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In the previous lecture we learned about metric spaces along with the

homeomorphic and homotopic type. However, the descriptions we used

are not of combinatorial nature, and one would have difficulties using

them for computations. In this lecture we will introduce one of the

simplest combinatorial descriptions of planar spaces: triangulations

in the plane. Essentially, we would like to describe a planar region as

a “nice” union of triangles. The triangles are used primarely because

they are easy to describe: we only have to provide the three points.

In later sections we will use these triangulations to compute various

invariants of the space: components, homology, etc.

It turns out that not every planar subset can be triangulated.

However, finite triangulations (i.e., triangulations with finitely many

triangles) can be obtained for most planar subsets of interest.
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vertex z
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y

z
Figure 1: Triangle xyz.

Figure 2: A planar triangulation.

1 Definition of planar triangulations

A triangle in the plane has three edges and three vertices.

Definition 1.1. A triangulation of a closed region D ⊂ R2 is a de-

composition of D into triangles, so that:

1. no triangle is degenerate (i.e., a point or just a line segment),

2. interiors of triangles are disjoint, and

3. intersection of any pair of triangles is either a common edge, a com-

mon vertex, or empty.

Geometric description of Definition 1.1 is provided by Figure 3.

X 7

X 7

X 7

Figure 3: Conditions of Definition 1.1.
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T A planar region admitting a trian-

gulation is called a polygonal region.

The idea of a triangulation may be generalized in various ways. One

could use different shapes of pieces to decompose a planar region or

the entire plane. Such decompositions are called tessellations. General-

izing by dimension, one could use “higher dimensional triangles”, such

as tetrahedra, to decompose a higher dimensional space. This idea will

be formalized as simplicial complex in the next lecture.

Modifications of triangulations

Occasionally we will want to modify a triangulation. Here are some

of the most used modifications:

• add a triangle;

• remove a triangle;

• flip a common edge;

• refine using the barycentric subdivision: for each edge and each tri-

angle consider its geometric center (centroid) as a new vertex in our

triangulation, and then decompose each triangle as demonstrated

by Figure 4. This modification is convenient when we want to refine

a triangulation, i.e., systematically decompose the triangles into

smaller triangles.

Figure 4: Modifications of tirangula-
tions.

At this time we will focus on triangulations of convex polyhedra,

i.e., convex hulls of finitely many points in the plane, as defined below.

Given a finite S ⊂ R2 we say a triangulation on S is any triangulation

of the convex hull of S, whose vertex set is S.

2 Recap on convexity

Given points x, y ∈ Rn, the line segment between them is parame-

terized as

γ(t) = tx + (1− t)y, t ∈ [0, 1].

Note that γ(0) = y, γ(1) = x, and γ(1/2) corresponds to the

midpoint of the line segment.

x = γ(1) y = γ(0)

γ(1/2)

Figure 5: Line segment.

Definition 2.1. A subset A ⊂ Rn is convex, if for each a, b ∈ A
the entire line segment between a and b lies in A, i.e., if ∀t ∈ [0, 1]

we have ta + (1− t)b ∈ A.

Given a subset B ⊂ Rn, its convex hull Conv(B) is the small-

est convex set containing B.

Figure 6: A convex (left) and a non-
convex (right) subset of the plane.

The closed region on Figure 2 is not convex, while the ones on Fig-

ure 4 are convex. A triangle is the convex hull of the set of its vertices,
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which provides a convenient description of a triangle: the triangle with

affinely independent vertices x, y, z ∈ R2 can be parameterized by all

possible convex combinations of these vertices:

{α1x + α2y + α3z, | ∀i ∈ {1, 2, 3} : αi ∈ [0, 1],
3

∑
i=1

αi = 1}.

The term “convex combination” (as opposed to the linear combination)

refers to the fact that the coefficients αi are from [0, 1] and add up to

1. These coefficients are called barycentric coordinates in a triangle.

The point with α1 = α2 = α3 = 1/3 is the centroid of the triangle,

while points with two barycentric coordinates1 1/2 are the midpoints 1 ...and the third coordinate equal to

0.of the corresponding edges; all these points are used in the barycentric

subdivision shown in Figure 3.

Figure 7: A collection of points and

its convex hull.

