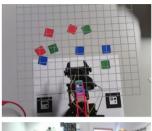
Multimedia Systems

Luka Čehovin Zajc

Vicos sualgnitive ystemslab


About the lecturer

Luka Čehovin Zajc, PhD
Assistant Professor
Visual Cognitive Systems Laboratory
Room R2.35 (office hours online)
luka.cehovin@fri.uni-lj.si

Course requirements

- Laboratory exercises / project work > 50%
 - Practical exercises grading throughout semester
 - Single project grading at the end of the semester
 - Only valid for the current school year
- Exam (written + oral) > 50%
 - Must pass laboratory exercises to attend
 - Theoretical and practical assignments
 - Optional oral exam for borderline students (50% to ~65%)
 - Only oral exam for less than ~10 students

May change due to COVID situation

Laboratory exercises

- Teaching assistant: Me
- Practical consolidation of selected topics
- Python (Jupyter, SciKit, NumPy, ...)
 - Hosted Jupyter hub at lab.vicos.si
 - Local installation (virtualenv, Docker)
 - Google Colab
- Each exercise is due in two weeks (approximately)
 - Timely assignment hand-in encouraged
 - Stick to your designated laboratory cycles (for defenses!)

- Alternative to regular laboratory execises
- Indepth project work on a selected topic
 - You have to pace your work yourself
 - Meetings can be arranged to discuss topic
- Work has to be finished by the end of semester
 - Presentation in classroom
 - Demonstration
 - Code hand-in
- Possible projects
 - 3D video stabilization using SfM
 - Content-based image retrieval with sketches
 - Content-based music retrieval in practice
 - Augmented reality without markers
 - Interactive / multitouch surfaces
 - Embedded devices for natural interaction.

Write me an email if you are interested!

multimedia (Latin) multum + medium

Different meanings

- Computer salesman
 PC with GPU, sound-card, Blu-ray player, speakers?
- Entertainment industry
 interactive digital TV with Internet connection, video ondemand
- Computer science researchers / students
 interactive applications that utilize multiple modalities, text, images, animation, sound, etc.

Convergence

Convergence of domains: graphics, visualization, human-computer interaction, computer vision, data compression, computer networks, machine learning, ... are used together.

Convergence of devices: Computers, video players, game consoles, broadcast TV, Internet, converge into a unified multimedia products.

01010 10101 01010 INFORMATION THEORY

COMPUTER GRAPHICS

MULTIMEDIA

Application domains

- Digital television, video on demand (video + sound)
- Computer games (graphics + sound + interactivity)
- Teleconferences (video + sound)
- Remote lectures (video + sound + slides)
- Telemedicine (video + sound + haptic + manipulation)
- Large databases (e.g. Google, YouTube, Facebook, Amazon, Dropbox)
- Interfaces, augmented reality, virtual reality
- Data visualization (image + sound + interactivity)

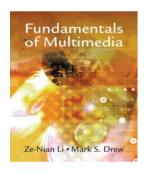
Hypermedia

- Ted Nelson (~1965): HyperText
 - Book: linear medium
 - HyperText: non-linear (interactive)
- Hypermedia: not only text
 - Form of multimedia application
 - WWW type of hypermedia application

Research challenges

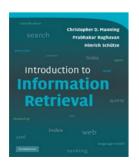
- Processing and storage
 Content analysis, information retrieval, compression, security, etc.
- Tools and applications
 Hypermedia systems, content manipulation, user interfaces, multi-modal interaction, content production systems, collaboration systems, etc.
- Support systems
 Network protocols, quality of service, distribution networks, storage systems, IO devices, etc.

Lectures overview


- Images
- Video
- Sound

- Compression
- Retrieval
- Interactivity

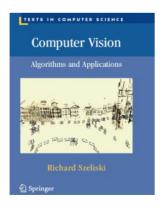
Literature

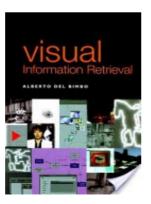


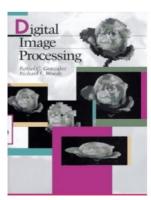
- Slides + lecture notes available at online Classroom (Učilnica)
- Multimedia overview, general topics

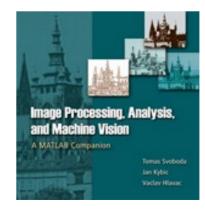
Li Ze-Nian, M. S. Drew, Fundamentals of Multimedia, 2010.

General information retrieval concepts

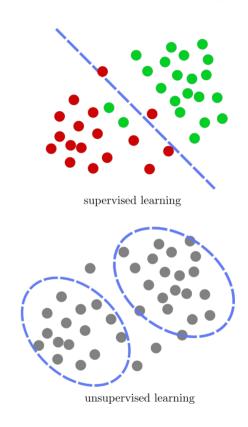



C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.




