Mathematical modelling

Lecture 2, February 22, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

Definition

A generalized inverse of a matrix $A \in \mathbb{R}^{n \times m}$ is a matrix $G \in \mathbb{R}^{m \times n}$ such that

$$
\begin{equation*}
A G A=A . \tag{1}
\end{equation*}
$$

Remark

Note that the dimension of A and its generalized inverse are transposed to each other. This is the only way which enables the multiplication $A \cdot * \cdot A$.

Proposition

If A is invertible, it has a unique generalized inverse, which is equal to A^{-1}.
Proof.
Let G be a generalized inverse of A, i.e., (1) holds. Multiplying (1) with A^{-1} from the left and the right side we obtain:

$$
\begin{aligned}
\text { Left hand side (LHS): } & A^{-1} A G A A^{-1}=I G I=G, \\
\text { Right hand side (RHS): } & A^{-1} A A^{-1}=I A^{-1}=A^{-1},
\end{aligned}
$$

where I is the identity matrix. The equality $\mathrm{LHS}=$ RHS implies that $G=A^{-1}$.

Theorem

Every matrix $A \in \mathbb{R}^{n \times m}$ has a generalized inverse.

Proof.

Let r be the rank of A.
Case 1. $\operatorname{rank} A=\operatorname{rank} A_{11}$, where

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

and $A_{11} \in \mathbb{R}^{r \times r}, A_{12} \in \mathbb{R}^{r \times(m-r)}, A_{21} \in \mathbb{R}^{(n-r) \times r}, A_{22} \in \mathbb{R}^{(n-r) \times(m-r)}$.
We claim that

$$
G=\left[\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & 0
\end{array}\right],
$$

where 0s denote zero matrices of appropriate sizes, is the generalized inverse of A. To prove this claim we need to check that

$$
A G A=A .
$$

$$
\begin{aligned}
A G A & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
A_{21} A_{11}^{-1} & 0
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{21} A_{11}^{-1} A_{12}
\end{array}\right] .
\end{aligned}
$$

For $A G A$ to be equal to A we must have

$$
\begin{equation*}
A_{21} A_{11}^{-1} A_{12}=A_{22} . \tag{2}
\end{equation*}
$$

It remains to prove (2). Since we are in Case 1, it follows that every column of $\left[\begin{array}{l}A_{12} \\ A_{22}\end{array}\right]$ is in the column space of $\left[\begin{array}{l}A_{11} \\ A_{21}\end{array}\right]$. Hence, there is a cofficient matrix $W \in \mathbb{R}^{r \times(m-r)}$ such that

$$
\left[\begin{array}{l}
A_{12} \\
A_{22}
\end{array}\right]=\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right] W=\left[\begin{array}{l}
A_{11} W \\
A_{21} W
\end{array}\right]
$$

We obtain the equations $A_{11} W=A_{12}$ and $A_{21} W=A_{22}$. Since A_{11} is invertible, we get $W=A_{11}^{-1} A_{12}$ and hence $A_{21} A_{11}^{-1} A_{12}=A_{22}$, which is (2).

Case 2. The upper left $r \times r$ submatrix of A is not invertible.
One way to handle this case is to use permutation matrices P and Q, such that $P A Q=\left[\begin{array}{ll}\widetilde{A}_{11} & \widetilde{A}_{12} \\ \widetilde{A}_{21} & \widetilde{A}_{22}\end{array}\right], \widetilde{A}_{11} \in \mathbb{R}^{r \times r}$ and rank $\widetilde{A}_{11}=r$. By Case 1 we
have that the generalized inverse $(P A Q)^{g}$ of $P A Q$ equals to $\left[\begin{array}{cc}\widetilde{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]$. Thus,

$$
(P A Q)\left[\begin{array}{cc}
\widetilde{A}_{11}^{-1} & 0 \tag{3}\\
0 & 0
\end{array}\right](P A Q)=P A Q
$$

Multiplying (3) from the left by P^{-1} and from the right by Q^{-1} we get

$$
A\left(Q\left[\begin{array}{cc}
\widetilde{A}_{11}^{-1} & 0 \\
0 & 0
\end{array}\right] P\right) A=A
$$

So, $Q\left[\begin{array}{cc}\widetilde{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right] P=\left(P^{T}\left[\begin{array}{cc}\left(\widetilde{A}_{11}^{-1}\right)^{T} & 0 \\ 0 & 0\end{array}\right] Q^{T}\right)^{T}$ is a generalized inverse of A.

Algorithm for computing a generalized inverse of A

Let r be the rank of A.

