Mathematical modelling

Lecture 2, February 22, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

Definition

A generalized inverse of a matrix $A \in \mathbb{R}^{n \times m}$ is a matrix $G \in \mathbb{R}^{m \times n}$ such that

$$AGA = A.$$
 (1)

Remark

Note that the dimension of A and its generalized inverse are transposed to each other. This is the only way which enables the multiplication $A \cdot * \cdot A$.

Proposition

If A is invertible, it has a unique generalized inverse, which is equal to A^{-1} .

Proof.

Let G be a generalized inverse of A, i.e., (1) holds. Multiplying (1) with A^{-1} from the left and the right side we obtain:

Left hand side (LHS): $A^{-1}AGAA^{-1} = IGI = G$, Right hand side (RHS): $A^{-1}AA^{-1} = IA^{-1} = A^{-1}$,

where *I* is the identity matrix. The equality LHS=RHS implies that $G = A^{-1}$.

Theorem

Every matrix $A \in \mathbb{R}^{n \times m}$ has a generalized inverse.

Proof.

Let r be the rank of A.

Case 1. rank $A = \operatorname{rank} A_{11}$, where

$$\mathsf{A} = \left[\begin{array}{cc} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{array} \right]$$

and $A_{11} \in \mathbb{R}^{r \times r}, A_{12} \in \mathbb{R}^{r \times (m-r)}, A_{21} \in \mathbb{R}^{(n-r) \times r}, A_{22} \in \mathbb{R}^{(n-r) \times (m-r)}.$ We claim that

$$G = \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix},$$

where 0s denote zero matrices of appropriate sizes, is the generalized inverse of A. To prove this claim we need to check that

$$AGA = A$$

$$\begin{aligned} AGA &= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ A_{21}A_{11}^{-1} & 0 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \\ &= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{21}A_{11}^{-1}A_{12} \end{bmatrix}. \end{aligned}$$

For AGA to be equal to A we must have

$$A_{21}A_{11}^{-1}A_{12} = A_{22}.$$
 (2)

It remains to prove (2). Since we are in Case 1, it follows that every column of $\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}$ is in the column space of $\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$. Hence, there is a cofficient matrix $W \in \mathbb{R}^{r \times (m-r)}$ such that

$$\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} W = \begin{bmatrix} A_{11}W \\ A_{21}W \end{bmatrix}.$$

We obtain the equations $A_{11}W = A_{12}$ and $A_{21}W = A_{22}$. Since A_{11} is invertible, we get $W = A_{11}^{-1}A_{12}$ and hence $A_{21}A_{11}^{-1}A_{12} = A_{22}$, which is (2).

Case 2. The upper left $r \times r$ submatrix of A is not invertible.

One way to handle this case is to use permutation matrices P and Q, such that $PAQ = \begin{bmatrix} \widetilde{A}_{11} & \widetilde{A}_{12} \\ \widetilde{A}_{21} & \widetilde{A}_{22} \end{bmatrix}$, $\widetilde{A}_{11} \in \mathbb{R}^{r \times r}$ and rank $\widetilde{A}_{11} = r$. By Case 1 we

have that the generalized inverse $(PAQ)^g$ of PAQ equals to $\begin{bmatrix} \widetilde{A}_{11}^{-1} & 0\\ 0 & 0 \end{bmatrix}$. Thus,

$$(PAQ)\begin{bmatrix} \widetilde{A}_{11}^{-1} & 0\\ 0 & 0 \end{bmatrix}(PAQ) = PAQ.$$
(3)

Multiplying (3) from the left by P^{-1} and from the right by Q^{-1} we get

$$A\left(Q\begin{bmatrix}\widetilde{A}_{11}^{-1} & 0\\ 0 & 0\end{bmatrix}P\right)A = A.$$

So,
$$Q\begin{bmatrix} \widetilde{A}_{11}^{-1} & 0\\ 0 & 0 \end{bmatrix} P = \left(P^T \begin{bmatrix} \left(\widetilde{A}_{11}^{-1}\right)^T & 0\\ 0 & 0 \end{bmatrix} Q^T \right)^T$$
 is a generalized inverse of A .