Additional literature

- R. Szeliski: Computer Vision: Algorithms and Applications
- A. del Bimbo: Visual information retrieval
- Gonzalez and Woods: Digital Image Processing
- Sonka, Hlavac, Boyle: Image Processing, Analysis, and Machine Vision
- J. O. Smith III, Introduction to Digital Filters


Machine learning for multimedia

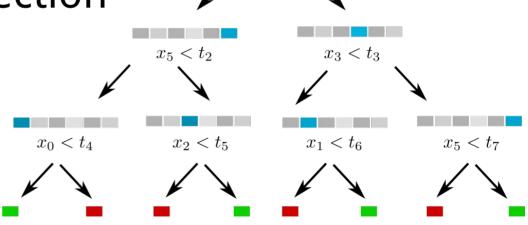
- Machine learning != artificial intelligence
- Function/model approximation
 - Without explicit programming
 - Improve with data

Learning scenarios

- Supervised
 - Known output
 - Optimization of objective function
 - Classification, regression
- Unsupervised
 - No annotations
 - Knowledge (structure) discovery, data mining
 - Clustering, latent variable estimation
- Reinforcement

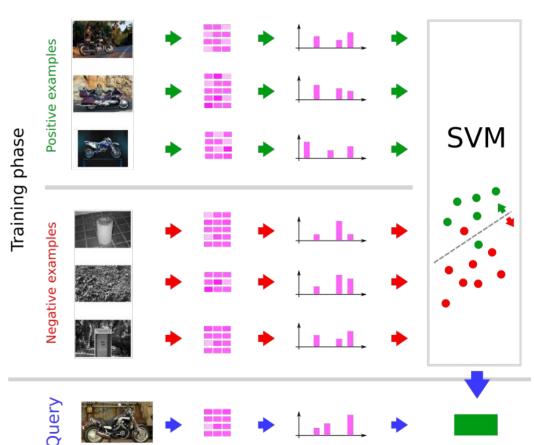
Prediction model

- Input (sample)
 - Vector of attributes
 - Image, soundform, ...
- Output (prediction)
 - Class
 - Property

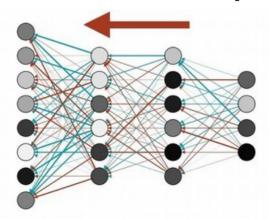

Classification

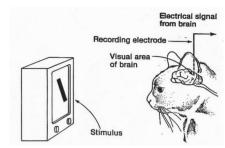
- Fixed number of classes
 - Binary yes/no
 - Multi-class
- Use-cases in multimedia
 - Detection (interactivity)
 - Object categorization (retrieval)
 - Tracking

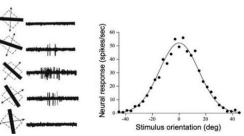
Decision tree


- Inner nodes test attribute value
- Leaf nodes outcome
- Greedy attribute selection
- Generalization
 - Boosted trees
 - Random forest

Support vector machine

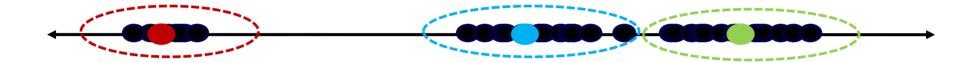

- Supporing samples
 - Close to boundary
- Kernel
 - Space projection
 - RBF




Vices sualgnitive ystemslab

Artificial neural network

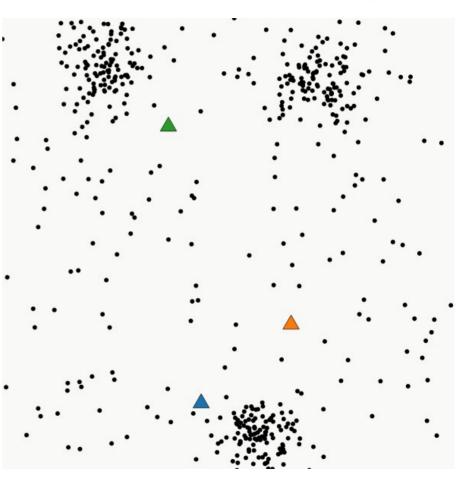
- Biological motivation (~1960)
- Character recognition
- High number of parameters


Clustering

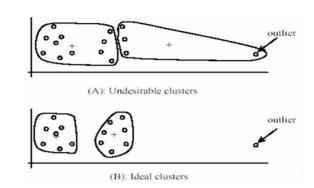
- Input feature vectors
- Output cluster assignments (labels)
- Use cases in multimedia
 - Segmentation
 - Visual dictionary formation
 - Efficient searching

