
Before main ()
C project setup, compilation and startup based on GCC

Primoz Alic
(Jan 2019)



Goal

2



BUS master

Core

Micro engineMCU
R0

R1

. . .

PC

UARTADC RAM FLASH

Da
ta

Ad
dr

es
s

Memory BUS

BUS slaves

3



Debugger

Build

.s

.c (.h)

.o

.o

.lib

.lnk

.hex

.map

.other

Editor

.out

Assembler

LinkerPreprocessor
& Compiler

Util

Compiler

.lib

4



Debugger

Build

Stage I.
COMPILING

.s

.c (.h)

.o

.o

.lib

.lnk

.hex

.map

.other

Editor

.out

Assembler

LinkerPreprocessor
& Compiler

Util

Compiler

.libPreprocessor collects 
included files and 
unrolls macros.
Compiler converts 
code instructions and 
marks where 
addresses are needed 
for symbols from other 
source files.

One object file is created per single source 
file (C or s). Object file contains code and 
debug info. But only from the originating 
source file and not the symbols (functions, 
variables) from other object files. Symbols 
within source/object file have associated 
address offset. 

Assembler converts instructions 
directly and emits symbols info 
(labels/functions names and 
offsets).

5



Debugger

Build

Stage I.
LINKING

.s

.c (.h)

.o

.o

.lib

.lnk

.hex

.map

.other

Editor

.out

Assembler

LinkerPreprocessor
& Compiler

Util

Compiler

.lib

All object files and needed library files are 
fed to linker. Absolute addresses are given 
to symbols based on the final location of the 
code from a single object file and the 
symbol offset within the object file. 
Previously marked references can be filled 
when all symbols have own addresses. 

Multiple outputs can be generated. 
Most important is final executable 
in predefined format. It contains 
code and debug info and thus 
usable by Debugger (or run time, 
e.g. OS). 

Available memory is described in a linker 
file. It also specifies where to put generated 
output, i.e. code, of some type (code, data 
etc.)

6



void F3() 

{

 F4();

}

Build

Stage II.
LINKING

Example: 
3 object files, 
each from one 
source file

“Address here, please”

F4() final address

source1.o

void F1() 

 

{

}

void F2()

{

}

source2.o

void F3() 

{

 F4();

}

source3.o

void F4() 

 

{

}

void F5()

{

}

object files         sizeoffset

0

100
100

100

100

200

300

200

0

0

After Compiler

void F1() 

 

{

}

void F2()

{

}

void F4() 

 

{

}

void F5()

{

}

output file         sizeaddress

0

100
100

100

100

200

300

700

500

200

After Compiler

7



All object files 
are fed to 
archiver where 
they get 
packed.

Build

Stage II.
Alternative

ARCHIVING

.s

.c (.h)

.o

.o .lib

Editor

Assembler

ArchiverPreprocessor
& Compiler

Compiler

Header files must 
be provided with 
library for sources in 
other project to 
know about 
symbols!

Single library 
output file to 
use as input to 
linker in 
another 
project.

8



Debugger

Build

Stage III.
CONVERTING

.s

.c (.h)

.o

.o

.lib

.lnk

.hex

.map

.other

Editor

.out

Assembler

LinkerPreprocessor
& Compiler

Util

Compiler

.lib

Accompanying compiler utils can 
be used to transform an output file.
Stripping the debug info and 
generating raw binary data is the 
most usual step. 

9



GCC

GNU
Compiler
Collection

● Multiple purpose executables (compiling: gcc, ar, ld… utilities: objcopy...)

● Multiple levels of executables (similar file names)

● Top executable calls other executables

● Use executables from topmost bin folder

● Use -pipe to avoid temp files for executables internal data propagation (useful for parallel 

compilation)

● Cross-compilation means compiling on one architecture for other architecture (e.g. on x86 for 

ARM)

● File names in form of: architecture-os-calling convention, e.g. arm-none-eabi; none means no OS 

support and not not eabi (eabi: Embedded Application Binary Interface)

● Documents usually deep under share subfolder (USE THEM!)

● Single file compile:

○  gcc.exe -march=armv7-m -mthumb -mfpu=vfp -Wimplicit -g3 -O0 -c -o<out_path> <in_path>

● Link:

○ gcc.exe -march=armv7-m -mthumb -mfpu=vfp -nostartfiles 

-Wl,--script=E:\Project\LinkerScript.lnk,--output=<out_path> -nostdlib -nodefaultlibs 

-fno-exceptions <obj_in_path>... <lib_path>...