Algorithm for computing a generalized inverse of A

Let r be the rank of A.

- 1. Find any nonsingular submatrix B in A of order $r \times r$,
- 2. in A substitute
 - elements of the submatrix B for corresponding elements of $(B^{-1})^T$,
 - all other elements with 0,
- 3. the transpose of the obtained matrix is a generalized inverse G.

Example

Compute at least one generalized inverse of

$$A = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 4 \end{bmatrix}.$$

• Note that rank A = 2. For B from the algorithm one of the possibilities is

$$B = \begin{bmatrix} 1 & 0 \\ 1 & 4 \end{bmatrix},$$

i.e., the submatrix in the right lower corner.

• Computing
$$B^{-1}$$
 we get $B^{-1} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{4} & \frac{1}{4} \end{bmatrix}$ and hence
 $(B^{-1})^T = \begin{bmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4} \end{bmatrix}.$

A generalized inverse of A is then

$$G = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{4} \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

Generalized inverses of a matrix A play a similar role as the usual inverse (when it exists) in solving a linear system Ax = b.

Theorem

Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^m$. If the system

$$Ax = b \tag{4}$$

is solvable (that is, $b \in C(A)$) and G is a generalized inverse of A, then

$$x = Gb \tag{5}$$

is a solution of the system (4).

Moreover, all solutions of the system (4) are exactly vectors of the form

$$x_z = Gb + (GA - I)z, \tag{6}$$

where z varies over all vectors from \mathbb{R}^m .

Proof.

We write A in the column form

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_m \end{bmatrix},$$

where a_i are column vectors of A. Since the system (4) is solvable, there exist real numbers $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$ such that

$$\sum_{i=1}^{m} \alpha_i \mathbf{a}_i = \mathbf{b}.$$
 (7)

First we will prove that Gb also solves (4). Multiplying (7) with G we get

$$Gb = \sum_{i=1}^{m} \alpha_i Ga_i. \tag{8}$$

Multiplying (9) with A the left side becomes A(Gb), so we have to check that

$$\sum_{i=1}^{m} \alpha_i A Ga_i = b. \tag{9}$$

Since G is a generalized inverse of A, we have that AGA = A or restricting to columns of the left hand side we get

$$AGa_i = a_i$$
 for every $i = 1, \ldots, m$.

Plugging this into the left side of (9) we get exactly (??), which holds and proves (9).

For the moreover part we have to prove two facts:

(i) is easy to check:

$$Ax_z = A(Gb + (GA - I)z) = AGb + A(GA - I)z$$

= b + (AGA - A)z = b.

To prove (ii) note that

$$A(\tilde{x}-Gb)=0,$$

which implies that

$$\tilde{x} - Gb \in \ker A$$
.

It remains to check that

$$\ker A = \{(GA - I)z \colon z \in \mathbb{R}^m\}.$$
(10)

The inclusion (\supseteq) of (10) is straightforward:

$$A((GA - I)z) = (AGA - A)z = 0.$$

For the inclusion (\subseteq) of (10) we have to notice that any $v \in \ker A$ is equal to (GA - I)z for z = -v:

$$(GA - I)(-v) = -GAv + v = 0 + v = v. \quad \Box$$

Example

Find all solutions of the system

$$Ax = b$$
,

where
$$A = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 4 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$.

• Recall from the example a few slides above that
$$G = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
.

$$Gb = \begin{bmatrix} 0\\ 0\\ 1\\ \frac{3}{4} \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & 0 & 0\\ \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}.$$

Hence,

$$x_z = \begin{bmatrix} -z_1 & -z_2 & 1 & \frac{3}{4} + \frac{1}{2}z_1 \end{bmatrix}^T$$

where z_1, z_2 vary over \mathbb{R} .