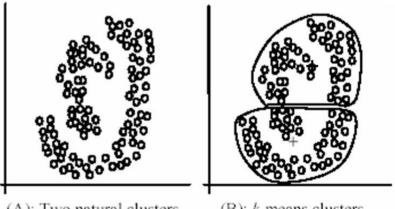
Chicken-and-egg problem

If we know the centers of clusters each point can be assigned to the closest


If we know which points belong together we can calculate centers

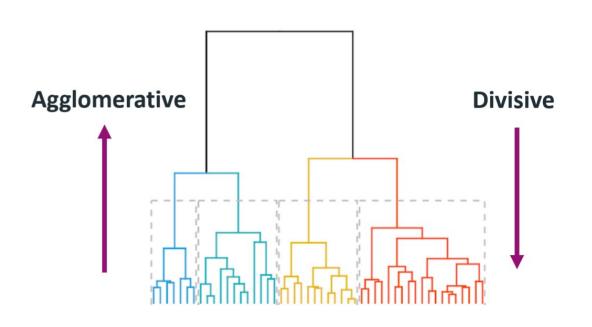
K-means clustering


- Fixed number of clusters (K)
- Randomly initialize cluster centers
- Iterate until convergence:
 - For all p: assign p to cluster k if it is the closest
 - Recompute centers as mean of assigned points



K-means properties

- Advantages
 - Fast
 - Convergence ensured (local minimum)
- Weaknesses
 - Manual K selection
 - Sensitive to initial centroids selection
 - Outliers sensitivity
 - Assumes spherical clusters
 - Computing mean values


(A): Two natural clusters

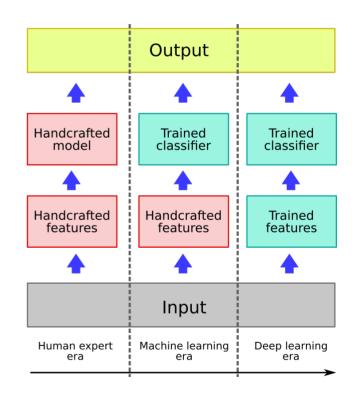
(B): k-means clusters

Hierarchical clustering

- Hierarchy of clusters
- Distance metric
- Iterative algorithm
 - Agglomerative
 - Divisive

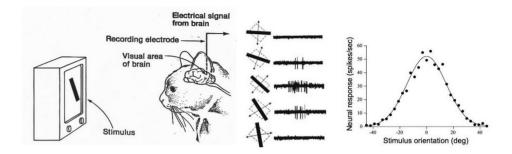
Mean-shift clustering

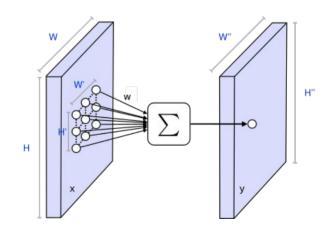
- Cluster points that converge to the same modus
 - Cluster number determined automatically
 - Kernel bandwidth
 - Attraction field region where all points lead to the same modus
 - Does not scale well to high number of dimensions


Deep learning

- Large models
 - Neural networks, convolution
 - Many parameters
- Highly non-linear
- Optimization
 - Automatic differentiation
 - Backpropagation of loss function
 - Gradient descent

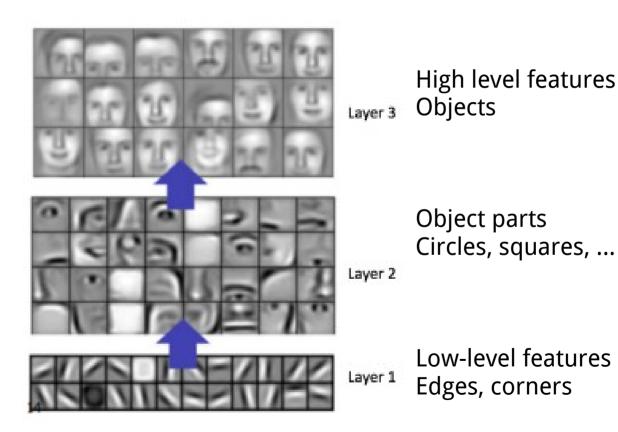
Big data and end-to-end learning


- End-to-end learning
 - Learning features and classifier
 - From pixels to high-level decisions
- Big data
 - More data (Internet, Mechanical Turk)
 - Hardware (storage, GPUs)
 - Learning techniques



Convolutional neural networks

- Neural networks
 - Biological motivation (~1960)
 - Character recognition
 - High number of parameters
- Convolution
 - Receptive field
 - Same operation on entire image
 - Reduced number of parameters



Hierarchy of filters

- Training
 - Back-propagation
 - Gradient descent
- Layers
 - Convolutional
 - Fully-connected
 - Max-pooling
 - Soft-max