● Single file preprocess only:

gcc.exe -P -E -o<out_path> <in_path>

10



Compile
Options
(usual)

-march=armv7-m Generate instructions for Cortex M3 or M4 device.

-mthumb Generate architecture Thumb instructions (Thumb2 for 
armv7-m).

-mfpu=vfp Floating point ABI (with -mfloat-abi=hard/soft - soft by 
default).

-pipe Use standard input/output to transfer data between 
stages.

-xc Force C language (capital ‘.C’ file can be compiled as 
C++).

-g3 Generate most debug info.

-O0 Don’t optimize (others: 0, 1, 2, 3, s, fast, g).

-c Stop after compilation.

-Wimplicit Warn when calling undeclared function.

-ffunction-sections Put each function in own .text section.

-DSOME_SYMBOL Define ‘SOME_SYMBOL’ for preprocessor (e.g. _DEBUG).

-IE:\Path\To\Folder\With\Include\Files Include path when looking for included files (#include 
“File.h”).

-oE:\Project\Debug\Output\File.o Where to put generated object file.

E:\Path\To\Source\File.c Source file to compile. 11



C-H-C

Compiles and links.

Compiles with warning (implicit function are understood 
as int returning functions without parameters). DOESN’T 
LINK! Linker can’t find SomeCall symbol.

Compiles without warning – function  declared. Still does 
not link.

Compiles and links.

Notice no #include. 

12



Link
Options
(usual)

--march=armv7-m Use libraries for Cortex M3 or M4 device.

-mthumb Use architecture Thumb libraries (Thumb2 for armv7-m).

-mfpu=vfp Floating point library (with -mfloat-abi=hard/soft soft by default).

-pipe Use standard input/output to transfer data between stages.

-nostartfiles Don’t add any startup code.

-LE:\Path\To\Some\Folder\With\Libs Consider the folder when searching for libraries.

--Wl, Comma separated list of linker specific options will follow:

--output=E:\Project\Debug\Output.out, Where to create final output file.

-Map=E:\Project\Debug\Output.map, Where to create map file.

--script=E:\Project\LinkerScript.lnk, Additional link options.

--gc-sections Remove unreferenced section.

-nostdlib Only use specified libs (-l).

-nodefaultlibs Don’t use any default libs automatically.

-fno-exceptions Throwing/catching is not used.

-lSomeLib Link with ‘libSomeLib.a’.
13



C-H-C
Can have multiple
Implementations, 

but linked with only 
one at the time. 

SwitchLED(bool bOn) is good practical example. Some library code calls this function to report 
status. On one type of HW this function is implemented in a file specific to that HW. 
Implementation is aware of GPIO registers and pin configuration. Same library can run on other 
type of HW where SwitchLED is implemented in the other source file specific to different HW. HW 
specific implementations are usually called HAL (Hardware Abstraction Layer), also simply 
drivers.

OR
e.g  

e.g.

14



C-H-C
It is impractical to 

repeat (copy/paste) 
code in each file. It 

leads to errors when
desynchronized.

15



C-H-C
Files after 

preprocessor (*.i) 
are same as 
previous with 

copy/pasted code. 

After preprocessor.

Notice #include. 
There is no 
YourSomeImpl.h.

16



Lameman’s
Build

manager 

17



Is 128 kBytes in size.Starts at 
0x00000000.

Can read (r) and 
execute from (x).

Linker file
memory 
layout

MEMORY

{

ROM (rx)  : ORIGIN = 0x00000000, LENGTH = 128k   

RAM (rwx) : ORIGIN = 0x10000000, LENGTH = 32k

}

_estack = ORIGIN(RAM) + LENGTH(RAM); /* end of RAM */

ENTRY(reset)

Assigned value available as 
symbol address in source files.

Symbol marked as 
start point.

Made up 
symbol.

Can read (r) 
and execute 
from (x), also 
write to (w). 

Made up 
name.

Start of memory layout 
description.

