

Register for Free Membership to

solutionsa@asyngress.com

Over the last few years, Syngress has published many best-selling and
critically acclaimed books, including Tom Shinder’s Configuring ISA
Server 2000, Brian Caswell and Jay Beale’s Snort 2.0 Intrusion
Detection, and Angela Orebaugh and Gilbert Ramirez’s Ethereal
Packet Sniffing. One of the reasons for the success of these books has
been our unique solutions@syngress.com program. Through this
site, we've been able to provide readers a real time extension to the
printed book.

As a registered owner of this book, you will qualify for free access to
our members-only solutions@syngress.com program. Once you have
registered, you will enjoy several benefits, including:

m Four downloadable e-booklets on topics related to the book.
Each booklet is approximately 20-30 pages in Adobe PDF
format. They have been selected by our editors from other
best-selling Syngress books as providing topic coverage that
is directly related to the coverage in this book.

m A comprehensive FAQ page that consolidates all of the key
points of this book into an easy to search web page, pro-
viding you with the concise, easy to access data you need to
perform your job.

m A “From the Author” Forum that allows the authors of this
book to post timely updates links to related sites, or addi-
tional topic coverage that may have been requested by
readers.

Just visit us at www.syngress.com/solutions and follow the simple
registration process. You will need to have this book with you when
you register.

Thank you for giving us the opportunity to serve your needs. And be

sure to let us know if there is anything else we can do to make your
job easier.

SYNGRESS®

Google
Hacking

nnnnnnnnnn

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing,
or production (collectively “Makers”) of this book (“the Work™) do not guarantee or warrant
the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.
The Work is sold AS IS and WITHOUT WARRANTY.You may have other legal rights,
which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings,
or other incidental or consequential damages arising out from the Work or its contents. Because
some states do not allow the exclusion or limitation of liability for consequential or incidental
damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions,
when working with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,”“Ask the
Author UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing,
Inc. “Syngress: The Definition of a Serious Security Library”™, “Mission Critical™,” and “The
Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress Publishing,
Inc. Brands and product names mentioned in this book are trademarks or service marks of their
respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 POY873D5FG
003 829KMSNJH2
004 FGDD458876
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Google Hacking for Penetration Testers

Copyright © 2005 by Syngress Publishing, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher, with the exception that
the program listings may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

Printed in the United States of America
1234567890
ISBN: 1-931836-36-1

Publisher: Andrew Williams Page Layout and Art: Patricia Lupien
Acquisitions Editor: Jaime Quigley Copy Editor: Darlene Bordwell
Technical Editor: Alrik “Murt”™ van Eijkelenborg Indexer: J. Edmund Rush

Cover Designer: Michael Kavish

Distributed by O’Reilly Media, Inc. in the United States and Canada.
For information on rights and translations, contact Matt Pedersen, Director of Sales and Rights,
at Syngress Publishing; email matt@syngress.com or fax to 781-681-3585.

Acknowledgments

Syngress would like to acknowledge the following people for their kindness and sup-
port in making this book possible.

Syngress books are now distributed in the United States and Canada by O’Reilly
Media, Inc. The enthusiasm and work ethic at O’Reilly is incredible and we would
like to thank everyone there for their time and efforts to bring Syngress books to
market: Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike Leonard, Donna Selenko,
Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol Matsutaro, Steve Hazelwood, Mark
Wilson, Rick Brown, Leslie Becker, Jill Lothrop, Tim Hinton, Kyle Hart, Sara Winge,
C.J. Rayhill, Peter Pardo, Leslie Crandell, Valerie Dow, Regina Aggio, Pascal Honscher,
Preston Paull, Susan Thompson, Bruce Stewart, Laura Schmier, Sue Willing, Mark
Jacobsen, Betsy Waliszewski, Dawn Mann, Kathryn Barrett, John Chodacki, and Rob
Bullington. And a hearty welcome to Aileen Berg—glad to be working with you.

The incredibly hard working team at Elsevier Science, including Jonathan Bunkell, Ian
Seager, Duncan Enright, David Burton, Rosanna Ramacciotti, Robert Fairbrother,
Miguel Sanchez, Klaus Beran, Emma Wyatt, Rosie Moss, Chris Hossack, Mark Hunt,
and Krista Leppiko, for making certain that our vision remains worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim, Audrey Gan, Pang Ai Hua,
and Joseph Chan of STP Distributors for the enthusiasm with which they receive our
books.

Kwon Sung June at Acorn Publishing for his support.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swaffer, Stephen
O’Donoghue, Bec Lowe, and Mark Langley of Woodslane for distributing our books
throughout Australia, New Zealand, Papua New Guinea, Fiji Tonga, Solomon Islands,
and the Cook Islands.

Winston Lim of Global Publishing for his help and support with distribution of Syngress
books in the Philippines.

A special thanks to Tim MacLellan and Darci Miller for their eternal patience and
expertise.

Author

Johnny Long has spoken on network security and Google hacking
at several computer security conferences around the world including
SANS, Defcon, and the Black Hat Briefings. During his recent
career with Computer Sciences Corporation (CSC), a leading global
IT services company, he has performed active network and physical
security assessments for hundreds of government and commercial
clients. His website, currently the Internet’s largest repository of
Google hacking techniques, can be found at http://johnny.thack-
stuff.com.

Technical Editor

Alrik “Murf” van Eijkelenborg is a systems engineer for MBH
Automatisering. MBH provides web applications, hardware, hosting,
network, firewall, and VPN solutions. His specialties include tech-
nical support and consulting on Linux, Novell and Windows net-
works. His background includes positions as a network
administrator for Multihouse, NTNT, K+V Van Alphen,
Oranjewoud and Intersafe Holding. Alrik holds a bachelor’s degree
from the Business School of Economics (HES) in Rotterdam, The
Netherlands. He is one of the main moderators for the Google
Hacking Forums and a key contributor to the Google Hacking
Database (GHDB).

vii

viii

Contributing Authors

Steven “The Psyko’ Whitacre [MCSE] is a senior network engi-
neer with OPT, Inc, a leading provider of networking solutions in
the San Francisco Bay Area, providing senior level network adminis-
tration and security consulting to companies throughout the greater
Bay Area. His specialties include: network design, implementation,
administration, data recovery, network reconstruction, system foren-
sics, and penetration testing. Stevens consulting background includes
work for large universities, financial institutions, local law enforce-
ment, and US and foreign government agencies. Steven is a former
member of COTSE/Packetderm, and currently volunteers his time
as a moderator for one of the largest security related forums on the
Internet. Steven resides in San Francisco, CA with his wife and two
daughters, and credits his success to their unwavering support.

James C. Foster, Fellow, is the Deputy Director of Global Security
Solution Development for Computer Sciences Corporation where
he is responsible for the vision and development of physical, per-
sonnel, and data security solutions. Prior to CSC, Foster was the
Director of Research and Development for Foundstone Inc.
(acquired by McAfee) and was responsible for all aspects of product,
consulting, and corporate R&D initiatives. Prior to joining
Foundstone, Foster was an Executive Advisor and Research Scientist
with Guardent Inc. (acquired by Verisign) and an adjunct author at
Information Security Magazine (acquired by TechTarget), subse-
quent to working as Security Research Specialist for the
Department of Defense. With his core competencies residing in
high-tech remote management, international expansion, application
security, protocol analysis, and search algorithm technology, Foster
has conducted numerous code reviews for commercial OS compo-
nents, Win32 application assessments, and reviews on commercial-
grade cryptography implementations.

Foster is a seasoned speaker and has presented throughout North
America at conferences, technology forums, security summits, and
research symposiums with highlights at the Microsoft Security
Summit, Black Hat USA, Black Hat Windows, MIT Wireless
Research Forum, SANS, MilCon, TechGov, InfoSec World 2001,
and the Thomson Security Conference. He also is commonly asked
to comment on pertinent security issues and has been sited in
USAToday, Information Security Magazine, Baseline, Computer World,
Secure Computing, and the MIT Technologist. Foster holds an A.S.,
B.S., MBA and numerous technology and management certifications
and has attended or conducted research at the Yale School of
Business, Harvard University, the University of Maryland, and is cur-
rently a Fellow at University of Pennsylvania’s Wharton School of
Business. Foster is also a well published author with multiple com-
mercial and educational papers; and has authored, contributed, or
edited for major publications including Snort 2.1 Intrusion Detection
(Syngress Publishing, ISBN: 1-931836-04-3); Hacking Exposed,
Fourth Edition, Anti-Hacker Toolkit, Second Edition; Advanced Intrusion
Detection; Hacking the Code: ASPNE'T Web Application Security
(Syngress, ISBN: 1-932266-65-8); Anti-Spam Toolkit; and Google
Hacking for Penetration Testers (Syngress, ISBN: 1-931836-36-1).

Matt Fisher is a Senior Security Engineer for SPI Dynamics,
which specializes in automated web application security assessments
products for the entire software development lifecycle. As an engi-
neer at SPI Dynamics, he has performed hundreds of web applica-
tion assessments and consulted to the Fortune 500, Federal
Government, and Department of Defense. He has educated thou-
sands on web application security through presentations at
numerous conferences and workshops both domestically and abroad.
Prior to working for SPI Dynamics, he managed large-scale com-
plex Fortune 500 websites at Digex. He has held technical certifica-
tions from Novell, Checkpoint, Microsoft, ISC2, and SPI Dynamics.

Matt lives in Columbia, MD, and was only able to write his contri-
bution for this book only through the grace and enduring patience
of his family Lisa, Jacob, and Olivia. He'd like to take this last line to
give a shout to his coworkers and friends at SPI Dynamics and SPI
Labs whom that make it the best place in the world to work,
Nummish for the constant help with his futile coding efforts, and of
course his Mum who is eternally proud of him. “Hi Mom!”

Pete Herzog (OPST, OPSA, HHST), is co-creator of ISECOM
and 1s directly involved in all ISECOM projects as Managing
Director. He has arrived from a long career in the security line of
business. His main objective is for ISECOM is to improve interna-
tional security and ethics (www.isecom.org/projects/rules.shtml)
from the night watchman to the high-tech system designers to the
high school student (http://www.hackerhighschool.org). This has
led beyond methodologies to the successtul Hacker Highschool pro-
gram, a free security awareness program for high schools. In addition
to managing ISECOM, Pete teaches the masters for security at La
Salle University in Barcelona which accredits the OPST and OPSA
training courses as well as Business Information Security in the
ESADE MBA program, which is the foundation of the OPSA.
Additionally Pete provides both paid and pro-bono consultancy on
the business of security and security testing to companies of all sizes
in an effort to raise the bar on security practice as well as to stay
current in the security industry.

I'm Johnny. | hack stuff.

Have you ever had a hobby that changed your life? I have a tendency to get
hyper-focused on my hobbies, but this “Google Hacking thing”, although it’s
labeled me “That Google Guy” has been a real blessing for me. I've been pub-
lished in the papers, written about, and linked more times than I can count. 'm
now invited to speak at the conferences I once attended in awe. I've been to
Japan and back, and now, much to my disbelief, written a large portion of the
book you hold now. I've met many, many amazing people and I've made some
close friends despite the fact that I've never actually “met” most of them. I've
been given amazing opportunities, and there’s no apparent end in sight. I owe
many people a huge debt of thanks, but it’s “printing day” for this book, and
I’'m left with a few short minutes to express my gratitude. It’s simply not
enough, and to all those I've forgotten, I'm sorry. You know you helped, so
thanks. = /

First and foremost, thanks to God for the many blessings in my life. Christ for
the Living example, and the Spirit of God that encourages me to live each day
with real purpose. Thanks to my wife and three wonderful children. Words can’t
express how much you mean to me. Thanks for putting up with the “real”
jOhnny.

Thanks to Mom and Dad for letting me stay up all hours as I fed my digital
addiction.

Thanks to the book team, Alrik “Murf” van Eijkelenborg, James Foster, Steve,
Matt, Pete and Roelof. Mr. Cooper, Mrs. Elliott, Athy C, Vince Ritts, Jim
Chapple, Topher H, Mike Schiftman, Dominique Brezinski and
rain.forest.puppy all stopped what they were doing to help shape my future. I
couldn’t make it without the help of close friends to help me through life:
Nathan B, Sujay S, Stephen S. Thanks to Mark Norman for keeping it real.

The Google Masters from the Google Hacking forums made many contribu-
tions to the forums and the GHDB, and I’'m honored to list them here in
descending post total order: murfie, jimmyneutron, klouw, l0om, ThePsyko,

Xi

MILKMAN, cybercide, stonersavant, Deadlink, crash_monkey, zoro25,
Renegade334, wasabi, urban, mlynch, digital.revolution, Peety, brasileiro, john,
Z!InCh, ComSec, yeseins, sfd, sylex, wolveso, xlockex, injection33, Murk. A spe-
cial thanks to Murf for keeping the site afloat while I wrote this book, and also
to mod team: ThePsyko, I0om, wasabi, and jimmyneutron.

The StrikeForce was always hard to describe, but it encompassed a large part of
my life, and ’'m very thankful that I was able to play even a small part: Jason A,
Brian A, Jim C, Roger C, Carter, Carey, Czup, Ross D, Fritz, Jeff G, Kevin H,
Micha H, Troy H, Patrick], Kristy,Dave Klug, Logan L,Laura,Don M, Chris
Mclelland, Murray, Deb N, Paige, Roberta, Ron S, Matty T, Chuck T, Katie W,
Tim W, Mike W.

Thanks to CSC and the many awesome bosses I've had. You rule: “FunkSoul”,
Chris S, Matt B, Jason E, and Al E. Thanks to the ‘TIP crew for making life fun
and interesting five days out of seven.Youre too many to list, but some I
remember I've worked with more than others: Anthony, Brian, Chris, Christy,
Don, Heidi, Joe, Kevan, The ‘Mikes’, “O”, Preston, Richard, Rob, Ron H, Ron
D, Steve, Torpedo, Thane.

It took a lot of music to drown out the noise so I could churn out this book.
Thanks to PO.D. (thanks Sonny for the words), Pillar, Project 86, Avalon O2
remix, D.J. Lex, Yoshinori Sunahara, Hashim and SubSeven (great name!).

Shouts to securitytribe, Joe Grand, Russ Rogers, Roelof Temmingh, Seth Fogie,
Chris Hurley, Bruce Potter, Jeft, Ping, Eli, Grifter at Blackhat, and the whole
Syngress family of authors. I'm honored to be a part of the group, although you
all keep me humble! Thanks to Andrew and Jaime. You guys rule!

Thanks to Apple Computer, Inc for making an awesome laptop (and OS).
Despite being bounced down my driveway due to a heartbreaking bag failure a
month after I bought it, my 12” G4 PowerBook wasn’t affected in the slightest.
That same laptop was used to layout, author and proof more than 10 chapters
of this book, maintain and create my website, and present to the masses at all
the conferences. No ordinary laptop could have done all that. I only wish it
wasn’t so ugly and dented. (http://johnny.thackstuff.com/images/dent.jpg)

—Johnny Long
November 22, 2004

Xii

Contents

Foreword i xxiii
Chapter 1 Google Searching Basics 1
Introduction 2
Exploring Google’s Web-Based Interface 2
Google’s Web Search Page 2

Google Web Results Page 5

Google Groups 6

Google Image Search L. 8

Google Preferences 9
Language Tools 12
Building Google Queries 14
The Golden Rules of Google Searching 14

Basic Searching L L o L 17

Using Boolean Operators and Special Characters 18

Search Reduction 21
Working With Google URLs 24
URL Syntax i 25

Special Characters 26

Putting the Pieces Together 27
Summary 37
Solutions Fast Track 37
Links to Sites 38
Frequently Asked Questions 39
Chapter 2 Advanced Operators a1
Introduction 42
Operator Syntax 43
Troubleshooting Your Syntax 44

Xiv Contents

Introducing Google’s Advanced Operators 46
Intitle and Allintitle: Search Within the Title of a Page . .46
Allintext: Locate a String Within the Text of a Page .. .49
Inurl and Allinurl: Finding Text ina URL 50
Site: Narrow Search to Specific Sites 52
Filetype: Search for Files of a Specific Type 54
Link: Search for Links to a Page 59
Inanchor: Locate Text Within Link Text 62
Cache: Show the Cached Version of'a Page 62
Numrange: Search for a Number 63
Daterange: Search for Pages Published Within a

Certain Date Range 64
Info: Show Google’s Summary Information 65
Related: Show Related Sites 66
Author: Search Groups for an Author of a

Newsgroup Post 66
Group: Search Group Titles 69
Insubject: Search Google Groups Subject Lines 69
Msgid: Locate a Group Post by Message ID 70
Stocks: Search for Stock Information 71
Define: Show the Definition of a term 72
Phonebook: Search Phone Listings 72

Colliding Operators and Bad Search-Fu 75

Summary ... 80

Solutions Fast Track 80

Links to Sites 85

Frequently Asked Questions 85

Chapter 3 Google Hacking Basics 87

Introduction 88

Anonymity with Caches 88
Using Google as a Proxy Server 95

Directory Listings 99
Locating Directory Listings 100
Finding Specific Directories 101
Finding Specific Files 102

Server Versioning 103

Contents

Going Out on a Limb: Traversal Techniques 108
Directory Traversal 109
Incremental Substitution 110
Extension Walking, 111

Summary 115

Solutions Fast Track 115

Links to Sites 118

Frequently Asked Questions 118

Chapter 4 Preassessment 121

Introduction 122

The Birds and the Bees 122
Intranets and Human Resources 123
Help Desks 124
Self-Help and “How-To” Guides 124
Job Listings 126

Long Walks on the Beach 126
Names, Names, Names 127

Automated E-Mail Trolling 128
Addresses, Addresses, and More Addresses! 134
Nonobvious E-Mail Relationships 139
Personal Web Pages and Blogs 140
Instant Messaging 140
Web-Based Mailing Lists 141
Résumés and Other Personal Information 142

Romantic Candlelit Dinners 143
Badges? We Don’t Need No Steenkin’ Badges! 143
Whats Nearby? 143

Coftee Shops 144
Diners and Delis 144
Gas Stations 145
Bars and Nightclubs 145

Preassessment Checklist 146

Summary 147

Solutions Fast Track 147

Links to Sites 148

Frequently Asked Questions 148

XV

Xvi Contents

Chapter 5 Network Mapping 151
Introduction 152
Mapping Methodology 152
Mapping Techniques 154

Domain Determination 154
Site Crawling 155
Page Scraping Domain Names 156

APl Approach 158

Link Mapping 159
GroupTracing 164
Non-Google Web Utilities 166
Targeting Web-Enabled Network Devices 171
Locating Various Network Reports 173
Summary 176
Solutions Fast Track 176
Links to Sites 177
Frequently Asked Questions 178

Chapter 6 Locating Exploits and Finding Targets .. .181
Introduction 182
Locating Exploit Code 182

Locating Public Exploit Sites 182
Locating Exploits Via Common Code Strings 184
Locating Vulnerable Targets 186

Locating Targets Via Demonstration Pages 187

Locating Targets Via Source Code 189

Locating Targets Via CGI Scanning 197
Summary 200
Solutions Fast Track 200
Links to Sites 201
Frequently Asked Questions 201

Chapter 7 Ten Simple Security Searches That Work . .203
Introduction 204

SIEE .o 204

mtitle:index.of ... L 206

error | Warning oo, 206

Contents Xvii

login | logon 208
username | userid | employee.ID | “your username is” 209
password | passcode | “your password is” 210
admin | administrator L L. 210
—ext:html —ext:htm —ext:shtml —ext:asp —ext:php212
inurl:temp | inurl:tmp | inurl:backup | inurl:bak216
intranet | help.desk L. 216
Summary 218
Solutions Fast Track 218
Frequently Asked Questions 220
Chapter 8 Tracking Down Web Servers, Login

Portals, and Network Hardware 221
Introduction 222
Locating and Profiling Web Servers 223

Directory Listings 223
Web Server Software Error Messages 225
Microsoft Internet Information Server (IIS) 225
Apache Web Server 229
Application Software Error Messages 238
Default Pages 241
Default Documentation 246
Sample Programs 248
Locating Login Portals 250
Locating Network Hardware 255
Summary 259
Solutions Fast Track 259
Frequently Asked Questions 261

Chapter 9 Usernames, Passwords, and Secret Stuff,

Oh My! e 263
Introduction 264
Searching for Usernames 264
Searching for Passwords 270
Searching for Credit Card Numbers, Social Security

Numbers, and More 276
Social Security Numbers 279

Personal Financial Data 279

xviii

Contents

Searching for Other Juicy Info 280
Summary 285
Solutions Fast Track 285
Frequently Asked Questions 287
Chapter 10 Document Grinding and Database
Digging 289
Introduction 290
Configuration Files 291
Log Files 297
Office Documents 299
Database Digging 301
Login Portals 302
Support Files 304
Error Messages 306
Database Dumps 309
Actual Database Files 310
Automated Grinding L L L 312
Google Desktop Search 316
Summary 317
Solutions Fast Track 317
Links to Sites 318
Frequently Asked Questions 319
Chapter 11 Protecting Yourself from Google Hackers 321
Introduction 322
A Good, Solid Security Policy 322
Web Server Safeguards 323
Directory Listings and Missing Index Files 324
Blocking Crawlers with Robots.txt 325
NOARCHIVE: The Cache “Killer” 327
NOSNIPPET: Getting Rid of Snippets 327
Password-Protection Mechanisms 328
Software Default Settings and Programs 330
Hacking Your Own Site 331
Site Yourself 332
Gooscan 332
Installing Gooscan 333

Contents

Gooscan’s Optionsottt 334
Gooscan’s Data Files 335
Using Gooscan oo i it 338
Windows Tools and the .NET Framework 342
Athena 343
Using Athena’s Config Files 345
Constructing Athena Config Files 346
The Google API and License Keys 348
SiteDigger 348
Wikto ..o 351
Getting Help from Google 354
Summary 358
Solutions Fast Track 358
Links to Sites 359
Frequently Asked Questions 360
Chapter 12 Automating Google Searches 363
Introduction 364
Understanding Google Search Criteria 365
Analyzing the Business Requirements for Black
Hat Auto-Googling 368
Google Terms and Conditions 368
Understanding the Google APT 369
Understanding a Google Search Request 371
Auto-Googling the Google Way 375
Google API Search Requests 375
Reading Google API Results Responses 376
Sample API Code 377
Source Documentation 381
Understanding Google Attack Libraries 384
Pseudocoding 385
Perl Implementation 386
Source Documentation 389
Python Implementation 390
Source 391
Output ... 392
Source Documentation 392

Xix

XX Contents

C# Implementation (NET) 393
Source Documentation 396
C Implementation 397
Source Documentation 405
Scanning the Web with Google Attack Libraries 406
CGI Vulnerability Scanning 406
Output 411
Summary 412
Solutions Fast Track 412
Links to Sites 413
Frequently Asked Questions 414
Appendix A Professional Security Testing 417
Introduction 418
Professional Security Testing 419
The Open Methodology 420
The Standardized Methodology 423
Connecting the Dots 429
Summary 434
Links to Sites 434
Mailing Lists 434
Frequently Asked Questions 435
Appendix B An Introduction to Web
Application Security 437
Introduction 438
Defining Web Application Security 438
The Uniqueness of Web Application Security 439
Web Application Vulnerabilities 440
Constraints of Search-Engine Hacking 443
Information and Vulnerabilities in Content 445
The Fast Road to Directory Enumerations 445
Robots.txt 445
FTP Log Files 446
Web Traffic Reports 447
HTML Comments 447
Error Messages 448

Sample Files 449

Contents

Bad Extensions 449
System Documentation 452
Hidden Form Fields, JavaScript, and Other
Client-Side Issues 453
Playing with Packets 453
Viewing and Manipulating Packets 456
Code Vulnerabilities in Web Applications 459
Client-Side Attacks 459
Escaping from Literal Expressions 463
Session Hijacking 468
Command Execution: SQL Injection 471
Enumerating Databases 475
Summary 478
References 478
Solutions Fast Track 479
Frequently Asked Questions 482

Appendix C Google Hacking Database
A number of extended tables and additional penetration testing
tools are accessible from the Syngress Solutions Site
(www.syngress.com/solutions).

Foreword

Have you ever seen the movie, The Matrix? If you haven'’t, I strongly recom-
mend that you rent this timeless sci-f1 classic. Those who have seen The Matrix
will recall that Keanu Reeves’s character, a hacker named Neo, awakes to find
himself in a vicious battle between humans and computer programs with only a
rag-tag crew of misfits to help him win the fight.

Neo learns the skills he needs for battle from Morpheus, a Zen-like master
played by Laurence Fishburne. As the movie unfolds, Neo is wracked with
questions about his identity and destiny. In a crucial scene, Morpheus takes Neo
to someone who can answer all of his questions: the Oracle, a kindly but mys-
terious grandmother who leads Neo down the right path by telling him just
what he needs to know. And to top oft her advice, the Oracle even gives Neo a
cookie to help him feel better.

So what does The Matrix have to do with this book? Well, my friends, in
our matrix (that is, the universe that you and I inhabit), the Oracle is none
other than Google itself. Think about it. Whenever you have a question,
whether big or small, you go to the Oracle (Google) and ask away. “What’s a
good recipe for delicious pesto?” “Are my dog’s dentures a legitimate tax write-
oft?” “Where can I read a summary of the post-modern philosophical work
Simulacra and Simulation?” The Oracle answers them all. And if you configure
some search preferences, the Oracle—i.e., Google—will even give your Web
browser a cookie.

But, of course, you’ll get far more information from the Oracle if you ask
the proper questions. And here’s the best part: in this book, Johnny Long plays
Morpheus, and you get to be Neo. Just as Fishburne’s character tutored and
inspired Neo, so too will Johnny show you how to maximize the value of your
interactions with Google. With the skills Johnny covers in this book, your
Google kung fu will improve dramatically, making you a far better penetration
tester and security practitioner.

XXiii

XXiv

Foreword

In fact, even outside the realm of information security, I personally believe
that solid Google skills are some of the most important professional capabilities
you can have over the next five to 10 years. Are you a professional penetration
tester? Puzzled parent? Political partisan? Pious proselyte? Whatever your walk
1s in life, if you go to Google and ask the right questions using the techniques
from this book, you will be more thoroughly armed with the information that
you need to live successfully.

What’s more, Johnny has written this book so that you can learn to ask
Google for the really juicy stuff—secrets about the security vulnerabilities of
Web sites. Using the time-tested advice on these pages, you'll be able to find
and fix potentially massive problems before the bad guys show up and give you
a very bad day. I've been doing penetration testing for a decade, and have con-
sistently been astounded by the usefulness of Web site searches in our craft.
When Johnny originally started his Web site, inventorying several ultra-pow-
erful search strategies a few years back, I became hooked on his stuff. In this
book, he’s now gathered his best tricks, added a plethora of new ideas, and
wrapped this information in a comprehensive methodology for penetration
testing and ethical hacking.

If you think, “Oh, that Google search stuff isn’t very useful in a real-world
penetration test... that’s just playing around,” then you have no idea what you
are talking about. Whenever we conduct a detailed penetration test, we try to
schedule at least one or two days for a very thorough investigation to get a feel
for our target before firing a single packet from a scanner. If we can get even
more time from the client, we perform a much deeper investigation, starting
with a thorough interrogation of our favorite recon tool, Google. With a good
investigation, using the techniques Johnny so masterfully shares in this book,
our penetration-testing regimen really gets off on the right foot.

[especially like Johnny’s clear-cut, no-bones-about-it style in explaining
exactly what each search means and how you can maximize the value of your
results. The summary and FAQs at the end of each chapter help novices and
experts examine a treasure trove of information. With such intrinsic value, I'll
be keeping this book on the shelf near my desk during my next penetration
test, right next to my well-used Matrix DVD.

—Ed Skoudis
Intelguardians Cofounder and SANS Instructor

www.syngress.com

Chapter 1

Google

Searching Basics

Solutions in this Chapter:

m Exploring Google’s Web-Based Interface
m Building Google Queries

m Working With Google URLs

M Summary
M Solutions Fast Track

M Frequently Asked Questions

Chapter 1 * Google Searching Basics

Introduction

Google’s Web interface is unmistakable. Its “look and feel” is copyright-protected,
and for good reason. It is clean and simple. What most people fail to realize is
that the interface is also extremely powerful. Throughout this book, we will see
how you can use Google to uncover truly amazing things. However, as in most
things in life, before you can run, you must learn to walk.

This chapter takes a look at the basics of Google searching. We begin by
exploring the powerful Web-based interface that has made Google a household
word. Even the most advanced Google users still rely on the Web-based interface
for the majority of their day-to-day queries. Once we understand how to navi-
gate and interpret the results from the various interfaces, we will explore basic
search techniques.

Understanding basic search techniques will help us build a firm foundation
on which to base more advanced queries. You will learn how to properly use the
Boolean operators (AND, NOT, and OR) as well as exploring the power and
flexibility of grouping searches. We will also learn Google’s unique implementa-
tion of several different wildcard characters.

Finally, you will learn the syntax of Google’s URL structure. Learning the ins
and outs of the Google URL will give you access to greater speed and flexibility
when submitting a series of related Google searches. We will see that the Google
URL structure provides an excellent “shorthand” for exchanging interesting
searches with friends and colleagues.

Exploring Google’s Web-Based Interface

Soon we will begin using advanced queries aimed at pages containing very spe-
cific content. Locating these pages requires skill in search reduction. The fol-
lowing sections cover this in detail.

Google’'s Web Search Page

The main Google Web page, shown in Figure 1.1, can be found at
www.google.com. The interface is known for its clean lines, pleasingly unclut-
tered feel, and friendly interface. Although the interface might seem relatively
featureless at first glance, we will see that many difterent search functions can be
performed right from this first page.

WWww.syngress.com

Google Searching Basics * Chapter 1

Figure 1.1 The Main Google Web Page

As shown in Figure 1.1, there is only one place on the page in which the
user can type. This is the search field. In order to ask Google a question or query,
you simply type what you’re looking for and either press Enter (if your browser
supports it) or click the Google Search button to be taken to the results page
for your query.

The links above the search field (IWeb, Images, Groups, and so on) open the
other search areas shown in Table 1.1.The basic search functionality of each sec-
tion is the same. Each search area of the Google Web interface has difterent capa-
bilities and accepts different search operators, as we will see in the next chapter.
For example, the inauthor operator was designed to be used in the groups search
area. Table 1.1 outlines the functionality of each distinct area of the main Google
Web page.

Table 1.1 The Links and Functions of Google’s Main Page

Interface Section Description

The Google toolbar The browser | am using has a Google “toolbar”
installed and presented next to the address bar.

Continued

WWww.syngress.com

Chapter 1 * Google Searching Basics

Table 1.1 The Links and Functions of Google’s Main Page

Interface Section

Description

Web, Images, Groups,
Directory; News; Froogle;
and more >> tabs

Search term input field

Submit Search button

I'm Feeling Lucky button

Advanced Search

Preferences

Language tools

These tabs allow you to search Web pages, pho-
tographs, message group postings, Google
directory listings, news stories, and retail print
advertisements, respectively. If you are a first-
time Google user, understand that these tabs are
not always a replacement for the Submit Search
button.

Located directly below the alternate search tabs,
this text field allows you to enter a Google
search term. We will discuss the syntax of
Google searching throughout this book.

This button submits your search term. In many
browsers, simply pressing the Enter/Return key
after typing a search term will activate this
button.

Instead of presenting a list of search results, this
button will forward you to the highest-ranked
page for the entered search term. Often this
page is the most relevant page for the entered
search term.

This link takes you to the Advanced Search page
as shown. Much of the advanced search func-
tionality is accessible from this page. Some
advanced features are not listed on this page.
We will look at these advanced options in the
next chapter.

This link allows you to select several options
(which are stored in cookies on your machine for
later retrieval). Available options include lan-
guage selection, parental filters, number of
results per page, and window options.

This link allows you to set many different lan-
guage options and translate text to and from
various languages.

WWww.syngress.com

Google Searching Basics * Chapter 1

Google Web Results Page

After processing a search query, Google displays a results page. The results page,
shown in Figure 1.2, lists the results of your search and provides links to the Web
pages that contain your search text.

Figure 1.2 A Typical Web Search Results Page

The top part of the search result page mimics the main Web search page.
Notice the Images, Groups, News, and Froogle links at the top of the page. By
clicking these links, you automatically resubmit your search as an Image, Group,
News, or Froogle search, without having to retype your query.

The results line shows which results are displayed (1-10, in this case), the
approximate total number of matches (here, about 634,000), the search query
itself (including links to dictionary lookups of individual words), and the amount
of time the query took to execute. The speed of the query is often overlooked,
but it is quite impressive. Even large queries resulting in millions of hits are
returned within a fraction of a second!

For each entry on the results page, Google lists the name of the site, a sum-
mary of the site (usually the first few lines of content), the URL of the page that
matched, the size and date the page was last crawled, a cached link that shows the
page as it appeared when Google last crawled it, and a link to pages with similar
content. If the result page is written in a language other than your native lan-
guage and Google supports the translation from that language into yours (set in

WWww.syngress.com

6 Chapter 1 * Google Searching Basics

the preferences screen), a link titled Translate this page will appear, allowing you to
read an approximation of that page in your own language (see Figure 1.3).

Figure 1.3 Google Translation

Underground Googling

Translation Proxies

It's possible to use Google as a transparent proxy server via the transla-
tion service. When you click a Translate this page link, you are taken to a
translated copy of that page hosted on Google’s servers. This serves as a
sort of proxy server, fetching the page on your behalf. If the page you
want to view requires no translation, you can still use the translation ser-
vice as a proxy server by modifying the h/ variable in the URL to match the
native language of the page. Bear in mind that images are not proxied in
this manner. We will cover Translation Proxies further in Chapter 3.

Google Groups

Due to the surge in popularity of Web-based discussion forums, blogs, mailing
lists, and instant-messaging technologies, USENET newsgroups, the oldest of
public discussion forums, have become an overlooked form of online public dis-
cussion. Thousands of users still post to USENET on a daily basis. A thorough
discussion about what USENET encompasses can be found at www.fags.org/
fags/usenet/what-is/partl/. DejaNews (deja.com) was once considered the

Www.syngress.com

Google Searching Basics * Chapter 1

authoritative collection point for all past and present newsgroup messages until
Google acquired deja.com in February 2001 (see www.google.com/press/
pressrel/pressrelease48.html). This acquisition gave users the ability to search the
entire archive of USENET messages posted since 1995 via the simple, straight-
torward Google search interface. Google refers to USENET groups as Google
Groups. Today, Internet users around the globe turn to Google Groups for general
discussion and problem solving. It is very common for I'T practitioners to turn to
Google’s Groups section for answers to all sorts of technology-related issues. The
old USENET community still thrives and flourishes behind the sleek interface of
the Google Groups search engine.

The Google Groups search can be accessed by clicking the Groups tab of
the main Google Web page or by surfing to http://groups.google.com. The
search interface (shown in Figure 1.4) looks a bit different from other Google
search pages, yet the search capabilities operate in much the same way. The major
difterence between the Web search page and the Groups search page lies in the
newsgroup browsing links.

Figure 1.4 The Google Groups Search Page

Entering a search term into the entry field and clicking the Search button
whisks you away to the Groups search results page (summarized in Table 1.2),
which varies quite a bit from the other Google results pages.

WWww.syngress.com

Chapter 1 * Google Searching Basics

Table 1.2 Google Groups Search Links

Interface Section

Description

Advanced Groups Search

Groups Help

alt., biz., comp., etc. links

This link takes you to the Advanced Groups
Search page, which allows for more precise
searches. Not all advanced features are listed on
this page. We will look at these advanced
options in the next chapter.

This link takes you to the Google Groups
Frequently Asked Question page.

These links reflect the topical hierarchy of
USENET itself. By clicking on the links, you can
browse through Google groups to read mes-
sages in a ‘threaded’ format.

Google Image Search

The Google Image search feature allows you to search (at the time of this

writing) over 880 million graphic files that match your search criteria. Google

will attempt to locate your search terms in the image filename, in the image cap-
tion, in the text surrounding the image, and in other undisclosed locations, to

return a “de-duplicated” list of images that match your search criteria. The

Google Image search operates identically to the Web search, with the exception

of a few of the advanced search terms, which we will discuss in the next chapter.

The search results page is also slightly different, as you can see in Figure 1.5.

Figure 1.5 The Google Images Search Results Page

Www.syngress.com

Google Searching Basics * Chapter 1

The page header is nearly identical to the Web search results page, as is the
results line. The Show: line is unique to image results. This line allows you to
select images of various sizes to show in the results. The default is to display
images of all sizes. Each matching image is shown in a thumbnail view with the
original resolution and size followed by the URL of the image.

Google Preferences

You can access the Preferences page by clicking the Preferences link from any
Google search page or by browsing to www.google.com/preferences. These options
primarily pertain to language and locality settings, as shown in Figure 1.6.

Figure 1.6 The Google Preferences Screen

The Interface Language option describes the language that Google will use
when printing tips and informational messages. In addition, this setting controls
the language of text printed on Google’s navigation items, such as buttons and
links. Google assumes that the language you select here is your native language
and will “speak” to you in this language whenever possible. Setting this option is
not the same as using the translation features of Google (discussed in the fol-
lowing section). Web pages written in French will still appear in French, regard-
less of what you select here.

To get an idea of how Google’s Web pages would be altered by a change in the
interface language, take a look at Figure 1.7 to see Google’s main page rendered in

WWww.syngress.com

10 Chapter 1 * Google Searching Basics

“hacker speak.” In addition to changing this setting on the preferences screen, you
can access all the language-specific Google interfaces directly from the Language
Tools screen at www.google.com/language_tools.