1.2 The Moore-Penrose generalized inverse

Among all generalized inverses of a matrix A, one has especially nice properties.

Definition

The Moore-Penrose generalized inverse, or shortly the MP inverse of $A \in \mathbb{R}^{n \times m}$ is any matrix $\underline{A^+} \in \mathbb{R}^{m \times n}$ satisfying the following four conditions:

- 1. A^+ is a generalized inverse of A: $AA^+A = A$.
- 2. A is a generalized inverse of A^+ : $A^+AA^+ = A^+$.
- 3. The square matrix $AA^+ \in \mathbb{R}^{n \times n}$ is symmetric: $(AA^+)^T = AA^+$.
- 4. The square matrix $A^+A \in \mathbb{R}^{m \times m}$ is symmetric: $(A^+A)^T = A^+A$.

Remark

There are two natural questions arising after defining the MP inverse:

- Does every matrix admit a MP inverse? Yes.
- ► Is the MP inverse unique? Yes.

Theorem

The MP inverse A^+ of a matrix A is unique.

Proof.

Assume that there are two matrices M_1 and M_2 that satisfy the four conditions in the definition of MP inverse of A. Then,

$$\begin{array}{ll} AM_1 &= (AM_2A)M_1 & \text{by property (1)} \\ &= (AM_2)(AM_1) = (AM_2)^T(AM_1)^T & \text{by property (3)} \\ &= M_2^T(AM_1A)^T = M_2^TA^T & \text{by property (1)} \\ &= (AM_2)^T = AM_2 & \text{by property (3)} \end{array}$$

A similar argument involving properties (2) and (4) shows that

$$M_1A=M_2A,$$

and so

$$M_1 = M_1 A M_1 = M_1 A M_2 = M_2 A M_2 = M_2.$$

Remark

Let us assume that A^+ exists (we will shortly prove this fact). Then the following properties are true:

- If A is a square invertible matrix, then it $A^+ = A^{-1}$.
- $(A^+)^+ = A.$ • $(A^T)^+ = (A^+)^T.$

In the rest of this chapter we will be interested in two obvious questions:

- How do we compute A^+ ?
- Why would we want to compute A^+ ?

To answer the first question, we will begin by three special cases.

Case 1: $A^T A \in \mathbb{R}^{m \times m}$ is an invertible matrix. (In particular, $m \leq n$.)

In this case $\underline{A^+ = (A^T A)^{-1} A^T}$.

To see this, we have to show that the matrix $(A^T A)^{-1} A^T$ satisfies properties (1) to (4):

1.
$$AMA = A(A^T A)^{-1}A^T A = A(A^T A)^{-1}(A^T A) = A.$$

2.
$$MAM = (A^T A)^{-1} A^T A (A^T A)^{-1} A^T = (A^T A)^{-1} A^T = M.$$

3.

 $(AM)^{T} = \left(A(A^{T}A)^{-1}A^{T}\right)^{T} = A\left(\left(A^{T}A\right)^{-1}\right)^{T}A^{T} =$ $= A\left(\left(A^{T}A\right)^{T}\right)^{-1}A^{T} = A(A^{T}A)^{-1}A^{T} = AM.$

4. Analoguous to the previous fact.

Case 2: AA^T is an invertible matrix. (In particular, $n \le m$.)

In this case A^T satisfies the condition for Case 1, so $(A^T)^+ = (AA^T)^{-1}A$.

Since $(A^{T})^{+} = (A^{+})^{T}$ it follows that

$$A^{+} = \left((A^{+})^{T} \right)^{T} = \left((AA^{T})^{-1}A \right)^{T} = A^{T} \left((AA^{T})^{-1} \right)^{T}$$
$$= A^{T} \left((AA^{T})^{-T} \right)^{-1} = A^{T} (AA^{T})^{-1}.$$

Hence, $\underline{A^+ = A^T (A A^T)^{-1}}$.