λ is really high, say
1000?

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

Here we go: we just reinvented regularization, a procedure that
helps machine learning models not to overfit the training data. To
observe the effects of the regularization, we can give Polynomial
Regression our own learner, which supports these kind of settings.

The Linear Regression widget provides two types of regularization.
Ridge regression is the one we have talked about and minimizes
the sum of squared coefficients 𝜃. Lasso regression minimizes the
sum of absolute value of coefficients. Although the difference may
seem negligible, the consequences are that lasso regression may
result in a large proportion of coefficients 𝜃 being zero, in this way
performing feature subset selection.

Now for the test. Increase the degree of polynomial to the max.
Use Ridge Regression. Does the inferred model overfit the data?
How does degree of overfitting depend on regularization strength?  

26

Internally, if no learner is present
on its input, the Polynomial
Regression widget would use
just its ordinary, non-regularized
linear regression.

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

Lesson 11: Regularization and
Accuracy on Test Set

Overfitting hurts. Overfit models fit the training data well, but can
perform miserably on new data. Let us observe this effect in
regression. We will use hand-painted data set, split it into the
training (50%) and test (50%) data set, polynomially expand the
training data set to enable overfitting, build a model on it, and test
the model on both the (seen) training data and the (unseen) held-
out data:

Now we can vary the regularization strength in Linear Regression
and observe the accuracy in Test & Score. For accuracy scoring, we
will use RMSE, root mean squared error, which is computed by
observing the error for each data point, squaring it, averaging this
across all the data instances, and taking a square root. And we will
also make use of coefficient of determination, denoted R2 or r2, the
proportion of the variance in the dependent variable that is
predictable from the independent variable(s).

The core of this lesson is to compare the error on the training and
test set while varying the level of regularization. Remember,
regularization controls overfitting - the more we regularize, the less
tightly we fit the model to the training data. So for the training set,
we expect the error to drop with less regularization and more
overfitting, and to increase with more regularization and less
fitting. No surprises expected there. But how does this play out on
the test set? Which sides minimizes the test-set error? Or is the
optimal level of regularization somewhere in between? How do we
estimate this level of regularization from the training data alone? 

27

Paint about 20 to 30 data
instances. Use attribute y as
target variable in Select
Columns. Split the data 50:50 in
Data Sampler. Cycle between
test on train or test data in Test &
Score. Use ridge regression to
build linear regression model.

Orange is currently not
equipped with parameter fitting
and we need to find the optimal
level of regularization manually.
At this stage, it suffices to say
that parameters must be found
on the training data set without
touching the test data.

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

Lesson 12: Prediction of Tissue
Age from Level of Methylation

Enough painting. Now for the real data. We will use a data set that
includes human tissues from subjects at different age. The tissues
were profiled by measurements of DNA methylation, a mechanism
for cells to regulate the gene expression. Methylation of DNA is
scarce when we are young, and gets more abundant as we age. We
have prepared a data set where the degree of methylation was
expressed per each gene. Let us test if we can predict the age from
the methylation profile - and if we can do this better than by just
predicting the average age of subjects in the training set.

This workflow looks familiar and is similar to those for
classification problems. The Test & Score widget reports on
statistics we have not seen before. MAE, for one, is the mean
average error. Just like for classification, we have used cross-
validation, so MAE was computed only on the test data instances
and averaged across 10 runs of cross validation. The results
indicate that our modeling technique misses the age by about 5
years, which is a much better result than predicting by the mean
age in the training set.

28

Download the methylation data
set from http://file.biolab.si/files/
methylation.tab. Predictions of
age from methylation profile
were investigated by Horvath
(2013) Genome Biology
14:R115.

Using other learners, like random
forests, takes a while on this data
set. But you may try to sample
the features, obtain a smaller
data set, and try various
regression learners.

http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

Lesson 13: Evaluating Regression

The last lessons quickly introduced scoring for regression, and
important measures such as RMSE and MAE. In classification, a
nice addition to find misclassified data instances was the confusion
matrix. But the confusion matrix could only be applied to discrete
classes. Before Orange gets some similar for regression, one way to
find misclassified data instances is through scatter plot!

We can play around with this workflow by painting the data such
that the regression would perform well on blue data point and fail
on the red outliers. In the scatter plot we can check if the
difference between the predicted and true class was indeed what
we have expected.

 

29

This workflow visualizes the
predictions that were performed
on the training data. How would
you change the widget to use a
separate test set? Hint: The
Sample widget can help.

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

A similar workflow would work for any data set. Take, for instance,
the housing data set (from Orange distribution). Say, just like
above, we would like to plot the relation between true and
predicted continuous class, but would like to add information on
the absolute error the predictor makes. Where is the error coming
from? We need a new column. The Feature Constructor widget
(albeit being a bit geekish) comes to the rescue.

In the Scatter Plot widget, we can
now select the data where the
predictor erred substantially and
explore the results further.

30

We could, in principle, also mine
the errors to see if we can
identify data instances for which
this was high. But then, if this is
so, we could have improved
predictions at such regions. Like,
construct predictors that predict
the error. This is weird. Could we
then also construct a predictor,
that predicts the error of the
predictor that predicts the error?
Strangely enough, such ideas
have recently led to something
called Gradient Boosted Trees,
which are nowadays among the
best regressors (and are coming
to Orange soon).

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

Lesson 14: Feature Scoring and
Selection

Linear regression infers a model that estimate the class, a real-
valued feature, as a sum of products of input features and their
weights. Consider the data on prices of imported cars in 1985.

Inspecting this data set in a Data
Table, it shows that some
features, like fuel-system, engine-
type and many others, are
discrete. Linear regression only
works with numbers. In Orange,
linear regression will
automatically convert all discrete
values to numbers, most often
using several features to represent
a single discrete features. We also
do this conversion manually by

using Continuize widget.

Before we continue, you
should check what
Continuize actually does
and how it converts the
nominal features into real-
valued features. The table
below should provide
sufficient illustration.

31

For this lesson, load the data
from imports-85.tab using the
File widget and Browse
documentation data sets.

Zupan, Demšar: Introduction to Data Mining University of Ljubljana

Now to the core of this lesson. Our workflow reads the data,
coninuizes it such that we also normalize all the features to bring
them the to equal scale, then we load the data into Linear
Regression widget and check out the feature coefficients in the
Data Table.

In Linear Regression, we will use L1 regularization. Compared
to L2 regularization, which aims to minimize the sum of
squared weights, L1 regularization is more rough and minimizes
the sum of absolute values of the weights. The result of this
“roughness” is that many of the feature will get zero weights.

But this may be also exactly
what we want. We want to
select only the most
important features, and want
to see how the model that
uses only a smaller subset of
features actually behaves.
Also, this smaller set of
features is ranked. Engine size
is a huge factor in pricing of
our cars, and so is the make,
where Porsche, Mercedes and
BMW cost more than other
cars (ok, no news here).

We should notice that the
number of features with non-zero weights varies with
regularization strength. Stronger regularization would result in
fewer features with non-zero weights.

32