Figure 1.7 The Main Google Page Rendered in “Hacker Speak”

Even though the main Google Web page is now rendered in “hacker speak,”
Google s still searching for Web pages written in any language. If you are inter-
ested in locating Web pages that are written in a particular language, modity the
Search Language setting on the Google preferences page. By default, Google will
always try to locate Web pages written in any language.

WWww.syngress.com

Google Searching Basics * Chapter 1

Underground Googling

Proxy Server Language Hijinks

Proxy servers can be used to help hide your location and identity while
you're surfing the Web. Depending on the geographical location of a
proxy server, the language settings of the main Google page may change
to match the language of the country where the proxy server is located.
If your language settings change inexplicably, be sure to check your proxy
server settings. It's easy to lose track of when you are running under a
proxy and when you're not. As we will see later, language settings can be
reverted directly via the URL.

The preferences screen also allows you to modify other search parameters, as
shown in Figure 1.8.

Figure 1.8 Additional Preference Settings

SateSearch Filtering blocks explicit sexual content from appearing in Web
searches. Although this is a welcome option for day-to-day Web searching, this
option should be disabled when you’re performing searches as part of a vulnera-
bility assessment. If sexually explicit content exists on a Web site whose primary

WwWw.syngress.com

1

12

Chapter 1 * Google Searching Basics

content is not sexual in nature, the existence of this material may be of interest
to the site owner.

The Number of Results setting describes how many results are displayed on
each search result page. This option is highly subjective, based on your tastes and
Internet connection speed. However, you may quickly discover that the default
setting of 10 hits per page is simply not enough. If youre on a relatively fast con-
nection, you should consider setting this to 100, the maximum number of results
per page.

When checked, the Results Window setting opens search results in a new
browser window. This setting is subjective based on your personal tastes.
Checking or unchecking this option should have no ill effects unless your
browser (or other software) detects the new window as a pop-up advertisement
and blocks it. If you notice that your Google results pages are not displaying after
you click the Search button, you might want to uncheck this setting in your
Google preferences.

Language Tools

The Language Tools screen, accessed from the main Google page, offers several
different utilities for locating and translating Web pages written in difterent lan-
guages. The first portion of the Language Tools screen (shown in Figure 1.9)
allows you to perform a quick search for documents written in other languages
as well as documents located in other countries.

Figure 1.9 Google Language Tools: Search Specific Languages or Countries

Www.syngress.com

Google Searching Basics * Chapter 1 13

The Language Tools screen also includes a utility that performs basic transla-
tion services. The translation form (shown in Figure 1.10) allows you to paste a
block of text from the clipboard or supply a Web address to a page that Google
can translate into a variety of languages.

Figure 1.10 The Google Translation Tool

In addition to the translation options available from this screen, Google inte-
grates translation options into the search results page. The translation options avail-
able from the search results page are based on the language options that are set
from the Preferences screen shown in Figure 1.11. In other words, if your inter-
face language is set to English and a Web page listed in a search result is French,
Google will give you the option to translate that page into your native language,
English. The list of available language translations 1s shown in Figure 1.11.

Figure 1.11 Google’s Translation Languages

WWww.syngress.com

14

Chapter 1 * Google Searching Basics

Underground Googling

Google Toolbars

Don’t get distracted by the allure of Google “helper” programs such as
browser toolbars. You'll find that you have full access to all the important
features right from the main Google search screen. Each toolbar offers
minor conveniences such as one-click directory traversals or select-and-
search capability, but there are so many different toolbars available, you'll
have to decide for yourself which one is right for you and your operating
environment. Check the FAQ at the end of this section for a list of some
popular alternatives.

Building Google Queries

Google query building is a process. There’s really no such thing as an incorrect
search. It’s entirely possible to create an ineffective search, but with the explosive
growth of the Internet and the size of Google’s cache, a query that’s inefficient
today may just provide good results tomorrow—or next month or next year. The
idea behind effective Google searching is to get a firm grasp on the basic syntax
and then to get a good grasp of effective narrowing techniques. Learning the
Google query syntax is the easy part. Learning to effectively narrow searches can
take quite a bit of time and requires a bit of practice. Eventually, you’ll get a feel
for it, and it will become second nature to find the needle in the haystack.

The Golden Rules of Google Searching

Before we discuss Google searching, we should understand some of the basic
ground rules:

m Google queries are not case sensitive. Google doesn’t care if you
type your query in lowercase letters (hackers), uppercase (HACKERS),
camel case (hAcKeR), or psycho-case (haCKeR)—the word is always
regarded the same way. This is especially important when you’re
searching things like source code listings, when the case of the term car-
ries a great deal of meaning for the programmer. The one notable

Www.syngress.com

Google Searching Basics * Chapter 1

exception is the word or. When used as the Boolean operator, or must be
written 1n uppercase, as OR.

Google wildcards. Google’s concept of wildcards is not the same as a
programmer’s concept of wildcards. Most consider wildcards to be either
a symbolic representation of any single letter (UNIX fans may think of
the question mark) or any series of letters represented by an asterisk.
This type of technique is called stemming. Google’s wildcard, the asterisk
(*), represents nothing more than a single word in a search phrase. Using
an asterisk at the beginning or end of a word will not provide you any
more hits than using the word by itself.

Google stems automatically. Google will stem, or expand, words
automatically when it’s appropriate. For example, consider a search for
pet lemur dietary needs, as shown in Figure 1.12. Google will return a hit
that includes the word lemur along with pet and, surprisingly, the word
diet, which is short for dietary. Keep in mind that this automatic stem-
ming feature can provide you with unpredictable results.

Figure 1.12 Automatic Stemming

Google reserves the right to ignore you. Google ignores certain
common words, characters, and single digits in a search. These are some-
times called stop words. When Google ignores any of your search terms,
you will be notified on the results page, just below the query box, as
shown in Figure 1.13. Some common stop words include who, where,
what, the, a, or an. Curiously enough, the logic for word exclusion can
vary from search to search.

WWww.syngress.com

15

16 Chapter 1 * Google Searching Basics

Figure 1.13 Ignored Words in a Query

Consider the search what the cat dragged in. In this example, Google
will ignore the terms what, the, and in. However, if any of these terms are
searched for individually, Google will accept them as valid terms.
Examples include searching just for the term what; this term produces
over 300,000,000 hits. Another way to force Google into using common
words is to include them in quotes. Doing so submits the search as a
phrase, and results will include all the words in the term, regardless of
how common they may be. A third way to include ignored words in a
search is to precede the term with a + sign, as in the query +and.
Submitted without the quotes, taking care not to put a space between
the + and the word and, this search returns nearly 4 billion results!

Underground Googling

Super-Size That Search!

One very interesting search is the search for +the * *. This search pro-
duces somewhere in the neighborhood of 5.8 billion search results,
making it one of the most prolific searches known! Can you top this
search?

m Ten-word limit. Google limits searches to 10 terms. This includes
search terms as well as advanced operators, which we’ll discuss in a
moment. There is a fairly effective way to get more than 10 search terms
crammed into a query: Replace Google’s ignored terms with the wild-
card character (*). Google does not count the wildcard character as a

Www.syngress.com

Google Searching Basics * Chapter 1

search term, allowing you to extend your searches quite a bit! Consider
a query for the wording of the beginning of the U.S. Constitution:

we the people of the united states in order to form a more perfect
union establish justice

This search term is 17 words long. Google ignores many of the
terms in the query, specifically the, of, the, in, to, and a. Despite these
ignored words, Google further complains that the search is too long and
that the word justice was ignored because the search limit is 10 words. If
we replace some of the words with the asterisk (the wildcard character)
and submit it as:

"we * people * * united states * order * form * more perfect *
establish *"

When we include the asterisks, Google no longer complains about
the number of words in our search, because we’ve only submitted nine
words (and eight uncounted wildcard characters). We could extend our
search even farther, by two more real words and just about any number
of wildcards.

Basic Searching

Google searching is a process, the goal of which is to find information about a
topic. The process begins with a basic search, which is modified in a variety of
ways until only the pages of relevant information are returned. Google’s ranking
technology helps this process along by placing the highest-ranking pages on the
first results page. The details of this ranking system are complex and somewhat
speculative, but suffice it to say that for our purposes Google rarely gives us
exactly what we need following a single search.

The simplest Google query consists of a single word or a combination of
individual words typed into the search interface. Some basic word searches could
include:

m hacker
m FBI hacker Mitnick
® mad hacker dpak

WWww.syngress.com

17

18

Chapter 1 * Google Searching Basics

Slightly more complex than a word search is a phrase search. A phrase is a
group of words enclosed in double-quote marks. When Google encounters a
phrase, it searches for all words in the phrase, in the exact order you provide
them. Google does not exclude common words found in a phrase. Phrase
searches can include

m “Google hacker”
®m “adult humor”

m “Carolina gets pwnt”

Phrase and word searches can be combined and used with advanced opera-
tors, as we will see in the next chapter.

Using Boolean
Operators and Special Characters

More advanced than basic word searches, phrase searches are still a basic form of
a Google query. To perform advanced queries, it is necessary to understand the
Boolean operators AND, OR, and NOT.To properly segment the various parts
of an advanced Google query, we must also explore visual grouping techniques
that use the parenthesis characters. Finally, we will combine these techniques
with certain special characters that may serve as shorthand for certain operators,
wildcard characters, or placeholders.

If you have used any other Web search engines, you have probably been
exposed to Boolean operators. Boolean operators help specify the results that are
returned from a query. If you are already familiar with Boolean operators, take a
moment to skim this section to help you understand Google’s particular imple-
mentation of these operators, since many search engines handle them in different
ways. Improper use of these operators could drastically alter the results that are
returned.

The most commonly used Boolean operator is AND. This operator is used to
include multiple terms in a query. For example, a simple query like hacker could
be expanded with a Boolean operator by querying for hacker AND cracker. The
latter query would include not only pages that talk about hackers but also sites
that talk about hackers and the snacks they might eat. Some search engines
require the use of this operator, but Google does not. The term AND is redun-
dant to Google. By default, Google automatically searches for all the terms you

WWww.syngress.com

Google Searching Basics * Chapter 1

include in your query. In fact, Google will warn you when you have included
terms that are obviously redundant, as shown in Figure 1.14.

Figure 1.14 Google’'s Warnings

NoTE

When first learning the ways of Google-fu, keep an eye on the area
below the query box on the Web interface. You'll pick up great pointers
to help you improve your query syntax.

The plus symbol (+) forces the inclusion of the word that follows it. There
should be no space following the plus symbol. For example, if you were to search
for and, justice, for, and all as separate, distinct words, Google would warn that sev-
eral of the words are too common and are excluded from the search. To force
Google to search for those common words, preface them with the plus sign. It’s
okay to go overboard with the plus sign. It has no ill effects if it is used exces-
sively. To perform this search with the inclusion of all words, consider a query
such as +and justice for +all. In addition, the words could be enclosed in double
quotes. This generally will force Google to include all the common words in the
phrase. This query presented as a phrase would be “and justice for all”’

Another common Boolean operator is NOT. Functionally the opposite of
the AND operator, the NOT operator excludes a word from a search. One way
to use this operator is to preface a search word with the minus sign (-). Be sure
to leave no space between the minus sign and the search term. Consider a simple
query such as hacker. This query is very generic and will return hits for all sorts of
occupations, like golfers, woodchoppers, serial killers, and those with chronic
bronchitis. With this type of query, you are most likely not interested in each and
every form of the word hacker but rather a more specific rendition of the term.
To narrow the search, you could include more terms, which Google would auto-
matically AND together, or you could start narrowing the search by using NOT

Www.syngress.com

19

20

Chapter 1 * Google Searching Basics

to remove certain terms from your search. To remove some of the more unsavory
characters from your search, consider using queries such as hacker —golf or hacker
—phlegm. This would allow you to get closer to the hackers you're really looking
tor: wood choppers!

A less common and sometimes more confusing Boolean operator is OR.The
OR operator, represented by the pipe symbol (|)or simply the word OR in
uppercase letters, instructs Google to locate either one term or another in a query.
Although this seems fairly straightforward when considering a simple query such
as hacker or “evil cybercriminal,” things can get terribly confusing when you string
together a bunch of ANDs and ORs and NOTs.To help alleviate this confusion,
don’t think of the query as anything more than a sentence read from left to
right. Forget all that order of operations stuff you learned in high school algebra.
For our purposes, an AND is weighed equally with an OR, which is weighed as
equally as an advanced operator. These factors may affect the rank or order in
which the search results appear on the page, but the have no bearing on how
Google handles the search query.

Let’s take a look at a very complex example, the exact mechanics of which
we will discuss in the next chapter:

intext:password | passcode intext:username | userid | user filetype:csv

This example uses advanced operators combined with the OR Boolean to
create a query that reads like a sentence written as a polite request. The request
asked of Google would read, “Locate all pages that have either password or pass-
code in the text of the document. From those pages, show me only the pages that
contain either the words username, userid, or user in the text of the document.
From those pages, only show me documents that are CSV files.” Google doesn’t
get confused by the fact that technically those OR symbols break up the query
into all sorts of possible interpretations. Google isn’t bothered by the fact that
from an algebraic standpoint, your query is syntactically wrong. For the purposes
of learning how to create queries, all we need to remember is that Google read
our query from left to right.

Google’s cut and dry approach to combining Boolean operators is still very
confusing to the reader. Fortunately, Google is not offended (or affected by)
parenthesis. The previous query can also be submitted as

intext:(password | passcode) intext:(username | userid | user) filetype:csv

This query is infinitely more readable for us humans, and it produces exactly
the same results as the more confusing query that lacked parentheses.

WWww.syngress.com

Google Searching Basics * Chapter 1

Search Reduction

To achieve the most relevant results, you’ll often need to narrow your search by
modifying the search query. Although Google tends to provide very relevant
results for most basic searches, soon we will begin using advanced queries aimed
at pages containing very specific content. Locating these pages requires skill in
search reduction. The vast majority of this book focuses on search reduction
techniques and suggestions, but it’s important that you at least understand the
basics of search reduction. As a simple example, we’ll take a look at GNU Zebra,
free software that manages TCP/IP-based routing protocols. GNU Zebra uses a
file called zebra.conf to store configuration settings, including interface informa-
tion and passwords. After downloading the latest version of Zebra from the Web,
we learn that the included zebra.conf.sample file looks like this:

! -*- zebra -*-

!

1 zebra sample configuration file

!

1 $1d: zebra.conf.sample,v 1.14 1999/02/19 17:26:38 developer Exp $

!

hostname Router

password zebra

enable password zebra

1

I Interface"s description.

1

linterface lo

1 description test of desc.

!

linterface sitO

I multicast

1 Static default route sample.
1

Tip route 0.0.0.0/0 203.181.89.241
!

Tlog file zebra.log

WWww.syngress.com

21

22

Chapter 1 * Google Searching Basics

To attempt to locate these files with Google, we might try a simple search
such as:

"1 Interface"s description.

This is considered the base search. Base searches should be as unique as possible in
order to get as close to our desired results as possible. Starting with a poor base
search completely negates all the hard work you’ll put into reduction. Our base
search is unique not only because we have focused on the words Interface’s and
description, but we have also included the exclamation mark, the spaces, and the
period following the phrase as part of our search. This is the exact syntax that the
configuration file itself uses, so this seems like a very good place to start.
However, Google takes some liberties with this search query, making the results
less than adequate, as shown in Figure 1.15.

Figure 1.15 Dealing with a Base Search

WwWw.syngress.com

Google Searching Basics * Chapter 1 23

First, notice that none of the result summaries look anything like our
zebra.conf file. Google effectively ignored our punctuation marks and spacing,
despite the fact that we enclosed them in double quotes. Google has instead
keyed on the words Interface’s and description. In addition, Google’s auto stemming
teature located the word interface in our fourth returned result. Sometimes auto
stemming just plain gets in the way.

Underground Googling

Bad Form on Purpose

In some cases, there’s nothing wrong with using poor Google syntax in a
search. If Google safely ignores part of a human-friendly query, leave it
alone. The human readers will thank you!

I recommend leaving the syntax as is for clarity, but adding another reduction
element to our search, zebra.conf, making our next query:

"1 Interface"s description. " zebra.conf

This narrows our search and returns results that look much more like the conf
file we're looking for, as shown in Figure 1.16.

Figure 1.16 Search Reduction in Action

WwWw.syngress.com

24

Chapter 1 * Google Searching Basics

It’s tempting in this situation to simply add:

—"zebra.conf.sample"

to our query to get rid of any search that shows sample zebra.conf files. However,
it helps to step into the shoes of the software’s users for just a moment. Software
installations like this one often ship with a sample configuration file to help guide
the process of setting up a custom configuration. Most users will simply edit this
file, changing only the settings that need to be changed for their environments,
saving the file not as a .sample file but as a .conf file. In this situation, the user
could have a live configuration file with the term zebra.conf.sample still in place.
Reduction based on this term may remove live configuration files created in this
manner.

There’s another reduction angle. Notice that our zebra.conf.sample file con-
tained the term hostname Router. This is most likely one of the settings that a user
will change, although we’re making an assumption that his machine is not named
Router. This is less a gamble than reducing based on zebra.conf.sample, however.
Adding the reduction term —“hostname Router” to our query brings our results
number down and reduces our hits on potential sample files, all without sacri-
ficing potential live hits.

Although it’s certainly possible to keep reducing, often it’s enough to make
just a few minor reductions that can be validated by eye than to spend too much
time coming up with the perfect search reduction. Our final (that’s four qualifiers
for just one word!) query becomes:

"1 Interface®s description. " zebra.conf -"hostname Router"

This is not the best query for locating these files, however. Advanced opera-
tors, discussed in the next chapter, will get us even closer to that perfect query!

Working With Google URLs

Advanced Google users begin testing advanced queries right from the Web inter-
face’s search field, refining queries until they are just right. Every Google query
can be represented with a URL that points to the results page. Google’s results
pages are not static pages. They are dynamic and are created “on the fly” when
you click the Search button or activate a URL that links to a results page.
Submitting a search through the Web interface takes you to a results page that
can be represented by a single URL. For example, consider the query ihackstuff.

WWww.syngress.com

Google Searching Basics * Chapter 1

Once you enter this query, you are whisked away to the following URL, or
something similar:

www . google.com/search?g=i1hackstuff

If you bookmark this URL and return to it later or simply enter the URL
into your browser’s address bar, Google will reprocess your search for ihackstuff and
display the results. This URL then becomes not only an active connection to a list
of results, it also serves as a nice, compact sort of shorthand for a Google query.
Any experienced Google searcher can take a look at this URL and realize the
search subject. This URL can also be modified fairly easily. By changing the word
ihackstuff to iwritestuff, the Google query is changed to find the term iwritestuff. This
simple example illustrates the usefulness of the Google URL for advanced
searching. A quick modification of the URL can make changes happen fast!

Underground Googling

Uncomplicating URL Construction

The only URL parameter that is required in most cases is a query (the q
parameter), making the simplest Google URL www.google.com/
search?q=google.

URL Syntax

To fully understand the power of the URL, we need to understand the syntax.
The first part of the URL, www.google.com/search, is the location of Google’s
search script. I refer to this URL, as well as the question mark that follows it, as
the base, or starting URL. Browsing to this URL presents you with a nice, blank
search page. The question mark after the word search indicates that parameters are
about to be passed into the search script. Parameters are options that instruct the
search script to actually do something. Parameters are separated by the ampersand
(&) and consist of a variable followed by the equal sign (=) followed by the value
that the variable should be set to. The basic syntax will look something like this:

www . google.com/search?variablel=value&variable2=value

WwWw.syngress.com

25

26

Chapter 1 * Google Searching Basics

Let’s break apart a simple Google URL to look at the various components:

www .google.com/search?hl=en&q=ihackstuff

The base URL is followed by several parameters, each separated by the
ampersand (&) character. Each parameter is made of several variables and values,
as shown in Table 1.3.

Table 1.3 Google URL Components

Variable Value Description
hi en The language in which the results page will be printed.
q ihackstuff The query to be submitted.

Special Characters

A URL represents special characters and spaces with hex-encoded equivalents of
the characters. Some browsers will adjust a typed URL, replacing special charac-
ters and spaces with hex-encoded equivalents. If your browser supports this
behavior, your job of URL construction is that much easier. Try this simple test.
Type the following URL in your browser’s address bar, making sure to use spaces
between i, hack, and stuff:

www .googlle.com/search?g=""1 hack stuff"

If your browser supports this auto-correcting feature, after you press Enter in
the address bar, the URL should be corrected to www.google.com/
search?q="1%20hack%20stuft” or something similar. Notice that the spaces were
changed to %20.The percent sign indicates that the next two digits are the hex-
adecimal value of the space character, 20. Some browsers will take the conversion
one step further, changing the double-quotes to %22 as well.

WWww.syngress.com

Google Searching Basics * Chapter 1

Underground Googling

Quick Hex Conversions

To quickly determine hex codes for a character, you can run man ASCII
from a UNIX or Linux machine, or Google for the term “ascii table”.

Putting the Pieces Together

Google search URL construction is like putting together Legos. You start with a
URL and you modify it as needed to achieve varying search results. Many times
your starting URL will come from a search you submitted via the Google Web
interface. If you need some added parameters, you can add them directly to your
URL in any order. If you need to modify parameters in your search, you can change
the value of the parameter and resubmit your search. If you need to remove a
parameter, you can delete that entire parameter from the URL and resubmit your
search. This process is especially easy if you are modifying the URL directly in your
browser’s address bar.You simply make changes to the URL and press Enter. The
browser will automatically fetch the address and take you to an updated search
page.You could achieve similar results by poking around Google’s advanced search
page (www.google.com/advanced_search, shown in Figure 1.17) and by setting var-
1ous preferences, as discussed earlier, but ultimately you’ll find it faster and easier to
make quick search adjustments directly through URL modification.

Figure 1.17 Search Reduction in Action

WwWw.syngress.com

27

28

Chapter 1 * Google Searching Basics

A Google search URL can contain many different parameters. Depending on

the options you selected and the search terms you provided, you will see some or
all of the variables listed in Table 1.4.These parameters can be added or modified

as needed to change your search criteria.

Table 1.4 Google’s Search Parameters

Variable Value Description
q The search query The search query.
start 0 to the max Used to display pages of results. Result 0

number of hits

num maxResults 1 to 100

filter Oor1
restrict restrict code
hi language code
Ir language code
ie UTF-8
oe UTF-8
as_epq a search phrase
as_ft i = include file
type
e = exclude file
type

as_filetype a file extension

m3 = 3 months
m6 = 6 months
y = past year

as_qdr

is the first result on the first page of
results.

The number of results per page (max
100).

If filter is set to 0, show potentially
duplicate results.

Restrict results to a specific country.

This parameter describes the language
Google uses when displaying results.
This should be set to your native tongue.
Located Web pages are not translated.

Language restrict. Only display pages
written in this language.

The input encoding of Web searches.
Google suggests UTF-8.

The output encoding of Web searches.
Google suggests UTF-8.

The value is submitted as an exact
phrase. This negates the need to sur-
round the phrase with quotes.

Include or exclude the file type indicated
by as_filetype.

Include or exclude this file type as indi-
cated by the value of as_ft.

Locate pages updated within the
specified timeframe.

WWww.syngress.com

Continued

Google Searching Basics * Chapter 1

Table 1.4 Google’s Search Parameters

Variable Value Description
as_nlo low number Find numbers between as_nlo and
as_nhi.
as_nhi high number Find numbers between as_nlo and
as_nhi.
as_oq a list of words Find at least one these words.
as_occt any = anywhere Find search term in a specific
title = title of page location.
body = text of page
url = in the page URL
links = in links to the page
as_dt i = only include site or Include or exclude searches
domain from the domain specified by
e = exclude site or domain as_sitesearch.
as_sitesearch ~ domain or site Include or exclude this domain

safe
as_rq

as lq

or site as specified by as_dt.

active = enable SafeSearch Enable or disable SafeSearch.
off = disable SafeSearch

URL Locate pages similar to this
URL.

URL Locate pages that link to this
URL.

Some parameters accept a language restrict (Ir) code as a value. The Ir value

instructs Google to only return pages written in a specific language. For example,

Ir=lang _ar only returns pages written in Arabic. Table 1.5 lists all the values avail-
able for the Ir field:

Table 1.5 Language Restrict Codes

Ir Language Code Language

lang_ar Arabic

lang _bg Bulgarian

lang ca Catalan

lang zh-CN Chinese (Simplified)
lang zh-TW Chinese (Traditional)
lang_hr Croatian

WWww.syngress.com

29

30 Chapter 1 * Google Searching Basics

Table 1.5 Language Restrict Codes

Ir Language Code Language
lang cs Czech
lang_da Danish
lang nl Dutch
lang_en English
lang et Estonian
lang fi Finnish
lang_fr French
lang_de German
lang el Greek
lang_iw Hebrew
lang_hu Hungarian
lang is Icelandic
lang_id Indonesian
lang it Italian
lang_ja Japanese
lang_ko Korean
lang Iv Latvian
lang_It Lithuanian
lang_no Norwegian
lang pl Polish
lang pt Portuguese
lang_ro Romanian
lang ru Russian
lang_sr Serbian
lang sk Slovak
lang_sl Slovenian
lang _es Spanish
lang sv Swedish
lang_tr Turkish

The hl variable changes the language of Google’s messages and links. This is
not the same as the Ir variable, which restricts our results to pages written in a

WWww.syngress.com

Google Searching Basics * Chapter 1

specific language, nor is it like the translation service, which translates a page
from one language to another. Figure 1.18 shows the results of a search for the
word food with an hl variable set to DA (Danish). Notice that Google’s messages
and links are in Danish, whereas the search results are written in English. We have
not asked Google to restrict or modify our search in any way.

Figure 1.18 Using the hl Variable

To understand the contrast between hl and Ir, consider the food search resub-
mitted as an Ir search, as shown in Figure 1.19. Notice that our URL i1s different:
There are now far fewer results, the search results are written in Danish, Google
added a Search Danish pages button, and Google’s messages and links are written
in English. Unlike the hl option (Table 1.6 lists the values for the Al field), the Ir
option changes our search results. We have asked Google to return only pages
written in Danish.

Table 1.6 h7 Language Field Values

hl Code Language

ar Arabic

bg Bulgarian

ca Catalan

zh-CN Chinese (Simplified)
zh-TW Chinese (Traditional)
hr Croatian

cs Czech

Continued

WWww.syngress.com

31

32 Chapter 1 * Google Searching Basics

Table 1.6 h7 Language Field Values

hl Code Language
da Danish

nl Dutch

en English

et Estonian

fi Finnish

fr French

de German

el Greek

iw Hebrew
hu Hungarian
is Icelandic
id Indonesian
it Italian

ja Japanese
ko Korean

Iv Latvian

It Lithuanian
no Norwegian
pl Polish

pt Portuguese
ro Romanian
ru Russian

sr Serbian

sk Slovak

sl Slovenian
es Spanish

sv Swedish

tr Turkish

WWww.syngress.com

Google Searching Basics * Chapter 1

Underground Googling

Sticky Subject

The hl value is sticky! This means that if you change this value in your URL,
it sticks for future searches. The best way to change it back is through
Google preferences or by changing the h/ code directly inside the URL.

The restrict variable is easily confused with the Ir variable, since it restricts
your search to a particular language. However, restrict has nothing to do with lan-
guage. This variable gives you the ability to restrict your search results to one or
more countries, determined by the top-level domain name (.us, for example)
and/or by geographic location of the server’s IP address. If you think this smells
somewhat inexact, you're right. Although inexact, this variable works amazingly
well. Continuing with our fascination for food, consider a search for food, this
time restricting results to DK (Denmark), as shown in Figure 1.20.

Figure 1.20 Using restrict to Narrow Results

Our URL has changed to include the restrict value (select countries shown
in Table 1.7), but more important, notice that the returned Web pages are not all
from DK.The first hit, for example, from www.euro.who.int, is thought by

Google to be physically located in Denmark.

33

34 Chapter 1 * Google Searching Basics

Underground Googling

How Google Owns the Continents

You can easily test Google’s assumption that a site is within a certain geo-
graphic region with a quick host and whois command:

wh0Op:~# host www.euro.who.int

www.euro.who.int has address 194.234.173.80
whOOp:~# whois 194.234.173.80

% This is the RIPE Whois server.

% The objects are in RPSL format.

%

% Rights restricted by copyright.

% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 194.234.173.0 - 194.234.173.255
netname: DK-SUPERTEL

descr: SUPERTEL DANMARK ApS

descr: Telephone Operator

country: DK

Table 1.7 restrict Code Values (see full table in Appendix C)

restrict country code Country

countryAF Afghanistan
countryAR Argentina
countryAU Australia
countryBE Belgium
countryBM Bermuda

Continued
WWW.syngress.com

Google Searching Basics * Chapter 1

Table 1.7 restrict Code Values (see full table in Appendix C)

restrict country code Country

countryBR Brazil

countryBS Bahamas
countryCA Canada

countryCH Switzerland
countryCN China

countryCO Colombia
countryCR Costa Rica
countryCU Cuba

countryCZ Czech Republic
countryDE Germany
countryDO Dominican Republic
countryEG Egypt

countryES Spain

countryFR France

countryFX France, Metropolitan
countryUK United Kingdom
countryGR Greece

countryGU Guam

countryHK Hong Kong
countryHT Haiti

countrylE Ireland

countrylL Israel

countryIN India

countrylQ Iraq

countrylR Iran (Islamic Republic of)
countrylS Iceland

countrylT Italy

countryJM Jamaica

countryJP Japan

countryKE Kenya

countryKP Korea, Democratic People’s Republic of

WWww.syngress.com

Continued

35

36

WWww.syngress.com

Chapter 1 * Google Searching Basics

Table 1.7 restrict Code Values (see full table in Appendix C)

restrict country code

Country

countryKR
countrykKwW
countryKY
countryLK
countryMX
countryNL
countryNO
countryNZ
countryPA
countryPE
countryPH
countryPK
countryPL
countryPR
countryPT
countryRO
countryRU
countrySA
countrySE
countryUA
countryUG
countryUM
countryUsS
countryUyYy
countryUz
countryVA
countryVaG
countryVI
countryVN
countryZA
countryZR

Korea, Republic of
Kuwait

Cayman Islands

Sri Lanka

Mexico
Netherlands
Norway

New Zealand
Panama

Peru

Philippines
Pakistan

Poland

Puerto Rico
Portugal

Romania

Russian Federation
Saudi Arabia
Sweden

Ukraine

Uganda

United States Minor Outlying Islands
United States
Uruguay
Uzbekistan

Holy See (Vatican City State)
Virgin Islands (British)
Virgin Islands (U.S.)
Vietnam

South Africa

Zaire

Google Searching Basics * Chapter 1 37

Summary

Google 1s deceptively simple in appearance but offers many powerful options that
provide the groundwork for powerful searches. Many difterent types of content
can be searched, including Web pages, message groups such as USENET, images,

and more. Beginners to Google searching are encouraged to use the Google-pro-

vided forms for searching, paying close attention to the messages and warnings
Google provides about syntax. Boolean operators such as OR and NOT are avail-
able through the use of the minus sign and the word OR (or the | symbol),
respectively, whereas the AND operator is ignored, since Google automatically
includes all terms in a search. Advanced search options are available through the

Advanced Search page, which allows users to narrow search results quickly.

Advanced Google users narrow their searches through customized queries and a

healthy dose of experience and good old common sense.

Solutions Fast Track

Exploring Google’s Web-Based Interface

]

There are several distinct Google search areas (including Web, group, and
image searches), each with distinct searching characteristics and results
pages.

The Web search page, the heart and soul of Google, is simple,
streamlined, and powerful, enabling even the most advanced searches.

A Google Groups search allows you to search all past and present
newsgroup posts.

The Image search feature allows you to search for nearly a billion
graphics by keyword.

Google’s preferences and language tools enable search customization,
translation services, language-specific searches, and much more.

Building Google Queries

M Google query building is a process that includes determining a solid

base search and expanding or reducing that search to achieve the desired
results.

www.syngress.com

38 Chapter 1 * Google Searching Basics

M Always remember the “golden rules” of Google searching. These basic

premises serve as the foundation for a successtul search.

M Used properly, Boolean operators and special characters help expand or

reduce searches. They can also help clarify a search for fellow humans
who might read your queries later on.

Working With Google URLs

M Once a Google query has been submitted, you are whisked away to the

Google results page, the URL of which can be used to modify a search
or recall it later.

Although there are many different variables that can be set in a Google
search URL, the only one the is really required is the ¢, or query,
variable.

Some advanced search options, such as as_gdr (date-restricted search by
month), cannot be easily set anywhere besides the URL.

Links to Sites

www.google.com This is the main Google Web page, the entry point
for most searches.

http://groups.google.com The Google Groups Web page.
www.google.com/images Search Google for images and graphics.

www.google.com/language_tools Various language and translation
options.

www.google.com/advanced_search The advanced search form.

www.google.com/preferences The Preferences page, which allows
you to set options such as interface language, search language, SafeSearch
filtering, and number of results per page.

www.google.com/intl/xx-hacker/ A hacker’s search page.

www.syngress.com

Google Searching Basics * Chapter 1

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Some people like using nifty toolbars. Where can I find information about

Google toolbars?

A: Ask Google. Seriously, if you aren’t already in the habit of simply asking
Google when you have a Google-related question, you should get in that
habit. Google can almost always provide an answer if you can figure out the

query.
Here’s a list of some popular Google search tools:
® Windows Google API Search Tool, www.searchenginelab.com/prod-
ucts/gapis/
m Mac SearchGoogle.Service, http://gu.st/proj/SearchGoogle.service/
m Mozilla Googlebar, http://googlebar.mozdev.org/
m Internet Explorer The Google Toolbar, toolbar.google.com/

m Dave’s Quick Search Taskbar Toolbar Deskbar,
http://notesbydave.com/toolbar/

m Ultrabar www.ultrabar.com/

Q: Are there any techniques I can use to learn how to build Google URL's?

A: Yes. There are a fw ways. First, submit basic queries through the web interface
and look at the URL that's generated when you submit the search. From the
search results page, modify the query slightly and look at how the URL
changes when you submit it. This boils down to “do, then do again.” The
second way involves using “query builder” programs that present a graphical
interface which allows you to select the search options you want, building a
Google URL as you navigate through the interface. Keep an eye on the
search engine hacking forums at http://johnny.ithackstuft.com, specifically the

www.syngress.com

39

40

Chapter 1 * Google Searching Basics

“coders corner” where users discuss programs that perform this type of
functionality.

Q: What's better? Using Google's interface, using toolbars, or writing URL’s?

A: 1t's not fair to claim that any one technique is better than the others. It boils

down to personal preference, and many advanced Google users use each of
these techniques in different ways. Many lengthy Google sessions begin as a
simple query typed into the www.google.com web interface. Depending on
the narrowing process, it may be easier to add or subtract from the query
right in the search field. Other times, like in the case of the daterange oper-
ator (covered in the next chapter), it may be easier to add a quick ‘as_qdr’
parameter to the end of the URL. Toolbars excel at providing you quick
access to a Google search while you're browsing another page. Most toolbars
allow you to select text on a page, right-click on the page and select ‘Google
search’ to submit the selected text as a query to Google. Which technique
you decide to use ultimately depends on your tastes and the context in
which you perform searches.

www.syngress.com

Chapter 2

Advanced Operators

Solutions in this Chapter:

= Operator Syntax

®m Introducing Google’s Advanced
Operators

s Combining Advanced Operators
m Colliding Operators and Bad Search-Fu

m Links to Sites

M Summary
M Solutions Fast Track
M Frequently Asked Questions

41

42 Chapter 2 * Advanced Operators

Introduction

Beyond the basic searching techniques explored in the previous chapter, Google
offers special terms known as advanced operators to help you perform more
advanced queries. These operators, when used properly, can help you get to
exactly the information you’re looking for without spending too much time
poring over page after page of search results. When advanced operators are not
provided in a query, Google will locate your search terms in any area of the Web
page, including the title, the text, the URL, or the like. We take a look at the fol-
lowing advanced operators in this chapter:

intitle, allintitle

m nurl, allinurl

m filetype
m allintext
B site

m ink

B inanchor

m daterange

B cache
® info
B related

® phonebook
® rphonebook
m bphonebook

® author
m group
m msgid

m insubject
m stocks

m define

WWww.syngress.com

Advanced Operators * Chapter 2

Operator Syntax

An advanced operator is nothing more than a part of a query. You provide
advanced operators to Google just as you would any other query. In contrast to
the somewhat free-form style of standard Google queries, however, advanced
operators have a fairly rigid syntax that must be followed. The basic syntax of a
Google advanced operator is operator:search_term. When using advanced operators,
keep in mind the following:

m There is no space between the operator, the colon, and the search term.
Violating this syntax can produce undesired results and will keep Google
from understanding the advanced operator. In most cases, Google will
treat a syntactically bad advanced operator as just another search term.
For example, providing the advanced operator intitle without a following
colon and search term will cause Google to return pages that contain
the word intitle.

m The search term is the same syntax as search terms we covered in the
previous chapter. For example, you can provide as a search term a single
word or a phrase surrounded by quotes. If you provide a phrase as the
search term, make sure there are no spaces between the operator, the
colon, and the first quote of the phrase.

®m Boolean operators and special characters (such as OR and +) can still be
applied to advanced operator queries, but be sure not to place them in
the way of the separating colon.

m Advanced operators can be combined in a single query as long as you
honor both the basic Google query syntax as well as the advanced oper-
ator syntax. Some advanced operators combine better than others, and
some simply cannot be combined. We will take a look at these limita-
tions later in this chapter.

m The ALL operators (the operators beginning with the word ALL) are
oddballs. They are generally used once per query and cannot be mixed
with other operators.

Examples of valid queries that use advanced operators include these:

m intitle:Google This query will return pages that have the word Google
in their title.