Convex hull can be constructed by iteratively adding all feasible line

segments. It is important to note that for B ⊂ Rn the set obtained by

adding all line segments

{α1x + α2y | x, y ∈ B, ∀i : αi ∈ [0, 1],
2

∑
i=1

αi = 1}

is typically not the convex hull. For example, starting with three ver-

tices and adding the line segments between all three pairs we would

obtain the set consisting of the edges but not the interior of the tri-

angle (which constituted the convex hull of three points). Instead, we

have to apply the procedure of adding all possible line segments again

and again, or alternatively, add all convex combinations in one step:

Conv B =
⋃

m∈N

{
m

∑
i=1

αixi | ∀i : xi ∈ B, αi ∈ [0, 1],
m

∑
i=1

αi = 1}.

By the Carathéodory Theorem we can bound the number of sum-

mands by the dimension of the ambient space plus one:

Conv B = {
n+1

∑
i=1

αixi | ∀i : xi ∈ B, αi ∈ [0, 1],
n+1

∑
i=1

αi = 1}.

In particular: for a finite subset F ⊂ R2, each point of Conv(F) is

contained in the convex hull of some triple of points from F.

3 Euler characteristic

Along with the number of components of a space, the Euler charac-

teristic is one of the first real topological invariants we come across. In

particular, while there are many triangulations of Conv(S) on a finite

subset S ⊂ R2, the Euler characteristic is the same for all of them.

For a given triangulation let:
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• V be the number of its vertices,

• E be the number of its edges,

• F be the number of its triangles.

Definition 3.1. The Euler characteristic χ of a triangulation is de-

fined as

χ = F− E + V. χ = 0

χ = −3

Figure 8: A few planar triangulations

along with their Euler characteristics.

Theorem 3.2 (A simple version of the Euler-Poincaré formula). Let

S ⊂ R2 be finite. For each triangulation on S we have χ = 1.

Proof. Let us assume our triangulation has no vertical edge: if neces-

sary this can be achieved by a small rotation. Assign to each triangle

value +1 and to each edge value −1. Slide each of these values to-

wards the unique rightmost vertex of the corresponding triangle/edge

as suggested by Figure 9. Assign to each vertex value +1. The total

sum of all assigned values is χ.

For each single vertex add: the value at the vertex and all the val-

ues of the triangles and edges, that gathered at that vertex. We can

see that for each vertex the total sum is zero (arising from a sequence

edge-triangle-edge-...-edge-triangle-edge on the left from the vertex

plus the vertex itself) except for the leftmost vertex, where the value

equals one.
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Figure 9: The assignment of values
on triangles (red +), edges (blue −)

and vertices (green +) from the proof
of Theorem 3.2. Vertices also hold

additional +1 value. The triangles are

present but not shaded.
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Remark 3.3. It turns out that χ = 1 for each triangulation of a con-

tractible set2 in R2. In fact, for a triangulation of D ⊂ R2, χ equals 2 Even more: χ is homotopy invariant.

the number of components minus the number of holes of D. More tech-

nical details on this fact will be provided in later sections. Let us just

mention that the number of holes of a bounded set D ⊂ R2 equals the

number of components of R2 \ D minus one (see Figure 10).

Figure 10: The top set has 2 holes.
Equivalently, its complement on the

bottom has 2 + 1 components.

4 Constructing planar triangulations with line sweep

Let S ⊂ R2 be finite. Perhaps the simplest way to construct a tri-

angulation on S is using a line sweep, which we now describe. Assume

no two points of S have the same x-coordinate (this can be achieved

by a small rotation if necessary). Now imagine a vertical line sweeping

Conv(S) from left to right. Each time the line reaches a point of S (a

vertex in our triangulation), add all possible edges towards left with-

out creating intersections. Furthermore, for each new bounded region

add the corresponding triangle. As the line sweeps S we thus obtain a

triangulation on S.

Figure 11: A line sweep using the

vertical dashed line. Each time the
vertical line reaches a point, we add

all possible edges from that point to a
point with smaller x-coordinate.

The condition that no two points have the same x-coordinate was

added for reasons of simplicity only. If more points, say a1, a1, . . . , ak

have the same x-coordinate then, instead of adding all edges for all

points ai at once, proceed point by point: add all possible edges for a1,

then for a2, etc. Depending on the order of points ai we typically get a

different triangulation.

It should also be obvious that the line sweep does not need to pro-

ceed from left to right, but can proceed along any direction by sweep-

ing a line perpendicular to that direction.

Figure 12: A line sweep triangulation
resulting in thin triangles.

While the line sweep is conceptually simple, it does tend to con-

struct triangulations with very thin triangles, which may be undesir-

able in applications. The triangulation that avoids thin triangles as

much as possible is the Delaunay triangulation.

