
Lesson 1: Corpus
Start by constructing a workflow that consists of a Corpus widget,
a Word Cloud widget and two Corpus Viewer widgets:

Orange3-Text comes with several preloaded data sets. From these
(“Browse documentation data sets…”) choose Grimm-tales-
selected.tab, a data set containing Grimm’s selected tales.

Now open Word Cloud. Word Cloud displays word frequencies,
where the more frequent the word, the larger the font. Select a
word in the visualization and pass it to Corpus Viewer (1). You can
now observe only those documents that contain the selected word
in the Corpus Viewer. 

Corpus is any collection of
documents.

The particularity of the Corpus
widget is that it sets the text
feature(s) to apply text mining
on. “Used text features” defines
the content (text), while other
columns contain meta attributes
(title, abstract, etc.).

Introduction to Text Mining

But wait a second! This word cloud is a mess! We got a bunch of
semantic junk in our visualization. Is there a way to clean this up?

Of course! We need to remove all the bits that carry no
information, namely punctuation and stopwords.

�2

Introduction to Text Mining

Lesson 2: Preprocessing Text
Word Cloud simply displayed all the words and symbols found in
the text. But this is often not what we want. We want to extract
only meaningful units, such as semantically rich words. This is why
we need text preprocessing.

In the Preprocess Text widget, we decided to transform all words
to lowercase, treat each word as a token (and omit punctuation),
and to remove the stopwords (such as “in”, “and”, and “the”). This
preprocessing outputs the following tokens:

“This is a sample sentence.” → “sample”, “sentence”

To see the results of preprocessing, we can display the most
frequent tokens in Word Cloud. Word Cloud enables us to identify
redundant words and irregularities.

�3

Preprocessing is key to defining
what is important in our data. Is
“Doctor” the same as “doctor”?
Should we consider words such
as “and”, “the”, “when” or omit
them? Do we wish to treat “said”
and “say” as the same word?

Preprocessing defines the core
units of our analysis.

Token is a basic unit of our
analysis. It can be a word, a bi-
gram, a sentence… With
preprocessing we define our
tokens for the analysis.

Introduction to Text Mining

To remove the words that carry no meaning, we have already
filtered out some stopwords. But perhaps filtering out generic
stopwords is not enough for our analysis.

We can always load our own
custom stopword list. Open
a plain text editor and
create a custom list of
stopwords. Write each new
word on its own line and
save the file.

Load the list of custom
stopwords in the right-hand dropdown of the Filtering section.

�4

We see the results of our
preprocessing in the Word
Cloud. Two of the most frequent
words are “would” and “could”. If
we decide these two words are
not important for our analysis, it
would be good to omit them. We
can do this with custom filtering.

A good plain text editor is
Sublime, but you can easily work
with Notepad++.

Introduction to Text Mining

Another preprocessing technique is to filter out words that are too
rare and too frequent. Rare words are normally found in only a few
documents and frequent words are likely stopwords or very general
words. To retain only those words that truly represent the corpus
and may distinguish between corpus documents, we use Document
frequency filter. If we set the values to 0.1 and 0.9; we will retain
only those words that appear in more than 10% of the documents
and in fewer than 90%.

Preprocessing is really the key to a successful text analysis. We have
only mentioned a few techniques, but you can experiment on your
own with the following ones:

• normalization transforms all words into lemmas or stems (for
example sons to son)

• n-grams are tokens of larger size, bigrams (a pair of consecutive
words) and trigrams (word triplets), e.g. “office hours” or
“Department of Justice”.

• POS tagging tags each token with a corresponding part-of-
speech tag (sons → noun, plural, tag = NNS)

�5

For POS tag symbols see:

https://www.ling.upenn.edu/
courses/Fall_2003/ling001/
penn_treebank_pos.html

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Introduction to Text Mining

Lesson 3: Context
We have prepared our corpus and now it is time to visualize it. We
have already seen some of the preprocessing results in a word
cloud. Word Cloud shows us word frequencies. The more
frequently the word appears in the corpus, the larger it will be in
the word cloud.

But we still don’t know much about the use of a specific word in a
text. For example ‘oh’ could be a lowercase version of OH (the
chemical compound of hydroxide), a simple exclamation ‘Oh!’ or
an abbreviation for the state of Ohio.

To check the context of a particular word we can use Concordance
widget. Concordance shows us the text around our word.

Connect Concordance to Corpus to pass the text to the widget. To
browse the word, type it in the query line at the top or provide it
with the Word Cloud. Here we have selected the word ‘king’ in the
Word Cloud and observed the context in Concordance. 

�6

To inspect the documents
containing a particular word,
select the documents in
Concordance and pass them to
Corpus Viewer for a deeper
analysis.

Introduction to Text Mining

Lesson 4: Bag of Words
Now we have a preprocessed text, with proper tokens, but we still
cannot really find any patterns in our text. For this, we need
numbers and a simple way to convert documents into numeric
vectors is to… well, count the words in each text.