WWww.syngress.com

43

44

Chapter 2 * Advanced Operators

intitle: ““index of > This query will return pages that have the phrase
index of in their title. Remember from the previous chapter that this
query could also be given as intitle:index.of, since the period serves as
any character. This technique also makes it easy to supply a phrase
without having to type the spaces and the quotation marks around the
phrase.

intitle: ““index of”’ private This query will return pages that have the
phrase index of in their title and also have the word private anywhere in
the page, including in the URL, the title, the text, and so on. Notice
that intitle only applies to the phrase index of and not the word private,
since the first unquoted space follows the index of phrase. Google inter-
prets that space as the end of your advanced operator search term and
continues processing the rest of the query.

intitle: ““index of”’ “backup files”” This query will return pages that have
the phrase index of in their title and the phrase backup files anywhere in
the page, including the URL, the title, the text, and so on. Again, notice
that intitle only applies to the phrase index of.

Troubleshooting Your Syntax

Before we jump head first into the advanced operators, let’s talk about trou-

bleshooting the inevitable syntax errors you’ll run into when using these opera-

tors. Google 1s kind enough to tell you when you’ve made a mistake, as shown in

Figure 2.1.

Figure 2.1 Google's Helpful Error Messages

WwWw.syngress.com

Advanced Operators * Chapter 2

In this example, we tried to give Google an invalid option to the as_qdr vari-
able in the URL. (The correct syntax would be as_qdr=m3, as we’ll see in a
moment.) Google’s search result page listed right at the top that there was some
sort of problem. These messages are often the key to unraveling errors in either
your query string or your URL, so keep an eye on the top of the results page.
We’ve found that it’s easy to overlook this spot on the results page, since we nor-
mally scroll past it to get down to the results.

Sometimes, however, Google is less helpful, returning a blank results page
with no error text, as shown in Figure 2.2.

Figure 2.2 Google’s Blank Error Message

Fortunately, this type of problem is easy to resolve once you understand
what’s going on. In this case, we didn’t provide Google with a search query. We
restricted our search to only PDF files (we’ll look at filetype in more detail later
in this chapter), but we failed to provide anything to search for. Subtracting
results from zero results gets Google all confused, resulting in a blank page.

WWww.syngress.com

45

46

Chapter 2 * Advanced Operators

Underground Googling

But That's What | Wanted!

Sometimes you actually want to get results for a search query you know
is going to cause problems, such as filetype:pdf. It seems reasonable that
this query would return every PDF file that Google has crawled, but it
simply doesn’t. In cases like this, you just need to be a bit creative. To get
a list of every PDF file, try a query like filetype:pdf pdf. This query asks
Google to return every PDF file that contains the word pdf'—but
remember, Google automatically searches the URL for your search term,
so every file ending in .PDF will have PDF in the URL.

Introducing Google’s
Advanced Operators

Google’s advanced operators are very versatile, but keep in mind the rules listed
earlier. In addition, you should remember that not all operators can be used
everywhere. Some operators can only be used in performing a Web search, and
others can only be used in a Groups search. Refer to Table 2.3, which lists these
distinctions. If you have trouble remembering these rules, keep an eye on the
results line near the top of the page. If Google picks up on your bad syntax, an
error message will be displayed, letting you know what you did wrong.
Sometimes, however, Google will not pick up on your bad form and will try to
perform the search anyway. If this happens, keep an eye on the search results
page, specifically the words Google shows in bold within the search results. These
are the words Google interpreted as your search terms. If you see the word intitle
in bold, for example, you’ve probably made a mistake using the intitle operator.

Intitle and Allintitle:
Search Within the Title of a Page

From a technical standpoint, the title of a page can be described as the text that is
found within the TITLE tags of an HTML document. The title is displayed at the
top of most browsers when viewing a page, as shown in Figure 2.3. In the context
of Google groups, intitle will find the term in the title of the message post.

Www.syngress.com

Advanced Operators * Chapter 2

Figure 2.3 Web Page Title

As shown in Figure 2.3, the title of the Web page is “Syngress Publishing.” It
is important to realize that some Web browsers will insert text into the title of a
Web page, under certain circumstances. For example, consider the page shown in
Figure 2.1, shown again in Figure 2.4, this time before the page is actually fin-
ished loading.

Figure 2.4 Browser Injected Title Elements

This time, the title of the page is prepended with the word “Loading” and
quotation marks, which were inserted by the Safari browser. When using intitle,
be sure to consider what text is actually from the title and which text might have
been inserted by the browser.

Title text is not limited, however, to the TITLE HTML tag. A Web page’s
document can be generated in any number of ways, and in some cases, a Web
page might not even have a title at all. The thing to remember is that the title is
the text that appears at the top of the Web page, and you can use intitle to locate
text in that spot.

WWww.syngress.com

47

48 Chapter 2 * Advanced Operators

When using intitle, it’s important that you pay special attention to the syntax
of the search string, since the word or phrase following the word intitle is considered
the search phrase. Allintitle breaks this rule. Allintitle tells Google that every single
word or phrase that follows is to be found in the title of the page. For example,
we just looked at the intitle: “index of” “backup files” query as an example of an
intitle search. In this query, the term “backup files” is found not in the title but
rather in the text of the document, as shown in Figure 2.5.

Figure 2.5: The Intitle Operator

Notice that “backup files” is not in the title of the first found document. If we
were to modify this query to allintitle: ”index of” “backup files” we would get a dif-
ferent response from Google, as shown in Figure 2.6.

Figure 2.6: Allintitle Results Compared

Www.syngress.com

Advanced Operators * Chapter 2

Notice that both “index of” and “backup files” have been found in the title of
the document and that we have reduced our search from 556 hits to 21 hits by
providing a much more restrictive search, since more sites have the term “backup
files” in the text than in the title of the document.

Underground Googling

Google Highlighting

Google highlights search terms using multiple colors when you're viewing
the cached version of a page and uses a bold typeface when displaying
search terms on the search results pages. Don’t let this confuse you if the
term is highlighted in a way that’s not consistent with your search syntax.
Google highlights your search terms everywhere they appear in the search
results. You can also use Google’s cache as a sort of virtual highlighter.
Experiment with modifying a Google cache URL. Locate your search terms
in the URL, and add words around your search terms. If you do it correctly
and those words are present, Google will highlight those new words on
the page.

Be wary of using the allintitle operator. It tends to be clumsy when it’s used
with other advanced operators and tends to break the query entirely, causing it to
return no results. It’s better to go overboard and use a bunch of intitle operators
in a query than to screw it up with allintitle’s funky conventions.

Although this is not completely accurate, assume that allintitle cannot be used
with other operators or search terms.

Allintext: Locate a String
Within the Text of a Page

The allintext operator is perhaps the simplest operator to use since it performs
the function that search engines are most known for: locating a string within the
text of the page. Although this advanced operator might seem too generic to be
of any real use, it is handy when you know that the text you’re looking for should
only be found in the text of the page. Using allintext can also serve as a type of
shorthand for “find this string anywhere except in the title, the URL, and links.”

WwWw.syngress.com

49

50

Chapter 2 * Advanced Operators

Since this operator starts with the word all, every search term provided after the
operator is considered part of the operator’s search query.

For this reason, the allintext operator should not be mixed with other
advanced operators.

Inurl and Allinurl: Finding Text in a URL

Having been exposed to the intitle operators, it might seem like a fairly simple
task to start throwing around the inurl operator with reckless abandon. I won’t
discourage such flights of searching fancy, but first realize that a URL is a much
more complicated beast than a simple page title, and the workings of the inurl
operator can be equally complex.

First, let’s talk about what a URL is. Short for Uniform Resource Locator, a
URL is simply the address of a Web page. The beginning of a URL consists of a
protocol, followed by ://, like the very common http:// or ftp://. Following the
protocol is an address followed by a pathname, all separated by forward slashes
(/). Following the pathname comes an optional filename. A common basic URL,
like http://www.uriah.com/apple-qt/1984.html, can be seen as several different
components. The protocol, http, indicates that we should expect a Web document
from the server. The server is located at www.uriah.com, and the requested file,
1984.html, is found in the /apple-qt directory on the server. As we saw in the
previous chapter, a Google search can also be conveyed as a URL, which can
look something like www.google.com/search?q=1hackstuft.

We’ve discussed the protocol, server, directory, and file pieces of the URL,
but that last part of our example URL, ?q=ihackstuff, requires a bit more exami-
nation. Explained simply, this is a list of parameters that are being passed into the
“search” program or file. Without going into much more detail, simply under-
stand that all this “stuft™ is considered to be part of the URL, which Google can
be instructed to search with the inurl and allinurl operators.

So far this doesn’t seem much more complex than dealing with the intitle
operator, but there are a few complications. First, Google can’t effectively search
the protocol portion of the URL—Whttp://, for example. Second, there is a ton of
special characters sprinkled around the URL, which Google also has trouble
weeding through. Attempting to specifically include these special characters in a
search could cause unexpected results and might limit your search in undesired
ways. Third, and most important, other advanced operators (site and filetype, for
example) can search more specific places inside the URL even better than inurl
can. These factors make inurl much trickier to use eftectively than an intitle

WWww.syngress.com

Advanced Operators ¢ Chapter 2

search, which is very simple by comparison. Regardless, inurl is one of the most
indispensable operators for advanced Google users; we’ll see it used extensively
throughout this book.

As with the intitle operator, inurl has a companion operator, known as allinurl.
Consider the inurl search results page shown in Figure 2.7.

Figure 2.7 The Inurl Search

This search located the word admin in the URL of the document and the
word backup anywhere in the document, returning more than 20,000 results.
Replacing the inurl search with an allinurl search, we receive the results page
shown in Figure 2.8.

Figure 2.8 Allinurl Compared

WwWw.syngress.com

51

52

Chapter 2 * Advanced Operators

This time, Google was instructed to find the words admin and backup only in
the URL of the document, resulting in only 2,530 hits. Just like the allintitle
search, allinurl tells Google that every single word or phrase that follows is to be
found only in the URL of the page. And just like allintitle, allinurl does not play
very well with other queries. If you need to find several words or phrases in a
URL, it’s better to supply several inurl queries than to succumb to the rather
unfriendly allinurl conventions.

Site: Narrow Search to Specific Sites

Although technically a part of a URL, the address (or domain name) of a server
can best be searched for with the site operator. Site allows you to search only for
pages that are hosted on a specific server or in a specific domain. Although fairly
straightforward, proper use of the site operator can take a little bit of getting used
to, since Google reads Web server names from right to left, as opposed to the
human convention of reading site names from left to right. Consider a common
Web server name, www.apple.com. To locate pages that are hosted on apple.com,
a simple query of site:apple.com will suffice, as shown in Figure 2.9.

Figure 2.9 Basic Use of the Site Operator

Notice that the first two results are from www.apple.com and
store.apple.com. Both of these servers end in apple.com and are valid results of our
query. It seems fairly logical to assume that a query for site:store.apple might help

WwWw.syngress.com

Advanced Operators * Chapter 2
us locate Apple store pages, but, as shown in Figure 2.10, we only get one result,
despite the fact that there are really tens of thousands of pages at

http://store.apple.com.

Figure 2.10 Improper Use of Site

Look very closely at the results of the query and you’ll discover that the
URL for the singular returned result looks a bit odd. Truth be told, this result is
odd. There’s no Web page at www.store.apple, because there’s no such registered
domain name on the Internet. Google (and the Internet at large) reads server
names (really domain names) from right to left, not from left to right. For
www.store.apple to exist, there must be an .apple domain name, which there isn’t.
Top-level domain names include com, net, etc. (see http://www.iana.org/gtld/
gtld.htm) and must be registered and approved by the Internet Assigned
Numbers Authority (IANA). This is the complicated way of saying that parame-
ters to Google’s site operator must end in a valid top-level domain name if you
want predictable results. For example, queries for site:com, site:apple.com, and
site:store.apple.com would all return results that would include links to the Apple
store, but obviously the latter query would be the most specific.

WWww.syngress.com

53

54 Chapter 2 * Advanced Operators

Underground Googling

Googleturds

So, what about that link that Google returned to www.store.apple? What
is that thing? Johnny Long coined the term googleturd to describe what
is most likely a typo that was crawled by Google. As a Webmaster, if you
put up a Web page with a link to http://www.apple.store and your Web
page was crawled by Google, there’s a good chance that Google will hold
onto this link even though it leads nowhere. These things can be useful,
as we will see later on.

The site operator can be easily combined with other searches an operators, as
we’ll see later in this chapter.

Filetype: Search for Files of a Specific Type

Google searches more than just Web pages. Google can search many different
types of files, including PDF (Adobe Portable Document Format) and Microsoft
Oftice documents. The filetype operator can help you search for these types of
files. More specifically, filetype searches for pages that end in a particular file
extension. The file extension is the part of the URL following the last period of
the filename but before the question mark that begins the parameter list.
Although not always entirely accurate, the file extension can indicate what type
of program opens the file, hence you can use Google’s filetype operator to search
for specific types of files by searching for a specific file extension. Table 2.1 shows
the main file types that Google searches, according to
www.google.com/help/faq_filetypes.html#what.

Table 2.1 The Main File Types Google Searches

File Type File Extension

Adobe Portable Document Pdf

Format

Adobe PostScript Ps

Lotus 1-2-3 wk1, wk2, wk3, wk4, wk5, wki, wks, wku

Continued

Www.syngress.com

Advanced Operators * Chapter 2 55

Table 2.1 The Main File Types Google Searches

File Type File Extension
Lotus WordPro Lwp

MacWrite Mw

Microsoft Excel Xls

Microsoft PowerPoint Ppt

Microsoft Word Doc

Microsoft Works wks, wps, wdb
Microsoft Write Wri

Rich Text Format Rtf
Shockwave Flash Swif

Text ans, txt

Table 2.1 does not list every file type that Google will attempt to search.
According to http://filext.org, there are over 8,000 known file extensions.
Google has examples of each and every one of these extensions in its database! This
means that Google will crawl any type of page with any kind of extension, but
understand that Google might not have the capability to search an unknown file
type. Table 2.1 listed the main file types that Google searches, but you might be
wondering which, of the over 8,000 file extensions, are the most prevalent on
the Web. Table 2.2 lists the top 25 file extensions found on the Web, sorted by
the number of hits for that file type.

Table 2.2 Top 25 File Extensions, According to Google

Extension Number of Hits (Approx.)
HTML 18,100,000

HTM 16,700,000

PHP 16,600,000

ASP 15,700,000

cal 11,600,000

PDF 10,900,000

CFM 9,880,000

SHTML 8,690,000

JSP 7,350,000

Continued
WWW.syngress.com

56 Chapter 2 * Advanced Operators

Table 2.2 Top 25 File Extensions, According to Google

Extension Number of Hits (Approx.)
ASPX 6,020,000
PL 5,890,000
PHP3 4,420,000
DLL 3,050,000
PHTML 2,770,000
FCGI 2,550,000
SWF 2,290,000
DOC 2,100,000
TXT 1,720,000
PHP4 1,460,000
EXE 1,410,000
MV 1,110,000
XLS 969,000
JHTML 968,000
SHTM 883,000
BML 859,000

Many of the file extensions shown in Table 2.2 might be familiar to you;
others might not. Filext (www.filext.com) is a great resource for getting detailed
information about file extensions, what they are, and what programs the exten-
sions are associated with.

Google converts every document it searches to either HTML or text for
online viewing.You can see that Google has searched and converted a file by
looking at the results page shown in Figure 2.11.

WWww.syngress.com

Advanced Operators * Chapter 2

Figure 2.11 Converted File Types on a Search Page

Notice that the first result lists [DOC] before the title of the document and a
file format of Microsoft Word 2000. This indicates that Google recognized the file
as a Microsoft Word 2000 document. In addition, Google has provided a View as
HTML link that when clicked will display an HTML approximation of the file,
as shown in Figure 2.12.

Figure 2.12 A Google-Converted Word Document

WWww.syngress.com

57

58

Chapter 2 * Advanced Operators

When you click the link for a document that Google has converted, a header
is displayed at the top of the page, indicating that you are viewing the HTML
version of the page. A link to the original file is also provided. If you think this
looks similar to the cached view of a page, you’re right. This is the cached ver-
sion of the original page, converted to HTML.

Although these are great features, Google isn’t perfect. Keep these things in
mind:

m Google doesn’t always provide a link to the converted version of a page.

® Google doesn’t always properly recognize the file type of even the most
common file formats.

® When Google crawls a page that ends in a particular file extension but
that file 1s blank, Google will sometimes provide a valid file type and a
link to the converted page. Even the HTML version of a blank Word
document 1is still, well, blank.

This operator flakes out when ORed. As an example, the query filetype:xls xls
returns 912,000 results. The query filetype:pdf pdf returns 10,900,000 results. The
query (filetype:pdf | filetype:xls) returns 17,600,000 results, which is pretty close to
the two individual search results combined. However, when you start adding to
this precocious combination with things like (filetype:pdf | filetpye:xls) (pdf | xIs),
Google flakes out with only 10,700,000 results. To make matters worse, all the
returned files are PDE and none are XLS files. We’ve found that Boolean logic
applied to this operator is usually flaky, so beware when you start tinkering.

This operator can be mixed with other operators and search terms.

WWww.syngress.com

Advanced Operators * Chapter 2 59

Underground Googling

Google Hacking Tip

We simply can’t state this enough: The real hackers play in the gray areas
all the time. The filetype operator opens up another interesting play-
ground for the true Google hacker. Consider the query (filetype:pdf | file-
type:xls) -inurl:xls -inurl:pdf, a query that should return zero results, since
all PDF and XLS files have PDF or XLS in the URL, right? Wrong. At the time
of this writing, this query gives over 100 results, all of them interesting,
to say the least. Pay close attention to the next character %00.

Link: Search for Links to a Page

The link operator allows you to search for pages that link to other pages. Instead
of providing a search term, the link operator requires a URL or server name as
an argument. Shown in its most basic form, link is used with a server name, as
shown in Figure 2.13.

Figure 2.13 The Link Operator

WwWw.syngress.com

60

Chapter 2 * Advanced Operators

Each of the search results shown in Figure 2.10 contains HTML links to the
www.defcon.org Web site. The link operator can be extended to include not only
basic URLs but complete URLs that include directory names, filenames, param-
eters, and the like. Keep in mind that long URLs are much more specific and
could return fewer results.

The only place the URL of a link is visible is in the browser’s status bar or in
the source of the page. For that reason, unlike other cached pages, the cached
page for a link operator’s search result does not highlight the search term, since
the search term (the linked Web site) is never really shown in the page. In fact,
the cached banner does not make any reference to your search query, as shown
in Figure 2.14.

Figure 2.14 A Generic Cache Banner Displayed for a Link Search

It is a common misconception to think that the link operator can actually
search for text within a link. The inanchor operator performs something similar to
this, as we’ll see next. To properly use the link operator, you must provide a full
URL (including protocol, server, directory, and file), a partial URL (including
only the protocol and the host), or simply a server name; otherwise, Google
could return unpredictable results. As an example, consider a search for link:linux,
which returns 14,200 results. This search is not the proper syntax for a link
search, since the domain name i1s invalid. The correct syntax for a search like this
might be link:linux.org (with 451 results) or link:linux.com (with 97,500 results).
Since none of the numbers on these queries match, what exactly is being
returned from Google for a search like link:linux? Figures 2.15 and 2.16 show the
answer to this question.

WwWw.syngress.com

Advanced Operators * Chapter 2 61

Figure 2.15 link:linux Returns 14,200 Results

Figure 2.16 “link linux” Returns an Identical 14,200 Results

When an invalid link: syntax is provided, Google treats the search as a phrase
search. Google offers another clue as to how it handles invalid link searches
through the cache page. As shown in Figure 2.17, the cached banner for a site
tound with a link:linux search does not resemble a typical link search cached
banner but rather a standard search cache banner with included highlighted

terms.

WWww.syngress.com

62

Chapter 2 * Advanced Operators

Figure 2.17 An Invalid Link Search Page

This is an indication that Google did not perform a link search but instead
treated the search as a phrase, with a colon representing a word break.
The link operator cannot be used with other operators or search terms.

Inanchor: Locate Text Within Link Text

This operator can be considered a companion to the link operator, since they
both help search links. The inanchor operator, however, searches the text represen-
tation of a link, not the actual URL. For example, in Figure 2.17, the link “current
page” 1s shown in typical form—as an underlined portion of text. When you

click that link, you are taken to the URL www.kerneltraftic.org/kernel-
traffic/latest.html. If you were to look at the actual source of that page, you
would see something like

current
page

The inanchor operator helps search the anchor, or the displayed text on the link,
the words “current page.” Inanchor accepts a word or phrase as an argument, such as
inanchor:click or inanchor:James. Foster. This search will be handy later, especially when
we begin to explore ways of searching for relationships between sites.

The inanchor operator can be used with other operators and search terms.

Cache: Show the Cached Version of a Page

As we’ve already discussed, Google keeps snapshots of pages it has crawled that we
can access via the cached link on the search results page. If you would like to jump
right to the cached version of a page without first performing a Google query to

WWww.syngress.com

Advanced Operators * Chapter 2

get to the cached link on the results page, you can simply use the cache advanced
operator in a Google query such as cache:blackhat.org or cache:http:/ /www.netsec.net. If
you don’t supply a complete URL or hostname, Google could return unpre-
dictable results. Just as with the link operator, passing an invalid hostname or URL
as a parameter to cache will submit the query as a phrase search. A search for
cache:linux returns exactly as many results as “cache linux”, indicating that Google
did indeed treat the cache search as a standard phrase search. The cache operator
does not always work as expected, and in many cases, youre better off getting to a
cached page from a Google results page.

The cache operator cannot be used with other operators or search terms.

Numrange: Search for a Number

The numrange operator requires two parameters, a low number and a high
number, separated by a dash. This operator is powerful but dangerous when used
by malicious Google hackers. As the name suggests, numrange can be used to find
numbers within a range. For example, to locate the number 12345, a query such
as numrange: 12344-12346 will work just fine. When searching for numbers,
Google ignores symbols such as currency markers and commas, making it much
easier to search for numbers on a page. Two shortened versions of this operator
exist as well. Instead of supplying the numrange operator, you can simply provide
two numbers in a query, separated by two periods. The shortened version of the
query just mentioned would be 12344..12346. Notice that the numrange oper-
ator was left out of the query entirely. In addition, the ext operator can be used
as in ext:12344-12346. Each of these shorthand versions return the same results
as the matching numrange search.

This operator can be used with other operators and search terms.

Underground Googling

Bad Google Hacker!

If Gandalf the Grey were to author this sidebar, he wouldn’t be able to
resist saying something like “There are fouler things than characters
lurking in the dark places of Google’s cache.” The most grave examples of
Google’s power lies in the use of the numrange operator. It would be
extremely irresponsible of us to share these powerful queries with you.

Continued

WwWw.syngress.com

63

64

Chapter 2 * Advanced Operators

Fortunately, the abuse of this operator has been curbed due to the dili-
gence of the hard-working members of the Search Engine Hacking forums
at http:/Johnny.ihackstuff.com. The members of that community have
taken the high road time and time again to get the word out about the
dangers of Google hackers without spilling the beans and creating even
more hackers. This sidebar is dedicated to them!

Daterange: Search for Pages
Published Within a Certain Date Range

The daterange operator can tend to be a bit clumsy, but it is certainly helpful and
worth the effort to understand. You can use this operator to locate pages indexed
by Google within a certain date range. Every time Google crawls a page, this date
changes. If Google locates some very obscure Web page, it might only crawl it
once, never returning to index it again. If you find that your searches are clogged
with these types of obscure Web pages, you can remove them from your search
(and subsequently get fresher results) through effective use of the daterange operator.

The parameters to this operator must always be expressed as a range, two
dates separated by a dash. If you only want to locate pages that were indexed on
one specific date, you must provide the same date twice, separated by a dash. If
this sounds too easy to be true, you're right. It is too easy to be true. Both dates
passed to this operator must be in the form of two Julian dates. The Julian date is
the number of days that have passed since January 1, 4713 B.C. For example, the
date September 11, 2001, is represented in Julian terms as 2452164. So, to search
for pages that were indexed by Google on September 11, 2001, and contained
the word “osama bin laden,” the query would be daterange:2452164-2452164
“osama bin laden” .

Google does not ofticially support the daterange operator. The Google folks
prefer you use the date limit on the advanced search form found at
http://www.google.com/advanced_search. As we discussed in the last chapter,
this form creates fields in the URL string to perform specific functions. Google
designed the as_gdr field to help you locate pages that have been updated within a
certain time frame. For example, to find pages that have been updated within the
past three months and that contain the word Google, use the query
http:/ /www.google.com /search?q=google&as_qdr=m3.

This might be a better alternative date restrictor than the clumsy daterange
operator. Just understand that these are very different functions. Daterange is not
the advanced-operator equivalent for as_qdr, and unfortunately, there is no oper-

www.syngress.com

Advanced Operators * Chapter 2

ator equivalent. If you want to find pages that have been updated within the past
year or less, you must either use Google advanced search interface or stick
&as_qdr=3m (or equivalent) on the end of your URL.

The daterange operator must be used with other search terms or advanced
operators. It will not return any results when used by itself. In addition, daterange
only works with Web searches.

Info: Show Google’s Summary Information

The info operator shows the summary information for a site and provides links to
other Google searches that might pertain to that site, as shown in Figure 2.18.The
parameter to this operator must be a valid URL or site name.You can achieve this
same functionality by supplying a site name or URL as a search query.

Figure 2.18 A Google Info Query’s Output

If you don’t supply a complete URL or hostname, Google could return
unpredictable results. Just as with the link and cache operators, passing an invalid
hostname or URL as a parameter to info will submit the query as a phrase search.
A search for info:linux returns exactly as many results as “info linux”, indicating
that Google did indeed treat the info search as a standard phrase search.

The info operator cannot be used with other operators or search terms.

WWww.syngress.com

65

66

Chapter 2 * Advanced Operators

Related: Show Related Sites

The related operator displays sites that Google has determined are related to a site,
as shown in Figure 2.19.The parameter to this operator is a valid site name or
URL.You can achieve this same functionality by clicking the Similar Pages link
from any search results page or by using the “Find pages similar to the page”
(shown in Figure 2.19) portion of the advanced search form.

Figure 2.19 Odd Relatives: Sensepost and Disney?

If you don’t supply a complete URL or hostname, Google could return
unpredictable results. Passing an invalid hostname or URL as a parameter to
related will submit the query as a phrase search. A search for related:linux returns
exactly as many results as “related linux”, indicating that Google did indeed treat
the cache search as a standard phrase search.

The related operator cannot be used with other operators or search terms.

Author: Search Groups
for an Author of a Newsgroup Post

The author operator will allow you to search for the author of a newsgroup post.
The parameter to this option consists of a name or an e-mail address. This oper-

WWww.syngress.com

Advanced Operators * Chapter 2

ator can only be used in conjunction with a Google Groups search. Attempting
to use this operator outside a Groups search will result in an error. When you’re
searching for a simple name , such as author:Johnny, the search results will include
posts written by anyone with the first, middle, or last name of Johnny, as shown
in Figure 2.20.

Figure 2.20 A Search for Author:Johnny

As you can see, we've got hits for Johnny Lurker, Johnny Walker, Johnny, and
Johnny Anderson. Makes you wonder if those are real names, doesn’t it? In most
cases, these are not real names. This is the nature of the newsgroup beast. Pseudo-
anonymity is fairly easy to maintain when anyone can post to newsgroups
through Google using nothing more than a free e-mail account as verification.

The author operator can be a bit clumsy to use, since it doesn’t interpret its
parameters in exactly the same way as some of the operators. Simple searches
such as author:Johnny or author:Johnny@ihackstuff.com work just as expected, but
things get dicey when we attempt to search for names given in the form of a
phrase. Consider a search like author: “Johnny Long”, an attempt to search for an
author with a full name of Johnny Long. This search fails pretty miserably, as
shown in Figure 2.21.

WWww.syngress.com

67

68 Chapter 2 * Advanced Operators

Figure 2.21 Phrase Searching and Author Don’t Mix

This search found the word Johnny in the author name but passed off the
word Long as a generic search, not an author search, as indicated by the lack of
Long in the author name and the existence of Long in the post titles. Passing the
query of author:Johnny.long, however, gets us the results we’re expecting: Johnny
Long as the posts’ author, as shown in Figure 2.22:

Figure 2.22 Author Searches Prefer Periods

Www.syngress.com

Advanced Operators * Chapter 2

The author operator can be used with other valid Groups operators or search
terms.

Group: Search Group Titles

This operator allows you to search the title of Google Groups posts for search
terms. This operator only works within Google Groups. This is one of the opera-
tors that is very compatible with wildcards. For example, to search for groups
that end in forsale, a search such as group:*.forsale works very well. In some cases,
Google finds your search term not in the actual name of the group but in the
keywords describing the group. Consider the search group:windows, as shown in
Figure 2.23. Not all the results of this search contain the word windows, yet all the
returned groups discuss Windows software.

Figure 2.23 The Group Search Digs Deeper Than Group Name

In our experience, the group operator does not mix very well with other
operators. If you get odd results when throwing group into the mix, try using
other operators such as intitle to compensate.

Insubject: Search Google Groups Subject Lines

The insubject operator is eftectively the same as the intitle search and returns the
same results. Searches for intitle:dragon and insubject:dragon return exactly the same
number of results. This is most likely because the subject of a group post is also

WWww.syngress.com

69

70

Chapter 2 * Advanced Operators

the title of the post. Subject is (and was, in DejaNews) the more precise term for
a message title, and this operator most likely exists to help ease the mental shift
from “deja searching” to Google searching.

Just like the intitle operator, insubject can be used with other operators and
search terms.

Msgqid: Locate a Group Post by Message ID

The msgid operator, available only for Groups searching, takes only one operator,
a group message identifier. A message identifier (or message ID) is a unique
string that identifies a newsgroup post. The format is something like
xxx(@yyy.com.

To view message IDs, you must view the original group post format. When
viewing a post (see Figure 2.24), simply click the original format link.You will
be taken to a text-only page that lists the entire content of the group post, as
shown in Figure 2.25.

Figure 2.24 A Typical Group Message

WWww.syngress.com

Advanced Operators ¢ Chapter 2

Figure 2.25 The Message ID of a Post Is Visible Only in the Post’s Original
Format

To retrieve the message shown in Figure 2.25, use the query msgid:
9t89a0d6laa555njo129t99s lir7eebo 6b(@4ax.com.
The msgid operator does not mix with other operators or search terms.

Stocks: Search for Stock Information

The stocks operator allows you to search for stock market information about a

particular company. The parameter to this operator must be a valid stock abbrevi-
ation. If you provide an invalid stock ticker symbol, you will be taken to a screen
that allows further searching for a correct ticker symbol, as shown in Figure 2.26.

Figure 2.26 Searching for a Valid Stock Symbol

WwWw.syngress.com

71

72

Chapter 2 * Advanced Operators

The stocks operator cannot be used with other operators or search terms.

Define: Show the Definition of a term

The define operator returns definitions for a search term. Fairly simple, and very
straightforward, arguments to this operator may be a word or phrase. Links to the
source of the definition are provided, as shown in Figure 2.27.

Figure 2.27 Results of a Define Search

The define operator cannot be used with other operators or search terms.

Phonebook: Search Phone Listings

The phonebook operator searches for business and residential phone listings. Three
operators can be used for the phonebook search: rphonebook, bphonebook and
phonebook, which will search residential listings, business listings, or both, respec-
tively. The parameters to these operators are all the same and usually consist of a
series of words describing the listing and location. In many ways, this operator
functions like an allintitle search, since every word listed after the operator is
included in the operator search. A query such as phonebook:john darling ny would
list both business and residential listings for John Darling in New York. As shown
in Figure 2.28, links are provided for popular mapping sites that allow you to
view maps of an address or location.

WwWw.syngress.com

Advanced Operators * Chapter 2

Figure 2.28 The Output of a Phonebook Query

If you were only interested in a residential or business listing, you would use
the rphonebook and bphonebook operators, respectively. There are other ways to get
to this information without the phonebook operator. If you supply what looks like
an address (including a state) or a name and a state as a query, Google will return
a link allowing you to map the location in the case of an address (see Figure
2.29) or a phone listing in the case of a name and street match.

Figure 2.29 Google Understands Addresses

WWww.syngress.com

73

74 Chapter 2 * Advanced Operators

Underground Googling

Hey, Get Me Outta Here!

If you're concerned about your address information being in Google's
databases for the world to see, have no fear. Google makes it possible for
you to delete your information so others can’t access it via Google. Simply
fill out the form at www.google.com/help/pbremoval.html and your
information will be removed, usually within 48 hours. This doesn’t remove
you from the Internet (let us know if you find a link to do that), but the
page gives you a decent list of places that list similar information. Oh, and
Google is trusting you not to delete other people’s information with this
form.

The phonebook operators do not provide very informative error messages, and
it can be fairly difticult to figure out whether or not you have bad syntax.
Consider a query for phonebook:john smith. This query does not return any results,
and the results page looks a lot like a standard “no results” page, as shown in
Figure 2.30.

Figure 2.30 Phonebook Error Messages Are Very Misleading

Www.syngress.com

Advanced Operators * Chapter 2

To make matters worse, the suggestions for fixing this query are all wrong. In
this case, you need to provide more information in your query to get hits, not
tewer keywords, as Google suggests. Consider phonebook:john smith ny, which
returns approximately 600 results.

Colliding Operators and Bad Search-Fu

As you start using advanced operators, you’ll realize that some combinations
work better than others for finding what you're looking for. Just as quickly, you’ll
begin to realize that some operators just don’t mix well at all. Table 2.3 shows
which operators can be mixed with others. Operators listed as “No” should not
be used in the same query as other operators. Furthermore, these operators will
sometimes give funky results if you get too fancy with their syntax, so don’t be
surprised when it happens.

This table also lists operators that can only be used within specific Google
search areas and operators that cannot be used alone. The values in this table bear
some explanation. A box marked “Yes” indicates that the operator works as
expected in that context. A box marked “No” indicates that the operator does
not work in that context, and Google indicates this with a warning message. Any
box marked with “Not really” indicates that Google attempts to translate your
query when used in that context. True Google hackers love exploring gray areas
like the ones found in the “Not really” boxes.

WWww.syngress.com

75

é Table 2.3 Mixing Operators

é Mixes with

2 Other Can Be

Fll Operator Operators? Used Alone? Web? Images? Groups? News?

§ intitle Yes Yes Yes Yes Yes Yes

g allintitle No Yes Yes Yes Yes Yes
inurl Yes Yes Yes Yes Not really Like intitle
allinurl No Yes Yes Yes Yes Like intitle
filetype Yes No Yes Yes No Not really
allintext Not really Yes Yes Yes Yes Yes
site Yes Yes Yes Yes No Not really
link No Yes Yes No No Not really
inanchor Yes Yes Yes Yes Not really Yes
numrange Yes Yes Yes No No Not really
daterange Yes No Yes Not really Notreally Not really
cache No Yes Yes No Not really Not really
info No Yes Yes Not really Notreally Not really
related No Yes Yes No No Not really
phonebook, No Yes Yes No No Not really
rphonebook,
bphonebook
author Yes Yes No No Yes Not really
group Not really Yes No No Yes Not really
insubject Yes Yes Like intitle Like intitle Yes Like intitle
msgid No Yes Not really Not really Yes Not really
stocks No Yes No No No Like intitle
define No Yes Yes Not really Notreally Not really

9L

siojesadQ pasuenpy « z 133deyd

Advanced Operators * Chapter 2

Allintext gives all sorts of crazy results when it is mixed with other operators.
For example, a search for allintext:moo goo gai filetype:pdf works well for finding
Chinese food menus, whereas allintext:Sum Dum Goy intitle: Dragon gives you that
empty feeling inside—like a year without the 1985 classic The Last Dragon (see
Figure 2.31).

Figure 2.31 Allintext Is Bad Enough to Make You Want to Cry

Despite the fact that some operators do combine with others, it’s still possible
to get less than optimal results by running your operators head-on into each
other. This section focuses on pointing out a few of the potential bad collisions
that could cause you headaches. We’ll start with some of the more obvious ones.

First, consider a query like something —something. This query returns nothing,
and Google tells you as much. This is an obvious example, but consider
intitle:something —intitle:something. This query, just like the first, returns nothing,
since we've negated our first search with a duplicate NOT search. Literally, we'’re
saying “find something in the title and hide all the results with something in the
title.” Both of these examples clearly illustrate the point that you can’t query for
something and negate that query, because your results will be zero.

It gets a bit tricky when the advanced operators start overlapping. Consider
site and inurl. The URL includes the name of the site. So, extending the “don’t
contradict yourself” rule, don’t include a term with sife and exclude that term
with inurl and vice versa and expect sane results. A query like site:microsoft.com -
inurl:microsoft.com doesn’t make much sense at all, and the results are somewhat
trippy, as shown in Figure 2.32.

WWww.syngress.com

77

78

Chapter 2 * Advanced Operators

Figure 2.32 No One Said Hackers Obeyed Reality

These search results, considered junk by most Web searchers, are just the kind
of things that Google hackers pride themselves in finding and working with.
However, when you’re really trying to home in on a topic, keep the “rules” in
mind and you’ll accelerate toward your target at a much faster pace. Save the rule
breaking for your required Google hacking license test!