5 Voronoi diagram and Delaunay triangulation

Figure 13: Circle on left, and a ball

on right. The boundary of the ball is
the circle.

Throughout this section let S ⊂ R2 be a finite subset satisfying a

general position property: no four points of S lie on the same circle.

We will first present the Voronoi diagram of S, which is a decomposi-
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tion of the plane into specific regions.

For each s ∈ S define the Voronoi region of s:

Vs = {x ∈ R2 | ∀u ∈ S \ {s} : d(x, s) ≤ d(x, u)}.

u

Vu

Figure 14: An example of a Voronoi

decomposition.

If a pair of Voronoi regions Vs1 , Vs2 has a non-empty intersection,

then (due to the general position condition above) this intersection is a

bounded or unbounded line segment called a Voronoi edge and lies on

the bisector between s1 and s2.

If a triple of Voronoi regions Vs1 , Vs2 , Vs3 has a non-empty intersec-

tion, then this intersection is a point called a Voronoi vertex. As this

point lies on all three pairwise bisectors, it is the center of the circle

containing s1, s2 and s3.

Figure 15: A Voronoi vertex � is the

center of the circle containing the
corresponding points • of S. Voronoi

edges lie on the bisector lines between

the corresponding points of S.

Definition 5.1. The Voronoi diagram (or decomposition) of S is

the collection of Voronoi regions, edges and vertices.

A Voronoi region Vs consists of points, whose closest point of S is

s. If for some point w there are two such closest points in S, then w
is on the corresponding edge. If for some point w there are three such

closest points in S, then w is a Voronoi vertex. The general position

criterion above states that for each point in the plane, there can be no

four closest points in S.

Voronoi diagram can be thought of as a result of a uniform expan-

sion from the points of S. Suppose that in the initial stage we start

with a finite set of locations S. Then, as time goes by, each point of

S is being expanded into a region by growing at the same speed in all
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directions. At the beginning all these regions are balls centered at the

points of S. As the growing regions collide, the growth towards the re-

gions (edges) of contact stops, but continues along all other directions.

The Voronoi decomposition is the final result of such growth, with

each Voronoi region Vs containing the points that were first reached

from s.

Figure 16: Voronoi diagram arising

from expansion around points.

Definition 5.2. The Delaunay triangulation on S, denoted by D(S),

is the triangulation on S, such that:

• its vertices are all points of S,

• xy is an edge iff Vx ∩Vy 6= ∅, and

• xyz is a triangle iff Vx ∩Vy ∩Vz 6= ∅.

It turns out that Definition 5.2 indeed defines a planar triangula-

tion on S. As a curiosity we mention that an edge xy of a Delaunay

triangulation may partially lie outside of the union Vx ∪Vy.

Figure 17: An example of a Delaunay
triangulation with its underlying

Voronoi decomposition.

Note that the edge xy of a Delaunay triangulation is a boundary

edge (meaning it is contained in precisely one triangle) iff Vx ∩ Vy is

unbounded. Similarly, x is a boundary vertex of a Delaunay trian-

gulation (meaning it is an endpoint of some boundary edge) iff Vx is

unbounded.

Locally Delaunay condition

For a triple of non-colinear points x, y, z ∈ R2 in the plane define

C(x, y, z) to be the circle containing x, y, z, and let B(x, y, z) be the
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ball whose boundary is C(x, y, z).

x

y z

x

y z

Figure 18: C(x, y, z) on the left and
B(x, y, z) on the right.

Definition 5.3. Suppose an edge xy is shared by two different trian-

gles xyz and xyw of a triangulation. The edge xy is locally Delau-

nay [abbreviation: LD], if w /∈ B(x, y, z).

Proposition 5.4. Suppose edge xy is shared by two different triangles

xyz and xyw from a triangulation.

1. Definition 5.3 is symmetric, i.e., w /∈ B(x, y, z) iff z /∈ B(x, y, w).

2. Each edge in a Delaunay triangulation is LD.

x x

y y

z z

ww

Figure 19: Proof of Proposition 5.4

(1).

Proof. Part (1) is apparent from Figure 19.

(2): Since abc is a triangle in D(S), there exists the corresponding

Voronoi vertex q = Vx ∩ Vy ∩ Vz, which is the center of C(x, y, z).

As q /∈ Vw (recall that no four Voronoi regions have a nonempty

interesection by the general position property), d(q, x) = d(q, y) =

d(q, z) < d(q, w) by the definition of Voronoi regions, hence w /∈
B(x, y, z).

