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Definition
A generalized inverse of a matrix A € R is a matrix G € R™*" such that

AGA = A. (1)

Remark
Note that the dimension of A and its generalized inverse are transposed to each
other. This is the only way which enables the multiplication A - x - A.

Proposition
If A is invertible, it has a unique generalized inverse, which is equal to AL

Proof.

Let G be a generalized inverse of A, i.e., (1) holds. Multiplying (1) with
AL from the left and the right side we obtain:

Left hand side (LHS): A"*AGAA™! = IGI = G,
Right hand side (RHS): A7!AA™! = /A7l = AL,

where [ is the identity matrix. The equality LHS=RHS implies that
G = A_l. @/17



Theorem
Every matrix A € R"*™ has a generalized inverse.

Proof.
Let r be the rank of A.

Case 1. rank A = rank A11, where

Air A }
A—
{ A1 Ax

and A € ]Rrxr,A12 e Rrx(m—r)7A21 c R(n—r)xr, Ay € R(n—r)x(m—r)'

We claim that 1
G— Ag O
0 o0}’
where Os denote zero matrices of appropriate sizes, is the generalized
inverse of A. To prove this claim we need to check that

AGA = A.
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AGA — [An AIZ] [ v 0} [An AIZ] _ [ / 0] [An AIZ]
A1 Azl | 0 0] |[Aar Ax ApAl 0] |An Ax
_ [An A2 }
Ay AnAt AL
For AGA to be equal to A we must have
An AL Az = Ag. (2)
It remains to prove (2). Since we are in Case 1, it follows that every column

Hence, there is a cofficient

of [A2J is in the column space of [221]

matrix W € R™(m=1) sych that
-1 1%
A Az AW |~
We obtain the equations Aj1 W = Ajs and A1 W = Ajyy. Since A1 is

invertible, we get W = AI11A12 and hence A21Af11A12 = Az, which is (2).
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Case 2. The upper left r X r submatrix of A is not invertible.

One way to handle this case is to use permutation matrices P and @, such

that PAQ = 411 412 , le € R™" and rank/zll =r. By Case 1 we
A Az
. A 0
have that the generalized inverse (PAQ)# of PAQ equals to o ol
Thus, _
Ay 0 _
(PAQ) 0 0 (PAQ) = PAQ. (3)

Multiplying (3) from the left by P~! and from the right by Q! we get

A7l 0 _
a5 e)a-a

-

(/Kl—ll) T 0] T) . . .

Q is a generalized inverse of
0 0

A. Ol
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Algorithm for computing a generalized inverse of A
Let r be the rank of A.

1. Find any nonsingular submatrix B in A of order r x r,

2. in A substitute
> elements of the submatrix B for corresponding elements of (B~1)7,
» all other elements with 0,

3. the transpose of the obtained matrix is a generalized inverse G.
Example

Compute at least one generalized inverse of

A=

N O O
o O O
= o= N
N O O
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» Note that rank A = 2. For B from the algorithm one of the possibilities is

10
o= 3
i.e., the submatrix in the right lower corner.
» Computing B~! we get B! = {_11 (1)} and hence
4 4

> A generalized inverse of A is then

ooonggg
G:OOI—%:OIO
000 3 0 _1 1
1 1
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Generalized inverses of a matrix A play a similar role as the usual inverse
(when it exists) in solving a linear system Ax = b.

Theorem
Let A€ R™™ and b € R™. If the system

Ax =b (4)
is solvable (that is, b € C(A)) and G is a generalized inverse of A, then
x = Gb (5)

is a solution of the system (4).

Moreover, all solutions of the system (4) are exaclty vectors of the form
x; = Gb+ (GA — 1)z, (6)

where z varies over all vectors from R™.
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Proof.

We write A in the column form
A= [al a ... am],

where a; are column vectors of A. Since the system (4) is solvable, there
exist real numbers ag,...,am € R such that

ia;ai = b. (7)
i=1

First we will prove that Gb also solves (4). Multiplying (7) with G we get
Gb = Z a,-Ga,-. (8)
i=1

Multiplying (9) with A the left side becomes A(Gb), so we have to check
that

> " aiAGa; = b. 9)
=1
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Since G is a generalized inverse of A, we have that AGA = A or restricting
to columns of the left hand side we get

AGa; =a; foreveryi=1,..., m

Plugging this into the left side of (9) we get exactly (??), which holds and
proves (9).