Here’s a quick breakdown of some broken searches and why they’re broken:

site:com site:edu A hit can’t be both an edu and a com at the same
time. What youre more likely to search for is (site:edu | site:com), which
searches for either domain.

inanchor:click —click This is contradictory. Remember, unless you
use an advanced operator, your search term can appear anywhere on the
page, including title, URL, text, and even anchors.

allinurl:pdf allintitle:pdf Operators starting with all are notoriously
bad at combining. Get out of the habit of combining them before you
get info the habit of using them! Replace allinurl with inurl, allintitle with
intitle, and just don’t use allintext. It’s evil.

site:syngress.com allinanchor:syngress publishing This query
returns zero results, which seems natural considering the last example
and the fact that most all* searches are nasty to use. However, this query
suffers from an ordering problem, a fairly common problem that can

WwWw.syngress.com

Advanced Operators * Chapter 2

really throw oft some narrow searches. By changing the query to alli-
nanchor:syngress publishing site:syngress.com, which moves the allinanchor to
the beginning of the query, we can get many more results. This does not
at all seem natural, since the allintitle operator considers all the following
terms to be parameters to the operator, but that’s just the way it is.

link:www.microsoft.com linux This is a nasty search for a beginner
because it appears to work, finding sites that link to Microsoft and men-
tion the word linux on the page. Unfortunately, link doesn’t mix with
other operators, but instead of sending you an error message, Google
“fixes” the query for you and provides the exact results as
“link.www.microsoft.com” linux.

WWww.syngress.com

79

80

Chapter 2 * Advanced Operators

Summary

Google ofters plenty of options when it comes to performing advanced searches.
URL modification, discussed in the previous chapter, can provide you with lots
of options for modifying a previously submitted search, but advanced operators
are better used within a query. Easier to remember than the URL modifiers,
advance operators are the truest tools of any Google hacker’s arsenal. As such,
they should be the tools used by the good guys when considering the protection
of Web-based information.

Most of the operators can be used in combination, the most notable excep-
tions being the allintitle, allinurl, allinanchor, and allintext operators. Advanced
Google searchers tend to steer away from these operators, opting to use the
intitle, inurl, and link operators to find strings within the title, URL, or links to
pages, respectively. Allintext, used to locate all the supplied search terms within
the text of a document, is one of the least used and most redundant of the
advanced operators. Filetype and site are very powerful operators that search spe-
cific sites or specific file types. The daterange operator allows you to search for
files that were indexed within a certain time frame. When crawling Web pages,
Google generates specific information such as a cached copy of a page, an infor-
mation snippet about the page, and a list of sites that seem related. This informa-
tion can be retrieved with the cache, info, and related operators, respectively. To
search for the author of a Google Groups document, use the author operator. The
phonebook series of operators return business or residential phone listings as well
as maps to specific addresses. The stocks operator returns stock information about
a specific ticker symbol, whereas the define operator returns the definition of a
word or simple phrase.

Solutions Fast Track

Intitle

M Finds strings in the title of a page

M Mixes well with other operators

M Best used with Web, Group, Images, and News searches

www.syngress.com

Advanced Operators * Chapter 2

Allintitle

M Finds all terms in the title of a page

M Does not mix well with other operators or search terms

M Best used with Web, Group, Images, and News searches

M Finds strings in the URL of a page
M Mixes well with other operators

M Best used with Web and Image searches
Allinurl

M Finds all terms in the URL of a page

M Does not mix well with other operators or search terms

M Best used with Web, Group, and Image searches

Filetype

M Finds specific types of files based on file extension
Synonymous with ext
Requires an additional search term

Mixes well with other operators

R S I NN

Best used with Web and Group searches

Allintext

M Finds all provided terms in the text of a page

M Pure evil—don’t use it

M Forget you ever heard about allintext

www.syngress.com

82 Chapter 2 * Advanced Operators

Site
Restricts a search to a particular site or domain

Mixes well with other operators

Can be used alone

N E JJ

Best used with Web, Groups and Image searches

Link
M Searches for links to a site or URL

M Does not mix with other operators or search terms
M Best used with Web searches

Inanchor

M Finds text in the descriptive text of links

M Mixes well with other operators and search terms

M Best used for Web, Image, and News searches

Daterange

M Locates pages indexed within a specific date range
M Requires a search term

M Mixes well with other operators and search terms
M Best used with Web searches

Numrange

M Finds a number in a particular range

M Mixes well with other operators and search terms
M Best used with Web searches

www.syngress.com

Advanced Operators * Chapter 2 83

Cache

M Displays Google’s cached copy of a page

M Does not mix with other operators or search terms
M Best used with Web searches

M Displays summary information about a page

M Does not mix with other operators or search terms
M Best used with Web searches

Related

M Shows sites that are related to provided site or URL

M Does not mix with other operators or search terms
M Best used with Web searches

Phonebook, Rphonebook, Bphonebook

M Shows residential or business phone listings

M Does not mix with other operators or search terms

M Best used as a Web query

Author

M Searches for the author of a Group post

M Mixes well with other operators and search terms

M Best used as a Group search

www.syngress.com

84

Chapter 2 * Advanced Operators

Group

M Searches Group names, selects individual Groups

M Mixes well with other operators

M Best used as a Group search

Insubject

M Locates a string in the subject of a Group post

M Mixes well with other operators and search terms

M Best used as a Group search

Msgid

M Locates a Group message by message 1D

M Does not mix with other operators or search terms

M Best used as a Group search

Stocks

M Shows the Yahoo Finance stock listing for a ticker symbol

M Does not mix with other operators or search terms

M Best provided as a Web query

Define

M Shows various definitions of a provided word or phrase

M Does not mix with other operators or search terms

M Best provided as a Web query

www.syngress.com

Advanced Operators * Chapter 2

Links to Sites

M The Google filetypes FAQ, www.google.com/help/
faq_filetypes.html

M The resource for file extension information, www.filext.com
This site can help you figure out what program a particular extension is
associated with.

M http://searchenginewatch.com/searchday/article.php/2160061
This article discusses some of the issues associated with Google’s date
restrict search options.

M Very nice online Julian date converters, www.24hourtransla-
tions.co.uk/dates.htm and www.tesre.bo.cnr.it/~mauro/JD/

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You wiill
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Do other search engines provide some form of advanced operator? How do
their advanced operators compare to Google’s?

A: Yes, most other search engines offer similar operators. Yahoo is the most sim-
ilar to Google, in our opinion. This might have to do with the fact that
Yahoo once relied solely on Google as its search provider. The operators
available with Yahoo include site (domain search), hostname (full server name),
link, url (show only one document), inurl, and intitle. The Yahoo advanced
search page offers other options and URL modifiers. You can dissect the
HTML form at http://search.yahoo.com/search/options to get to the inter-
esting options here. Be prepared for a search page that looks a lot like
Google’s advanced search page.

AltaVista ofters domain, host, link, title, and url operators. The AltaVista
advanced search page can be found at www.altavista.com/web/adv. Of par-
ticular interest is the timeframe search, which allows more granularity than

www.syngress.com

85

86

Chapter 2 * Advanced Operators

Google’s as_gdr URL modifier, allowing you to search either ranges or spe-
cific time frames such as the past week, two weeks, or longer.

: Where can I get a quick rundown of all the advanced operators?

: Check out www.google.com/help/operators.html. This page describes var-

ious operators and is a good summary of this chapter. It is assumed that new
operators are listed on this page when they are released, but keep in mind
that some operators enter a beta stage before they are released to the public.
Sometimes these operators are discovered by unsuspecting Google users
throwing around the colon separator too much. Who knows, maybe you’ll be
the next person to discover the newest hidden operator!

: How can I keep up with new operators as they come out? What about other

Google-related news and tips?

: There are quite a few Web sites that we frequent for news and information

about all things Google. The first is www.google.com/googleblog/, Google’s
official Weblog. Although not necessarily technical in nature, it’s a nice way to
gain insight into some of the happenings at Google. Another is Aaron
Swartz’s unofficial Google blog, located at http://google.blogspace.com/. Not
endorsed or sponsored by Google, this site is often more pointed, and some-
times more insightful. A third site that’s a must-bookmark one is the Google
Labs page at http://labs.google.com/. This 1s one of the best places to get
news about new features and capabilities Google has to ofter. Also, to get
updates about new Google queries, even if they’re not Google related, check
out www.google.com/alerts, the main Google Alerts page. Google Alerts
sends you e-mail when there are updates to a search term.You could use this
tool to uncover new operators by alerting on a search term such as google
advanced operator site:google.com.

: Is the word order in a query significant?

: Sometimes. If you are interested in the ranking of a site, especially which sites

float up to the first few pages, order is very significant. Google will take two
adjoining words in a query and try to first find sites that have those words in
the order you specified. Switching the order of the words still returns the same
exact sites (unless you put quotes around the words, forcing Google to find the
words in that order), regardless of which order you provided the terms in
your query. To get an idea of how this works, play around with some basic
queries such as food clothes and clothes food.

www.syngress.com

Chapter 3

Google

Hacking Basics

Solutions in this Chapter:

m Using Caches for Anonymity
m Directory Listings

m Going Out on a Limb: Traversal Techniques

M Summary
M Solutions Fast Track
M Frequently Asked Questions

87

88

Chapter 3 * Google Hacking Basics

Introduction

A fairly large portion of this book is dedicated to the techniques the “bad guys”
will use to locate sensitive information. We present this information to help you
become better informed about their motives so that you can protect yourself and
perhaps your customers. We’ve already looked at some of the benign basic
searching techniques that are foundational for any Google user who wants to
break the barrier of the basics and charge through to the next level: the ways of
the Google hacker. Now we begin to look at the most basic techniques, and
we’ll dive into the weeds a bit later on.

For now, we’ll first talk about Google’s cache. If you haven'’t already experi-
mented with the cache, youre missing out. We suggest you at least click a few
various cached links from the Google search results page before reading further. As
any decent Google hacker will tell you, there’s a certain anonymity that comes
with browsing the cached version of a page. That anonymity only goes so far, and
there are some limitations to the coverage it provides. Google can, however, very
nicely veil your crawling activities to the point that the target Web site might not
even get a single packet of data from you as you cruise the Web site. We’ll show
you how it’s done.

Next, we’ll talk about directory listings. These “ugly” Web pages are chock
full of information, and their mere existence serves as the basis for some of the
more advanced attack searches that we’ll discuss in later chapters.

To round things out, we’ll take a look at a technique that has come to be
known as traversing: the expansion of a search to attempt to gather more informa-
tion. We'll look at directory traversal, number range expansion, and extension
trolling, all of which are techniques that should be second nature to any decent
hacker—and the good guys that defend against them.

Anonymity with Caches

Google’s cache feature is truly an amazing thing. The simple fact is that if Google
crawls a page or document, you can almost always count on getting a copy of it,
even if the original source has since dried up and blown away. Of course the
down side of this is that hackers can get a copy of your sensitive data even if
you’ve pulled the plug on that pesky Web server. Another down side of the cache
is that the bad guys can crawl your entire Web site (including the areas you
“forgot” about) without even sending a single packet to your server. If your Web
server doesn’t get so much as a packet, it can’t write anything to the log files.

WWww.syngress.com

Google Hacking Basics * Chapter 3

(You are logging your Web connections, aren’t you?) If there’s nothing in the log
files, you might not have any idea that your sensitive data has been carried away.
It’s sad that we even have to think in these terms, but untold megabytes, giga-
bytes, and even terabytes of sensitive data leak from Web servers every day.
Understanding how hackers can mount an anonymous attack on your sensitive
data via Google’s cache is of utmost importance.

Google grabs a copy of most Web data that it crawls. There are exceptions,
and this behavior is preventable, as we’ll discuss later, but the vast majority of the
data Google crawls is copied and filed away, accessible via the cached link on the
search page. We need to examine some subtleties to Google’s cached document
banner. The banner shown in Figure 3.1 was gathered from www.phrack.org.

Figure 3.1 This Cached Banner Contains a Subtle Warning About Images

If you’ve gotten so familiar with the cache banner that you just blow right
past it, slow down a bit and actually read it. The cache banner in Figure 3.1
notes, “This cached page may reference images which are no longer available.”
This message is easy to miss, but it provides an important clue about what
Google’s doing behind the scenes.

To get a better idea of what’s happening, let’s take a look at a snippet of fp-
dump output gathered while browsing this cached page.To capture this data, fcp-
dump 1s simply run as tepdump —n.Your installation or implementation of tepdump
might require you to also set a listening interface with the —i switch. The output
of the tcpdump command is shown in Figure 3.2.

WWww.syngress.com

89

90 Chapter 3 * Google Hacking Basics

Figure 3.2 Tcpdump Output Gathered While Viewing a Cached Page

21:39:24.648422 1P 192.168.2.32.51670 > 64.233.167.104.80
21:39:24.719067 1P 64.233.167.104.80 > 192.168.2.32.51670
21:39:24.720351 1P 64.233.167.104.80 > 192.168.2.32.51670
21:39:24.731503 1P 192.168.2.32.51670 > 64.233.167.104.80
21:39:24.897987 1P 192.168.2.32.51672 > 82.165.25.125.80
21:39:24.902401 IP 192.168.2.32.51671 > 82.165.25.125.80
21:39:24.922716 1P 192.168.2.32.51673 > 82.165.25.125.80
21:39:24.927402 1P 192.168.2.32.51674 > 82.165.25.125.80
21:39:25.017288 1P 82.165.25.125.80 > 192.168.2.32.51672
21:39:25.019111 1P 82.165.25.125.80 > 192.168.2.32.51672
21:39:25.019228 IP 192.168.2.32.51672 > 82.165.25.125.80
21:39:25.023371 1P 82.165.25.125.80 > 192.168.2.32.51671
21:39:25.025388 IP 82.165.25.125.80 > 192.168.2.32.51671
21:39:25.025736 IP 192.168.2.32.51671 > 82.165.25.125.80
21:39:25.043418 1P 82.165.25.125.80 > 192.168.2.32.51673
21:39:25.045573 1P 82.165.25.125.80 > 192.168.2.32.51673
21:39:25.045707 1P 192.168.2.32.51673 > 82.165.25.125.80
21:39:25.052853 1P 82.165.25.125.80 > 192.168.2.32.51674

Let’s take apart this output a bit. On line 1, we see a Web (port 80) connec-
tion from 192.168.2.32, our Web browsing machine, to 64.233.167.104, one of
Google’s servers. Lines 2 and 3 show two response packets, again from the
Google server. This 1s the type of traftic we should expect from any transaction
from Google, but beginning on line 5, we see that our machine makes a Web
(port 80) connection to 82.165.25.125. This is not a Google server, and if we
were to run an nslookup or a host command on that IP address, we would dis-
cover that the address resolves to a15151295.alturo-server.de. The connection to
this server can be explained by rerunning tpdump with more options specifically
designed to show a few hundred bytes of the data inside the packets as well as
the headers. The partial capture shown in Figure 3.3 was gathered by running;:

tcpdump —Xx —s 500 —n

and shift-reloading the cached page. Shift-reloading forces most browsers to con-
tact the Web host again, not relying on any caches the browser might be using.

WWww.syngress.com

Google Hacking Basics * Chapter 3

Figure 3.3 A Partial HTTP Request Showing the Host Header Field

0x0040 0d6c 4745 5420 267 7266 782f 3831 736d -IGET./grfx/81sm
0x0050 626c 7565 2e6a 7067 2048 5454 502f 312e blue.jpg.HTTP/1.
0x0060 310d 0a48 6f73 743a 2077 7777 2e70 6872 1. _Host: . www.phr
0x0070 6163 6b2e 672 670d 0a43 6f6e 6e65 6374 ack.org. .Connect
0x0080 696F 6e3a 206b 6565 702d 616c 6976 650d ion:.keep-alive.
0x0090 0a52 6566 6572 6572 3a20 6874 7470 3a2f -Referer: _http:/
0x00a0 236 342e 3233 332e 3136 312e 3130 342f /64.233.161.104/
0x00b0 7365 6172 6368 3f71 3d63 6163 6865 3adc search?g=cache:L
0x00c0 4251 5a49 7253 6b4d 6755 4a3a 7777 772e BQZ I rSkMgUJ -www .
0x00d0 7068 7261 636b 2e6f 7267 2f2b 2b73 6974 phrack.org/++sit
0x00e0 653a 7777 772e 7068 7261 636b 2e6f 7267 e:www.phrack.org
0x00f0 2b70 6872 6163 6b26 686c 3d65 6e0d 0a55 +phrack&hl=en. .U

Lines 1 and 2 show that we are downloading (via a GET request) an image
file—specifically, a JPG image from the server. Line 3 shows the Host field, which
specifies that we are talking to the www.phrack.org Web server. Because of this
Host header and the fact that this packet was sent to IP address 82.165.25.125.80,
we can safely assume that the Phrack Web server is virtually hosted on the phys-
ical server located at 82.165.25.125:80.This means that when we viewed the
cached copy of the Phrack Web page, we began pulling images directly from the
Phrack server itself. If we were striving for anonymity by viewing the Google
cached page, we just blew our cover! Furthermore, lines 612 show that the
REFERER field was passed to the Phrack server, and that field contained a URL
reference to Google’s cached copy of Phrack’s page. This means that not only
were we not anonymous, our browser informed the Phrack Web server that we
were trying to view a cached version of the page! So much for anonymity.

It’s worth noting that most real hackers use proxy servers when browsing a
target’s Web pages, and even their Google activities are first bounced off a proxy
server. If we had used an anonymous proxy server for our testing, the Phrack
Web server would have only gotten our proxy server’s IP address, not our actual
IP address.

WWww.syngress.com

91

92

Chapter 3 * Google Hacking Basics

Underground Googling

Google Hacker’s Tip

It's a good idea to use a proxy server if you value your anonymity online.
Penetration testers use proxy servers to emulate what a real attacker
would do during an actual break-in attempt. Locating working, high-
quality proxy servers can be an arduous task, unless of course we use a
little Google hacking to do the grunt work for us! To locate proxy servers
using Google, try these queries:

inurl:"nph-proxy.cgi' "Start browsing"
or
"this proxy is working fine!" "enter *" "URL***" * visit

These queries locate online public proxy servers that can be used for
testing purposes. Nothing like Googling for proxy servers! Remember,
though, that there are lots of places to obtain proxy servers, such as the
atomintersoft site or the samair.ru proxy site. Try Googling for those!

The cache banner gives us an option to view only the data that Google has
captured, without any external references. As you can see in Figure 3.1, a link is
available in the header, titled “Click here for the cached text only.” Clicking this
link produces the fcdump output shown in Figure 3.4, captured with tepdump —n.

Figure 3.4 Cached Text Only Captured with Tcpdump

IP 192.168.2.32.52912 > 64.233.167.104.80: S 2057734012:2057734012(0) win
65535 <mss 1460,nop,wscale 0,nop,nop,timestamp 3791662381 0>

IP 64.233.167.104.80 > 192.168.2.32.52912: S 4205028956:4205028956(0) ack
2057734013 win 8190 <mss 1460>

IP 192.168.2.32.52912 > 64.233.167.104.80: . ack 1 win 65535
IP 192.168.2.32.52912 > 64.233.167.104.80: P 1:699(698) ack 1 win 65535
IP 64.233.167.104.80 > 192.168.2.32.52912: . ack 699 win 15885

Www.syngress.com

Google Hacking Basics * Chapter 3

IP 64.233.167.104.80 > 192.168.2.32.52912: . 1:1431(1430) ack 699 win 15885

23:46:54.127202 1P 64.233.167.104.80 > 192.168.2.32.52912:
1431:2861(1430) ack 699 win 15885

IP 64.233.167.104.80 > 192.168.2.32.52912: P 2861:3846(985) ack 699 win
15885

IP 192.168.2.32.52912 > 64.233.167.104.80: . ack 3846 win 65535
IP 192.168.2.32.52912 > 64.233.167.104.80: F 699:699(0) ack 3846 win 65535
IP 64.233.167.104.80 > 192.168.2.32.52912: F 3846:3846(0) ack 700 win 8190
IP 192.168.2.32.52912 > 64.233.167.104.80: . ack 3847 win 65535

Lines 1-3 show a standard TCP handshake on the Web port (port 80)
between our browsing machine (192.168.2.32) and the Google server
(64.233.167.104). Lines 4-9 show our Web data transter as our browsing
machine receives data from the Google server, and lines 10-12 show the normal
successful shutdown of our communication with the Google server. Despite the
fact that we loaded the same page as before, we communicated only with the
Google server, not any external servers.

If we were to look at the URL generated by clicking the “cached text only”
link in the cached page’s header, we would discover that Google appended an
interesting parameter, &strip=1.This parameter forces a Google cache URL to dis-
play only cached text, avoiding any external references. This URL parameter
only applies to URLs that reference a Google cached page.

Pulling it all together, we can browse a cached page with a fair amount of
anonymity without a proxy server using a quick cut and paste and a URL modi-
fication. As an example, let’s say that we used a Google query sifte:phrack.org
inurl:hardcover, which returns one result. Instead of clicking the cached link, we
will right-click the cached link and copy the URL to the Clipboard, as shown in
Figure 3.5. Browsers handle this action differently, so use whichever technique
works for you to capture the URL of this link.

WWww.syngress.com

93

94 Chapter 3 * Google Hacking Basics

Figure 3.5 Anonymous Cache Viewing Via Cut and Paste

Once the URL is copied to the Clipboard, paste it into the address bar of
your browser, and append the &strip=1 parameter to the end of the URL.The
URL should now look something like http://216.239.41.104/search?q=
cache:Z7FntxDMrMIJ:www.phrack.org/hardcover62/++site:www.phrac
k.org+inurl:hardcover62&hl=en&strip=1. Press Enter after moditying the
URL to load the page, and you should be taken to the stripped version of the
cached page, which has a slightly different banner, as shown in Figure 3.6.

Figure 3.6 A Stripped Cached Page’s Header

WwWw.syngress.com

Google Hacking Basics * Chapter 3 95

Notice that the stripped cache header reads differently than the standard
cache header. Instead of the “This cached page may reference images which are
no longer available” line is a new line that reads, “Click here for the full cached
version with images included.” This is an indicator that the current cached page
has been stripped of external references. Unfortunately, the stripped page does
not include graphics, so the page could look quite difterent from the original,
and in some cases a stripped page might not be legible at all. If this is the case, it
never hurts to load up a proxy server and hit the page, but real Google hackers
“don’t need no steenkin’ proxy servers!”

Underground Googling...

Fun with Highlights

If you've ever scrolled through page after page of a document looking for
a particular word or phrase, you probably already know that Google’s
cached version of the page will highlight search terms for you. What you
might not realize is that you can use Google’s highlight tool to highlight
terms on a cached page that weren’t included in your original search. This
takes a bit of URL mangling, but it's fairly straightforward. For example,
if you searched for peeps marshmallows and viewed the first cached
page, the tail end of that URL would look something like www.marsh-
mallowpeeps.com/news/press_peeps_spring_2004.html+peeps+marsh-
mallows&hl=en.

To highlight other terms, simply play around with the area after the
target URL, in this case +peeps+marshmallows. Simply add or subtract
words and press Enter, and Google will highlight the terms right in your
browser!

Using Google as a Proxy Server

Although this technique might not work forever, at the time of this writing it’s
possible to use Google itself as a proxy server. This technique requires a Google-
translated URL and some minor URL modification. To make this work, we first
need to generate a translation URL. The easiest way to do this is through
Google’s translation service, located at www.google.com/translate_t. If you were
to enter a URL into the “Translate a web page” field, select a language pair, and

Www.syngress.com

96

Chapter 3 * Google Hacking Basics

click the Translate button, as shown in Figure 3.7, Google would translate the
contents of the Web page and generate a translation URL that could be used for
later reference.

Figure 3.7 Google's Translate Page is the Best Way to Generate a Translation
URL

The URL generated from this page might look like this:

http://www.google.com/translate?u=http%3A%2F%2Fwww.google.com&langpair=en%7C
es&hl=en&ie=Unknown&oe=ASCI I

We discussed most of the parameters in this URL in Chapter 1, but we
haven’t talked about the langpair parameter yet. This parameter, which is only
available for the translation service, describes which languages to translate to and
from, respectively. The arguments to this parameter are identical to the hl parame-
ters we saw in Chapter 1. Figure 3.7 shows that we were attempting to translate
the www.google.com Web page from English to Spanish, which generated a lang-
pair of en and es. Here’s where the hacker mentality kicks in. What would happen
if we were to translate a page from one language into the same language? This
would change our translation URL to:

http://www.google.com/translate?u=http%3A%2F%2Fwww.google.com&langpair=en%7C
en&hl=en&ie=Unknown&oe=ASCI I

WWww.syngress.com

Google Hacking Basics * Chapter 3

If we loaded this URL into our browser, and if the source page were in
English to begin with, we would see a page like the one shown in Figure 3.8.

Figure 3.8 Google Translating Itself from English to English?!

First, you should notice that the Google search page in the bottom frame of
the browser window looks pretty familiar. In fact, it looks identical to the orig-
inal search page. This is because no real language translation occurred. The top

frame of the browser window shows the standard translation banner. Admittedly,
all this work seems a bit anticlimactic, since all we have to show for our efforts is

an exact copy of a page we could have just loaded directly. Fortunately, there is a
payoft when we consider what happens behind the scenes. Let’s look at another
example, this time translating the www.phrack.org/hardcover62/ Web page,

monitoring network traffic with tcpdump -n -U -t as shown in Figure 3.9.

Figure 3.9 Monitoring English to English Translation with Tcpdump —n -U -t

IP 192.168.2.32.53466 > 64.
IP 64.233.171.104.80 > 192.
IP 192.168.2.32.53466 > 64.
IP 192.168.2.32.53466 > 64.
IP 64.233.171.104.80 > 192.
IP 64.233.171.104.80 > 192.
IP 192.168.2.32.53466 > 64.

233.
168.
233.
233.

168

168.
233.

171.104.80:
2.32.53466:
171.104.80:
171.104.80:
.2.32.53466:
2.32.53466:
171.104.80:

S 1120160740:1120160740(0) win
S 2337757854:2337757854(0) ack
. ack 1

P 1:678(677) ack

. ack 678

P 1:529(528) ack

. ack 529

WWww.syngress.com

97

98 Chapter 3 * Google Hacking Basics

IP 64.233.171.104.80 > 192.168.2.32.53466:
IP 192.168.2.32.53466 > 64.233.171.104.80:
[snip]

IP 192.168.2.32.53470 > 216.239.37.104.80:
IP 216.239.37.104.80 > 192.168.2.32.53470:
IP 192.168.2.32.53470 > 216.239.37.104.80:
IP 192.168.2.32.53470 > 216.239.37.104.80:
IP 216.239.37.104.80 > 192.168.2.32.53470:
IP 216.239.37.104.80 > 192.168.2.32.53470:
IP 216.239.37.104.80 > 192.168.2.32.53470:
IP 192.168.2.32.53470 > 216.239.37.104.80:

T TV TV T©

529:549(20) ack
678:1477(799) ack

3691660195:3691660195(0) win
2470826704:2470826704(0) ack
ack 1

1:752(751) ack

1:1271(1270) ack
1271:1692(421) ack
1692:1712(20) ack

. ack 1712

In lines 1-3, we see our Web browsing machine (192.168.2.32) connecting
to a Google Web server (64.233.171.104) on port 80. Data is transferred back
and forth in lines 4-9, and another similar connection is established between the
same addresses at line 10, removed for brevity. In lines 11-13, our Web browsing
machine (192.168.2.32) connects to another Google Web server
(216.239.37.104) on port 80. Data is transferred back and forth in lines 14-18,
and the www.phrack.org/hardcover62/ Web page is displayed in our browser, as
shown in Figure 3.10. In this example, no data was transferred directly between
our Web browsing machine and the phrack.org Web site! When we submitted
our modified translation URL, Google fetched the Web page for us and passed
the contents of the page back to our browser. Google, in essence, acted as a proxy

server for our I'CqU.CSt.

Figure 3.10 Google Acting as a Transparent Proxy Server

Www.syngress.com

Google Hacking Basics * Chapter 3

This is not a perfect proxy solution and should not be used as the sole proxy
server in your toolkit. We present it simply as a example of what a little creative
thinking can accomplish. While Google is acting as a proxy server, it is a trans-
parent proxy server, which means the target Web site can still see our IP address
in the connection logs, despite the fact that Google grabbed the page for us.

Underground Googling

Test Your Proxy Server!

If you are conducting a test that requires you to protect your IP address
from the target, use a proxy server and test it with a proxy checker like
the one available from www.all-nettools.com/pr.htm. If you use this page
to check the “Google proxy,” you'll discover that it affords little protection

for your IP address.

Directory Listings

A directory listing is a type of Web page that lists files and directories that exist on
a Web server. Designed to be navigated by clicking directory links, directory list-
ings typically have a title that describes the current directory, a list of files and
directories that can be clicked, and often a footer that marks the bottom of the
directory listing. Each of these elements is shown in the sample directory listing
in Figure 3.11.

Figure 3.11 A Directory Listing Has Several Recognizable Elements

WwWw.syngress.com

29

100 Chapter 3 * Google Hacking Basics

Much like an FTP server, directory listings offer a no-frills, easy-install solu-
tion for granting access to files that can be stored in categorized folders.
Unfortunately, directory listings have many faults, specifically:

m They are not secure in and of themselves. They do not prevent users
from downloading certain files or accessing certain directories. This task
is often left to the protection measures built into the Web server soft-
ware or third-party scripts, modules, or programs designed specifically
for that purpose.

®m They can display information that helps an attacker learn specific tech-
nical details about the Web server.

m They do not discriminate between files that are meant to be public and
those that are meant to remain behind the scenes.

m They are often displayed accidentally, since many Web servers display a
directory listing if a top-level index file (index.htm, index.html,
default.asp, and so on) is missing or invalid.

All this adds up to a deadly combination.
In this section, we’ll take a look at some of the ways Google hackers can take
advantage of directory listings.

Locating Directory Listings

The most obvious way an attacker can abuse a directory listing is by simply
finding it! Since directory listings ofter “parent directory” links and allow
browsing through files and folders, even the most basic attacker might soon dis-
cover that sensitive data can be found by simply locating the listings and
browsing through them.

Locating directory listings with Google is fairly straightforward. Figure 3.11
shows that most directory listings begin with the phrase “Index of,” which also
shows in the title. An obvious query to find this type of page might be
ntitle:index.of, which could find pages with the term index of in the title of the
document. Remember that the period (“.”) serves as a single-character wildcard
in Google. Unfortunately, this query will return a large number of false positives,
such as pages with the following titles:

Index of Native American Resources on the Internet
LibDex - Worldwide index of library catalogues

lowa State Entomology Index of Internet Resources

WWww.syngress.com

Google Hacking Basics * Chapter 3

Judging from the titles of these documents, it is obvious that not only are
these Web pages intentional, they are also not the type of directory listings we are
looking for. As Ben Kenobi might say, “This is not the directory listing you’re
looking for.” Several alternate queries provide more accurate results—for
example, intitle:index.of “parent directory” (shown in Figure 3.12) or intitle:index.of
name size. These queries indeed provide directory listings by not only focusing on
index.of in the title but on keywords often found inside directory listings, such as
parent directory, name, and size. Even judging from the summary on the search
results page, you can see that these results are indeed the types of directory list-
ings we’re looking for.

Figure 3.12 A Good Search for Directory Listings

Finding Specific Directories

In some cases, it might be beneficial not only to look for directory listings but to
look for directory listings that allow access to a specific directory. This is easily
accomplished by adding the name of the directory to the search query. To locate
“admin” directories that are accessible from directory listings, queries such as
intitle:index.of admin or intitle:index.of inurl:admin will work well, as shown in
Figure 3.13.

101

WWww.syngress.com

102 Chapter 3 * Google Hacking Basics

Figure 3.13 Locating Specific Directories in a Directory Listing

Finding Specific Files

Because of the directory tree style, it 1s also possible to find specific files in a
directory listing. For example, to find WS_FTP log files, try a search such as
intitle:index.of ws_ftp.log, as shown in Figure 3.14.This technique can be extended

to just about any kind of file by keying in on the index.of in the title and the file-
name in the text of the Web page.

Figure 3.14 Locating Files in a Directory Listing

Www.syngress.com

Google Hacking Basics * Chapter 3

You can also use filetype and inurl to search for specific files. To search again
for ws_fip.log files, try a query like filetype:log inurl:ws_ftp.log. This technique will
generally find more results than the somewhat restrictive index.of search. We’ll be
working more with specific file searches throughout the book.

Server Versioning

One piece of information an attacker can use to determine the best method for
attacking a Web server is the exact software version. An attacker could retrieve
that information by connecting directly to the Web port of that server and
issuing a request for the HTTP (Web) headers. It is possible, however, to retrieve
similar information from Google without ever connecting to the target server.
One method involves using the information provided in a directory listing.

Figure 3.15 shows the bottom portion of a typical directory listing. Notice
that some directory listings provide the name of the server software as well as the
version number. An adept Web administrator could fake these server tags, but most
often this information is legitimate and exactly the type of information an
attacker will use to refine his attack against the server.

Figure 3.15 This Server Tag Can Be Used to Profile a Web Server

The Google query used to locate servers this way is simply an extension of
the intitle:index.of query. The listing shown in Figure 3.15 was located with a
query of intitle:index.of “ server at”. This query will locate all directory listings on
the Web with index of in the title and server at anywhere in the text of the page.

103

WWww.syngress.com

104 Chapter 3 * Google Hacking Basics

This might not seem like a very specific search, but the results are very clean and
do not require further refinement.

Underground Googling

Server Version? Who Cares?

Although server versioning might seem fairly harmless, realize that there
are two ways an attacker might use this type of information. If the
attacker has already chosen his target and discovers this information on
that target server, he could begin searching for an exploit (which might
or might not exist) to use against that specific software version. Inversely,
if the attacker already has a working exploit for a very specific version of
Web server software, he could perform a Google search for targets that
he can compromise with that exploit. An attacker, armed with an exploit
and drawn to a potentially vulnerable server, is especially dangerous. Even
small information leaks like this can have big payoffs for a clever attacker.

To search for a specific server version, the intitle:index.of query can be
extended even further to something like intitle:index.of “Apache/1.3.27 Server at”.
This query would find pages like the one listed in Figure 3.15. As shown in Table
3.1, many different servers can be identified through a directory listing.

Table 3.1 Some Specific Servers Locatable Via Directory Listings

Directory Listing of Web Servers

“AnWeb/1.42h" intitle:index.of

“"Apache Tomcat/” intitle:index.of
“Apache-AdvancedExtranetServer/” intitle:index.of
"Apache/df-exts” intitle:index.of

“Apache/” “server at” intitle:index.of
“Apache/AmEuro” intitle:index.of

“Apache/Blast” intitle:index.of

“Apache/WWW'" intitle:index.of

“Apache/df-exts” intitle:index.of

Www.syngress.com

Continued

Google Hacking Basics * Chapter 3

Table 3.1 Some Specific Servers Locatable Via Directory Listings

Directory Listing of Web Servers

“CERN httpd 3.0B (VAX VMS)” intitle:index.of
fitweb-wwws * server at intitle:index.of
“HP Apache-based Web “Server/1.3.26” intitle:index.of

“HP Apache-based Web “Server/1.3.27 (Unix) mod _ssl/2.8.11
OpenSSL/0.9.6q” intitle:index.of

“httpd+ssl/kttd” * server at intitle:index.of
JRun Web Server” intitle:index.of
“MaXX/3.1"” intitle:index.of

“Microsoft-1IS/* server at” intitle:index.of
“Microsoft-11S/4.0” intitle:index.of
“Microsoft-11S/5.0 server at” intitle:index.of
“Microsoft-11S/6.0"” intitle:index.of
“OmniHTTPd/2.10"” intitle:index.of
“OpenSA/1.0.4" intitle:index.of

“Oracle HTTP Server Powered by Apache” intitle:index.of
“Red Hat Secure/2.0"” intitle:index.of

“Red Hat Secure/3.0 server at” intitle:index.of
SEDWebserver * server +at intitle:index.of

Figure C.2 Directory Listings of Apache Versions

Queries That Locate Apache Versions Through Directory Listings

"Apache/1.0” intitle:index.of
"Apache/1.1” intitle:index.of
“Apache/1.2” intitle:index.of
“Apache/1.2.0 server at” intitle:index.of
“Apache/1.2.4 server at” intitle:index.of
"Apache/1.2.6 server at” intitle:index.of
"Apache/1.3.0 server at” intitle:index.of
“Apache/1.3.2 server at” intitle:index.of
"Apache/1.3.1 server at” intitle:index.of

105

WWww.syngress.com

106 Chapter 3 * Google Hacking Basics

“Apache/1.3.1.1 server at” intitle:index.of
“Apache/1.3.3 server at” intitle:index.of
"Apache/1.3.4 server at” intitle:index.of
“Apache/1.3.6 server at” intitle:index.of
“Apache/1.3.9 server at” intitle:index.of
“Apache/1.3.11 server at” intitle:index.of
“Apache/1.3.12 server at” intitle:index.of
“Apache/1.3.14 server at” intitle:index.of
“Apache/1.3.17 server at” intitle:index.of
“Apache/1.3.19 server at” intitle:index.of
“Apache/1.3.20 server at” intitle:index.of
“Apache/1.3.22 server at” intitle:index.of
“Apache/1.3.23 server at” intitle:index.of
"Apache/1.3.24 server at” intitle:index.of
“Apache/1.3.26 server at” intitle:index.of
“Apache/1.3.27 server at” intitle:index.of
"Apache/1.3.27-fil" intitle:index.of
“Apache/1.3.28 server at” intitle:index.of
“"Apache/1.3.29 server at” intitle:index.of
“Apache/1.3.31 server at” intitle:index.of
“Apache/1.3.35 server at” intitle:index.of
“Apache/2.0.32 server at” intitle:index.of
“Apache/2.0.35 server at” intitle:index.of
“Apache/2.0.36 server at” intitle:index.of
"Apache/2.0.39 server at” intitle:index.of
“Apache/2.0.40 server at” intitle:index.of
“"Apache/2.0.42 server at” intitle:index.of
"Apache/2.0.43 server at” intitle:index.of
“Apache/2.0.44 server at” intitle:index.of
“Apache/2.0.45 server at” intitle:index.of
"Apache/2.0.46 server at” intitle:index.of
“"Apache/2.0.47 server at” intitle:index.of
“"Apache/2.0.48 server at” intitle:index.of
“Apache/2.0.49 server at” intitle:index.of

WWww.syngress.com

Google Hacking Basics * Chapter 3

“Apache/2.0.49a server at” intitle:index.of
“Apache/2.0.50 server at” intitle:index.of
"Apache/2.0.51 server at” intitle:index.of
“Apache/2.0.52 server at” intitle:index.of

In addition to identifying the Web server version, it is also possible to deter-
mine the operating system of the server (as well as modules and other software
that is installed). We’ll look at more specific techniques to accomplish this later,
but the server versioning technique we’ve just looked at can be extended by
including more details in our query. Table 3.2 shows queries that located
extremely esoteric server software combinations, revealed by server tags. These
tags list a great deal of information about the servers they were found on and are
shining examples proving that even a seemingly small information leak can
sometimes explode out of control, revealing more information than expected.