18



SECTIONS

{

  .text_out :        /* Code goes into ROM */ 

  {

KEEP(*(.isr_vector))/* Startup code */   

*(.text*)        /* All text sections */  

_etext = .;      /* Code ends here */ 

  } >ROM

 

  .rodata_out :      /* Constant data goes into ROM */ 

  {

. = ALIGN(4);

*(.rodata*)      /* All read only sections (constants, strings etc.) */

. = ALIGN(4);

_sidata = .;     /* Values for initialized data go here */ 

  } >ROM

  .data_out :        /* Initialized data sections goes into RAM */ 

  {

   _sdata = .;      /* Initialized data starts here */

   *(.data*)        /* All initialized data sections */

      . = ALIGN(4);

   _edata = .;      /* Initialized data ends here */ 

  } >RAM AT> ROM    /* Loaded in ROM */

 

  .bss_out :        /* Uninitialized data section follows in RAM */ 

  {

     . = ALIGN(4);

   _sbss = .;       /* Uninitialized (zero initialized) data starts here */

  *(.bss*)           /* All zero initialized data sections (e.g. int n=0;) */

  *(COMMON)             /* All Uninitialized  data sections (e.g. int n;) */  

     . = ALIGN(4);  

  _ebss = .;            /* Uninitialized (zero initialized) data ends here */ 

  } >RAM

}

Made up symbol.

Align 
current 
address, 
skip bytes 
if needed. 

Accessed at 
addresses in 
RAM. 

Initialized global 
variables 
section. 

Compiler output 
section name emitted 
by compiler. 

Code example shows 
how to make custom 
sections.Current address.Linker file

sections 
layout

Uninitialized 
global 
variables 
section. But initial values stored in ROM, at _sidata. 

Place input 
section here and 
do not move or 
remove for 
optimization.

Made up 
name for 
linker 
output 
section.

Start of 
memory layout 
description.

19



Final 
layout

_ebss

Must write 
zeros all 
over.

_estack

_sbss

_edata

_sdata

Must copy 
to .data 
locations. 

_sidata

20



Startup

Mark whatever follows with 
made up .isr_vector 
section name.

Inform compiler these 
symbols exist. Linker will 
populate addresses.

Initialized 
variable.

Uninitialized 
variable.

Make following 
function without 
prologue and 
epilogue. So 
nothing gets 
pushed to stack 
(i.e. saved) and 
later restored.

Local variables 
loaded with 
addresses.

Copy loop.

Zero init loop.

Finally call 
main().

Normally main 
won’t return. But 
just in case force 
software 
breakpoint 
instruction and 
endless loop.

Force stack pointer to 
end of RAM. Notice 
register and 
__asm(“sp”) directive to 
force local variable to 
register. Usable in RAM 
projects.

Array of values as required by Cortex-M 
core. More interrupt addresses follow in 
full project 21



Map file

Name             Origin             Length             Attributes
ROM              0x00000000         0x00020000         xr
RAM              0x10000000         0x00008000         xrw
*default*        0x00000000         0xffffffff

Linker script and memory map

                0x10008000                _estack = ((ORIGIN (RAM) + 0x8000))

.text_out       0x00000000       0x7c
 *(.isr_vector)
 .isr_vector    0x00000000        0x8 .\Debug\main.o
                0x00000000                g_adwVectors
 *(.text*)
 .text          0x00000008       0x60 .\Debug\main.o
                0x00000008                main
                0x00000018                reset
 .text          0x00000068       0x14 .\Debug\some.o
                0x00000068                SomeCall
                0x0000007c                _etext = .

.rodata_out     0x0000007c        0x0
                0x0000007c                . = ALIGN (0x4)
 *(.rodata*)
                0x0000007c                . = ALIGN (0x4)
                0x0000007c                _sidata = .

.data_out       0x10000000        0x4 load address 0x0000007c
                0x10000000                _sdata = .
 *(.data*)
 .data          0x10000000        0x4 .\Debug\main.o
                0x10000000                g_nVar0
 .data          0x10000004        0x0 .\Debug\some.o
                0x10000004                . = ALIGN (0x4)
                0x10000004                _edata = .

.bss_out        0x10000004        0x4 load address 0x00000080
                0x10000004                . = ALIGN (0x4)
                0x10000004                _sbss = .
 *(.bss*)
 .bss           0x10000004        0x0 .\Debug\main.o
 .bss           0x10000004        0x0 .\Debug\some.o
 *(COMMON)
 COMMON         0x10000004        0x1 .\Debug\main.o
                0x10000004                g_sSS
                0x10000008                . = ALIGN (0x4)
 *fill*         0x10000005        0x3 
                0x10000008                _ebss = . 22



Homework

Cortex-R, Cortex-A and older ARM cores start by executing directly from 
address 0x00000000 instead of first reading the start address from 
address 0x00000004.

How would .isr_vector code look like for those?

TIP: BL is the assembler instruction for branch on ARM. But you don’t 
need it.

23