1. Find any nonsingular submatrix B in A of order $r \times r$,
2. in A substitute

- elements of the submatrix B for corresponding elements of $\left(B^{-1}\right)^{T}$,
- all other elements with 0 ,

3. the transpose of the obtained matrix is a generalized inverse G.

Example
Compute at least one generalized inverse of

$$
A=\left[\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 \\
2 & 0 & 1 & 4
\end{array}\right]
$$

- Note that $\operatorname{rank} A=2$. For B from the algorithm one of the possibilities is

$$
B=\left[\begin{array}{ll}
1 & 0 \\
1 & 4
\end{array}\right],
$$

i.e., the submatrix in the right lower corner.

- Computing B^{-1} we get $B^{-1}=\left[\begin{array}{cc}1 & 0 \\ -\frac{1}{4} & \frac{1}{4}\end{array}\right]$ and hence

$$
\left(B^{-1}\right)^{T}=\left[\begin{array}{cc}
1 & -\frac{1}{4} \\
0 & \frac{1}{4}
\end{array}\right] .
$$

- A generalized inverse of A is then

$$
G=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -\frac{1}{4} \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{1}{4} & \frac{1}{4}
\end{array}\right] .
$$

Generalized inverses of a matrix A play a similar role as the usual inverse (when it exists) in solving a linear system $A x=b$.

Theorem

Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{m}$. If the system

$$
\begin{equation*}
A x=b \tag{4}
\end{equation*}
$$

is solvable (that is, $b \in \mathcal{C}(A)$) and G is a generalized inverse of A, then

$$
\begin{equation*}
x=G b \tag{5}
\end{equation*}
$$

is a solution of the system (4).
Moreover, all solutions of the system (4) are exaclty vectors of the form

$$
\begin{equation*}
x_{z}=G b+(G A-I) z \tag{6}
\end{equation*}
$$

where z varies over all vectors from \mathbb{R}^{m}.

Proof.

We write A in the column form

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{m}
\end{array}\right],
$$

where a_{i} are column vectors of A. Since the system (4) is solvable, there exist real numbers $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ such that

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i} a_{i}=b \tag{7}
\end{equation*}
$$

First we will prove that $G b$ also solves (4). Multiplying (7) with G we get

$$
\begin{equation*}
G b=\sum_{i=1}^{m} \alpha_{i} G a_{i} . \tag{8}
\end{equation*}
$$

Multiplying (9) with A the left side becomes $A(G b)$, so we have to check that

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i} A G a_{i}=b . \tag{9}
\end{equation*}
$$

Since G is a generalized inverse of A, we have that $A G A=A$ or restricting to columns of the left hand side we get

$$
A G a_{i}=a_{i} \quad \text { for every } i=1, \ldots, m
$$

Plugging this into the left side of (9) we get exactly (??), which holds and proves (9).

For the moreover part we have to prove two facts:
(i) Any x_{z} of the form (6) solves (4).
(ii) If $A \tilde{x}=b$, then \tilde{x} is of the form x_{z} for some $z \in \mathbb{R}^{m}$.
(i) is easy to check:

$$
\begin{aligned}
A x_{z} & =A(G b+(G A-I) z)=A G b+A(G A-I) z \\
& =b+(A G A-A) z=b
\end{aligned}
$$

To prove (ii) note that

$$
A(\tilde{x}-G b)=0
$$

which implies that

$$
\tilde{x}-G b \in \operatorname{ker} A .
$$

It remains to check that

$$
\begin{equation*}
\operatorname{ker} A=\left\{(G A-I) z: z \in \mathbb{R}^{m}\right\} \tag{10}
\end{equation*}
$$

The inclusion (\supseteq) of (10) is straightforward:

$$
A((G A-I) z)=(A G A-A) z=0 .
$$

For the inclusion (\subseteq) of (10) we have to notice that any $v \in \operatorname{ker} A$ is equal to $(G A-I) z$ for $z=-v$:

$$
(G A-I)(-v)=-G A v+v=0+v=v
$$

Example

Find all solutions of the system

$$
A x=b
$$

where $A=\left[\begin{array}{llll}0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 4\end{array}\right]$ and $b=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$.

- Recall from the example a few slides above that $G=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{4} & \frac{1}{4}\end{array}\right]$.
- Calculating $G b$ and $G A-I$ we get

$$
G b=\left[\begin{array}{l}
0 \\
0 \\
1 \\
\frac{3}{4}
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 0
\end{array}\right]
$$

- Hence,

$$
x_{z}=\left[\begin{array}{llll}
-z_{1} & -z_{2} & 1 & \frac{3}{4}+\frac{1}{2} z_{1}
\end{array}\right]^{T}
$$

where z_{1}, z_{2} vary over \mathbb{R}.