Table 3.2 Locating Specific and Esoteric Server Versions

Queries That Locate Specific and Esoteric Server Versions

“Apache/1.3.12 (Unix) mod _fastcgi/2.2.12 mod_dyntag/1.0 mod_advert/1.12
mod_czech/3.1.1b2" intitle:index.of

"Apache/1.3.12 (Unix) mod_fastcgi/2.2.4 secured_by Raven/1.5.0"
intitle:index.of

“Apache/1.3.12 (Unix) mod _ssl/2.6.6 OpenSSL/0.9.5a” intitle:index.of

“Apache/1.3.12 Cobalt (Unix) Resin/2.0.5 StoreSense-Bridge/1.3
ApachelServ/1.1.1 mod _ssl/2.6.4 OpenSSL/0.9.5a mod_auth_pam/1.0a
FrontPage/4.0.4.3 mod_perl/1.24" intitle:index.of

“Apache/1.3.14 - PHP4.02 - Iprotect 1.6 CWIE (Unix) mod_fastcgi/2.2.12
PHP/4.0.3pl1” intitle:index.of

"Apache/1.3.14 Ben-SSL/1.41 (Unix) mod _throttle/2.11 mod_perl/1.24_01
PHP/4.0.3pl1 FrontPage/4.0.4.3 rus/PL30.0” intitle:index.of

“Apache/1.3.20 (Win32)” intitle:index.of

“Apache/1.3.20 Sun Cobalt (Unix) PHP/4.0.3plT mod_auth_pam_external/0.1
FrontPage/4.0.4.3 mod_perl/1.25" intitle:index.of

"Apache/1.3.20 Sun Cobalt (Unix) PHP/4.0.4 mod_auth_pam_external/0.1
FrontPage/4.0.4.3 mod _ssl/2.8.4 OpenSSL/0.9.6b mod perl/1.25”
intitle:index.of

“Apache/1.3.20 Sun Cobalt (Unix) PHP/4.0.6 mod _ssl/2.8.4 OpenSSL/0.9.6
FrontPage/5.0.2.2510 mod _perl/1.26" intitle:index.of

Continued

WWww.syngress.com

107

108

Chapter 3 * Google Hacking Basics

Table 3.2 Locating Specific and Esoteric Server Versions

Queries That Locate Specific and Esoteric Server Versions

“Apache/1.3.20 Sun Cobalt (Unix) mod _ssl/2.8.4 OpenSSL/0.9.6b PHP/4.0.3pl1
mod_auth_pam_external/0.1 FrontPage/4.0.4.3 mod_perl/1.25"
intitle :index.of

“Apache/1.3.20 Sun Cobalt (Unix) mod _ssl/2.8.4 OpenSSL/0.9.6b PHP/4.0.3pl1
mod_fastcgi/2.2.8 mod_auth_pam _external/0.1 mod_perl/1.25"
intitle:index.of

“Apache/1.3.20 Sun Cobalt (Unix) mod_ssl/2.8.4 OpenSSL/0.9.6b PHP/4.0.4
mod_auth_pam_external/0.1 mod_perl/1.25" intitle:index.of

“Apache/1.3.20 Sun Cobalt (Unix) mod _ssl/2.8.4 OpenSSL/0.9.6b PHP/4.0.6
mod_auth_pam_external/0.1 FrontPage/4.0.4.3 mod_perl/1.25"
intitle:index.of

“Apache/1.3.20 Sun Cobalt (Unix) mod _ssl/2.8.4 OpenSSL/0.9.6b
mod_auth_pam_external/0.1 mod_peri/1.25" intitle:index.of

“Apache/1.3.26 (Unix) Debian GNU/Linux PHP/4.1.2 mod_dtcl” intitle:index.of
"Apache/1.3.26 (Unix) PHP/4.2.2” intitle:index.of

“Apache/1.3.26 (Unix) mod _ssl/2.8.9 OpenSSL/0.9.6b" intitle:index.of
“Apache/1.3.26 (Unix) mod ssl/2.8.9 OpenSSL/0.9.7" intitle:index.of
"Apache/1.3.26+PH" intitle:index.of

“Apache/1.3.27 (Darwin)” intitle:index.of

“Apache/1.3.27 (Unix) mod _log bytes/1.2 mod_bwlimited/1.0 PHP/4.3.1
FrontPage/5.0.2.2510 mod _ssl/2.8.12 OpenSSL/0.9.6b” intitle:index.of

“Apache/1.3.27 (Unix) mod _ssl/2.8.11 OpenSSL/0.9.6g FrontPage/5.0.2.2510
mod_gzip/1.3.26 PHP/4.1.2 mod_throttle/3.1.2” intitle:index.of

Going Out on
a Limb: Traversal Techniques

The next technique we’ll examine is known as traversal. Traversal in this context
simply means fo travel across. Attackers use traversal techniques to expand a small
“foothold” into a larger compromise.

WWww.syngress.com

Google Hacking Basics * Chapter 3

Directory Traversal

To illustrate how traversal might be helpful, consider a directory listing that was
tound with intitle:index.of inurl: “/admin/*”, as shown in Figure 3.16.

Figure 3.16 Traversal Example Found with index.of

In this example, our query brings us to a relative URL of
/bpa/acadunits/admin/envr/bowman. If you look closely at the URL, you’ll
notice an “admin” directory two directory levels above our current location. If
we were to click the “parent directory” link, we would be taken up one direc-
tory, to the “envr” directory. Clicking the “parent directory” link from the “envr”
directory would take us to the “admin” directory, a potentially juicy directory.
This is very basic directory traversal. We could explore each and every parent
directory and each of the subdirectories, looking for juicy stuft. Alternatively, we
could use a creative sife search combined with an inurl search to locate a specific
file or term inside a specific subdirectory, such as site:cl.uh.edu
inurl:bpa/acadunits /admin ws_ftp.log, for example. We could also explore this direc-
tory structure by modifying the URL in the address bar.

Regardless of how we were to “walk” the directory tree, we would be
traversing outside the Google search, wandering around on the target Web server.
This is basic traversal, specifically directory traversal. Another simple example would
be replacing the word admin with the word student or public. Another more
serious traversal technique could allow an attacker to take advantage of software
flaws to traverse to directories outside the Web server directory tree. For

109

WWww.syngress.com

110

Chapter 3 * Google Hacking Basics

example, if a Web server is installed in the /var/www directory, and public Web
documents are placed in /var/www/htdocs, by default any user attaching to the
Web server’s top-level directory is really viewing files located in
/var/www/htdocs. Under normal circumstances, the Web server will not allow
Web users to view files above the /var/www/htdocs directory. Now, let’s say a
poorly coded third-party software product is installed on the server that accepts
directory names as arguments. A normal URL used by this product might be
www.somesadsite.org/badcode.pl?page=/index.html. This URL would instruct
the badcode.pl program to “fetch” the file located at
/var/www/htdocs/index.html and display it to the user, perhaps with a nifty
header and footer attached. An attacker might attempt to take advantage of this
type of program by sending a URL such as www.somesadsite.org/
badcode.pl?page=../../../etc/passwd. If the badcode.pl program is vulnerable to a
directory traversal attack, it would break out of the /var/www/htdocs directory,
crawl up to the real root directory of the server, dive down into the /etc directory,
and “fetch” the system password file, displaying it to the user with a nifty header
and footer attached!

Automated tools can do a much better job of locating these types of files and
vulnerabilities, if you don’t mind all the noise they create. If you’re a pro-
grammer, you will be very interested in the Libwhisker Perl library, written and
maintained by Rain Forest Puppy (RFP) and available from www.wiretrip.
net/rfp. Security Focus wrote a great article on using Libwhisker. That article is
available from www.securityfocus.com/infocus/1798. If you aren’t a programmer,
RFP’s Whisker tool, also available from the Wiretrip site, is excellent, as are other
tools based on Libwhisker, such as nikto, written by sullo@cirt.net, which is said
to be updated even more than the Whisker program itself.

Incremental Substitution

Another technique similar to traversal is incremental substitution. This technique
involves replacing numbers in a URL in an attempt to find directories or files that
are hidden, or unlinked from other pages. Remember that Google generally only
locates files that are linked from other pages, so if it’s not linked, Google won’t
find it. (Okay, there’s an exception to every rule. See the FAQ at the end of this
chapter.) As a simple example, consider a document called exhc-1.xls, found with
Google.You could easily modify the URL for that document, changing the 1 to a
2, making the filename exhc-2.xls. If the document is found, you have successfully
used the incremental substitution technique! In some cases it might be simpler to

WWww.syngress.com

Google Hacking Basics * Chapter 3

use a Google query to find other similar files on the site, but remember, not all
files on the Web are in Google’s databases. Use this technique only when you're
sure a simple query modification won'’t find the files first.

This technique does not apply only to filenames but just about anything that
contains a number in a URL, even parameters to scripts. Using this technique to
toy with parameters to scripts is beyond the scope of this book, but if you’re
interested in trying your hand at some simple file or directory substitutions, scare
up some test sites with queries such as filetype:xls inurl:1.xls or intitle:index.of
inurl:0001 or even an images search for 1.jpg. Now use substitution to try to
modify the numbers in the URL to locate other files or directories that exist on
the site. Here are some examples:

B /docs/bulletin/2.xIs could be modified to /docs/bulletin/2.xls

m /DigLlib_thumbnail/spmg/hel/0001/H/ could be changed to
/DigLib_thumbnail/spmg/hel/0002/H/

m /gallery/wel008-1.jpg could be modified to /gallery/wel008-2.jpg

Extension Walking

We've already discussed file extensions and how the filetype operator can be used
to locate files with specific file extensions. For example, we could easily search
for HTM files with a query such as filetype: HTM HTM. (Remember that filetype
searches require a search parameter. Files ending in HTM always have HTM in
the URL!) Once you’ve located HTM files, you could apply the substitution
technique to find files with the same file name and different extension. For
example, if you found /docs/index.htm, you could modify the URL to
/docs/index.asp to try to locate an index.asp file in the docs directory. If this
seems somewhat pointless, rest assured, this is, in fact, rather pointless. We can,
however, make more intelligent substitutions. Consider the directory listing
shown in Figure 3.17.This listing shows evidence of a very common practice,
the creation of backup copies of Web pages.

111

WWww.syngress.com

112

Chapter 3 * Google Hacking Basics

Figure 3.17 Backup Copies of Web Pages are Very Common

Backup files can be a very interesting find from a security perspective. In
some cases, backup files are older versions of an original file. This is evidenced in
Figure 3.17.Take a look at the date of the index.htm file. The date is listed as
January 19, 2004. Now take a look at the backup copy, index.htm.bak. That file’s
date is listed as January 9, 2002. Without even viewing these files, we can tell that
they are most likely very different, since there are more than two years’ difference
in the dates. Older files are not necessarily less secure than newer versions, but
backup files on the Web have an interesting side effect: They have a tendency to
reveal source code. Source code of a Web page is quite a find for a security prac-
titioner because it can contain behind-the-scenes information about the author,
the code creation and revision process, authentication information, and more.

To see this concept in action, consider the directory listing shown in Figure
3.17. Clicking the link for index.htm will display that page in your browser
with all the associated graphics and text, just as the author of the page intended.
This happens because the Web server follows a set of rules about how to display
types of files to the user. HTML files are sent as is to your browser, with very

WwWw.syngress.com

Google Hacking Basics * Chapter 3

little modification (actually there are some exceptions, such as server-side
includes). When you view an HTML page in your browser, you can simply per-
form a view source to see the source code of the page.

PHP files, by contrast, are first executed on the server. The results of that exe-
cuted program are then sent to your browser in the form of HTML code, which
your browser then displays. Performing a view source on HTML code that was
generated from a PHP script will not show you the PHP source code, only the
HTML. It is not possible to view the actual PHP source code unless something
somewhere 1s misconfigured. An example of such a misconfiguration would be
copying the PHP code to a filename that ends in something other than PHP, like
BAK. Most Web servers do not understand what a BAK file 1s. Those servers,
then, will display a PHP.BAK file as text. When this happens, the actual PHP
source code is displayed as text in your browser. As shown in Figure 3.18, PHP
source code can be quite revealing, showing things like SQL queries that list
information about the structure of the SQL database that is used to store the
Web server’s data.

Figure 3.18 Backup Files Expose SQL Data

The easiest way to determine the names of backup files on a server is to
locate a directory listing using intitle:index.of or to search for specific files with

113

WWww.syngress.com

114

Chapter 3 * Google Hacking Basics

queries such as intitle:index.of index.php.bak or inurl:index.php.bak. Directory list-
ings are fairly uncommon, especially among corporate-grade Web servers.
However, remember that Google’s cache captures a snapshot of a page in time.
Just because a Web server isn’t hosting a directory listing now doesn’t mean the
site never displayed a directory listing. The page shown in Figure 3.19 was found
in Google’s cache and was displayed as a directory listing because an index.php
(or similar file) was missing. In this case, if you were to visit the server on the
Web, it would look like a normal page because the index file has since been cre-
ated. Clicking the cache link, however, shows this directory listing, leaving the list
of files on the server exposed. This list of files can be used to intelligently locate
files that still most likely exist on the server (via URL modification) without
guessing at file extensions.

Figure 3.19 Cached Pages Can Expose Directory Listings

Directory listings also provide insight into the file extensions that are in use
in other places on the site. If a system administrator or Web authoring program
creates backup files with a .BAK extension in one directory, there’s a good
chance that BAK files will exist in other directories as well.

Www.syngress.com

Google Hacking Basics * Chapter 3

Summary

The Google cache 1s a powerful tool in the hands of the advanced user. It can be
used to locate old versions of pages that may expose information that normally
would be unavailable to the casual user. The cache can be used to highlight terms
in the cached version of a page, even if the terms were not used as part of the
query to find that page. The cache can also be used to view a Web page anony-
mously via the &strip=1 URL parameter, and it can even be used as a transparent
proxy server with creative use of the translation service. An advanced Google
user will always pay careful attention to the details contained in the cached page’s
header, since there can be important information about the date the page was
crawled, the terms that were found in the search, whether the cached page con-
tains external images, links to the original page, and the text of the URL used to
access the cached version of the page.

Directory listings, although somewhat uncommon contain a great deal of
information that are interesting from a security perspective. In this chapter, we
saw that directory listings can be used to locate specific files and directories and
that directory listings can be used to determine specific information about the
software installed on a server. Traversal techniques can be used to locate informa-
tion often outside the piercing gaze of Google's crawlers. Some specific tech-
niques we explored included directory traversal, incremental substitution, and
extension walking. When combined with effective Google searching, these tech-
niques can often unearth all sorts of information that Google searching alone can
not reveal. In addition, some traversal techniques can be used to actually compro-
mise a server, giving an attacker wide-open access to a server.

Solutions Fast Track

Anonymity with Caches

M Clicking the cache link will not only load the page from Google’s
database, it will also connect to the real server to access graphics and
other non-HTML content.

M Adding &strip=1 to the end of a cached URL will only show the
HTML of a cached page. Accessing a cached page in this way will not
connect to the real server on the Web and could protect your
anonymity if you use the cut and paste method shown in this chapter.

115

www.syngress.com

116 Chapter 3 * Google Hacking Basics

Using Google as a Proxy Server

M Google can be used as a transparent proxy server, thanks to the transla-
tion service.

M This technique requires URL modification, specifically the modification

of the langpair parameter. To use this technique, set the langpair values to
the same language, such as langpair=en%o7Cen.

Locating Directory Listings

M Directory listings contain a great deal of invaluable information.

M The best way to home in on pages that contain directory listings is with
a query such as intitle:index.of “parent directory” or intitle:index.of name
size.

Locating Specific Directories in a Listing

M You can easily locate specific directories in a directory listing by adding
a directory name to an index.of search. For example, intitle:index.of
inurl:backup could be used to find directory listings that have the word
backup in the URL. If the word backup 1s in the URL, there’s a good
chance it’s a directory name.

Locating Specific Files in a Directory Listing

M You can find specific files in a directory listing by simply adding the
filename to an index.of query, such as intitle:index.of ws_ftp.log.

Server Versioning with Directory Listings

M Some servers, specifically Apache and Apache derivatives, add a server
tag to the bottom of a directory listing. These server tags can be located
by extending an index.of search, focusing on the phrase server at—for
example, intitle:index.of server.at.

M You can find specific versions of a Web server by extending this search
with more information from a correctly formatted server tag. For
example, the query intitle:index.of server.at “Apache Tomcat/” will locate

www.syngress.com

Google Hacking Basics * Chapter 3

servers running various versions of the Apache Tomcat server.

Directory Traversal

]

]

Once you have located a specific directory on a target Web server, you
can use this technique to locate other directories or subdirectories.

An easy way to accomplish this task is via directory listings. Simply click
the parent directory link, taking you to the directory above the current
directory. If this directory contains another directory listing, you can
simply click links from that page to explore other directories. If the
parent directory does not display a directory listing, you might have to
resort to a more diftficult method, guessing directory names and adding
them to the end of the parent directory’s URL. Alternatively, consider
using site and inurl keywords in a Google search.

Incremental substitution

]

]

Incremental substitution is a fancy way of saying “take one number and
replace it with the next higher or lower number.”

This technique can be used to explore a site that uses numbers in direc-
tory or filenames. Simply replace the number with the next higher or
lower number, taking care to keep the rest of the file or directory name
identical (watch those zeroes!). Alternatively, consider using site with
either inurl or filetype keywords in a creative Google search.

Extension Walking

]

o}

This technique can help locate files (for example, backup files) that have
the same filename with a different extension.

The easiest way to perform extension walking is by replacing one
extension with another in a URL—replacing html with bak, for
example.

Directory listings, especially cached directory listings, are easy ways to

determine whether backup files exist and what kinds of file extensions
might be used on the rest of the site.

117

www.syngress.com

118

Chapter 3 * Google Hacking Basics

Links to Sites

m www.all-nettools.com/pr.htm A simple proxy checker that can help
you test a proxy server you're using.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Can Google find Web pages that aren’t linked from anywhere else on the
Web?

A: This question requires two answers. The first answer is “Yes.” Anyone can add
a URL to Google’s database by filling out the form at www.google.com/
addurl.html. The second answer is “Maybe” and requires a bit of explanation..
The Opera Web browser includes a feature that sends data to Google when a
user types a URL into the address bar. The entered URL is sent to Google,
and that URL is subsequently crawled by Google’s bots. According to the
FAQ posted at www.opera.com/adsupport:

The Google system serves advertisements and related searches to
the Opera browser through the Opera browser banner 468x60
format. Google determines what ads and related searches are rele-
vant based on the URL and content of the page you are viewing
and your IP address, which are sent to Google via the Opera
browser.

There is no substantial evidence that proves that Google includes this link
in its search engine. However, testing shows that when a previously unin-
dexed URL (http://johnny.thackstuff.com/temp/suck.html) is entered into
Opera 7.2.3, a2 Googlebot crawls that URL moments later, as shown by the
following log excerpts:

64.68.87.41 - "GET /robots.txt HTTP/1.0" 200 220 "-" "Mediapartners-
Googles2.1 (+http://www.googlebot.com/bot._html)"
64.68.87.41 - "GET /temp/suck.html HTTP/1.0" 200 5 "-" "Mediapartners-

Googles2.1 (+http://www.googlebot.com/bot_html)"

www.syngress.com

Q:

Google Hacking Basics * Chapter 3

Opera users should not expect typed URLs to remain “unexplored.”

[use Opera. Can I turn oft the Google crawling feature?

A: Yes.This feature can be turned off within Opera by selecting Show generic

Q:

selection of graphical ads from File | Preferences | Advertising.

Searching for backup files seems cumbersome. Is there a better way?

A: Better, meaning faster, yes. Many automated Web tools (such as Weblnspect

from www.spidynamics.com) ofter the capability to query a server for varia-
tions of existing filenames, turning an existing index.html file into queries for
index.html.bak or index.bak, for example. These scans are generally very
thorough but very noisy and will almost certainly alert the site that you're
scanning. Weblnspect is better suited for this task than Google Hacking, but
many times a low-profile Google scan can be used to get a feel for the secu-
rity of a site without alerting the site’s administrators or intrusion detection
system (IDS). As an added benetfit, any information gathered with Google can
be reused later in an assessment.

. Backup files seem to create security problems, but these files help in the

development of a site and provide peace of mind that changes can be rolled
back. Isn’t there some way to keep backup files around without the undue
risk?

A: Yes. A major problem with backup files is that in most cases, the Web server

displays them differently because they have a different file extension. So there
are a few options. First, if you create backup files, keep the extensions the
same. Don’t copy index.php to index.bak but rather to something like
index.bak.php. This way the server still knows it’s a PHP file. Second, you
could keep your backup files out of the Web directories. Keep them in a
place you can access them but where Web visitors can’t get to them. The
third (and best) option is to use a real configuration management system.
Consider using a CVS-style system that allows you to register and check out
source code.This way you can always roll back to an older version, and you
don’t have to worry about backup files sitting around.

119

www.syngress.com

Chapter 4

Pre-Assessment

Solutions in this Chapter:

m The Birds and the Bees
m Long Walks on the Beach
m Romantic Candlelit Dinners

m List of Sites

M Summary
M Solutions Fast Track
M Frequently Asked Questions

121

122

Chapter 4 * Pre-Assessment

Introduction

In this chapter, we’ll discuss what’s called pre-assessment information-gathering
techniques. During this phase of an assessment, the security tester is most inter-
ested in obtaining preliminary information about the target. This does not
include specific information such as IP addresses and DNS names (which we dis-
cuss in the next chapter) but rather information that could be used for social
manipulation (talking a help desk operator into a password change), physical
compromise of a target (gaining information about building structures or badge
layouts), and general reconnaissance.

Throughout this chapter, we focus on methods to locate information about
the target that will most likely be used in later phases of the assessment. In a
twisted sort of way, pre-assessment work is a bit like preparing for the perfect
date. You might do a bit of research about the person, get some information
about them and their friends and family, spend quality time with them, and learn
as much as you can about their interests. Although the stakes are much higher,
courting your target can be like courting your mate. When things get rough, plan
to spend some time sleeping in a chair or a couch instead of in a nice, warm bed
where you belong!

Let’s carry that analogy through the chapter and examine how the stages of
pre-assessment mirror the stages of courtship.

The Birds and the Bees

One of the first steps you need to take is to try to understand the target com-
pany structure and environment. Visiting the company Web site can provide
some information, but keep in mind that you’re only seeing what they want you
to see. To get behind the scenes, a simple site:somecompany.com search will often
reveal information that wasn’t meant to be seen by the public. This search has
one major drawback, however: for a large company, it could return thousands of
results, many of which are useless and a huge waste of your time.

In this section we look at techniques (grinding techniques, specifically) that
you can use to weed through all this data, but for now it might be a better idea
to target your searches to find the useful data.

WWww.syngress.com

Pre-Assessment * Chapter 4 123

Intranets and Human Resources

Where do you go if you want the inside scoop on a company? What better
department to start with than Human Resources! Since just about anything
intentionally viewable by the public tends to be watered down, we’ll need to get
behind the scenes. Many companies like to make company information available
to their employees (and only their employees), and to do so they set up company
intranets containing information for employee eyes only. Intranets are supposed
to be private, but combining Human Resources and intranet into a search such as
intitle:intranet inurl:intranet +intext:”human resources” shows that private sites some-
times aren’t exactly private, as we can see in Figure 4.1.

Figure 4.1 Human Resources Intranet Pages

In addition to providing you with information about the company policies
and procedures, most HR intranet sites provide the names of contact people for
the department. These names can be very useful for future social engineering
attacks.

WWww.syngress.com

124

Chapter 4 * Pre-Assessment

Underground Googling...

A Wealth of Information Lies in the Company Intranet

Don’t limit yourself to the Human Resources department. Companies put
all sorts of information on their intranets, since they assume they are safe
from public eyes. Replacing the human resources part of the query with
computer services, IT department, or simply phone can provide amazing
amounts of additional information that you can later use during the social
engineering phase. Chapter 7 contains more information about using the
company intranet to your advantage.

Help Desks

A simple search listed in Chapter 7’s Top 10 searches is intranet | help.desk, or
simply (“help.desk” | helpdesk). Combined with the site operator, this query is
designed to locate intranets or help desk pages. Help desk references are
extremely valuable because they often refer to documents and procedures an
attacker could use to gather information about the target.

Self-Help and “"How-To"” Guides

These documents are designed to help an end user perform some sort of proce-
dure. Used creatively, they can provide information about the target that could
prove useful at some point during an assessment. For example, a kludgey search
such as “how to” network setup dhcp (“help desk” | helpdesk) can reveal documents
that include instructions for connecting to a network, as shown in Figure 4.2.

Www.syngress.com

Pre-Assessment * Chapter 4 125

Figure 4.2 "How-To” Documents Are Revealing

This page lists a virtual gold mine of information:

m Network information DHCP, No client ID’s, AppleTalk, Ethernet.

B Recommended browsers The download link lists recommended
browsers and version information.

= Help desk phone number X1705,an RCC comes to your room.
® E-mail information ID can be generated by the IT department.
® E-mail information Site uses Novell GroupWise.

® E-mail information Web-based (!) e-mail server located online at
http://gw5.XXX.edu.

B E-mail information E-mail server is available from the Internet.

This in not an uncommon how-to document. Most are overly informative,
supplying a great deal of information that an attacker can use.

WWww.syngress.com

126 Chapter 4 * Pre-Assessment

Job Listings

Job listings can also reveal information about a target, including technologies in
use, corporate structure, geography, and more. One of the easiest ways to locate
job postings is with a simple query such as resume | employment combined with
the site operator. Don’t overlook job listings as an important source of informa-
tion about an organization.

Underground Googling...

Public Polling Via Google

Google can be used to map the public opinion of a site over time. First,
build two lists of Google queries. The first list combines the common
name of a company with 100 common “good” phrases such as good
experience, wise investment, well-managed, and so on. Next, create a
second list that combines the company name with 100 “bad” phrases
such as poor customer service, shady management, and beware. Feed
these lists into Google every day for an extended period of time, mapping
not only the numbers of hits but the page rank of each referring site. This
kind of nonobvious statistical information can speak volumes about a
company’s image (as well as provide a decent financial investment road
map!).

Long Walks on the Beach

During the courtship process, a couple often spends time getting to know one
another. Similarly, during a penetration test, it’s not a bad idea to get “personal”
with your target, or specifically the people working for the organization. Digging
up details about the people who make up an organization can pay oft in big
ways during later assessment phases. Usernames, employee numbers, or Social
Security numbers can be used to social engineer a help desk technician. E-mail
addresses can be targeted with e-mails containing malware. Information about an
individual’s circle of friends can be used to social engineer that individual. Any
little tidbit of information can be used by a creative security tester to gain access

Www.syngress.com

Pre-Assessment * Chapter 4

to more information, causing a snowball effect that often leads to system or net-
work compromise. In this section, we’ll take a look at some ways Google can be
used to harvest this type of information.

Names, Names, Names

One way Google excels at helping the researcher dig up additional names and e-
mail addresses is through its Google Groups searches. Google Groups (formerly
DejaNews) is simply a Usenet archive that keeps copies of all posts made to
thousands of Usenet groups over the years. For example, performing a Google
Groups search on somecompany.com returns some nice information, as shown in
Figure 4.3.

Figure 4.3 Results of Google Groups Query for somecompany.com

Notice that the returned results list the name of the poster at the bottom of
each result listing. In some cases this information is faked, but depending on the
number of results, you could end up with legitimate employee names.
Remember that the Google Groups Advanced Search feature
(http://groups.google.com/advanced_group_search) allows you to narrow your
search by specifying several additional search parameters such as Subject, Author,
Date, specific phrases, and more.

127

WWww.syngress.com

128

Chapter 4 * Pre-Assessment

Browsing Google Groups results for information can be a daunting task,
especially when it comes time to dig through all the pages to find the informa-
tion you're after. Chapter 10 contains snippets of code that can be used to extract
URLs, e-mail addresses, and more from scraped Google Groups result pages.
Chapter 10 also goes into more detail on how to properly search for, locate, and
extract e-mail addresses using regular expressions.

Automated E-Mail Trolling

It would be nice to have a utility to help automate the process of searching for
e-mail addresses. Ask and you shall receive! The Perl code that follows, written by
Roelof Temmingh of SensePost (www.sensepost.com), will search through
Google Groups pages and Google Web pages, hunting for e-mail addresses. To
use this tool, you must first obtain a Google API key from
www.google.com/apis. Download the developer’s kit, copying the
GoogleSearch.wsdl file into the same directory as this script. Next, download and
install the Expat package from sourceforge.net/projects/expat. This installation
requires a ./configure and a make as is typical with most modern UNIX-based
installers. This script also uses SOAP::Lite, which is easiest to install via CPAN.
Simply run CPAN from your favorite flavor of UNIX and issue the following
commands from the CPAN shell to install SOAP::Lite and various dependencies
(some of which might not be absolutely necessary on your platform):

install LWP::UserAgent
install XML::Parser
install MIME::Parser
force install SOAP::Lite

Although this might seem like a lot of work for one script, most Perl-based
Google programs will have the same requirements, meaning that you only need
to go through this process once to allow you to run this and other Google
querying Perl scripts, some of which are included in later chapters of this book.
Be sure to insert your Google API key into this script before running it. Now
without further ado, here’s the much-anticipated script:

#1/usr/bin/perl

#

Google Email miner

SensePost Research 2003

roelof@sensepost.com

WWww.syngress.com

Pre-Assessment * Chapter 4

#

Assumes the GoogleSearch.wsdl file is in same directory
#

$1=1;

use SOAP::Lite;

if ($#ARGV<0){die "email-mine <domain> [loops]\nfor example: email-mine
sensepost.com 5\n\n"";

my $key = "--==Insert Google APl Key Here==--"";

my $service = SOAP::Lite->service("file:./GoogleSearch.wsdl®);

my $numloops = @ARGV[1];

if (Snumloops == 0){$numloops=5;}

my $target = @ARGV[O];

my $query = ""\@$target -www.$target";

Do the Google
for (my $j = 0; $j < $numloops; $j++){
print STDOUT "$j ™;
my $results = $service
->
doGoogleSearch($key,$query, (10*$j),10, "true™ """, "true™,"" ,"latinl","latinl™);

$re = (@{$results->{resultElements}});
foreach my $results(@{$results->{resultElements}}){

push @allemails,extract_email($results-
>{snippet},$target);

}
if (Bre 1= 10){last;}

Remove duplicates & show results
print STDOUT '\n";

@al lemai ls=dedupe(@allemails);

129

WWww.syngress.com

130 Chapter 4 * Pre-Assessment

foreach $email (@allemails){
print STDOUT "$email\n';

sub extract _email {

my ($passed,$target)=0_;

we want multiple addresses in a single line
my @in = split(/\s/,$passed);
my @collected;

foreach my $line2 (@in){
my $emaila;

chomp $line2;

Remove Google®s boldifications..
$line2 =~ s///g; $line2 =~ s/<\/b>//g;

You can run but you can®"t hide ;)

$line2 =~ s/ at /\@/g; $line2 =~ s/\[at\]/\@/g; $line2 =~
s/N\<at\>/\@/g;

$line2 =~ s/_at _/\@/g; $line2 =~ s/dot/\./g;

$line2 =~ /DNIANET* (DN \-T{1, 15D\OCD\WA-T)\ - ([\w\-
TN (DWA-THDN - (DWA-TH) WA\ .]*/;

$emaila=""$1\@$2.$3.$4.$5";

if (length($emaila) < 5){

$line2 =~ /DNIAET* (DA \-1{1, 15)\@([\W\-
TN (DWA-TDN - (DWA-TH) WA TN .]*/;

$emaila = "$1I\@$2.$3.%4";

if (length($emaila) < 4){

WWww.syngress.com

$line2 =— /DNAET* (DN -\-1{1, 15)\@([\W\-
1O\ (DWA-TH) WA\ .]*/;

$emaila = "$1I\@$2.$3";

}

filter out junk email addresses

my ($name,undef) = split(/\@/,$emaila);

ifT (length($emaila) > 0 && $emaila =~ /$target$/i &&

length($name) < 15){

push @collected,$emaila;

}
}
return @collected;
}
sub dedupe
{

main page. This will effectively search for e-mail addresses, even though Google
ignores the @ sign. For example, when searching for gmail.com, this script will
search for @gmail.com —wuwiw.gmail.com. This excludes hits from the gmail site
itself. Consider the output of this query, as shown in Figure 4.4.

WWww.syngress.com

(@keywords) = @_;

my %hash = ();

foreach (@keywords) {
$ =~ tr/[A-Z]1/[a-Z]1/;
chomp;
it (length($_)>1){

$hash{$_} = $_;

}

return keys %hash;

This code, mentioned cursorily in the SensePost paper Putting the Tea Back
into CyberTerrorism (do a Google search for Tea Cyberterrorism), performs a Google
search for a domain name prepended with an @ sign, excluding the domain’s

Pre-Assessment * Chapter 4

131

132 Chapter 4 * Pre-Assessment

Figure 4.4 Trolling for E-Mail Addresses

Within the first few results, you should notice a few legitimate-looking e-
mail addresses, specifically gramophone@gmail.com and all_in_all@gmail.com.
You could sift through these results by hand plucking out e-mail addresses, or
you could simply run this Perl script, which does all the heavy lifting for you.
We’ll run the Perl script, instructing it to search for gmail.com addresses, only
using 1 of our 1000 daily allotted API queries (which translates to a total of 10
Google results). The output of this run is shown in Figure 4.5.

Figure 4.5 Trolling for E-Mail Addresses, Simplified

WwWw.syngress.com

Pre-Assessment * Chapter 4 133

Notice that this script also located the e-mail addresses we found when we
performed the search manually. This script really begins to shine when we allow
it to sift through more results. Allowing the script to process through 50 results
(run with ./email-maine.pl gmail.com 5) returns many more e-mail addresses, as
shown below:

movabletype@gmail.com
fakubabe@gmail.com
lostmon@gmail.com
label@gmail.com
charlescapps@gmail.com
billgates@gmail.com
ymtang@gmail.com
tonyedgecombe@gmail.com
ryawillifor@gmail.com
jruderman(@gmail.com
itchy@gmail.com
gramophone@gmail.com
poojara@gmail.com
london2012@gmail.com
bush04@gmail.com
fengfs@gmail.com
username(@gmail.com
madrid2012@gmail.com
somelabel@gmail.com
bartjcannon(@gmail.com
fillmybox@gmail.com
silverwolfwsc@gmail.com
all_in_all@gmail.com

mentzer@gmail.com

WWww.syngress.com

134 Chapter 4 * Pre-Assessment

kerry04@gmail.com
presidentbush@gmail.com
prabhav78@gmail.com
Obviously, the vast majority of these e-mail addresses are invalid, but this

script really shines when it’s fed more specific domain names instead of free
Web-based domain names.

Underground Googling...

Patience Pays Off

Searching through thousands of Usenet posts is a tedious and time-con-
suming process; however, you will find the results well worth the effort.
In addition to current employees, you will likely find the names of former
employees, who make for great social engineering targets.

Addresses, Addresses, and More Addresses!

E-mail addresses can show up in so many places that it’s nearly impossible to list
them all. However, let’s take a look at some great examples. Both Outlook
Express and Eudora, two popular e-mail clients, use the .mbx extension for
storage of e-mail. A Google search such as <filetype:mbx mbx intext:Subject> finds
thousands of e-mails or mailboxes sitting on the Internet, as shown in Figure 4.6.

Www.syngress.com

Pre-Assessment * Chapter 4

Figure 4.6 E-Mails on the Internet?

Obviously, a person’s private e-mails can reveal loads of information about
that person, as well as the company that person works for. They also provide
names of coworkers, friends, and family members as well as any mailing lists they
belong to.

However, more than e-mails can be found using Google. Many organizations
use Microsoft Outlook for their e-mail and calendaring purposes, and it seems
that Outlook has become the de facto standard in the workplace. With this in
mind, the process of finding e-mails, calendars, and address books can be simpli-
fied using a search such as <filetype:pst pst (contacts | address | inbox)>. This
search locates Outlook personal mail folders that include the words contacts,
address, or inbox in the name. These words can be modified to return many other
results. As shown in Figure 4.7, this query returns an ungodly number of files
that were most likely never intended for public viewing. These are, after all per-
sonal e-mail folders.

135

WWww.syngress.com

136 Chapter 4 * Pre-Assessment

Figure 4.7 Microsoft Outlook Files on the Internet

The Windows Registry, the heart and soul of a Windows machine, can also
be searched for e-mail addresses. It 1s, after all, a text file. But Google scanning a
machine’s registry? It can’t happen, right? Rest assured, a search like <filetype:reg
reg +intext:”internet account manager”> produces some rather eye-opening results.
You wouldn’t think that people would put such sensitive information on the
Internet, but as you can see in Figure 4.8, anything is possible.