The property of being LD is a local property, shared by all edges of

a Delaunay triangulation. It turns out that the converse of Proposition

5.4(2) is also true.

Theorem 5.5. Suppose K is a triangulation on S. Then K is the De-

launay triangulation iff each edge is locally Delaunay.

Construction of D(S)

Theorem 5.5 motivates the edge-flipping construction of Delaunay

triangulations: starting with any triangulation on S (say, one obtained

by a line sweep), keep flipping the non-LD edges. In order to algorith-

mically implement this construction we have to clarify two issues:

Figure 20: Edge flip.

1. How do we verify the LD condition?

2. Does the procedure stop?

We address 1. first. It turns out it is not hard to verify the condi-

tion of LD using the incircle test.

Proposition 5.6. [Incircle test] Suppose x = (x1, x2), y = (y1, y2), z =

(z1, z2) and w = (w1, w2) are four points in R2. Assume x, y, z are
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not collinear and form a positively oriented triple, i.e.:∣∣∣∣∣∣∣
1 x1 x2

1 y1 y2

1 z1 y2

∣∣∣∣∣∣∣ > 0

Then w /∈ B(x, y, z) iff∣∣∣∣∣∣∣∣∣
1 x1 x2 x2

1 + x2
2

1 y1 y2 y2
1 + y2

2
1 z1 z2 z2

1 + z2
2

1 w1 w2 w2
1 + w2

2

∣∣∣∣∣∣∣∣∣ > 0.

x

y

z

Figure 21: Positively oriented triple

(x, y, z).

A proof and technical details of Proposition 5.6 are provided in the

Appendix. While Proposition 5.6 provides a convenient way to verify

LD property (and answer 1.), it does not suggest whether the edge

flip algorithm actually stops (2.). In order to address this question we

provide a couple more equivalent conditions to LD.

Suppose edge xy is shared by two different triangles xyz and xyw
from a triangulation K on S. We say that edge xy is a MaxMin edge,

if the minimal angle appearing in triangles xyz and xyw is larger than

the minimal angle appearing in triangles xzw and yzw.

Proposition 5.7. Suppose edge xy is shared by two different triangles

xyz and xyw from a triangulation K on S. Then the following con-

ditions are equivalent:

(i) xy is LD.

(ii) xy is a MaxMin edge.

(iii) ]xzy +]xwy < π.

a

b

c

u

v

α

α

π − α

p

Figure 22: Inscribed angle theorem.

Suppose u, v ∈ C(a, b, c), as the figure

demonstrates. Then ]acb = ]aub =
π − ]avb. This obviously implies

]acb > ]apb.

Proof. Let us prove the equivalence (i) ⇔ (iii) first using the Inscribed

angle theorem (see Figure 22).

xy is LD
definition⇐⇒ w /∈ B(x, y, z)

inscribed angle⇐⇒ π −]xzy > ]xwy ⇔
]xzy +]xwy < π.

We now turn our attention to (i) ⇔ (ii). Let α be the minimal an-

gle appearing in triangles xyz, xyw, xzw and yzw. It is easy to see that

α has to lie either along xy or zw as all the other angles get dissected

(and hence decreased) by either xy or zw in one of the configurations.

x

y

z

w

Figure 23: Proof of Proposition 5.7,
(i) ⇔ (ii).

Assume xy is LD. According to the Inscribed angle theorem,

]xyz > ]xwz, hence ]xyz does not equal α. In the same way we

can prove that no angle along xy equals α, hence xy is the MaxMin

edge.
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Assume now that xy is not LD. Using the identical argument as

in the previous paragraph we can prove that each angle along zw is

larger than the corresponding angle along xy. Hence α has to lie along

xy and therefore xy is not a MaxMin edge.

Proposition 5.7 implies that each edge flip, which makes an edge in

a triangulation LD, increases the minimal angles in the triangulation.

Let us explain this statement in more detail. For each triangle Ti

in a triangulation K on S let ti denote the size of its minimal angle.

Construct a lexicographically ordered list of these minimal angles, i.e.,

ti0 ≤ ti1 ≤ . . . ≤ tim . Proposition 5.7 implies that every time we

execute an edge flip making an edge in a triangulation LD, the new

lexicographically ordered list of the minimal angles t′i0 ≤ t′i1 ≤ . . . ≤ t′im
is lexicographical larger than the previous list, i.e., tij ≤ t′ij

, ∀j with

strict inequality holding for at least one index j. Hence by making

the required edge flips that keep turning edges into LD edges we can’t

return to the initial or any already visited triangulation. Since there

are only finitely many triangulations on S, and therefore finitely many

possible ordered lists of minimal angles, the edge flipping algorithm

terminates, answering 2. above affirmatively.