Bag of Words creates a table with words in columns and
documents in rows. Values are word occurrences in each
document. They can be binary, but normally they are counts.

However, text with many common words will have a
greater importance than texts with many specific words.
To balance the effect of stopwords, TF-IDF approach
weights the matrix with total document frequency.

�

Using TF-IDF, common words will have a low value as
they appear across most documents, while significant

words will have a high value because they appear frequently in a
small number of documents.

Pass the data through a Bag of Words widget and then again to a
Data Table. We get a new column that contains word counts for
each document. Now that we have numbers, we can finally
perform some magic!

t f − i d f = t f × log
n o of d ocs

d ocs con ta in ing ter m

�7

this is an example another apple

“This is an example” 1 1 1 1 0 0

“Another example” 0 0 0 1 1 0

“This is another apple. 1 1 0 0 1 1

Introduction to Text Mining

Lesson 5: Document Embedding
Bag of words, however, is not the only way to transform text into
numbers. BoW is a great approach, because it is intuitive and
interpretable (each feature is a word). But it requires a lot of
careful preprocessing and with many words, the document-term
matrix can get extremely large. Also, words like mother and mom
would be unrelated in the BoW matrix, which we know is not the
case. Wouldn’t it be nice to have model that describes mother and
mom with a similar number?

Such models are called word embedders and a based on
pre-trained deep models that map words in the language
space. In such a model, words with similar meaning and
words from the same family (car, Toyota, vehicle) would
be placed close together. Computing a vector for an
individual word based on the model is called embedding.

Orange uses fastText pre-trained models to embed words.
Then is averages word vectors to produce a single
document vector (one can also use sum, min or max
aggregation). The document is now described with 300

features, regardless of the length of the document. However,
features cannot be mapped to words — they are abstract
representations in the language space. 

�8

Introduction to Text Mining

Lesson 6: Clustering & Distances
One common task in text mining is finding interesting groups of
similar documents. That is, we would like to identify documents
that are similar to each other.

We already know how to cluster data instances. We pass the data
to Distances, use Euclidean distance, then to Hierarchical
Clustering. But the Euclidean distance is not the only option.
There are many distance measures and Euclidean doesn’t work
very well for text. Let us see why.

Using the Euclidean distance, document 2 would be closer to
document 3 than to document 1. But documents 1 and 2 talk
predominantly about wolves, while document 3 talks about foxes.
The measure that captures the similarity of concepts without
considering how many words there are in the text is called cosine
distance.

Word counts from BoW are vectors, each pointing in a direction
defined by text content as seen from the figure. Cosine distance is
the angle between these vectors. Once the angle is considered,
document 2 would be closer to document 1 than to document 3
(angle between them is smaller). For complex objects, such as texts,
cosine distance is a frequent choice.

�9

Introduction to Text Mining

For text, an intuitive approach for measuring similarity would also
be the number of words that two documents share. This is simply:

�

The measure is called Jaccard similarity coefficient or Jaccard
index. Note that in this case, we are measuring similarity, not
distance. Similarity is the opposite of distance, so to convert
Jaccard index to distance, we would subtract it from 1.

Now, let us go back to our Grimm’s Tales and construct the
following workflow:

Connect Corpus Viewer to Hierarchical
Clustering and open both widgets. Now
click on a cluster in the dendrogram and
observe the documents from the selected
cluster in Corpus Viewer. Explore different
clusters. Why are some Tales of Magic
mixed with Animal Tales? What do they
have in common?

J(A, B) =
|A⋂B |
|A⋃B |

�10

You can try the same workflow
on a different corpus, say
bookexcerpt.tab, which contains
excerpts from adult and
children’s books.

Introduction to Text Mining

Lesson 7: Word Enrichment
We have previously explored the clusters with box plot. But for
text mining, there is another option to find what is significant in
the cluster. The approach is called word enrichment.

Word Enrichment compares a subset of documents against the
entire corpus and finds statistically significant words for the
selected subset. It uses hypergeometric p-value to find words, that
are overrepresented in the subset.

�

FDR stands for false discovery rate. It is a measure to account for
falsly significant words. In a large data matrix (which BoW usually
is), some terms will be significant by chance. FDR tried to account
for it.

In the above clustering, we selected a
cluster with mostly Animal Tales.
Unsurprisingly, fox the most significant
word in the subset. So the next time you
see the word fox in a tale, you can bet the
text is an animal one! :)

p =
(term in corpus

term in subset) × (other terms
other terms in subset)

(all terms
terms in subset)

�11

Word Enrichment works on any
kind of subset.

Introduction to Text Mining

Lesson 8: Classification
Earlier we mentioned the Aarne-Thompson type (ATU). This is
the index of folk-tale motifs and we have already marked every tale
with a high-level (genre) and a mid-level ATU type (subgenre).