Figure 4.8 Registry Files Found by Google

Www.syngress.com

Pre-Assessment * Chapter 4

The list of potential e-mail address locations could go on and on, but since

we’re not in the business of reckless tree killing, we’ll just round out this section

with a few examples from the Google Hacking Database. Table 4.1 presents sev-

eral queries that can be used to dig up e-mail addresses, sometimes in the

strangest of places!

Table 4.1 E-Mail Address Queries

Query

Description

/v

“Internal Server Error” “server at”

intitle: “Execution of this script
not permitted”

e-mail address filetype:csv csv

intitle:index.of dead.letter

inurl:fcgi-bin/echo

filetype:pst pst -from -to -date

intitle:index.of inbox

intitle: “Index Of" -inurl:maillog
maillog size

inurl:email filetype:mdb
filetype:xls inurl:"email.xlIs”

filetype:xls username
password email

intitle:index.of inbox dbx

Apache server error could reveal admin e-
mail address

Cgiwrap script can reveal lots of
information, including e-mail addresses
and even phone numbers

CSV files that could contain e-mail
addresses

dead.letter UNIX file contains the con-
tents of unfinished e-mails that can con-
tain sensitive information

fastcgi echo script can reveal lots of infor-
mation, including e-mail addresses and
server information

Finds Outlook PST files, which can con-
tain e-mails, calendaring, and address
information

Generic “inbox” search can locate e-mail
caches

Maillog files can reveal usernames, e-mail
addresses, user login/logout times, IP
addresses, directories on the server, and
more

Microsoft Access databases that could
contain e-mail information

Microsoft Excel spreadsheets containing
e-mail addresses

Microsoft Excel spreadsheets containing
the words username, password, and
email

Outlook Express cleanup.log file can con-
tain locations of e-mail information

Continued

137

WWww.syngress.com

138

Chapter 4 * Pre-Assessment

Table 4.1 E-Mail Address Queries

Query

Description

filetype:eml eml +intext:
"Subject” +intext:”From”

intitle:index.of inbox dbx
filetype:wab wab

filetype:pst inurl: “outlook.pst”

filetype:mbx mbx intext:Subject

inurl:cgi-bin/printenv

inurl:forward filetype:forward -cvs

(filetype:mail | filetype:eml |
filetype:mbox | filetype:mbx)
intext:password | subject

“Most Submitted Forms and
Scripts” “this section”

filetype:reg reg +intext:
“internet account manager”

“This summary was generated
by wwwstat”

Outlook express e-mail files contain
e-mails with full headers

Outlook Express e-mail folder

Outlook Mail address books contain sen-
sitive e-mail information

Outlook PST files can contain e-mails, cal-
endaring, and address information

Outlook versions 1-4 or Eudora mailbox
files contain sensitive e-mail information

Printenv script can reveal lots of informa-
tion, including e-mail addresses and
server information

UNIX user e-mail forward files can list e-
mail addresses

Various generic e-mail files

WebTrends statistics pages reveal
directory information, client access statis-
tics, e-mail addresses, and more

Windows registry files can reveal
information such as usernames, POP3
passwords, e-mail addresses, and more

Wwwstat statistics information can reveal
directory info, client access statistics, e-
mail addresses, and more

In most cases, it’s fairly rare to uncover these “gifts” of information during an

assessment, but it’s often surprising what will turn up. In most cases, you’ll be

better off trolling for addresses using less “direct” techniques, but if you happen

to get a hit on one of these queries during an assessment, the payoft can be huge.

Consider a query for filetype:eml eml +intext:” Subject” +intext:” From”, shown in

Figure 4.9.This query can reveal full e-mail messages, including all header infor-

mation. This much information can be very useful during a security audit.

WWww.syngress.com

Pre-Assessment * Chapter 4

Figure 4.9 Full E-Mails Are a Rare Treasure

Nonobvious E-Mail Relationships

[t’s one thing to search for e-mail addresses based on a company’s common
domain name. It’s quite another to determine e-mail addresses that are subtly
connected to a target. Google can be used to determine these often critical rela-
tionships that frequently reveal personal addresses and relationships between
addresses and individuals.

First, start with a “dirty” list of e-mail addresses grabbed with the basic e-mail
location techniques discussed here. This dirty list can consist of every e-mail
address found on the same page as an “obvious” e-mail address belonging to your
target. For scraped newsgroup messages, this will often include quite a few
“fringe” addresses. Using the dirty list, automate queries for each and every com-
bination of e-mails in the list. For each combination of e-mails that results in
more than one hit, there is some relationship between the addresses. The higher
the number of hits for the combination, the stronger the relationship.

To determine less obvious relationships, split address hits into collections. For
example, scrape e-mail addresses from every Web page that lists EmailA. We’ll call
this list CollectionA. Next, scrape e-mail addresses from every Web page that lists
EmailB. We'll call this CollectionB. Automate Google queries that combine EmailA

139

WWww.syngress.com

140

Chapter 4 * Pre-Assessment

with each and every e-mail address in CollectionB. If there’s a hit (any query that
results in at least one hit), there’s a loose relationship between EmailA and
EmailB. Next, reverse the search, combining EmailB with each and every address
in CollectionA. Again, a hit indicates a loose relationship between EmailB and
EmailA. The researchers at SensePost (www.sensepost.com) have coded a proto-
type of this technique, and the resultant list of associations can be very revealing.
When tested, nonobvious relationships are often revealed in relatively short order.

Personal Web Pages and Blogs

In addition to the business side of the Internet, there is a more human side—one
that is frequently driven by a person’s vanity and sense of self-importance. One of
the factors fueling the massive growth and popularity of the Internet is personal
Web sites and blogs, or Web logs—personal journals of the Internet-connected
masses. Blogging has recently experienced a huge boom in users all rushing to
put up their personal thoughts and opinions on various matters. Often, locating
an individual’s personal Web page or blog can provide insight into that person,
which might help you gain access to him or her as an employee via a bit of cre-
ative social engineering. Searching for a person’s name and e-mail address com-
bined with terms such as homepage, blog, or family can quickly and easily locate
these types of pages for you. From personal likes and dislikes to home phone
numbers and pets’ names, people slap this potentially devastating information up
on the Internet without giving it a second thought.

Instant Messaging

In addition to using e-mail, thousands of people use one of the instant-messaging
programs to stay in touch with their friends and associates. These programs use
buddy lists, usually a list of an individual’s “inner circle,” so getting hold of a
person’s buddy list can be very useful at later stages of the game. So how do you
find a person’s buddy list? Once again, Google comes to the rescue with a simple

search such as <inurl:buddylist.blt>, as shown in Figure 4.10.

WWww.syngress.com

Pre-Assessment * Chapter 4

Figure 4.10 Buddy Lists Online

Web-Based Mailing Lists

Many people participate in mailing lists that match their interests, and these days
you can find a mailing list for just about any subject. Often, however, these lists
require you to join before you can read the messages. Once you do, though, you
are often granted access to that group’s message archive, which can potentially
contain insightful and useful information because people frequently reveal far too
much information about themselves when they feel comfortable with a group of
people, even people they’ve never met face to face.

One simple technique for locating an individual in a “members-only” Web-
based message group is by signing up for an account with a popular Web-based
message group provider, such as Yahoo! or http://groups-beta.google.com. In
many cases, once youre signed up as a member, you can search for other mem-
bers by screen name. Once you locate members, you can examine their profiles
to get an idea of the groups they most likely belong to. Even without access to
these groups, simply grabbing the name and description of the group can give
you an idea about the content of that group, keying you into the interests of that
individual.

141

WWww.syngress.com

142

Chapter 4 * Pre-Assessment

R ésumés and Other Personal Information

Yet another place to dig up information on a person is his or her résumé, or cur-
riculum vitae In addition to providing a (usually) current address and phone
number, these searches reveal a person’s prior employer, which provides yet another
angle from which to approach them during the social engineering phase.
Obviously, a search such as <resume> or even <resume +username> will return far
too many false positives. However, let’s take a look at a more creative search that

* X kv«

address *” “e

narrows down the results: <“phone -mail” intitle:”curriculum
vitae”>.

As you can see in Figure 4.11, creative searches yield successful results.

Figure 4.11 Finding Résumés

Keeping in mind that an attacker can never have too much information
when embarking on a social engineering quest, these are but a few of the ways
to gather data about company employees. eBay, Amazon, and other online stores
or message boards are all good places to grab information about a person’s inter-
ests. Amazon “wish lists” are great ways to learn about a target’s interests,
although we certainly don’t condone “buying off” employees during an assess-
ment. That’s just bad form. If you even thought about doing that, refer to
Appendix A to help get your feet back on a solid pen-test professional’s ground.

WwWw.syngress.com

Pre-Assessment * Chapter 4

Romantic Candlelit Dinners

Gathering information about a company’s employees is a vital part of preparing
for a successtul social engineering job. However, unless you intend to carry out
your entire scam over the phone, you're going to need more than just informa-
tion on paper. Phone scams work great, but to really test your company’s secu-
rity, you need to actually get through the front door. Breaking into a facility is
part of what’s been referred to as a physical assessment. A physical assessment
requires a distinct set of skills and is often not performed adequately by most
technical types, but in more and more cases, pen testers are being called on to
give the “doorknob a turn” in the world of physical security. If you are called on
to perform a basic physical assessment, Google can help in quite a few ways.
Most of these assessments involve getting up close and personal with employees
of the target company.

Badges? We Don’t Need No Steenkin’ Badges!

Google’s image search can be used to troll for corporate logos that can be used
to create everything from corporate letterhead to access badges. Creating a bogus
(but realistic-looking) access badge often requires a glimpse of a real badge, which
1s certainly never found online. Getting a glimpse of a real badge is as simple as
locating a few good employee hangouts and hanging out there yourself, but
when it comes time to create an access badge, Google’s image search is a terrific
way to find a nice, clean logo to use for your artistic endeavors. A word of cau-
tion: Once you sweet-talk your way into a facility, never, ever make the mistake of
getting caught by security on your way out of the facility, even if you get a really
strong hankerin’ to visit the hot dog guy out front. Your coworkers will never let
you live it down, and your story will inevitably end up in a really public place—a
Google hacking book, for example.

What's Nearby?

Nonconfrontational contact with your target employees is an essential part of
your preparation. By nonconfrontational, we mean people watching, eavesdrop-
ping on conversations, and possibly even striking up friendly but underhanded
conversations. Once again, Google comes to the rescue with Google Local
(http://local.google.com/). Google Local allows you to search by business type
and location, allowing you to locate any type of business near your target, as
shown in Figure 4.12.

143

WWww.syngress.com

144

Chapter 4 * Pre-Assessment

Figure 4.12 Google Local

By simply entering a ZIP code and some key phrases, you can use Google
Local to locate places to hang out to soak up corporate gossip. Let’s take a look
at a few examples.

Coftee Shops

Coftee shops are a great place to start the day, no matter where you work (unless
you work for a coffee shop, of course). Employees frequently gather at their local
coffee shop to get their morning dose of cafteine before beginning their long,
drudging day at the office. Hitting Google Local and searching for coffee shop
within the target area will tell you the closest (and most likely) places for these
not-yet-awake workers to be gathering. Grab your laptop and a large coffee and
take a spot at the table closest to the line (usually the last table people want). If
you haven’t spent much time in these kinds of places, you probably don’t realize
how much gossip people engage in while in line. This could be company-related
gossip or gossip about other employees—but whichever type it is, it 1s informa-
tion that often can’t be gathered anywhere else and is as good as gold.

Diners and Delis

So you’ve finished your morning eavesdropping and gotten loads of good infor-
mation. That still isn’t going to get you in the door. For that you need to look
official. Again, Google Local can help out. Search for diners or delicatessens near

WwWw.syngress.com

Pre-Assessment * Chapter 4

your target. What 1s so great about these places? Often the busy employee will
rush out for a quick meal to take back to the office. These employees rarely
remove their access badges for such a quick jaunt, and a digital camera with a
zoom lens can help when it’s time to create your own badge. Grab a comfortable
seat with a good view of people’s fronts as they herd through the chow line.
Digital cameras may be obvious for this type of work, but laptops with built-in
cams (such as the Sony VAIO) can be positioned to look perfectly natural as they
record those juicy shots of employee badges.

Gas Stations

Gas stations are perfect spots to troll for badge sightings. The quick in-and-out
nature makes for a constant wave of employees, especially during rush hours and
lunch breaks. In most cases you won'’t be able to set up shop inside the station
without drawing undue attention, but you can almost certainly hole up in your
car for a while or hang out across the street. This is the perfect excuse to buy that
super-spy lens you always wanted for your camera.

Bars and Nightclubs

So you were browsing John Q. Employee’s blog and you noticed he’s a big pool
player. Using Google Local to help you pinpoint his probable favorite hangouts
near work or home is quick and easy. Knowing what you know about John, you
can use that information to “buddy up” to him while extracting gossip about his
company and its employees. Alcohol makes for loose lips and a lowered defense,
and getting John to trust you will give you yet another “in” if he sees you wan-
dering the halls at his workplace.

Underground Googling...

Use Your Imagination!

Google Local provides you with an almost infinite supply of places to
bump into your target employees. The examples provided here were just
a few ideas to get your creative juices flowing—but don’t stop at these.
Gas stations, hair salons, and grocery stores are other places where you

can catch a glimpse of a badge or chat up your target.

145

WwWw.syngress.com

146 Chapter 4 * Pre-Assessment

Pre-assessment Checklist

® Make sure your intranet is just that—an intranet. Communications
meant for internal use only should never be available on the Internet.

m Keep up with what is being said, both good and bad, about your com-
pany on the Internet. To be forewarned is to be forearmed.

m Keep on top of what is being posted to Usenets. You can’t control what
your employees do on their oft time, but you have every right to keep
them from posting while they’re at work or disclosing potentially devas-
tating information about your company or network.

m Educate your users on proper use of e-mail and instant-messaging pro-
grams. Frequently browse the Internet to make sure that they haven’t
accidentally (or on purpose, perhaps for easier retrieval) placed some-
thing on the Internet that they shouldn’t have.

m Have proper procedures in place to safeguard employee ID badges or
cards. Again, education is key to prevent leakage of company secrets or
other information that could be useful to an attacker.

® You can’t expect to fully prevent a savvy attacker using human nature
against your company, but you can minimize the potential damage
through user training and education.

WWww.syngress.com

Pre-Assessment * Chapter 4

Summary

The phrase “You never get a second chance to make a first impression” is critical
to remember when preparing for a date; it also rings true during a physical
assessment or social engineering exercise. Proper preparation can make or break
the success of your test and, unlike the actual testing itself, could take weeks to
do properly. Learning the ins and outs of the company, learning about the
people, and getting to know the environment are all crucial to your success. The
bad guys know this and will take advantage of it. You owe it to your customers
to use similar tactics in testing their defenses.

Solutions Fast Track

The Birds and the Bees

M Intranet and Human Resource pages are a great way to learn details
about your target. Browse the company intranet for the company’s
policies and procedures.

M Help desk procedures and “how-to” documents contain details about an
environment that might be difficult to determine using more traditional
techniques.

M Job listings reveal specific information about company structure and
technologies that might be in use.

&

Scrape the Internet for company logos and images using Google Images.

=

Follow the links behind vanity photos provided on Google Images for
more information about your target.

Long Walks on the Beach

M Getting more personal with the individuals who make up the target
organization can bring big payofts.

&

Use Google Groups to harvest employee names.

&

Vanity is key—use Google to locate personal Web sites and blogs.

=

Use the included Perl script to harvest e-mail addresses from the target
domain.

147

www.syngress.com

148 Chapter 4 * Pre-Assessment

M E-mails, résumés, and instant-messaging programs can all provide
intimate details about your target.

R omantic Candlelit Dinners

M Utilize Google Local to find businesses in the area for people watching
and eavesdropping.

M Stake out the area around your target and be where employees
congregate. Consider restaurants, delicatessens, and gas stations for
badge-sighting opportunities.

M Go where the employees go—bars, pool halls, nightclubs. All present
opportunity to gain trust and gossip.

Links to Sites

m http://groups.google.com/
®m http://images.google.com/

m http://www.sensepost.com/

www.syngress.com

Pre-Assessment * Chapter 4 149

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: I know my company Intranet isn't in Google--is there any reason to check
again?

A: Just because Google hasn't found sensitive information yet, there is no guar-
antee that your company's web development team won't slip up and expose
your network. Just as you keep on top of security patches and exploits, so
should you remain aware of potential liability via Google.

Q: How often should I check for sensitive company information in Google?

A: Obviously, checking Google daily would take precious time away from your
other duties. However, checking once every six months may be too late.
There is no one interval that can apply to every network, but a good rule of
thumb is the larger your network and the more often you should run your
site through Google. Later in this book you will find some tools to automate
the process for you.

Q: How can I keep my users from outing sensitive information about themselves?

A: Simply put: you can't.You can educate your users and warn them about the
dangers of exposing personal information about themselves on the Internet,
but you can't prevent them from doing it. Your best course of action then, is
to hold regular 'education' sessions with your users. Besides, if you have
enough time to regularly spend tracking down the online activities of all

your users, you probably should find another job that gives you something to
do.

www.syngress.com

150 Chapter 4 * Pre-Assessment

Q: Should a company have a paragraph in the security policy about Google?

A: Every company should think of the risk of information leakage, including
leaking to Google. The effect of search engines can be just as bad as dumps-
terdiving, comprised teleworking equipment (laptops, pc's at home), etc. This
existing guide could easily be expanded to include rules about the usage of
public usenet groups for questions and putting sensitive Office documents on
the webserver.

www.syngress.com

Chapter 5

Network Mapping

Solutions in this Chapter:

&

Mapping Methodology
Mapping Techniques
Targeting Web-Enabled Network Devices

Locating Various Network Reports

Summary
Solutions Fast Track

Frequently Asked Questions

151

152

Chapter 5 * Network Mapping

Introduction

The initial phase of an external blind security assessment involves finding targets
to assess. Beyond simply locating targets, any good auditor (or attacker) knows
that the easiest targets are those lost, forgotten machines that lie “off the radar” of
the IT security team. In this chapter, we’ll discuss ways Google can help with the
network discovery phase of an external blind assessment. This is an important
skill for any auditor, since more and more networks are being compromised not
through exploitation of vulnerabilities found on heavily guarded carefully moni-
tored “front door” systems, but through exploitation of lost, forgotten systems
that fall oft the radar of already overworked administrators. We’ll begin the
chapter by discussing a very basic methodology for network discovery. Next,
we’ll look at some specific ways Google can be used to help in the discovery
process. We’ll discuss site crawling, domain name determination, link mapping,
and group tracing, techniques that have proven to be excellent ways to enu-
merate the hosts that exist on a network. As we wrap up this chapter, we discuss
various ways that Web-enabled network devices can be discovered and exploited
via Google to reveal surprisingly detailed information about a target network. As
you read this chapter, bear in mind that the topic of network discovery is quite
broad. In fact, an entire book could be dedicated to the mastery of this tech-
nique. However, Google plays a valuable role in this process, and it’s our hope
that this chapter will provide you with just a few more tricks for your network
discovery toolkit.

Mapping Methodology

In the context of the Internet, computers are categorized within domains. The
most famous top-level domain, .COM, has practically become a household word.
Working back from a top-level domain, company and server names are tacked on
from right to left until a fully qualified domain name (FQDN) is formed. The
FQDN (like www.sensepost.com) serves as a human-friendly address to a virtual
location on a network, like the Internet. Although they serve us humans well as
handy memory hooks, the machines that make up the Internet care little for
these frilly FQDN:s, preferring to reference machines on a network by a numeric
Internet Protocol (IP) address. Granted, this is a simplistic view of the way things
work on the Internet, but the point is that we, like Google, often prefer to speak
in terms of FQDNs and domain names, reserving the numeric part of our lim-
ited memories for more important things like phone numbers and personal gross

WWww.syngress.com

Network Mapping ¢ Chapter 5

yearly earnings. However, when attempting to discover targets on a network,
domain names and IP addresses need to be equally considered.

Since Google works so well with domain names (remember the site oper-
ator), a network discovery session can certainly begin with a domain name. We’ll
use sensepost.com as an example domain since SensePost has pioneered many
unique network discovery techniques, some of which we’ll discuss in this
chapter. SensePost, like most companies, has several registered domain names. In
the first phase of a solid mapping methodology, we must first discover as many
domain names associated with SensePost as possible. In addition to discovering
domains owned by the target, it’s often important to review sites linked fo and
sites linked from the target. This reveals potentially important relationships
between domains and could provide important clues about any type of trust rela-
tionships between the two domains. Armed with a list of domains owned by the
target, a list of subdomains could be gathered. A subdomain extends a domain
name by one level. For example, sales.sensepost.com could be a valid subdomain
of sensepost.com. In most cases, each subdomain points to a distinct machine on
the network. A domain of ftp.sensepost.com could point to a dedicated FTP
server, while www.sensepost.com could point to a dedicated Web server. Because
of this, it’s important to determine IP addresses used by the target network. Since
address space on the Internet is regulated, each IP address must be properly regis-
tered. Since IP address registration information is public, it’s fairly common for
security auditors to query the various Internet registrars for information about a
particular IP address. This registration information includes contact name, address,
telephone number, and information about the IP address block owned by the
target. This block of addresses allows you to safely expand the scope of your
assessment without worrying about stumbling onto someone else’s network
during your audit. Once IP addresses are determined, the audit will generally
begin to blur into the next phase, the host assessment phase. Each IP address
must be tested or “pinged” by any variety of methods to determine if the
machine is alive and accessible. Machines are then scanned to determine open
ports, and applications running on these ports are tested for vulnerabilities.

Although many different tools and techniques could be employed for each
phase of this (admittedly basic) methodology, Google’s search capability can play
an important role in each of these phases, as we’ll see in the following sections.

153

WWww.syngress.com

154

Chapter 5 * Network Mapping

Mapping Techniques

In this section, we’ll see creative ways Google can be used to assist in the net-
work discovery and mapping process. The techniques here are presented in
roughly the same order they appear in the mapping methodology.

Domain Determination

Since it’s important to gather as many domain names as possible, we need to dis-
cuss some techniques for determining domain names the target may own. One
of the most common sources for domain information is the various Internet reg-
istries. Techniques for exploring Internet registries are well known and well doc-
umented. However, a few very simple methods can be used to determine the
possible domain names registered by an organization. At the 2003 BlackHat
briefings in Las Vegas, SensePost presented an excellent paper entitled “Putting
the Tea Back into Cyber Terrorism” in which Roelof Temmingh discussed this
very topic. Roelof’s suggestions were simple, yet effective.

First, and most obviously, determine where the organization is based. This
will affect the top-level domain (TLD). Sites in the United States often use the
common .COM, .NET, .ORG domains. Outside the United States, sites will
often use a domain name like .co.XX or .com.au, where XX represents a
country code. In some cases, it’s possible that the target organization has Web
sites registered in many different countries. In this case, multiple TLDs should be
searched. Once a TLD 1is determined, the first obvious domain includes the
common name of the company, stripped of spaces, followed by the TLD; for
example, Telstra’s Australian site Telstra.com.au. Other domain names can be
determined using these techniques:

m [f the organization’s name has a common abbreviation, use that. For
example, National Australian Bank, nab.com.au.

m [f the organization is known by a common abbreviation that would
create an ambiguous or invalid domain name, a country abbreviation
could be included in the domain name. For example, consider Deutsche
Telekom at dtag.de or Japan Airlines at jal.co.jp.

m [f the organization name contains spaces, remove them, appending the
TLD. For example, Banco do Brasil at bancodobrasil.com.br.

WWww.syngress.com

Network Mapping ¢ Chapter 5

m [f the organization name contains many words, attempt all the words in
the name. For example, consider lucent.com.

m [fa domain search returns domain names that don’t seem to fit, consider
using a correlation function to determine how many sliding three-char-
acter instances match between the company name and the domain
name. For example, Coca Cola Enterprises found at cokecce.com, or
Kansai Electric Power found at kepco.co.jp.

These techniques work very well at determining domain names, even when
the domain names are not “public.” For example, a Google search for
site:nab.com.au returns no hits, even though the site resolves and forwards to
the National Australian Bank Web site. However, for the vast majority of domain
names, simply entering a company name into a properly formatted Google query
will list many viable domain names, as we’ll see in the next section.

Site Crawling

Simply popping a company name into Google often returns the most popular
domain name for that company. However, gathering a nice list of subdomains can
take a bit more work. Consider a search for site:microsoft.com shown in
Figure 5.1.

Figure 5.1 Site Searches Return Common Domain Names

155

WwWw.syngress.com

156

Chapter 5 * Network Mapping

Looking at the first five results from this query, there’s not much variety in
the returned DNS names. Only two unique domain names were returned—
www.microsoft.com and msdn.microsoft.com—the latter of which 1s most likely
a subdomain since it does not begin with a common-looking hostname like
“www.” One way to narrow our search to return more domain names is by
adding a negative search for www.microsoft.com. For example, consider the
results of the query site:microsoft.com —site:www.microsoft.com, or
site:microsoft.com —site:www.microsoft.com as shown in Figure 5.2.

Figure 5.2 Reducing Common Subdomains

This search returns more variety, returning four new domain names in the
first four results. These names (msdn, msevents, members, and support) could also
be added as negative queries to locate even more results. A technique like this is
very cumbersome, unless it is automated. We’ll cover more automation tech-
niques later, but let’s consider two simple examples. First, we’ll look at a page
scraping technique.

Page Scraping Domain Names

Using the popular command-line browser lynx supplied with most UNIX-based
operating systems, we could grab the first 100 results of this query with a com-
mand like:

WwWw.syngress.com

Network Mapping ¢ Chapter 5

lynx -dump "http://www.google.com/search?\

g=site:microsoft.com+-www.microsoft.com&num=100" > test.html

This would save the results of the query to a file, which we could process to
extract domain names. Note that Google does not condone automated queries as
mentioned in their Terms of Service located at www.google.com/terms_of_ser-
vice.html. However, Google has not historically complained about the use of the
lynx browser to perform this type of query. Once the results are saved to the
test.html file, a few shell commands can be used to extract domain names as
shown in Figure 5.3.

Figure 5.3 Simple Shell Commands Scrape Domain Names

This process yields 13 unique subdomains (including the www.microsoft.com
domain) from a single page of 100 Google hits. Extending the search involves
simply appending &start=100 to the end of the lynx URL, appending the html
into the test.html file, and then running the shell script again. This will return
results 100—200 from Google. In fact, this process could be repeated over and
over again until 1000 Google results are retrieved. However, keep in mind that
the 80/20 rule applies here: In most cases, you’ll get 80 percent of the best results

157

WWww.syngress.com

158

Chapter 5 * Network Mapping

from the first 20 percent of work. For example, extending this search to retrieve
1000 Google results returns the following subdomains:

http://c.microsoft.com/
http://communities.microsoft.com/
http://download.microsoft.com/
http://go.microsoft.com/
http://ieak.microsoft.com/
http://members.microsoft.com/
http://msdn.microsoft.com/
http://msevents.microsoft.com/
http://murl _microsoft.com/
http://office.microsoft.com/
http://rad.microsoft.com/
http://research.microsoft.com/
http://search.microsoft.com/
http://support.microsoft.com/
http://terraserver._microsoft.com/
http://uddi.microsoft.com/
http://windows.microsoft.com/

http://www.microsoft.com/

This list includes only 18 subdomains. This means that over 70 percent of the
results came from the first 100 Google results, while less than 30 percent of the
results came from the next 900 results! In cases like this, it may be smarter to
start reducing the more common domain names (msdn, support, download) from
the Google query before trying to grab more data from Google. It’s always best
to search smart and parse less.

API Approach

Another alternative for gathering domain names involves the use of a Perl script.
The Google API allows for 1000 queries per day and is the only approved way to
automate Google queries. One excellent script, dns-mine.pl, was written by
Roelof Temmingh of SensePost (www.sensepost.com). This script is covered in
detail in Chapter 12, but let’s look at dns-mine in action. Figure 5.4 shows a por-
tion of the output from dns-mine run against microsoft.com.

WWww.syngress.com

Network Mapping ¢ Chapter 5 159

Figure 5.4 dns-mine Automates Domain Name Discovery

dns-mine searches for the name of the company combined with difterent
types of common words like site, web, document, internet, link, or about. The script
then intelligently parses the query results to find DNS names and subdomains. As
you can see from the output in Figure 5.4, dns-mine located nearly twice as
many DNA names as our previous technique, with nearly the same number of
queries.

Link Mapping

Beyond gathering domain and subdomain names, many times it’s important to
understand nonobvious relationships between Web sites. In some cases, locating a
vulnerability in a poorly secured trusted partner site is a simple way to slip inside a
heavily-guarded “big iron” target. One of the easiest ways to determine obvious
relationships between Web sites is to take some time to explore a target Web site. If
your target links to a page, there may be some kind of trust relationship that could
be exploited. If some other site links to your target site, this may also indicate some
kind of relationship, but this kind of “inbound link” is less meaningful since any
Internet user can throw up a link to any Web site she pleases. In technical terms, a

WWww.syngress.com

160

Chapter 5 * Network Mapping

link from your target site has more weight than a link fo your target site. However, if
two sites link to each other, this indicates a very strong relationship. This type of rela-
tionship exists at the first degree of relevance, but there exists other degrees of rele-
vance. For example, if our target site (siteA) links to another site (siteB), and that
site links to a third site (siteC) that hosts a link back to our target (siteA), there is a
relationship (albeit a loose relationship) between our target and siteC via siteB. This
overly simplifies the very important concept of “link weighting.” The researchers at
SensePost (www.sensepost.com) have put a lot of time and effort into uncovering
online nonobvious relationships and exploiting the relevance of these relationships
in the context of security work. Their BlackHat 2003 Paper entitled “The role of
non-obvious relationships in the footprinting process” details some very powerful
“footprinting” techniques that apply to this topic of network mapping. We won'’t
be able to do SensePost’s awesome work justice in a few short pages, but suftice it
to say that Google plays a very important role in the mapping process. The link
operator, for example can be used to determine what sites link to a target (like
www.sensepost.com) at the first level of relevance with a query like
link:www.sensepost.com as shown in Figure 5.5.

Figure 5.5 linkto as a First-Pass Link Checker

WwWw.syngress.com

Network Mapping ¢ Chapter 5

This query reveals that several sites including dewil.ru, list.ceneca.it, and
archives.neophasis.com link to www.sensepost.com. If www.sensepost.com is our
target site, these sites provide lightly weighted inbound links to www.sensepost.com.
In order to attempt to uncover a more heavily weighted relationship between these
sites and SensePost, we need to determine if www.sensepost.com links to them. It
might seem logical, then, to reverse our Google query to locate outbound links
from SensePost to, say, dewil.ru, with a query like link:dewil.ru site:www.sense-
post.com, but unfortunately the link operator is not this flexible. As an alterna-
tive, we could begin surfing all of SensePost’s Web site, searching for links to
dewil.ru, but this is indeed a tedious process, especially if we stop to consider sec-
ondary and (God forbid) tertiary degrees of relevance. Simply keeping the list of
links straight is too much work. Automation, combined with a decent weighting
algorithm, is key to this process. Thankfully, the researchers at SensePost have devel-
oped a tool to help this process along. The Bi-directional link extractor (BiLE) pro-
gram, coded in Perl, uses the Google API to help determine the relevance of the
subtle relationships between sites. From the BiLE documentation:

“BILE tries to do what is normally considered a manual process. It crawls a
specified web site (mirrors the site) and extracts all links from the site. It then
queries Google via the Google API and obtains a list of sites that link to the
target site. It now has a list of sites that are linked from the target site, and a list
of sites that link to the target site. It proceeds to perform the same function on
all the sites found in the first round. The output of BiLE is a file that contains a
list of source site names and destination site names.”

Of course, the “magic” in this process is the weighting, not the collection of
links to and from our target. Fortunately, BILE’s companion program, BiLE-
weigh, comes to the rescue. BILE-weigh reads the output from the BiLE pro-
gram and calculates the weight (or relevance) of each link found. Several notes
are listed in the documentation:

m A link from a site weighs more than a link to a site.

®m A link from a site with many links weighs less that a link from a site
with a small amount of links.

® A link to a site with many links to the site weighs less than a link to a
site with a small amount of links to the site.

m The site that was given as input parameter need not end up with the
highest weight—a good indication that the provided site is not the cen-
tral site of the organization.

161

WWww.syngress.com

162 Chapter 5 * Network Mapping

Let’s take a quick look at BiLE in action. To install BILE, we first need to sat-
isfy a few requirements. First, the httrack program from www.httrack.com must
be downloaded and installed. This program performs the Web site mirroring.
Next, the expat XML parser from http://sourceforge.net/projects/expat must be
downloaded and installed. The SOAP::Lite and HTML::LinkExtor Perl CPAN
modules must be installed. The most common method of installation for these
modules is perl -MCPAN -e "install SOAP::Lite" and perl -MCPAN -e "install
HTML: :LinkExtor™, respectively. Last but not least, a Google API key must be
obtained from www.google.com/apis and the GoogleSearch.wsdl file must be
copied to (preferably) the BiLE directory. Once these requirements are met, BiLE
must be configured properly by editing the main BiLE Perl script. From the
BiLE Readme file:

my $GOOGLEPAGECOUNT=5;
#How many seconds to wait for a page on Google

my $HTTRACKTIMEOUT=60;

#How long to wait for the mirror of a site to complete

my $HTTRACKTEMPDIR=""/tmp";
Where to store temporary mirrors

my $HTTRACKCMD="/usr/bin/httrack™;
The location of the HTTtrack executable

my $GOOGLEKEY="'<<INSERT YOUR GOOGLE APl KEY HERE>>"';
Your Google API key

my $GOOGLE_WSDL=""file:GoogleSearch.wsdl";
Location of the Google WSDL file

Once these options are set properly, BILE can be launched, providing the
target Web site and an output filename as arguments as shown in Figure 5.6.
Depending on the complexity of the target site and the number of links pro-
cessed, BiLE could take quite some time to run.

WWww.syngress.com

Network Mapping ¢ Chapter 5 163

Figure 5.6 Running BiLE

Since the main BiLE program simply collects links, the weight program must
be run against the BiLE output file. The BiLE-weigh program is run with the
name of the target site, the name of the BiLE output file, and the name of the
BiLE-weigh output file as arguments as shown in Figure 5.7.

Figure 5.7 BiLE-weigh Lists Site Relationships

WwWw.syngress.com

164 Chapter 5 * Network Mapping

As shown in the output file, relationships are listed in descending order from
the most relevant to the least relevant. A higher scored site is more relevant to the
target. According to this output file, two of the sites discovered in the first three
Google link results are listed here, dewil.ru and list.cineca.it, although other sites
are listed as more relevant. BiLE has surprisingly accurate results and is a shining
example of how powerful clever thinking combined with intelligent Googling
can be. Hats off to SensePost for designing this (and many other) clever tools that
showcase the power of Google!

Underground Googling...

Google Worms

Worms, automated attack programs that spread across the Internet at
lightning speed, are truly evil creations. However, consider for a moment
how devastating a worm could be if it used Google to both locate and
attack targets. Sound far-fetched? It's not. Check out Michal Zalewski's
terrific Phrack article entitled “Rise of the Robots” at
www.phrack.org/show.php?p=57&a=10, or Imperva’s paper located at
www.imperva.com/docs/Application_Worms.pdf.

Group Tracing

It’s not uncommon for techies to post questions to newsgroups when they run
into technical challenges. As a security auditor, we could use the information in
newsgroup postings to glean insight into the makeup of a target network. One of
the easiest ways to do this is to put the target company name into a Google
Groups author search. For example, consider the Google Groups posting (shown
in original format) found with the query author@Microsoft.com shown in
Figure 5.8.

Www.syngress.com

Network Mapping ¢ Chapter 5 165

Figure 5.8 Author Search Reveals Network Traces

The header of this newsgroup posting reveals a great deal of information, but
from the standpoint of creating a network map, the NNTP-Posting-Host, listed
as 131.107.71.96, is relevant. This host, which resolves to tide133.microsoft.com,
can be added to a network map as an NNTP server, without ever sending a
single packet to that network, all because of a single Google query. In addition,
this information can be reversed in an attempt to find more usernames with a

Groups query of 131.107.71.96 as shown in Figure 5.9.

Figure 5.9 A Reversed Author Search

WwWw.syngress.com

166

Chapter 5 * Network Mapping

These results reveal that David Downing, Tatyana Yakushev, and Nick are all
most likely Microsoft employees since they use MSFT in their descriptions and
have posted messages using an apparently nonpublic Microsoft NNTP server.
Under normal circumstances, this “Nick” character could be just about anyone,
but his use of a Microsoft-only NNTP server confirms his identity, and ties him
to both David and Tatyana. There is also the possibility that these three employees
work in the same oftice as they have similar job duties (evidenced by their
posting to the same specifically technical newsgroup) and share an NNTP server.
This type of information could be handy for a social engineering eftort.

Non-Google Web Utilities

Google is amazing and very flexible, but it certainly can’t do everything. Some things
are much easier when you don’t use Google. Tasks like WHOIS lookups, “pings,”’
traceroutes, and port scans are much easier when performed outside of Google.
There is a wealth of tools available that can perform these functions, but with a bit
of creative Googling, it’s possible to perform all of these arduous functions and
more, preserving the level of anonymity Google hackers have come to expect.
Consider a tool called NQT, the Network Query Tool, shown in Figure 5.10.

Figure 5.10 The Network Query Tool Offers Interesting Options

Default installations of NQT allow any Web user to perform IP host name
and address lookups, DNS queries, WHOIS queries, port testing, and traceroutes.

WwWw.syngress.com

Network Mapping ¢ Chapter 5

This is a Web-based application, meaning that any user who can view the page
can generally perform these functions, against just about any target. This is a very
handy tool for any security person, and for good reason. NQT functions appear
to originate from the site hosting the NQT application. The Web server masks the
real address of the user. The use of an anonymous proxy server would further
mask the user’s identity.