1.2 The Moore-Penrose generalized inverse

Among all generalized inverses of a matrix A, one has especially nice properties.

Definition

The Moore-Penrose generalized inverse, or shortly the MP inverse of $A \in \mathbb{R}^{n \times m}$ is any matrix $\underline{A^{+} \in \mathbb{R}^{m \times n}}$ satifying the following four conditions:

1. A^{+}is a generalized inverse of $A: A A^{+} A=A$.
2. A is a generalized inverse of $A^{+}: A^{+} A A^{+}=A^{+}$.
3. The square matrix $A A^{+} \in \mathbb{R}^{n \times n}$ is symmetric: $\left(A A^{+}\right)^{T}=A A^{+}$.
4. The square matrix $A^{+} A \in \mathbb{R}^{m \times m}$ is symmetric: $\left(A^{+} A\right)^{T}=A^{+} A$.

Remark

There are two natural questions arising after defining the MP inverse:

- Does every matrix admit a MP inverse? Yes.
- Is the MP inverse unique? Yes.

Theorem

The MP inverse A^{+}of a matrix A is unique.

Proof.

Assume that there are two matrices M_{1} and M_{2} that satisfy the four conditions in the definition of MP inverse of A. Then,

$$
\begin{align*}
A M_{1} & =\left(A M_{2} A\right) M_{1} & & \text { by property (1) } \\
& =\left(A M_{2}\right)\left(A M_{1}\right)=\left(A M_{2}\right)^{T}\left(A M_{1}\right)^{T} & & \text { by property }(3) \\
& =M_{2}^{T}\left(A M_{1} A\right)^{T}=M_{2}^{T} A^{T} & & \text { by property (1) } \\
& =\left(A M_{2}\right)^{T}=A M_{2} & & \text { by property (3) } \tag{3}
\end{align*}
$$

A similar argument involving properties (2) and (4) shows that

$$
M_{1} A=M_{2} A,
$$

and so

$$
M_{1}=M_{1} A M_{1}=M_{1} A M_{2}=M_{2} A M_{2}=M_{2}
$$

Remark

Let us assume that A^{+}exists (we will shortly prove this fact). Then the following properties are true:

- If A is a square invertible matrix, then it $A^{+}=A^{-1}$.
- $\left(A^{+}\right)^{+}=A$.
- $\left(A^{T}\right)^{+}=\left(A^{+}\right)^{T}$.

In the rest of this chapter we will be interested in two obvious questions:

- How do we compute A^{+}?
- Why would we want to compute A^{+}?

To answer the first question, we will begin by three special cases.

Construction of the MP inverse of $A \in \mathbb{R}^{n \times m}$:

Case 1: $A^{T} A \in \mathbb{R}^{m \times m}$ is an invertible matrix. (In particular, $m \leq n$.) In this case $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$.

To see this, we have to show that the matrix $\left(A^{T} A\right)^{-1} A^{T}$ satisfies properties (1) to (4):

1. $A M A=A\left(A^{T} A\right)^{-1} A^{T} A=A\left(A^{T} A\right)^{-1}\left(A^{T} A\right)=A$.
2. $M A M=\left(A^{T} A\right)^{-1} A^{T} A\left(A^{T} A\right)^{-1} A^{T}=\left(A^{T} A\right)^{-1} A^{T}=M$.
3.

$$
\begin{aligned}
(A M)^{T} & =\left(A\left(A^{T} A\right)^{-1} A^{T}\right)^{T}=A\left(\left(A^{T} A\right)^{-1}\right)^{T} A^{T}= \\
& =A\left(\left(A^{T} A\right)^{T}\right)^{-1} A^{T}=A\left(A^{T} A\right)^{-1} A^{T}=A M
\end{aligned}
$$

4. Analoguous to the previous fact.

Case 2: $A A^{T}$ is an invertible matrix. (In particular, $n \leq m$.)
In this case A^{T} satisfies the condition for Case 1 , so $\left(A^{T}\right)^{+}=\left(A A^{T}\right)^{-1} A$.
Since $\left(A^{T}\right)^{+}=\left(A^{+}\right)^{T}$ it follows that

$$
\begin{aligned}
A^{+} & =\left(\left(A^{+}\right)^{T}\right)^{T}=\left(\left(A A^{T}\right)^{-1} A\right)^{T}=A^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} \\
& =A^{T}\left(\left(A A^{T}\right)^{-T}\right)^{-1}=A^{T}\left(A A^{T}\right)^{-1}
\end{aligned}
$$

Hence, $A^{+}=A^{T}\left(A A^{T}\right)^{-1}$.