For the moreover part we have to prove two facts:

(i) Any x, of the form (6) solves (4).

(i) If AX = b, then X is of the form x, for some z € R™.
(i) is easy to check:

Ax; = A(Gb+ (GA—1)z) = AGb + A(GA— I)z
= b+ (AGA— A)z = b.
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To prove (ii) note that

A(X — Gb) =0,
which implies that
X — Gb € ker A.
It remains to check that
kerA={(GA—1)z: ze R™}. (10)

The inclusion (2) of (10) is straightforward:
A((GA—1)z) = (AGA—A)z =0.

For the inclusion (C) of (10) we have to notice that any v € ker A is equal
to (GA— 1)z for z= —v:

(GA—I)(-v)=—-GAv+v=0+v=v. O
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Example

Find all solutions of the system

Ax =

00 20 2

where A= 10 0 1 O0f and b= |1
2 01 4 4

0

P Recall from the example a few slides above that G = g

0

»  Calculating Gb and GA — | we get

Gb =

Mo OO
o
El
o
>
Il

»  Hence,

-2z

where z1, zp vary over R.

= oo

N

oo o |

0

0

ol-

1

s

0 0 0
-1 0 o0
0 0 0"
0 0 0

T

%‘F%Zl]
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1.2 The Moore-Penrose generalized inverse

Among all generalized inverses of a matrix A, one has especially nice
properties.

Definition

The Moore-Penrose generalized inverse, or shortly the MP inverse of

A € R™™M is any matrix AT € R™*" satifying the following four conditions:

. AT is a generalized inverse of A: AATA = A.

. Alis a generalized inverse of AT: ATAAT = AT,

. The square matrix AAT € R™" is symmetric: (AAT)T = AAT.
. The square matrix AT A € R™*™ is symmetric: (ATA)T = ATA.

N S

Remark
There are two natural questions arising after defining the MP inverse:

» Does every matrix admit a MP inverse? Yes.
» s the MP inverse unique? Yes.
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Theorem
The MP inverse A" of a matrix A is unique.

Proof.
Assume that there are two matrices M; and M, that satisfy the four
conditions in the definition of MP inverse of A. Then,

AM; = (AMxA)M; by property (1)
= (AMp)(AM:) = (AM2)T(AM1)T by property (3)
= M (AMA)T = M AT by property (1)
= (AM,)T = AM, by property (3)

A similar argument involving properties (2) and (4) shows that
MiA = MhA,

and so
My = MiAM; = M1AMy = Mo AMy = Ms.
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Remark
Let us assume that AY exists (we will shortly prove this fact). Then the
following properties are true:

» If A is a square invertible matrix, then it AT = A~L.
> (ATt = A
> (AT)-i- - (A+)T,

In the rest of this chapter we will be interested in two obvious questions:

» How do we compute AT?

» Why would we want to compute A™*?

To answer the first question, we will begin by three special cases.
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Construction of the MP inverse of A € R"™<™:

Case 1: ATA e R™™ js an invertible matrix. (In particular, m < n.)

In this case AT = (ATA)1AT.

To see this, we have to show that the matrix (AT A)~*AT satisfies
properties (1) to (4):

1. AMA = A(ATA)"LATA = A(ATA)"1(ATA) = A.

2. MAM = (ATA)TIATAATA)TIAT = (ATA)TLAT = M.

3.

(AM)T = (A(ATA)*lAT> " A <<ATA>_1> T AT
—A ((ATA> T) AT AATA)LAT = AM.

4. Analoguous to the previous fact.
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Case 2: AAT is an invertible matrix. (In particular, n < m.)
In this case AT satisfies the condition for Case 1, so (A7) = (AAT)71A.

Since (AT)* = (A*)T it follows that

T

— AT ((AAT)—T) T AT(AAT) L

Hence, A* = AT(AAT)" 1.
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