We can use Google to locate servers hosting the NQT program with a very
simple query. The NQT program is usually called nqt.pbp, and in its default
configuration displays the title “Network Query Tool.” A simple query like
inurl:nqt.php intitle:’Network Query Tool” returns many results as shown
in Figure 5.11.

Figure 5.11 Using Google to Locate NQT Installations

After submitting this query, it’s a simple task to simply click on the results
pages to locate a working NQT program. However, the NQT program accepts
remote POSTS, which means it’s possible to send an NQT “command” from
your Web server to the foo.com server, which would execute the NQT “com-
mand” on your behalf. If this seems pointless, consider the fact that this would
allow for simple extension of NQT’ layout and capabilities. We could, for
example, easily craft an NQT “rotator” that would execute NQT commands
against a target, first bouncing it off an Internet NQT server. Let’s take a look at
how that might work.

167

WWww.syngress.com

168

Chapter 5 * Network Mapping

First, we’ll scrape the results page shown in Figure 5.11, creating a list of sites that
host NQT. Consider the following Linux/Mac OS X command:

lynx -dump
http://www.google.com/search?g=inurl:nqt.php+%22Network+\
Query+Tool%22&num=100" | grep "nqt.php$"” | grep -v google |
awk "{print $2}" | sort —u

This command grabs 100 results of the Google query inurl:nqt.php
intitle:’Network Query Tool”, locates the word nqt.php at the end of a line,
removes any line that contains the word google, prints the second field in the
list (which is the URL of the NQT site), and uniquely sorts that list. This com-
mand will not catch NQT URLs that contain parameters (since nqt.php will not
be the last word in the link), but it produces clean output that might look some-
thing like this:
http://bevmo.dynsample.org/uptime/nqt.php
http://biohazard.sifsample7.com/nqt.php
http://cahasample.com/nqt.php
http://samplehost.net/resources/nqt.php
http://linux.sample.nu/phpwebsite_vl/nqt.php
http://noc.bogor.indo.samplenet. id/nqt.php
http://noc.cbn.samplenet. id/nqt.php
http://noc.neksample.org/ngt.php
http://portal .trgsample.de/network/nqt.php

We could dump this output into a file by appending >> nqtfile.txt to the
end of the previous sort command. Now that we have a working list of NQT
servers, we'll need a copy of the NQT code that produces the interface displayed
in Figure 5.10.This interface, with its buttons and “enter host or IP” field, will
serve as the interface for our “rotator” program. Getting a copy of this interface is
as easy as viewing the source of an existing nqt.php Web page (say, from the list
of sites in the nqtfile.txt file), and saving the HTML content to a file we’ll call
rotator.php on our own Web server. At this point, we have two files in the same
directory of our Web server—an nqtfile.txt file containing a list of NQT servers,
and a rotator.php file that contains the HTML source of NQT. We’ll be
replacing a single line in the rotator.php file to create our “rotator” program. This
line, which is the beginning of the NQT input form, reads:

<form method=""post" action="/nqt.php">

WWww.syngress.com

Network Mapping ¢ Chapter 5

This line indicates that once the “Do it” button is pressed, data will be sent
to a script called nqt.php. If we were to modify this form field to <form
method=""post" action="http://foo.com/nqt.php'>, our rotator program would
send the NQT command to the NQT program located at foo.com, which would
execute it on our behalf. We’re going to take this one step further, inserting PHP
code that will read a random site from the nqtfile.txt program, inserting it into
the form line for us. This code might look something like this (lines numbered
for clarity):

1. <?php

2. $array = file("./nqtsites.txt");

3. $site=substr($array[rand(0,count($array)-1)],0,-1);

4. print “<form method=\"post\" action=$site>
";

5. print "Using NQT Site: $site for this session.
";
6. print "Reload this page for a new NQT site.

";
7. ?>

This PHP code segment is meant to replace the <form method="post"
action="/ngt.php"> line in the original NQT HTML code. Line 1 indicates that
a PHP code segment is about to begin. Since the rest of the rotator.php file is
HTML, this line, as well as line 7 that terminates the PHP code segment, is
required. Line 2 reads our ngqtsites.txt file, assigning each line in the file (a URL
to an NQT site) to an array element. Line 3, included as a separate line for read-
ability, assigns one random line from the nqtsites.txt program to the variable
$site. Line 4 outputs the modified version of the original form line, modifying the
action target to point to a random remote NQT site. Lines 5 and 6 simply
output informative messages about the NQT site that was selected, and instruc-
tions for loading a new NQT site. The next line in the rotator.php script would
be the table line that draws the main NQT table. When rotator.php is saved and
viewed in a browser, it should look similar to Figure 5.12.

169

WWww.syngress.com

170 Chapter 5 * Network Mapping

Figure 5.12 The NQT Rotator in Action

Our rotator program looks very similar to the standard NQT program inter-
face, with the addition of the two initial lines of text. However, when the “check
port” box 1s checked, www.microsoft.com is entered into the host field, and the
Do It button is clicked, we are whisked away to the results page on a remote
NQT server that displays the results—port 80 is, in fact, open and accepting con-
nections as shown in Figure 5.13.

Figure 5.13 NQT “Rotator” Output

Www.syngress.com

Network Mapping ¢ Chapter 5 171

This example 1s designed to suggest that Google can be used to supplement
the use of many Web-based applications. All that’s required 1s a bit of Google
know-how and a healthy dose of creativity.

Underground Googling...

Netcraft ala Google

The Netcraft page at www.netcraft.com/whatis is excellent for getting a
quick idea of the type of Web server used by an organization. However,
an interesting twist suggested by offtopic@mail.ru involves using Google
to search for previously Googled Netcraft results. A query like
siteznetcraft.com intitle:That.Site.Running will show cached results
pages. Want to troll for Apache servers? Toss the word Apache on the end
of the query. Netscape? Tomcat? You name it; Netcraft's seen just about
them all.

Targeting Web-Enabled Network Devices

Google can also be used to detect the presence of many Web-enabled network
devices. Many network devices come preinstalled with a Web interface to allow
an administrator to query the status of the device or to change device settings
with a Web browser. While this is convenient, and can even be primitively
secured through the use of an SSL-enabled connection, if the Web interface of a
device is crawled with Google, even the mere existence of that device can add to
a silently created network map. For example, a query like intitle:
“BorderManager information alert® can reveal the existence of a Novell
BorderManager Proxy/Firewall server as shown in Figure 5.14.

WwWw.syngress.com

172

Chapter 5 * Network Mapping

Figure 5.14 Google Reveals Novell BorderManager Proxy/Firewall

A crafty attacker could use the mere existence of this device to craft his
attack against the target network. For example, if this device 1s acting as a proxy
server, the attacker might attempt to use it to gain access to machines inside a
trusted network by bouncing connections off this server. Additionally, an attacker
might search for any public vulnerabilities for this product in an attempt to
exploit this device directly. Although many different devices can be located in
this way, it’s generally easier to harvest IP and network data using the output
from network statistical programs as we’ll see in the next section. To get an idea
of the types of devices that can be located with this technique, consider queries
like “Version Info” “Boot Version” “Internet Settings’’ , which locate
Belkin Cable/DSL routers; intitle:’wbem?” compaq login, which locates HP
Insight Management Agents; intitle:’lantronix web-manager”’, which locates
Lantronix web-managers; inurl:tech-support inurl:show Cisco or
intitle:”’switch home page” “cisco systems’ “Telnet - to”’, which locates
various Cisco products; or intitle:’axis storpoint CD”’ intitle:”’ip address”,
which can locate Axis StorPoint servers. Each of these queries reveals pages that
report various bits of information about the networks on which they’re installed.

99 ¢¢

WWww.syngress.com

Network Mapping ¢ Chapter 5 173

Locating Various Network Reports

In addition to targeting network devices directly, various network documents and
status reports can be located with Google that give an outsider access to every-
thing from IP addresses on the network to complete, ready-to-use network dia-
grams. For example, the query “Looking Glass” (inurl:’1g/”* |
inurl:lookingglass) will locate looking glass servers that show router statistical

information as shown in Figure 5.15.

Figure 5.15 Looking Glass Router Information

The ntop program shown network traftic statistics that can be used to deter-
mine the network architecture of a target. The query intitle:”*Welcome to
ntop!”” will locate servers that have publicized their ntop programs, which pro-
duces the output shown in Figure 5.16.

WWww.syngress.com

174

Chapter 5 * Network Mapping

Figure 5.16 NTOP Output Reveals Network Statistics

Practically any Web-based network statistics package can be located with
Google. Table 5.1 reveals several examples from the Google Hacking Database

that show searches for various network documentation.

Table 5.1 Examples of Network Documentation from the GHDB

Query

Device/Report

intitle:”statistics of” “advanced
web statistics”

intitle:"Big Sister” +"0K
Attention Trouble”
inurl:"cacti” +inurl:"graph_
view.php” +"Settings Tree
View" -cvs -RPM

inurl:fcgi-bin/echo

“These statistics were produced
by getstats”

awstats shows statistics for Web servers.

Big Sister program reveals network
information.

cacti reveals internal network info
including architecture, hosts, and
services.

fastcgi echo program reveals detailed
server information.

Getstats program reveals server statistical
information.

WWww.syngress.com

Continued

Network Mapping ¢ Chapter 5

Table 5.1 Examples of Network Documentation from the GHDB

Query

Device/Report

inurl:"/cricket/grapher.cgi”

intitle:"Object not found”
netware “apache 1..”
((inurl:ifgraph “Page generated
at”) OR (“This page was built
using ifgraph”))

“Looking Glass” (inurl:"lg/"
inurl:lookingglass)

filetype:reg “Terminal Server Client

"

intext:"Tobias Oetiker” “traffic
analysis”

intitle:"Welcome to ntop!”

inurl:”smb.conf” intext:
"workgroup” filetype:conf

intitle:"Ganglia” “Cluster
Report for”

intitle:"”System Statistics”
“System and Network Information
Center”

intitle:”ADSL Configuration page”

“cacheserverreport for” “This
analysis was produced by
calamaris”

inurl:vbstats.php “page
generated”

filetype:vsd vsd network
-samples -examples

grapher.cgi reveals networks information
like configuration, services, and band-
width.

HP Switch Web Interface.

ifGraph SNMP data collector.

Looking Glass network stats output.

Microsoft Terminal Services connection
settings Registry files reveal credentials
and configuration data.

MRTG analysis pages reveals various
network statistical information.

ntop program shows current network
usage.

Samba config file reveals server and
network data.

Server Cluster Reports

SNIC reveals internal network information
including network configuration, ping
times, services, and host information.

SolWise ADSL Modem Network Stats.
Squid Cache Server Reports.

vbstats report reveals server statistical
information.

Visio network drawings.

This type of information is a huge asset during a security audit, which can

save a lot of time, but realize that any information found in this manner should

be validated before using it in any type of finished report.

175

WWww.syngress.com

176

Chapter 5 * Network Mapping

Summary

Network data can be obtained in a variety of ways, but Google can play an
important role during the information-gathering phase of a network assessment.
By starting with generic information and applying a basic methodology, the
details of a network begin to piece together, from the simple determination of
domain names used by the target down to specific details about machines on the
network. No piece of data should be overlooked during an assessment, especially
when dealing with a well-secured target. Domain names can be acquired by
using simple site queries combined with a bit of page scraping, or by more
advanced tools like the BiLE toolkit written by SensePost. Google can be used to
locate or augment Web-based networking tools like NQT, which enables remote
execution of various network-querying applications. Using creative queries,
Google may even locate Web-enabled network devices in use by the target or
output from network statistical packages. Whatever your goal during a network-
based assessment, there’s a good chance Google can be used to augment your
existing tools and techniques.

Solutions Fast Track

Mapping Methodology

M Simple yet effective, the basic methodology presented in this chapter
describes the process required to advance your insight into a target’s
Internet presence.

Mapping Techniques

M Domain names can be determined through the use of the site operator.
Page scraping techniques can be used to extract domain names from
Google results pages.

M Link Mapping is a fairly complex process that determines nonobvious
relationships between sites. The BiLE toolkit from SensePost makes
quick work out of this fairly complex technique.

M Group Tracing can turn simple author searches into detailed
information about a network and its users.

www.syngress.com

Network Mapping ¢ Chapter 5

M Non-Google Web Ultilities can be located and enhanced with creative
use of Google. We examined the NQT tool, converting it into an
anonymized rotator that bounces commands off of remote servers before
communicating with the target.

Targeting Web-Enabled Network Devices

M Web-enabled network devices can be located with simple Google
queries.

M The information from these devices can be used to help build a
network map.

Locating Various Network Reports

M Network statistic reports can be located with simple Google queries.

M The information from these reports can be used to help build a network
map.

Links to Sites

www.sensepost.com: Home of the BiLE and BiLE-weigh utilities.

www.syngress.com

177

178

Chapter 5 * Network Mapping

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: The NQT tool can only scan one port at a time. Could this behavior be

A:

modified?

Without modifying the code on the remote NQT server, this task would
require the coding of a PHP loop that feeds the requests one at a time to the
NQT server. Remember, though, that even single ports can play a critical
role when it comes time to perform an actual network port scan. For many
different types of scans, it’s always advantageous to have a list of ports that are
known to be open.

Q: Aren’t there any Web-based tools besides NQT with a larger port scan range?

A: If you're interested in scanning lots of ports, you might be better off with a

standard scanner like nmap. However, to flex those Google muscles, try a
query like inurl:portscan.php (“from Port” | ”’Port Range”) suggested
by Jimmy Neutron on the Google Hacking Forums. Although there aren’t
many results, who knows what the future holds for this search!

: So Web interfaces on network devices are a bad idea?

: They don’t have to be, but statistically they are for a few reasons. First, they

are often excessive when you consider that the same task could be more
securely accomplished via serial port connection or via a dedicated admin
network connection. Second, small devices require small servers, so some
exotic Web servers are used that are not as well tested as Apache, for example
(consider the vulnerabilities on Axis cams at security focus). Third, as we’ve
seen in this chapter, the pages can be found with (or submitted to) Google if
the admins are not careful. This opens the floodgates for all the fledgling
Google hackers out there.

www.syngress.com

Network Mapping ¢ Chapter 5 179

Q: Our network devices (routers) can’t be accessed by anyone from outside; does
that mean we are safe?

A: Even though it is not accessible from the WAN, it may be accessible from a
compromised host on your LAN. Posting information about it on usenet or
tech forums is a risk. For an example, try searching for intext:““enable
secret 5 $”° as suggested by hevnsnt on the Google Hacking Forums. Then
try the same on Google Groups. Its a good thing Cisco implemented strong
encryption on those passwords, since these searches often reveal sensitive
information about these devices.

www.syngress.com

Chapter 6

Locating Exploits

and Finding Targets

Solutions in this Chapter:

m Locating Exploit Code
m Locating Vulnerable Targets
m Links to Sites

m Frequently Asked Questions

M Summary
M Solutions Fast Track
M Frequently Asked Questions

181

182

Chapter 6 * Locating Exploits and Finding Targets

Introduction

Exploit code, collectively called exploits, 1s a tool of the hacker trade. Designed to
penetrate a target, most hackers have many different exploits at their disposal.
Some exploits, termed zero day or Oday, remain underground for some period of
time, eventually becoming public, posted to newsgroups or Web sites for the
world to share. With so many Web sites dedicated to the distribution of exploit
code, it’s fairly simple to harness the power of Google to locate these tools. It can
be a slightly more difticult exercise to locate potential targets, even though many
modern Web application security advisories include a Google search designed to
locate potential targets.

In this chapter we explore methods locating exploit code and potentially vul-
nerable targets. These are not strictly “dark side” exercises, since security profes-
sionals often use public exploit code during a vulnerability assessment. However,
only black hats use those tools against systems without prior consent.

Locating Exploit Code

Untold hundreds and thousands of Web sites are dedicated to providing exploits
to the general public. Black hats generally provide exploits to aid fellow black
hats in the hacking community. White hats provide exploits as a way of elimi-
nating false positives from automated tools during an assessment. Simple searches
such as remote exploit and vulnerable exploit locate exploit sites by focusing on
common lingo used by the security community. Other searches, such as
inurl:Oday, don’t work nearly as well as they used to, but old standbys like
inurl:sploits still work fairly well. The problem is that most security folks don’t just
troll the Internet looking for exploit caches; most frequent a handful of sites for
the more mainstream tools, venturing to a search engine only when their book-
marked sites fail them. When it comes time to troll the Web for a specific secu-
rity tool, Google’s a great place to turn first.

Locating Public Exploit Sites

One way to locate exploit code is to focus on the file extension of the source
code and then search for specific content within that code. Since source code is
the text-based representation of the difficult-to-read machine code, Google is
well suited for this task. For example, a large number of exploits are written in C,
which generally uses source code ending in a .c extension. Of course, a search

WWww.syngress.com

Locating Exploits and Finding Targets ¢ Chapter 6

for filetype:c ¢ returns nearly 500,000 results, meaning that we need to narrow our
search. A query for filetype:c exploit returns around 5,000 results, most of which
are exactly the types of programs we'’re looking for. Bearing in mind that these
are the most popular sites hosting C source code containing the word exploit, the
returned list is a good start for a list of bookmarks. Using page-scraping tech-
niques, we can isolate these sites by running a UNIX command such as:

grep Cached exp | awk —F" =" *"{print $1}" | sort —u
against the dumped Google results page. Using good, old-fashioned cut and paste
or a command such as lynx —dump works well for capturing the page this way.

The slightly polished results of scraping 20 results from Google in this way are
shown in Table 6.1.

Table 6.1 Most Common Hits for the Query filetype:c exploit

Site Directory
packetstorm.linuxsecurity.com packetstorm.linuxsecurity.com/0101-exploits/
synnergy.net synnergy.net/downloads/exploits/
unsecure.altervista.org unsecure.altervista.org/security/
www.blacksheepnetworks.com www.blacksheepnetworks.com/security/hack/
www.circlemud.org www.circlemud.org/pub/jelson/
gethostbyname/
www.dsinet.org www.dsinet.org/tools/Technotronic/
www.metasploit.com www.metasploit.com/tools/
www.nostarch.com www.nostarch.com/extras/hacking/chap2/
www.packetstormsecurity.org www.packetstormsecurity.org/0409-exploits/
www.rosiello.org www.rosiello.org/archivio/
www.safemode.org www.safemode.org/files/zillion/exploits/

www.security-corporation.com www.security-corporation.com/
download/exploit/

www.thc.org www.thc.org/exploits/

183

WWww.syngress.com

184 Chapter 6 * Locating Exploits and Finding Targets

Underground Googling

Google Forensics

Google also makes a great tool for performing digital forensics. If a sus-
picious tool is discovered on a compromised machine, it's pretty much
standard practice to run the tool through a UNIX command such as
strings —8 to get a feel for the readable text in the program. This usually
reveals information such as the usage text for the tool, parts of which can
be tweaked into Google queries to locate similar tools. Although obfus-
cation programs are becoming more and more commonplace, the com-
bination of strings and Google is very powerful, when used
properly—capable of taking the mystery out of the vast number of suspi-
cious tools on a compromised machine.

Locating Exploits
Via Common Code Strings

Since Web pages display source code in various ways, a source code listing could
have practically any file extension. A PHP page might generate a text view of a
C file, for example, making the file extension from Google’s perspective .PHP
instead of .C.

Another way to locate exploit code is to focus on common strings within
the source code itself. One way to do this is to focus on common inclusions or
header file references. For example, many C programs include the standard
input/output library functions, which are referenced by an include statement such
as #include <stdio.h> within the source code. A query such as “Hinclude
<stdio.h>" exploit would locate C source code that contained the word exploit,
regardless of the file’s extension. This would catch code (and code fragments) that
are displayed in HTML documents. Extending the search to include programs
that include a friendly usage statement with a query such as “Hinclude <stdio.h>"
usage exploit returns the results shown in Figure 6.1.

Www.syngress.com

Locating Exploits and Finding Targets ¢ Chapter 6 185

Figure 6.1 Searching for Exploit Code with Nonstandard Extensions

This search returns quite a few hits, nearly all of which contain exploit code.
Using traversal techniques (or simply hitting up the main page of the site) can
reveal other exploits or tools. Notice that most of these hits are HTML docu-
ments, which our previous filetype:c query would have excluded. There are lots of
ways to locate source code using common code strings, but not all source code
can be fit into a nice, neat little box. Some code can be nailed down fairly neatly
using this technique; other code might require a bit more query tweaking. Table
6.2 shows some suggestions for locating source code with common strings.

Table 6.2 Locating Source Code with Common Strings

Extension
Language (Optional) Sample String
asp.net (C#) Aspx “<%@ Page Language="C#"" inherits
asp.net (VB) Aspx "<%@ Page Language="vb"" inherits
asp.net (VB) Aspx <%@ Page LANGUAGE="JScript”
C C “#include <stdio.h>"
C# Cs “using System,"” class
c++ Cpp “#include “stdafx.h””
Java J, JAV class public static
JavaScript JS “<script language = "JavaScript”>"

Continued
WWW.syngress.com

186

Chapter 6 * Locating Exploits and Finding Targets

Table 6.2 Locating Source Code with Common Strings

Extension
Language (Optional) Sample String
Perl PERL, PL, PM “#1/usr/bin/perl”
Python Py “#1/usr/bin/env”
VBScript .vbs “"<%@ language="vbscript” %>"
Visual Basic Vb “Private Sub”

In using this table, a filetype search is optional. In most cases, you might find
it’s easier to focus on the sample strings so that you don’t miss code with funky
extensions.

Locating Vulnerable Targets

Attackers are increasingly using Google to locate Web-based targets vulnerable to
specific exploits. In fact, it’s not uncommon for public vulnerability announce-
ments to contain Google links to potentially vulnerable targets, as shown in
Figure 6.2.

Figure 6.2 Google Link to Vulnerable Targets in Advisory

WWww.syngress.com

Locating Exploits and Finding Targets ¢ Chapter 6 187

Locating Targets Via Demonstration Pages

The process of locating vulnerable targets can be fairly straightforward, as we’ll see
in this section. Other times, the process can be a bit more involved, as we’ll see in
the next section. Let’s take a look at a Web application security advisory posted to
Secunia (www.secunia.com) on October 10, 2004, as shown in Figure 6.3.

Figure 6.3 Typical Web Application Security Advisory

This particular advisory displays a link to the affected software vendor’s Web
site. Not all advisories list such a link, but a quick Google query should help you
locate the vendor’s page. Since our goal is to develop a query string to locate
vulnerable targets on the Web, the vendor’s Web site 1s a good place to discover
what exactly the product’s Web pages look like. Like many software vendors’ Web
sites, the CubeCart site shows links for product demonstrations and live sites that
are running the product, as shown in Figure 6.4.

WWww.syngress.com

188 Chapter 6 * Locating Exploits and Finding Targets

Figure 6.4 Vendor Web Pages Often Provide Product Demonstrations

At the time of this writing, this site’s demonstration pages were offline, but
the list of live sites was active. Live sites are often better for this purpose because
we can account for potential variations in how a Web site is ultimately displayed.
For example, some administrators might modify the format of a vendor-supplied
Web page to fit the theme of the site. These types of modifications can impact
the effectiveness of a Google search that targets a vendor-supplied page format.

Perusing the list of available live sites in Figure 6.4, we find that most sites
look very similar and that nearly every site has a “powered by” message at the
bottom of the main page, as shown in the (highly edited) example in Figure 6.5.

Figure 6.5 “Powered by” Tags Are Common Query Fodder for Finding Web
Applications

Www.syngress.com

Locating Exploits and Finding Targets ¢ Chapter 6

In this case, the live page displays “Powered by CubeCart 2.0.1” as a footer
on the main page. Since CubeCart 2.0.1 is the version listed as vulnerable in the
security advisory, we need do little else to create a query that locates vulnerable
targets on the Web. The final query, “Powered by CubeCart 2.0.1”, returns results
of over 27,000 potentially vulnerable targets, as shown in Figure 6.6.

Figure 6.6 A Query That Locates Vulnerable CubeCart Sites

Combining this list of sites with the exploit tool released in the Secunia
security advisory, an attacker has access to a virtual smorgasbord of online
retailers that could likely be compromised, potentially revealing sensitive cus-
tomer information such as address, products purchased, and payment details.

Locating Targets Via Source Code

In some cases, a good query is not as easy to come by, although as we’ll see, the
resultant query is nearly identical in construction. Although this method is more
drawn out (and could be short-circuited by creative thinking), it shows a typical
process for detecting an exact working query for locating vulnerable targets.
Here we take a look at how a hacker might use the source code of a program to
discover ways to search for that software with Google. For example, an advisory
was released for the CuteNews program, as shown in Figure 6.7.

189

WWww.syngress.com

190

Chapter 6 * Locating Exploits and Finding Targets

Figure 6.7 The CuteNews Advisory

As explained in the security advisory, an attacker could use a specially crafted
URL to gain information from a vulnerable target. To find the best search string
to locate potentially vulnerable targets, we can visit the Web page of the software
vendor to find the source code of the offending software. In cases where source
code is not available, an attacker might opt to simply download the offending
software and run it on a machine he controls to get ideas for potential searches.
In this case, version 1.3.1 of the CuteNews software was readily available for
download from the author’s Web page.

Once the software 1s downloaded and optionally unzipped, the first thing to
look for is the main Web page that would be displayed to visitors. In the case of
this particular software, PHP files are used to generate Web pages. Figure 6.8
shows the contents of the top-level CuteNews directory.

Figure 6.8 Files Included with CuteNews 1.3.1

WwWw.syngress.com

Locating Exploits and Finding Targets ¢ Chapter 6

Of all the files listed in the main directory of this package, index.php is the
most likely candidate to be a top-level page. Parsing through the index.php file,
line 156 would most likely catch our eye.

156 // If User is Not Logged In, Display The Login Page

Line 156 shows a typical informative comment. This comment reveals the
portion of the code that would display a login page. Scrolling down farther in
the login page code, we come to lines 173—178:

173 <td width=80>Username: </td>
174 <td><input tabindex=1 type=text

name=username value="$lastusername® style=\"width:134\"></td>
175 </tr>

176 <tr>
177 <td>Password: </td>
178 <td><input type=password name=password style=\"width:134\""></td>

These lines show typical HTML code and reveal username and password
prompts that are displayed to the user. Based on this code, a query such as “user-
name:” “password:” would seem reasonable, except for the fact that this query
returns over 12 million results that are not even close to the types of pages we
are looking for. This is because the colons in the query are effectively ignored
and the words username and password are far too common to use for even a base

search. Our search continues to line 191 of index.php, shown here:

191 echofooter();

This line prints a footer at the bottom of the Web page. This line is a func-
tion, an indicator that it is used many times through the program. A common
footer that displays on several CuteNews pages could make for a very nice base
query. We'll need to uncover what exactly this footer looks like by locating the
code for the echofooter function. Running a command such as grep —r echofooter *
will search every file in each directory for the word echofooter. This returns too
many results, as shown in this abbreviated output:

Johnnys-Computer: joOhnny$ grep -r echofooter *
inc/about.mdu: echofooter();

inc/addnews.mdu: echofooter();
inc/categories.mdu:echofooter();

inc/editnews.mdu: echofooter();

191

WWww.syngress.com

192 Chapter 6 * Locating Exploits and Finding Targets

inc/editnews.mdu: echofooter();
inc/editusers.mdu: echofooter();
inc/functions.inc.php: echofooter();
inc/functions.inc.php:// Function: echofooter
inc/functions.inc.php:function echofooter(){
inc/help.mdu: echofooter();

Most of the lines returned by this command are calls to the echofooter func-
tion, not the definition of the function itself. One line, however, precedes the
word echofooter with the word function, indicating the definition of the function.
Based on this output, we know that the file inc/functions.inc.php contains the
code to print the Web page footer. Although there is a great deal of information
in this function, as shown in Figure 6.9, certain things will catch the eye of any
decent Google hacker. For example, line 168 shows that copyrights are printed
and that the term “Powered by” is printed in the footer.

Figure 6.9 The echofooter Function Reveals Potential Query Strings

A phrase like “Powered by” can be very useful in locating specific targets due
to their high degree of uniqueness. Following the “Powered by” phrase is a link
to http://cutephp.com/cutenews/ and the string $config_version_name, which will
list the version name of the CuteNews program. To have a very specific
“Powered by” search to feed Google, the attacker must either guess the exact ver-
sion number that would be displayed (remembering that version 1.3.1 of

WWww.syngress.com

Locating Exploits and Finding Targets ¢ Chapter 6

CuteNews was downloaded) or the actual version number displayed must be
located in the source code. Again, grep can quickly locate this string for us. We
can either search for the string directly or put an equal sign (=) after the string
to find where it is defined in the code. A grep command such as grep —r
“$config_version_name ="* will do the trick:

johnny-longs-g4 root$ grep -r '\$config_version_name =" *
inc/install._mdu:\$config_version_name = "CuteNews v1.3.1";
inc/options.mdu: fwrite($handler, "<?PHP \n\n//System

Configurations\n\n\$config_version_name =
\""'$config_version_name\' ;\n\n\$config_version_id = $config_version_id;\n\n");

johnny-longs-g4 root$

As shown here, the version name 1is listed as CuteNews v1.3.1. Putting the
two pieces of the footer together creates a very specific string: “Powered by
CuteNews v1.3.1”. This in turn creates a very nice Google query, as shown in
Figure 6.10. This very specific query returns nearly perfect results, displaying
nearly 500 sites running the potentially vulnerable version 1.3.1 of the
CuteNews software.

Figure 6.10 A Completed Vulnerability Search

Too many examples of this technique are in action to even begin to list them
all, but in the tradition of the rest of this book, Table 6.3 lists examples of some

193

WWww.syngress.com

194

Chapter 6 * Locating Exploits and Finding Targets

queries designed to locate targets running potentially vulnerable Web applica-
tions. These examples were all pulled from the Google Hacking Database.

Table 6.3 Vulnerable Web Application Examples from the GHDB

Query

Vulnerability

“Powered by A-CART”

A-CART 2.x vulnerable to cross-site
scripting

inurl: “dispatch.php?atknodetype” Achievo .8.x could allow remote code
| inurl:class.atkdateattribute.js.php execution

intitle:guestbook “advanced
guestbook 2.2 powered”

“Powered by AJ-Fork v.167"

“BlackBoard 1.5.1-f | =© 2003-4

by Yves Goergen”

“BosDates Calendar System “
“powered by BosDates v3.2 by
BosDev”

inurl:changepassword.cgi -—cvs

“Copyright =© 2002 Agustin
Dondo Scripts”

“Powered by CubeCart 2.0.1"

“Powered *: newtelligence”
(“dasBlog 1.6”| “dasBlog 1.5”|
“dasBlog 1.4"| “dasBlog 1.3")

“Powered by DCP-Portal v5.5"

Advanced Guestbook v2.2 has an SQL
injection problem that allows unautho-
rized access

AJ-Fork, a fork based on the CuteNews
1.3.1 core, is susceptible to multiple vul-
nerabilities

BlackBoard 1.5.1 has a remote file
inclusion vulnerability

BosDates 3.2 is vulnerable to SQL
injection

changepassword.cgi allows for unlimited

repeated failed login attempts
CoolPHP 1.0 has multiple vulnerabilities

CubeCart 2.0.1 has an SQL injection vul-
nerability

DasBlog versions 1.3-1.6 are susceptible
to an HTML injection vulnerability in their
request log

DCP-Portal version 5.5 is vulnerable to
SQL injection

“2003 DUware All Rights Reserved” DUForum 3.0 may allow a remote

attacker to carry out SQL injection and
HTML injection attacks

“inurl:/site/articles.asp?idcategory="Dwc_Articles 1.6 has multiple input vali-

inurl:custva.asp

dation problems

Earlylmpact Productcart v1.5 contains
multiple vulnerabilities

WWww.syngress.com

Continued

Locating Exploits and Finding Targets ¢ Chapter 6

Table 6.3 Vulnerable Web Application Examples from the GHDB

Query

Vulnerability

inurl:”/becommunity/community/
index.php?pageurl="

intitle: "EMUMAIL - Login™
“Powered by EMU Webmail”

“Powered by FUDforum”

”“1999-2004 FuseTalk Inc”
-site: fusetalk.com

“Powered by My Blog” intext:
“"FuzzyMonkey.org”

“Powered by Gallery v1.4.4”

intitle:gallery inurl:setup
“Gallery configuration”

inurl: "messageboard/Forum.asp?”

intitle:welcome.to.horde

“Powered by IceWarp Software”
inurl:mail

“Ideal BB Version: 0.1”
-idealbb.com

“Powered by lkonboard 3.1.1"

“Powered by Invision Power
Board(U) v1.3 Final —=© *

inurl:wiki/MediaWiki

“Powered by Megabook *”
inurl:guestbook.cqgi

“Powered by mnoGoSearch - free
Web search engine software”

E-market prior to 1.4.0 contains various
vulnerabilities

EMU Webmail 5.6 messaging product is
susceptible to a cross-site scripting vul-
nerability

FUDforum 2.0.2 allows manipulation of
arbitrary server files

FuseTalk forums (v4) are susceptible to
cross-site scripting attacks

FuzzyMonkey 2.11 has an SQL injection
vulnerability

Gallery 1.4.4 allows remote code
execution

Gallery default configuration files allow
gallery modification

GoSmart Message Board (specific ver-
sions) are susceptible to SQL injection
attack and cross-site scripting attack

Horde Mail prior to 2.2 has had several
reported vulnerabilities

IceWarp Web Mail (versions prior to
5.2.8) is reported prone to multiple input
validation vulnerabilities

Ideal BB 0.1 is susceptible to multiple
vulnerabilities

IkonBoard 3.1.1 allows cross-site scripting

Invision Power Board v1.3 is vulnerable to
SQL injection
MediaWiki 1.3.5 has a cross-site scripting
vulnerability

MegaBook 2.0 is prone to multiple HTML
injection vulnerabilities

mnGoSearch 3.1.20 and 3.2.10 contain a
buffer overflow vulnerability

Continued

195

WWww.syngress.com

196

Chapter 6 * Locating Exploits and Finding Targets

Table 6.3 Vulnerable Web Application Examples from the GHDB

Query

Vulnerability

intitle: "MRTG/RRD"” 1.1*
(inurl:mrtg.cqi | inurl:14all.cgi
| traffic.cqgi)

filetype:cgi inurl:nbmember.cgi

“Powered by ocPortal” -demo
-ocportal.com

intitle: "PHP Explorer” ext:php
(inurl:phpexplorer.php
inurl:list.php | inurl:browse.php)

" u

“create the Super User” “now
by clicking here”

“Enter ip” inurl: "php-ping.php”

intitle: “phpremoteview” filetype:
php “Name, Size,

inurl:"plog/register.php”

filetype:php inurl:index.php inurl:
“module=subjects” inurl:"func=
*" (listpages| viewpage | listcat)
“Online Store - Powered by
ProductCart”

inurl:com_remository

inurl:“slxWeb.dIl”
“File Upload Manager v1.3”
“rename to”

filetype:cqgi inurl:tseekdir.cqgi

inurl:ttt-webmaster.php

MRTG 1.1 allows viewing of arbitrary
system files

nbmember.cgi 2.0 allows system and user
information disclosure

ocPortal 1.0.3 allows remote file inclusion

PHP Explorer scripts reveal server
information and provides remote shell
access

PHP-Nuke open configuration allows
arbitrary creation of admin users

php-ping prior to version 1.2 may be
prone to a remote command execution
vulnerability

phpRemoteView allows browsing of
entire file system

pLog installation scripts should be
removed after install because they allow
for program compromise

Postnuke Modules Factory Subjects
module has an SQL injection vulnerability

ProductCart v1.5-1.6 and v2 are
vulnerable to an SQL injection vulnera-
bility

ReMOSitory 4.5.1 1.09 module for
Mambo is prone to an SQL injection vul-
nerability

SalesLogix 2000.0 contains multiple
remote vulnerabilities

thepeak file upload manager allows
arbitrary user to transfer files

Turbo Seek 1.7.2 search engine reveals
arbitrary file contents

Turbo traffic trader Nitro v1.0 contains
multiple vulnerabilities

WWww.syngress.com

Continued

Locating Exploits and Finding Targets ¢ Chapter 6

Table 6.3 Vulnerable Web Application Examples from the GHDB

Query

Vulnerability

ext:cgi inurl:ubb6_test.cgi

“Powered by: vBulletin * 3.0.1"
inurl:newreply.php
inurl:/cgi-bin/index.cgi inurl:
topics inurl:viewcat= +intext:
"WebAPP" -site:web-app.org

intitle: "WebJeff - FileManager”
intext: "login” intext:Pass | Passe

intitle:“Index of /” modified
php.exe

“Powered by WowBB" -site:
wowbb.com

“Powered by YaPig V0.92b"

UBB trial version contains files that are
not safe to keep online after going live

vBulletin 3.0.1 allows arbitrary code
execution

WebAPP 0.x has a serious reverse
directory traversal vulnerability

WebJeff-FileManager 1.x can reveal
arbitrary system files

Windows PHP parser allow an attacker to
view arbitrary system files

WowBB 1.x affected by multiple input
validation vulnerabilities

YaPiG 0.92b contains an HTML injection
vulnerability

Locating Targets Via CGI Scanning

One of the oldest and most familiar techniques for locating vulnerable Web

servers is through the use of a CGI scanner. These programs parse a list of known

“bad” or vulnerable Web files and attempt to locate those files on a Web server.