Could we perhaps predict the ATU type based on the content of
the tale? Let us see.

First, we need a target variable. This is the feature we are trying to
predict, in our case an ATU type. We also need a numerical
representation of each document - something we already have
from the Bag of Words.

Now we will build a predictive model. A predictive model
considers tokens (words) and predicts the target variable (ATU
Topic). Every model also needs a learner, which is a method on

how to consider the
tokens. In our case,
this is Logistic
Regression.

In Predictions, we
can see a column
with predicted
values from Logistic
Regression. Seems
like our model got
most of the tale
types right.

�12

Aarne and Thompson were
two folklorists, who invented
and perfected the motif-
based classification system of
folk tales. This system has
been in place since 1910 and
is commonly used in
comparative folkloristics. The
final U in ATU stands for
Uther, who was the last to
update the index in 2004.

Introduction to Text Mining

Lesson 9: Predictions
Predicting on new data works just like for regular data.

Open a new Corpus widget and load the andersen.tab corpus. Here
we have three tales from H. C. Andersen. Inspect them in Corpus
Viewer and try to guess the tale type yourself.

Now connect them to Predictions the same way as before - with
Logistic Regression passing the constructed model and the new
Corpus widget passing the data for prediction. Logistic Regression
predicted two tales to be Tales of Magic and one the Animal Tale.

The Ugly Duckling as an animal tale? Sounds quite right! 

�13

Introduction to Text Mining

Lesson 10: Twitter Data
The Grimm’s Tales already come with the program. Text add-on,
however, can retrieve data from many other sources: Twitter,
Guardian, New York Times, and Wikipedia!

Here’s an example on how to use the Twitter widget.

Entry the query, which can be a word, a hashtag, or a
mention. You can provide multiple queries, one per
line, which will be considered with OR (at least one
query appears in the tweet). Set the language to
English (or any other language) to limit tweet language.

For this example, we will retrieve a hundred English tweets with a
hashtag #datamining. We have entered the query in the “Query
word list” and set the language to English.

Now we run “Search” and Twitter widget will send the retrieved
tweets immediately to the output. Connect Corpus Viewer to
Twitter to observe the retrieved data. 

�14

To use Twitter widget you will
need to get a Twitter API key. Go
to https://apps.twitter.com/ and
create a new app. Once you’ve
created the app, you will get
your own API key.

Enter it into the Twitter API Key
section and begin using the
Twitter widget.

https://apps.twitter.com/
https://apps.twitter.com/

Introduction to Text Mining

Lesson 11: Twitter Preprocessing
Twitter requires specific preprocessing. Why? Think about this
tweet:

“I am looking forward to today’s lesson, @drprofessor. #course 😊 ”

With the standard preprocessing, the tokens would be the
following:

i, am, looking, forward, to, today’s, lesson, @, drprofessor, #, course, :, -,)

Not exactly what we want. Preprocessing should keep mentions,
hashtags and emojis together as one token, not separate it. For
this, we use the pre-trained Tweet tokenizer.

Text preprocessing steps are the following:

1.Remove urls from the text. Twitter’s
URLs are not informative.

2.Use a special Tweet tokenizer, that
was pre-trained on millions of tweets. It
keeps hashtags, emojis, and mentions.

3.Remove punctuation with regex
(Tweet tokenizer doesn’t do it by
default). 

�15

Un-preprocessed Word Cloud
above and a preprocessed Word
Cloud with Tweet tokenizer on
the right.

Introduction to Text Mining

Lesson 11: Sentiment Analysis
Can we discover how people feel about data mining? Sure, with
sentiment analysis. We will pass the tweets to Sentiment Analysis
widget and compute a sentiment score.

Connect Sentiment Analysis to Twitter. Sentiment Analysis uses
dictionary-based approaches to discover positive or negative words
and provides a total sentiment score. We will use Vader, which is a
smarter approach that recognizes phrases (“This is sick, dude.”),

punctuation (Great!!!!!!), and emojis (😲).

Vader outputs 4 sentiment features, namely positive (pos), neutral
(neu), negative (neg) and compound scores. Liu & Hu and
Multilingual sentiment are both simpler methods based solely on
dictionary words. Positive dictionary is used to count positive
words and negative dictionar for negative ones. The sum of
negative words is subtracted from the sum of positive words to get
the final score.

We will observe sentiment strength and polarity in a Heat Map.
Heat map shows numeric attributes, where each value is colored
according to scale. In our example, data with higher values are
yellow and white, while data with lower values are blue. ‘Clustering

�16

More advanced techniques for
sentiment analysis are based on
models, usually with deep neural
networks that learn from a large
amount of labelled texts.

Introduction to Text Mining

(opt. ordering)’ option groups tweets with
similar sentiment together.

Select, for example, the most positive
tweets from the bottom of the visualization
and inspect them in Corpus Viewer.

�17

The words that contribute to the
two documents being labelled as
positive, are free, confident, and
great.