Conclusion: the edge flipping algorithm terminates with D(S).

A triangulation, for which the lexicographically ordered list of the

minimal angles is maximal in the lexicographical order, is called a

MaxMin triangulation.

Theorem 5.8. A MaxMin triangulation on S coincides with D(S).

In particular, there exists only one MaxMin triangulation on S.

6 Concluding remarks

Recap (highlights) of this chapter

• Planar triangulations;

• Convexity;

• Euler characteristic;

• Line sweep;

• Voronoi diagram and Delaunay triangulation;

• Constructing the Delaunay triangulation using the locally Delaunay

condition and the incircle test.
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Background and applications

The Euler characteristic has been introduced by Leonhard Euler in

the 18th century. The line sweep algorithm, Voronoi diagram and De-

launay triangulation are basic notions studied especially in computa-

tional geometry. The edge flip algorithm we mentioned requires O(n2)

edge flips, where n is the number of vertices of S. There are known

algorithms to construct the Delaunay triangulation in O(n log n).

The above mentioned properties of the Delaunay triangulation make

it one of the favorite choices for a triangulation on a finite planar set

S. For example, assume you are given a collection of points modelling

a geographic profile in a small region. The points consist of coordi-

nates and elevations at these coordinates. The task is to model the

surface modelling the geographic profile. A standard solution would

be to construct the Delaunay triangulation on the set of coordinate

points, and then lift these points and triangles according to the given

elevations. Triangles lifted this way provide a good approximation of

the geographic profile on the sampled region.

Appendix: Proof of Proposition 5.6

x

y

z

Figure 24: Positively oriented triple

x, y, z.

Proof. Let us explain the positively oriented criterion first, see Figure

24. Points x, y, z form a positively oriented triple iff vectors −→xy,−→yz are

positively oriented, meaning that the third component of the cross

product (y1 − x1, y2 − x2, 0)× (z1 − x1, z2 − x2) is positive. This third

component equals the 3× 3 determinant∣∣∣∣∣∣∣
1 x1 x2

1 y1 y2

1 z1 y2

∣∣∣∣∣∣∣ .

We now turn our attention to the proof of the proposition. Sur-

prisingly enough, we need to use the three-dimensional geometry, see

Figure 25 throughout the proof. Embed R2 (and points x, y, z, w) into

R3 by assigning the third coordinate to be 0, i.e., x = (x1, x2, 0), etc.

Consider the graph of the function f (x, y) = x2 + y2. Lift points

x, y, z, w to the graph of f and let denote x′, y′, z′, w′ the lifted points,

i.e., x′ = (x1, x2, x2
1 + x2

2), etc. Let Π denote the plane containing

x′, y′, z′.
Let C be the intersection of the graph of f and Π. Note that the

vertical projection of C onto R2 × {0} is a circle: substituting z in

z = x2 + y2 by an equation of a plane z = ax + by + c we obtain

an equation of a circle in the plane of the form x2 + y2 − ax − by −
c = 0. As this circle contains x, y, z, it coincides with C(x, y, z). It is

geometrically apparent that w /∈ B(x, y, z) iff w′ lies above Π (the

region where the graph of f is below Π is B(x, y, z)). Since x, y, z are
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x
y

z

x′ y′

z′

z = x2 + y2
Π

C(x, y, z)

Figure 25: Proof of Proposition 5.6.

positively oriented, a normal of Π with a positive third component

is ~n =
−→
x′y′ ×

−→
x′z′. Point w′ lies above Π iff ~n ·

−−→
x′w′ is positive. It is

elementary to verify that ~n ·
−−→
x′w′ equals∣∣∣∣∣∣∣∣∣

1 x1 x2 x2
1 + x2

2
0 y1 − x1 y2 − x2 y2

1 + y2
2 − (x2

1 + x2
2)

0 z1 − x1 z2 − x2 z2
1 + z2

2 − (x2
1 + x2

2)

0 w1 − x1 w2 − x2 w2
1 + w2

2 − (x2
1 + x2

2)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 x1 x2 x2

1 + x2
2

1 y1 y2 y2
1 + y2

2
1 z1 z2 z2

1 + z2
2

1 w1 w2 w2
1 + w2

2

∣∣∣∣∣∣∣∣∣ .
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