
Deep Learning on Android Devices
TensorFlow is a library for different data manipulations, but it is mostly used for neural networks.
TensorFlow Lite is its light-weight counterpart suitable for running on Android devices.

In this lab we will first see how to ship a neural network with a mobile app and use it for real-time object
recognition, and then we will see how to improve the neural network, so that previously unknown objects
can be recognized.

Real-time object recognition on Android
Within the TensorFlow codebase you will find an Android app that uses TensorFlow Lite for object
recognition. Clone the examples repository with git clone
git@github.com:tensorflow/examples.git and open a new project in Android Studio from the
existing code located at lite/examples/image_classification/android

You might have to adjust the Gradle files (e.g. adjust the API version to whatever you have installed on
your machine) to get the app to compile.

Note: a few other very useful Android examples can be found in the repository you have just cloned.

Testing the app

We will now run the app in the emulator or on the real phone and see how it classifies objects in real
time. If using the emulator you can use the built-in virtual space or pass your webcam image to the
emulator (via device settings in AVD).

Once running, the app shows you the top three classes predicted for the given camera image. In
addition, the app allows you to choose between a floating point or a quantized model, MobileNet or
EfficientNet, select the thread count, and decide whether to run on CPU, GPU, or via NNAPI.

Code inspection

Let’s look at the code. CameraActivity and ClassifierActivity extended from it are used to
capture individual images and provide the user interfaces. The core of the inference happens in tflite
package classes. Open the Classifier file. See how its create() method allows for either of the
four classifiers to be created: the full (floating point) version or the quantized version of either MobileNet
or EfficientNet. Furthermore, the Classifier class allows for a Device to be set, e.g. should we wish
to run the classifier on the GPU. Finally, you can also set the number of threads that the classifier will
use. The main part of the pipeline is the Interpreter, which performs inferences on the loaded
model.

One way this app makes execution faster is by memory mapping the pre-built model. Check
loadMappedFile function to see how this is done. Note that a different model file is loaded in case of
the four neural network versions (inspect ClassifierQuantizedMobileNet,
ClassifierFloatMobileNet and so on) . The files are shipped in the app’s APK package, and you
should find them in the “assets” directory of the “models” module.

Before the inference, an image data is stored in a TensorImage object called inputImageBuffer.
See how the object is created and filled in both the floating point as well as the quantized version of the

neural network. For the floating point version, the data is normalized before the inference: the mean
pixel values are subtracted from each pixel and the values are further divided by the standard deviation.

The inference is finally done when tflite.run() is called.

Transfer learning
The network architecture you are using is called MobileNet and is a great fit for on-device learning. The
file that ships with the default app is trained on 1001 different categories of objects (labels). However,
you might want to recognize some objects that are not there in the original dataset. Rather than training
the whole network from scratch, you can use the first few layers of the original network, as they
recognize the generic properties (e.g. horizontal/vertical edges, etc.) and add the new higher-layer
content trained to fit your training data.

A classifier recognizing different coins would be quite useful. We could use it for automatic payment
detection, or to help the visually impaired in certain situations. We don’t have labels for different coin
denominations in the original network, so we will retrain it to recognize different euro/cent coins. We will
perform transfer learning using a Jupyter Notebook.

Prerequisites: All the prerequisites from Lab 2 and 3 + tensorflow python library (install it with pip
install tensorflow)

Download the dataset of training images from https://bitbucket.org/veljkop/lab-4-transfer-learning and
unzip it. It contains a bunch of photos of one euro coins, fifty cent coins, and five cent coins. This is far
from an ideal dataset - it was created using videos deconstructed into individual frames with the ffmpeg
tool (ffmpeg -i euro.mp4 euro/euro_%04d.jpg and so on).

Then, download the Jupyter Notebook from https://bitbucket.org/veljkop/lab-4-transfer-learning and
follow the instructions there.

Loading the new model

Copy the new model file euronet.tflite to the assets directory. We
will use this model whenever a user selects the floating point classifier.
The original model uses 1001 labels, but the Euro coins are not among
them.

Rename the original labels.txt file to labels_old.txt and set the
getLabelPath() of the quantized mobile net classifier to point to these
old labels. We will use this classifier for comparison with our new classifier.
Copy the new labels.txt created during transfer learning to assets.
Set the floating point classifier so that it uses the new model file and the
new labels.

Compile and test whether the new model recognizes different coins.

The figure on the right shows a moment when the model is working really
well - you will find that this is often not the case. Can you explain why this
might be happening?

https://bitbucket.org/veljkop/lab-4-transfer-learning
https://bitbucket.org/veljkop/lab-4-transfer-learning

The solutions should be committed to a private Bitbucket repository named FRIMS2021-LAB-4 and a
user pbdfrita (pbdfrita@gmail.com) should be added as a read-only member. The solutions will be
pulled from your repository on Sunday, March 27, 23:59.

Happy coding!

Note: this lab is based on “Recognize Flowers with TensorFlow on Android” TensorFlow tutorial.

mailto:pbdfrita@gmail.com