Based on various response codes, the scanner could detect the presence of these

potentially vulnerable files. A CGI scanner can list vulnerable files and directories

in a data file, such as the snippet shown here:

/cgi-bin/userreg.cgi
/cgi-bin/cgiemail/uargg.txt
/random_banner/index.cgi
/random_banner/index.cgi
/cgi-bin/mailview.cgi

/cgi-bin/maillist.cgi

/iissamples/I1SSamples/SQLQHIt.asp
/iissamples/I1SSamples/SQLQHIt.asp

/SiteServer/admin/findvserver.asp
/scripts/cphost.dll
/cgi-bin/finger.cgi

197

WWww.syngress.com

198

Chapter 6 * Locating Exploits and Finding Targets

Instead of connecting directly to a target server, an attacker could use Google
to locate servers that might be hosting these potentially vulnerable files and
directories by converting each line into a Google query. For example, the first
line searches for a filename userreg.cgi located in a directory called cgi-bin.
Converting this to a Google query is fairly simple in this case, as a search for
inurl: /cgi-bin /userreg.cgi shows in Figure 6.11.

Figure 6.11 A Single CGI Scan-Style Query

This search locates over 60 hosts that are running the supposedly vulnerable
program. There is certainly no guarantee that the program Google detected is the
vulnerable program. This highlights one of the biggest problems with CGI
scanner programs. The mere existence of a file or directory does not necessarily
indicate that a vulnerability is present. Still, there is no shortage of these types of
scanner programs on the Web, each of which provides the potential for many dif-
terent Google queries.

There are other ways to go after CGI-type files. For example, the filetype
operator can be used to find the actual CGI program, even outside the context
of the parent cgi-bin directory, with a query such as filetype:cgi inurl:userreg.cgi.
This locates approximately 15 more results, but unfortunately, this search is even
more sketchy, since the cgi-bin directory is an indicator that the program is in
fact a CGI program. Depending on the configuration of the server, the
userreg.cgi program might be a text file, not an executable, making exploitation
of the program interesting, if not altogether impossible!

WwWw.syngress.com

Locating Exploits and Finding Targets ¢ Chapter 6 199

Another even sketchier way of finding this file is via a directory listing with a
query such as intitle:index.of userreg.cgi. This query returns no hits at the time of
this writing, and for good reason. Directory listings are not nearly as common as
URLSs on the Web, and a directory listing containing a file this specific is a rare
occurrence indeed.

Underground Googling

Automated CGI Scanning Via Google

Obviously, automation is required to effectively search Google in this way,
but two tools, Wikto (from www.sensepost.com) and Gooscan (from
http://Johnny.ihackstuff.com) both perform automated Google and CGI
scanning. The Wikto tool uses the Google API; Gooscan does not. See the
Chapter 11, Protecting Yourself from Google Hackers, for more details
about these tools.

WwWw.syngress.com

200

Chapter 6 * Locating Exploits and Finding Targets

Summary

There are so many ways to locate exploit code that it’s nearly impossible to cate-
gorize them all. Google can be used to search the Web for sites that host public
exploits, and in some cases you might stumble on “private” sites that host tools as
well. Bear in mind that many exploits are not posted to the Web. New (or Oday)
exploits are guarded very closely in many circles, and an open public Web page is
the last place a competent attacker is going to stash his or her tools. If a toolkit is
online, it 1s most likely encrypted or at least password protected to prevent dis-
semination, which would alert the community, resulting in the eventual lock-
down of potential targets. This isn’t to say that new, unpublished exploits are not
online, but frankly it’s often easier to build relationships with those in the know.
Still, there’s nothing wrong with having a nice hit list of public exploit sites, and
Google is great at collecting those with simple queries that include the words
exploit, vulnerability, or vulnerable. Google can also be used to locate source code
by focusing on certain strings that appear in that type of code.

Locating potential targets with Google 1s a fairly straightforward process,
requiring nothing more than a unique string presented by a vulnerable Web
application. In some cases these strings can be culled from demonstration applica-
tions that a vendor provides. In other cases, an attacker might need to download
the product or source code to locate a string to use in a Google query. Either
way, a public Web application exploit announcement, combined with the power
of Google, leaves little time for a defender to secure a vulnerable application or
server.

Solutions Fast Track

Locating Exploit Code

M Public exploit sites can be located by focusing on common strings like
exploit or vulnerability. To narrow the results, the filetype operator can be
added to the query to locate exploits written in a particular
programming language.

M Exploit code can be located by focusing either on the file extension
with filetype or on strings commonly found in that type of source code,
such as “include <stdio.h>" for C programs.

www.syngress.com

Locating Exploits and Finding Targets ¢ Chapter 6

Locating Vulnerable Targets

M Attackers can locate potential targets by focusing on strings presented in
a vulnerable application’s demonstration installation provided by the
software vendor.

M Attackers can also download and optionally install a vulnerable product
to locate specific strings the application displays.

M Regardless of how a string is obtained, it can easily be converted into a
Google query, drastically narrowing the time a defender has to secure a
site after a public vulnerability announcement.

Links to Sites

M www.sensepost.com/research/wikto/ Wikto, an excellent Google
and Web scanner.

M www.cirt.net/code/nikto.shtml Nikto, an excellent Web scanner.

M http://packetstormsecurity.com/ An excellent site for tools and
exploits.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You wiill
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: CGI scanning tools have been around for years and have large scan databases
with contributions from many hackers. What’s the advantage of using
Google, which depends on a site having been crawled by Googlebot? Doesn’t
that give fewer results?

A: Although this is true, Google provides some level of anonymity because it
can show the cached pages using the strip=1 parameter, so the attacker’s IP
(black or white) 1s not logged at the server. Check out the Nikto code in
Chapter 12, which combines the power of Google with the Nikto database!

www.syngress.com

201

202 Chapter 6 * Locating Exploits and Finding Targets

Q:

A:

Q:

A:

Are there any generic techniques for locating known vulnerable Web appli-
cations?

Try combining INURL:[“parameter="] with FILETYPE: [ext] and

INURL: [scriptname] using information from the security advisory. In some
cases, version information might not always appear on the target’s page. If
you’re searching for version information, remember that each digit counts as
a word, so 1.4.2 1s three words according to Google.You could hit the 10-
word limit fast.

Also remember that for Google to show a result, the site must have been
crawled earlier. If that’s not the case, try using a more generic search such as
“powered by XYZ” to locate pages that could be running a particular family
of software.

[suspect webapp HelloDorks.cgi 1s written without much attention to secu-
rity issues. However, the software is not open source and can only be down-
loaded for a high price. Is there another way to get the source code?

It’s not very common, but sometimes software is installed on servers that do
no longer parse PHP or Perl source (or they never got it to work). If the
admins forget to clean up afterward, this means it can be downloaded or
viewed in a browser, like any normal text file. Once a vulnerability is found
using that source, an attacker can then proceed to active servers using the
same version. Refer back to Table 6.2 for methods of finding source code.

www.syngress.com

Chapter 7

Ten Simple Security

Searches That Work

Solutions in this Chapter:

= site

m intitle:index.of
® error | warning
®= login | logon

m username | userid | employee.ID |
“your username is"”

m password | passcode |
“your password is”

= admin | administrator

. —ext:html —ext:htm —-ext:shtml
—-ext:asp —ext:php

m inurl:temp | inurl:tmp | inurl:backup |
inurl:bak

= intranet | help.desk
m List of Sites

203

204

Chapter 7 * Ten Simple Security Searches That Work

Introduction

Although we see literally hundreds of Google searches throughout this book,
sometimes it’s nice to know there’s a few searches that give good results just
about every time. In the context of security work, we’ll take a look at 10
searches that work fairly well during a security assessment, especially when com-
bined with the site operator, which secures the first position in our list. As you
become more and more comfortable with Google, you’ll certainly add to this
list, modifying a few searches and quite possibly deleting a few, but the searches
here should serve as a very nice baseline for your own top 10 list. Without fur-
ther ado, let’s dig into some queries.

site

The site operator is absolutely invaluable during the information-gathering phase
of an assessment. Combined with a host or domain name, this query presents
results that can be overwhelming, to say the least. However, the sife operator is
meant to be used as a base search, not necessarily as a standalone search. Sure, it’s
possible (and not entirely discouraged) to scan through every single page of results
from this query, but in most cases it’s just downright impractical.

Important information can be gained from a straight-up site search, however.
First, remember that Google lists results in page-ranked order. In other words, the
most popular pages float to the top of the results. This means you can get a quick
idea about what the rest of the Internet thinks is most worthwhile about a site.
The implications of this information are varied, but at a basic level you can at
least get an idea of the public image or consensus about an online presence by
looking at what floats to the top. Outside the specific site search itself, it can be
helpful to read into the context of links originating from other sites. If a link’s
text says something to the effect of “CompanyXYZ sucks!” there’s a good chance
that some discontent is breeding somewhere about CompanyXYZ.

As we saw in Chapter 5, the site search can also be used to gather informa-
tion about the servers and hosts that a target hosts. Using simple reduction tech-
niques, we can quickly get an idea about a target’s online presence. Consider the
simple example of site:washingtonpost.com —site:www.washingtonpost.com shown in
Figure 7.1.

WWww.syngress.com

Ten Simple Security Searches That Work ¢ Chapter 7 205

Figure 7.1 Site Reduction Reveals Domain Names

This query effectively locates pages on the washingtonpost.com domain
other than www.washingtonpost.com. Just from a first pass, Figure 7.1 shows
three other domains: yp.washingtonpost.com, eg.washingtonpost.com, and
topics.washingtonpost.com. Although one result lists washingtonpost.com as a
server name (without the www prefix), a DNS lookup quickly reveals that it
points to the same IP as washingtonpost.com, as expected. Google might be per-
fectly suited for performing reconnaissance, but it’s always a good idea to validate
your Google findings whenever possible.

WWww.syngress.com

206 Chapter 7 * Ten Simple Security Searches That Work

Underground Googling...

More Than You Bargained For...

Some queries just don’t make logical sense, but the results can be inter-
esting nonetheless. For example, consider the query site:microsoft.com -
inurl:microsoft.com. This really retarded-looking query should return zero
results, right? Try it sometime. You'll be surprised. Oh, and about that
retarded comment, it's not meant to be insensitive. Sometimes Google
queries do the funniest things. Try retarded hacker johnny sometime. The
author’s been called worse.

intitle:index.of

intitle:index.of 1s the universal search for directory listings. In most cases, this
search applies only to Apache-based servers, but due to the overwhelming
number of Apache-derived Web servers on the Internet, there’s a good chance
that the server youre profiling will be Apache-based. Regardless, directory list-
ings are chock-full of juicy details, as we saw in Chapter 3. Firing an
intitle:index.of query against a target is fast and easy and could produce a killer
payoft.

error | warning

As we've seen throughout this book, error messages can reveal a great deal of
information about a target. Often overlooked, error messages can provide insight
into the application or operating system software a target is running, the archi-
tecture of the network the target is on, information about users on the system,
and much more. Not only are error messages informative, they are prolific. A
query of intitle:error results in over 55 million results, as shown in Figure 7.2.

Www.syngress.com

Ten Simple Security Searches That Work ¢ Chapter 7 207

Figure 7.2 The Word Error Is Very Common in a Document Title

Unfortunately, some error messages don’t actually display the word error, as

(<

shown in the SQL located with a query of “access denied for user” “using password”

shown in Figure 7.3.

Figure 7.3 Where Errors Hide, Warnings Lurk

This error page reveals usernames, filenames, path information, IP addresses,
and line numbers, yet the word error does not occur anywhere on the page.
Nearly as prolific as error messages, warning messages can be generated from
application programs. In some cases, however, the word warning is specifically

WWww.syngress.com

208

Chapter 7 * Ten Simple Security Searches That Work

written into the text of a page to alert the Web user that something important
has happened or is about to happen. Regardless of how they are generated, pages
containing these words may be of interest during an assessment, as long as you
don’t mind teasing out the results a bit.

login | logon

As we’ll see in Chapter 8, a login portal is a “front door” to a Web site. Login
portals can reveal the software and operating system of a target, and in many
cases “self-help” documentation is linked from the main page of a login portal.
These documents are designed to assist users who run into problems during the
login process. Whether the user has forgotten his or her password or even user-
name, this documents can provide clues that might help an attacker, or in our
case a security tester, gain access to the site.

Many times, documentation linked from login portals lists e-mail addresses,
phone numbers, or URLs of human assistants who can help a troubled user
regain lost access. These assistants, or help desk operators, are perfect targets for a
social engineering attack. Even the smallest security testing team should not be
without a social engineering whiz who could talk an Eskimo out of his thermal
boxer shorts. The vast majority of all security systems has one common weakest
link: a human behind a keyboard. The words login and logon are widely used on
the Internet, occurring on over 12 million pages, as shown in Figure 7.4.

Figure 7.4 login and logon Locate Login Portals

WwWw.syngress.com

Ten Simple Security Searches That Work ¢ Chapter 7

Notice that the very first result for this query shows the words login trouble in
the text of the page. This link provides help to users who have forgotten their
login credentials. It’s exactly these types of links that security testers might use to
gain access to a system.

username | userid |
employee.ID | “your username is”

As we’ll see in Chapter 9, there are many different ways to obtain a username
from a target system. Even though a username is the less important half of most
authentication mechanisms, it should at least be marginally protected from out-
siders. Figure 7.5 shows that even sites that reveal very little information in the
face of a barrage of probing Google queries return many potentially interesting
results to this query. To avoid implying anything negative about the target used in
this example, some details of the figure have been edited.

Figure 7.5 Even “Tight-Lipped” Sites Provide Login Portals

The mere existence of the word username in a result is not indicative of a
vulnerability, but results from this query provide a starting point for an attacker.
Since there’s no good reason to remove derivations of the word username from a
site you protect, why not rely on this common set of words to at least get a
foothold during an assessment?

209

WWww.syngress.com

210

Chapter 7 * Ten Simple Security Searches That Work

password | passcode | “your password is”

The word password is so common on the Internet, there are over 73 million
results for this one-word query. Launching a query for derivations of this word
makes little sense unless you actually combine that search with the site operator.

During an assessment, it’s very likely that results for this query combined
with a site operator will include pages that provide help to users who have for-
gotten their passwords. In some cases, this query will locate pages that provide
policy information about the creation of a password. This type of information can
be used in an intelligent-guessing or even a brute-force campaign against a pass-
word field.

Despite how this query looks, it’s quite uncommon for this type of query to
return actual passwords. Passwords do exist on the Web, but this query isn’t well
suited for locating them. (We’ll look at queries to locate password in Chapter 9.)
Like the login portal and username queries, this query can provide an informa-
tional foothold into a system. Although this query is somewhat useless without
the site operator, Figure 7.6 shows that the first hit for this query is a “forgotten
password” page—exactly the type of page that can be informative.

Figure 7.6 Even Without site, This Query Can Locate User Login Help Pages

admin | administrator

The word administrator is often used to describe the person in control of a net-
work or system. There are so many references to the word on the Web that a
query for admin | administrator weighs in at over 15 million results. This suggests

WWww.syngress.com

Ten Simple Security Searches That Work ¢ Chapter 7

that these words will likely be referenced on a site youre charged with assessing.
However, the value of these and other words in a query does not lie in the
number of results but in the contextual relevance of the words. In this case, the
word administrator is used in several common ways, each of which can provide
relevance during an assessment. For example, the word administrator is referenced
in many error messages as shown in Figure 7.7.

Figure 7.7 Admin Query Tweaked and Focused

The phrase Contact your system administrator 1s a fairly common phrase on the
Web, as are several basic derivations. A query such as “please contact your * admin-
istrator” will return results that reference local, company, site, department, server,
system, network, database, e-mail, and even tennis administrators. If a Web user is
told to contact an administrator, odds are that there’s data of at least moderate
importance to a security tester.

The word administrator can also be used to locate administrative login pages,
or login portals. (We’ll take a closer look at login portal detection in Chapter 8.)
A query for “administrative login” returns 150,000 results, many of which are
administrative login pages. A security tester can profile Web servers using seem-
ingly insignificant clues found on these types of login pages. Most login portals
provide clues to an attacker about what software is in use on the server and act as
a magnet, drawing attackers who are armed with an exploit for that particular
type of software. Remember that Google performs autostemming; a search for
“admin login” returns approximately 1.3 million results, including results that

211

WWww.syngress.com

212

Chapter 7 * Ten Simple Security Searches That Work

were autostemmed to include the phrase administrator login. As shown in Figure
7.8, many of the results are for administrative login pages.

Figure 7.8 admin login Reveals Administrative Login Pages

Another interesting use of the administrator derivations is to search for them
in the URL of a page using an inurl search. If the word admin is found in the
hostname, a directory name, or a filename within a URL, there’s a decent chance
that the URL has some administrative function, making it interesting from a
security standpoint.

—ext:html —ext:htm
—ext:shtml —ext:asp —ext:php

The —ext:html —ext:htm —ext:shtml —ext:asp —ext:php query uses ext, a synonym for
the filetype operator, and is a negative query. It returns no results when used alone
and should be combined with a sife operator to work properly. The idea behind
this query is to exclude some of the most common Internet file types in an
attempt to find files that might be more interesting for our purposes.

As you’ll see through this book, there are certainly lots of HTML, PHP, and
ASP pages that reveal interesting information, but this chapter is about cutting to
the chase, and that’s what this query attempts to do. The documents returned by

WWww.syngress.com

Ten Simple Security Searches That Work ¢ Chapter 7

this search often have great potential for document grinding, which we’ll explore
in more detail in Chapter 10.The file extensions used in this search were
selected very carefully. First, www.filext.com (one of the Internet’s best resources
for all known file extensions) was consulted to obtain a list of every known file
extension. Each entry in the list of over 8000 file extensions was converted into a
Google query using the filetype operator. For example, if we wanted to search for
the PDF extension, we might use a query like filetype:PDF PDF to get the
number of known results on the Internet. This type of Google query was per-
formed for each and every known file extension from filext.com, which can take
quite some time, considering that the Google API key only allows 1000 searches
per day. Once the results were gathered, they were sorted in descending order by
the number of hits. The top 20 results of this query are shown in Table 7.1.

Table 7.1 Top 20 File Extensions on the Internet

File Extension Approximate Number of Hits
HTML 17,800,000
PHP 16,500,000
HTM 16,100,000
ASP 15,400,000
PDF 11,600,000
cal 11,100,000
CFM 9,870,000
SHTML 8,770,000
JSP 7,370,000
ASPX 7,110,000
PL 5,660,000
PHP3 3,870,000
DLL 3,340,000
SWF 2,260,000
PHTML 2,250,000
DOC 2,120,000
FCGI 1,850,000
TXT 1,700,000
MV 1,060,000
JHTML 990,000

213

WWww.syngress.com

214

Chapter 7 * Ten Simple Security Searches That Work

This table reveals the most common file types on the Internet, according to
Google. In an attempt to get to the juiciest documents fast, our query opts to
ignore the most common server-generated pages, which end in HTML, PHP,
HTM, ASP, and SHTML. Typically a query like this, submitted with a site oper-
ator, will reveal a list of results worth investigating. In some cases, this query will
need to be refined, especially if the site uses a less common server-generated file
extension. For example, consider this query combined with a sife operator, as
shown in Figure 7.9. (To protect the identity of the target, certain portions of the
figure have been edited.)

Figure 7.9 A Base Search Combined with the site Operator

As revealed in the search results, this site uses the ASPX extension for some
Web content. By adding —ext:aspx to the query and resubmitting it, that type of
content is removed from the search results. This modified search reveals some
interesting information, as shown in Figure 7.10.

WwWw.syngress.com

Ten Simple Security Searches That Work ¢ Chapter 7

Figure 7.10 New and Improved, Juicier and Tastier

By adding a common file extension used on this site, after a few pages of
mediocre results we discover a page full of interesting information. Result line 1
reveals that the site supports the HTTPS protocol, a secured version of HTTP
used to protect sensitive information. The mere existence of the HTTPS pro-
tocol often indicates that this server houses something worth protecting. Result
line 1 also reveals several nested subdirectories (/research/files/summaries) that
could be explored or traversed to located other information. This same line also
reveals the existence of a PDF document dated the first quarter of 2003.

Result line 2 reveals the existence of what is most likely a development
server named DEV. This server also contains subdirectories
(/events/archives/strategiesNAM2003) that could be traversed to uncover more
information. One of the subdirectory names, strategiesNAM2003, contains a the
string 2003, most likely a reference to the year 2003. Using the incremental sub-
stitution technique discussed in Chapter 3, it’s possible to modify the year in this
directory name to uncover similarly named directories. Result line 2 also reveals
the existence of an attendee list that could be used to discover usernames, e-mail
addresses, and so on.

Result line 3 reveals another machine name, JOBS, which contains a
ColdFusion application that accepts parameters. Depending on the nature and
security of this application, an attack based on user input might be possible.

215

WWww.syngress.com

216

Chapter 7 * Ten Simple Security Searches That Work

Result line 4 reveals new directory names, /help/emp, which could be traversed
or fed into other third-party assessment applications.

The results continue, but the point is that once common, purposefully placed
files are removed from a search, interesting information tends to float to the top.
This type of reduction can save an attacker or a security technician a good deal
of time in assessing a target.

inurl:temp | inurl:tmp |
inurl:backup | inurl:bak

The inurl:temp | inurl:tmp | inurl:backup | inurl:bak query, combined with the site
operator, searches for temporary or backup files or directories on a server.
Although there are many possible naming conventions for temporary or backup
files, this search focuses on the most common terms. Since this search uses the
inurl operator, it will also locate files that contain these terms as file extensions,
such as index.html.bak, for example. Modifying this search to focus on file
extensions is tricky because this requires OR’ing the filetype operator (which is
often flaky, since filetype also requires a search term that gets lost in the mess of’
ORs) and also limits our search, leaving out temporary or backup directories.

intranet | help.desk

The term intranet, despite more specific technical meanings, has become a
generic term that describes a network confined to a small group. In most cases
the term intranet describes a closed or private network, unavailable to the general
public. However, many sites have configured portals that allow access to an
intranet from the Internet, bringing this typically closed network one step closer
to potential attackers.

In rare cases, private intranets have been discovered on the public Internet
due to a network device misconfiguration. In these cases, network administrators
were completely unaware that their private networks were accessible to anyone
via the Internet. Most often, an Internet-connected intranet is only partially
accessible from the outside. In these cases, filters are employed that only allow
access to certain pages from specific addresses, presumably inside a facility or
campus. There are two major problems with this type of configuration. First, it’s
an administrative nightmare to keep track of the access rights of specific pages.
Second, this is not true access control. This type of restriction can be bypassed
very easily if an attacker gains access to a local proxy server, bounces a request oft

WWww.syngress.com

Ten Simple Security Searches That Work ¢ Chapter 7

a local misconfigured Web server, or simply compromises a machine on the same
network as trusted intranet users. Unfortunately, it’s nearly impossible to provide
a responsible example of this technique in action. Each example we considered
for this section was too easy for an attacker to reconstruct with a few simple
Google queries.

Help desks have a bad reputation of being, well, too helpful. Since the incep-
tion of help desks, hackers have been donning alternate personalities in an
attempt to gain sensitive information from unsuspecting technicians. Recently,
help desk procedures have started to address the hacker threat by insisting that
technicians validate callers before attempting to assist them. Most help desk
workers will (or should) ask for identifying information such as usernames, Social
Security numbers, employee numbers, and even PIN numbers to properly vali-
date callers’ identities. Some procedures are better than others, but for the most
part, today’s help desk technicians are at least aware of the potential threat that is
posed by an imposter.

In Chapter 4, we discussed ways Google can be used to harvest the identifi-
cation information a help desk may require, but the intranet | help.desk query is
designed not to bypass help desk procedures but rather to locate pages describing
help desk procedures. When this query is combined with a site search, the results
could indicate the location of a help desk (Web page, telephone number, or the
like), the information that might be requested by help desk technicians (which
an attacker could gather before calling), and in many cases links that describe
troubleshooting procedures. Self-help documentation is often rather verbose, and
a crafty attacker can use the information in these documents to profile a target
network or server. There are exceptions to every rule, but odds are that this
query, combined with the sife operator, will dig up information about a target
that can feed a future attack.

217

WWww.syngress.com

218

Chapter 7 * Ten Simple Security Searches That Work

Summary

There’s no such thing as the perfect list, but these 10 searches should serve you
well as you seek to compile your own list of killer searches. It’s important to
realize that a search that works against one target might not work well against
other targets. Keep track of the searches that work for you, and try to reach some
common ground about what works and what doesn’t. Automated tools, discussed
in Chapters 11 and 12, can be used to feed longer lists of Google queries such as
those found in the Google Hacking Database, but in some cases, simpler might
be better. If youre having trouble finding common ground in some queries that
work for you, don’t hesitate to keep them in a list for use in one of the auto-
mated tools we’ll discuss later.

Solutions Fast Track

site

M The site operator is great for trolling through all the content Google has
gathered for a target.

M This operator 1s used in conjunction with many of the other queries
presented here to narrow the focus of the search to one target.

intitle:index.of

M The universal search for Apache-style directory listings.

M Directory listings provide a wealth of information for an attacker.

error | warning

M Error messages are also very revealing in just about every context.

M In some cases, warning text can provide important insight into the
behind-the-scenes code used by a target.

login | logon

M This query locates login portals fairly effectively.

www.syngress.com

Ten Simple Security Searches That Work ¢ Chapter 7

M It can also be used to harvest usernames and troubleshooting
procedures.

username | userid | employee. 1D | “your username is”

M This is one of the most generic searches for username harvesting.

M In cases where this query does not reveal usernames, the context around
these words can reveal procedural information an attacker can use in
later oftensive action.

password | passcode | “your password is”

M This query reflects common uses of the word password.

M This query can reveal documents describing login procedures, password
change procedures, and clues about password policies in use on the
target.

admin | administrator

M Using the two most common terms for the owner or maintainer of a
site, this query can also be used to reveal procedural information
(“contact your administrator”) and even admin login portals.

—ext:html —ext:htm —ext:shtml —ext:asp —ext:php

M This query, when combined with the site operator, gets the most
common files out of the way to reveal more interesting documents.

M This query should be modified to reduce other common file types on a
target-by-target basis.

inurl:temp | inurl:tmp | inurl:backup | inurl:bak

M This query locates backup or temporary files and directories.

intranet | help.desk

M This query locates intranet sites (which are often supposed to be
protected from the general public) and help desk contact information
and procedures.

219

www.syngress.com

220 Chapter 7 * Ten Simple Security Searches That Work

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: If automation is an option, what’s so great about 10 measly searches?

A: Automation tools, such as those discussed in Chapters 11 and 12, have their
place. However, the vast majority of the searches covered in large query lists
are very specific searches that target a very small minority of Internet sites.
Although the eftects of these specific queries are often devastating, it’s often
nice to have a short list of powerful searches to get the creative juices flowing
during an assessment, especially if you've reached a dead end using more

conventional means.

Q: Doesn’t it make more sense to base a list like this off a more popular list like
the SANS Top 20 list at www.sans.org/top20?

A: There’s nothing wrong with the SANS Top 20 list, except for the fact that
the vast majority of the items on the list describe vulnerabilities that are not
Web-based. This means that in most cases the vulnerabilities described there
cannot be detected or exploited via Web-based services such as Google.

www.syngress.com

Chapter 8

Tracking Down
Web Servers,

Login Portals, and
Network Hardware

Solutions in this Chapter:

m Locating and Profiling Web Servers
m Locating Login Portals

m Locating Other Network Hardware

M Summary
M Solutions Fast Track

M Frequently Asked Questions

221

222

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Introduction

Penetration testers are sometimes thought of as professional hackers since they
essentially break into their customers’ networks in an attempt to locate, docu-
ment, and ultimately help resolve security flaws in a system or network.
However, pen testers and hackers difter quite a bit in several ways.

For example, most penetration testers are provided with specific instructions
about which networks and systems they will be testing. Their targets are specified,
for many reasons (see Appendix A for more insight about the pen testing method-
ology), but in all cases, their targets are clearly defined or bounded in some fashion.
Hackers, on the other hand, have the luxury of selecting from a wider target base.
Depending on his or her motivations and skill level, the attacker might opt to
select a target based on known exploits at the attacker’s disposal. This reverses the
model used by pen testers, and as such it aftects the structure we will use to
explore the topic of Google hacking. The techniques we’ll explore in the next few
chapters are most often employed by hackers, the “bad guys.”

Penetration testers obviously have access to the techniques we’ll explore in
these chapters, but in many cases these techniques are too cumbersome for use
during a vulnerability assessment, when time is of the essence. Security profes-
sionals often use specialized tools that perform these tasks in a much more
streamlined fashion, but these tools make lots of noise and often overlook the
simplest form of information leakage that Google is so capable of revealing—and
revealing in a way that’s nearly impossible to catch on the “radar”” The techniques
we’ll examine here are used on a daily basis to locate and explore the systems
and networks attached to the Internet, so it’s important that we explore how
these techniques are used to better understand the level of exposure and how
that exposure can be properly mitigated.

The techniques we explore in this chapter are used to locate and analyze the
front-end systems on an Internet-connected network. We look at ways an
attacker can profile Web servers using seemingly insignificant clues found with
Google queries. Next, we look at methods used to locate login portals, the literal
front door of most Web sites. As we will see, some login portals provide adminis-
trators of a system an access point for performing various administrative func-
tions. Most login portals provide clues to an attacker about what software is in
use on the server and act as a magnet, drawing attackers that are armed with an
exploit for that particular type of software. We round out the chapter by showing

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

techniques that can be used to locate all sorts of network devices—firewalls,
routers, network printers, and even Web cameras!

Locating and Profiling Web Servers

If an attacker hasn’t already decided on a target, he might begin with a Google
search for specific targets that match an exploit at his disposal. He might focus
specifically on the operating system, the version and brand of Web server soft-
ware, default configurations, vulnerable scripts, or any combination of factors.

There are many different ways to locate a server. The most common way is
with a simple portscan. Using a tool such as Nmap, a simple scan of port 80
across a class C will expose potential Web servers. Integrated tools such as
Nessus, H.E.A.T., or Retina will run some type of portscan, followed by a series
of security tests. These functions can be replicated with Google queries, although
in most cases the results are nowhere near as effective as the results from a well
thought out vulnerability scanner or Web assessment tool. Remember, though,
that Google queries are less obvious and provide a degree of separation between
an attacker and a target. Also remember that hackers can use Google hacking
techniques to find systems you are charged with protecting. The bottom line is
that it’s important to understand the capabilities of the Google hacker and realize
the role Google can play in an attacker’s methodology.

Directory Listings

We discussed directory listings in Chapter 3, but the importance of directory list-
ings with regard to profiling methods is important. The server tag at the bottom of a
directory listing can provide explicit detail about the type of Web server software
that’s running. If an attacker has an exploit for Apache 2.0.52 running on a UNIX
server, a query such as server.at “Apache/2.0.52” will locate servers that host a
directory listing with an Apache 2.0.52 server tag, as shown in Figure 8.1.

223

WWww.syngress.com

224 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Figure 8.1 Standard Server Tags Can Be Used for Locating Servers

Tip

Remember to always check the real page (as opposed to the cached
page), because server version numbers could change between crawls.

Not all Web servers place this tag at the bottom of directory listings, but most
Apache derivatives turn on this feature by default. Other platforms, such as
Microsoft’s IIS, display server tags as well, as a query for “Microsoft-11S/5.0 server
at” shows in Figure 8.2.

Figure 8.2 Finding IIS 5.0 Servers

Www.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

When searching for these directory tags, keep in mind that your syntax is very
important. There are many irrelevant results from a query for “Microsoft-11S/6.0”
“server at”, whereas a query like “Microsoft-1IS/6.0 server at” provides very relevant
results. Since we’ve already covered directory listings, we won’t dwell on it here.
Refer back to Chapter 3 if you need a refresher on directory listings.

Web Server Software Error Messages

Error messages contain a lot of useful information, but in the context of locating
specific servers, we can use portions of various error messages to locate servers
running specific software versions. We’ll begin our discussion by looking at error
messages that are generated by the Web server software itself.

Microsoft Internet Information Server (IIS)

The absolute best way to find error messages is to figure out what messages the
server is capable of generating. You could gather these messages by examining the
server source code or configuration files or by actually generating the errors on
the server yourself. The best way to get this information from IIS is by exam-
ining the source code of the error pages themselves.

IIS 5 and 6, by default, display static HTTP/1.1 error messages when the server
encounters some sort of problem. These error pages are stored by default in the
%SYSTEMROOTY%\help\iisHelp\common directory. These files are essentially
HTML files named by the type of error they produce, such as 400.htm, 401-
1.htm, 501.htm, and so on. By analyzing these files, we can come up with trends
and commonalities between the pages that are essential for effective Google
searching. For example, the file that produces 400 error pages, 400.htm, contains a
line (line 12) that looks like this:

<title>The page cannot be found</title>

This is a dead giveaway for an eftective intitle query such as intitle:” The page
cannot be found”. Unfortunately, this search yields (as you might guess) far too
many results. We’ll need to dig deeper into the 400.htm file to get more clues
about what to look for. Lines 65—88 of 400.htm are shown here:

65. <p>Please try the following:</p>
66.
67. 1f you typed the page address in the Address bar, make sure that

it is spelled correctly.
68.

225

WWww.syngress.com

226

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

69. Open the

70.

71. <script language="JavaScript'>

72. <I--

73. if (!((window.navigator.userAgent. indexOf(""MSIE"™) > 0) &&
(window.navigator .appVersion.charAt(0) == "2')))

74. {

75. Homepage();

76. }

77. -—>

78. </script>

79.

80. home page, and then look for links to the information you want.
81.

82. Click the

83.

84. Back button to try another link.

85.

86.

87. <h2 style="COLOR:000000; FONT: 8pt/llpt verdana">HTTP 400 - Bad
Request

88. Internet Information Services</h2>

The phrase “Please try the following” in line 65 exists in every single error file
in this directory, making it a perfect candidate for part of a good base search. This
line could effectively be reduced to “please * * following”. Line 88 shows another
phrase that appears in every error document; “Internet Information Services”. These
are “golden terms” to use to search for IIS HTTP/1.1 error pages that Google
has crawled. A query such as intitle:”'The page cannot be found” “please following”
“Internet * Services” can be used to search for IIS servers that present a 400 error
page, as shown in Figure 8.3.

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Figure 8.3 Smart Search for Locating IIS Servers

Looking at this cached page carefully, you’ll notice that the actual error code
itself is printed on the page, about halfway down. This error line is also printed
on each of IS’ error pages, making for another good limiter for our searching.
The line on the page begins with “HTTP Error 404,” which might seem out of
place, considering we were searching for a 400 error code, not a 404 error code.
This occurs because several IIS error pages produce similar pages. Although com-
monalities are often good for Google searching, they could lead to some confu-
sion and produce ineffective results if we are searching for a specific, less benign
error page. It’s obvious that we’ll need to sort out exactly what’s what in these
error page files. Table 8.1 lists all the unique HTML error page titles and error
codes from a default IIS 5 installation.

Table 8.1 1IS HTTP/1.1 Error Page Titles

Error Code Page Title

400 The page cannot be found

401.1, 401.2, 401.3, 401.4, You are not authorized to view this page
401.5

403.1, 403.2 The page cannot be displayed
403.3 The page cannot be saved
403.4 The page must be viewed over a secure channel

Continued

227

WWww.syngress.com

228

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Table 8.1 1IS HTTP/1.1 Error Page Titles

Error Code Page Title

403.5 The page must be viewed with a high-security
Web browser

403.6 You are not authorized to view this page

403.7 The page requires a client certificate

403.8 You are not authorized to view this page

403.9 The page cannot be displayed

403.10, 403.11 You are not authorized to view this page

403.12, 403.13 The page requires a valid client certificate

403.15 The page cannot be displayed

403.16, 403.17 The page requires a valid client certificate

404.1, 404b The Web site cannot be found

405 The page cannot be displayed

406 The resource cannot be displayed

407 Proxy authentication required

410 The page does not exist

412 The page cannot be displayed

414 The page cannot be displayed

500, 500.11, 500.12, The page cannot be displayed

500.13, 500.14, 500.15

502 The page cannot be displayed

These page titles, used in an intitle search, combined with the other golden
IIS error searches, make for very eftective searches, locating all sorts of IIS servers
that generate all sorts of telling error pages. To troll for IIS servers with the eso-
teric 404.1 error pager, try a query such as intitle:” The Web site cannot be found”
“please ** following”. A more common error can be found with a query such as
intitle:” The page cannot be displayed” “Internet Information Services” “please ** fol-
lowing”, which is very effective because this error page is shown for many dif-
ferent error codes.

In addition to displaying the default static HTTP/1.1 error pages, IIS can be
configured to display custom error messages, configured via the Management
Console. An example of this type of custom error page is shown in Figure 8.4.
This type of functionality makes the job of the Google hacker a bit more diffi-

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

cult since there is no apparent way to home in on a customized error page.
However, some error messages, including 400, 403.9, 411, 414, 500, 500.11,
500.14, 500.15, 501, 503, and 505 pages, cannot be customized. In terms of
Google hacking, this means that there is no easy way an IIS 6 server can prevent
displaying the static HTTP/1.1 error pages we so eftectively found a minute ago.
This opens the door for locating these servers through Google, even if the server
has been configured to display custom error pages.

Besides trolling through the IIS error pages looking for exact phrases, we can
also perform more generic queries, such as intitle:”the page cannot be found” inetmgr,
which focuses on the fairly unique term used to describe the IIS Management
console, inetmgr, as shown near the bottom of Figure 8.3. Other ways to perform
this same search might be intitle:”the page cannot be found” “internet information ser-
vices”, or intitle:”Under construction” “Internet Information Services”.

Other, more specific searches can reveal the exact version of the IIS server,
such as a query for intext:”404 Object Not Found” Microsoft-11S/5.0, as shown in
Figure 8.4.

Figure 8.4 "Object Not Found” Error Message Used to Find IIS 5.0

Apache Web Server

Apache Web servers can also be located by focusing on server-generated error
messages. Some generic searches such as “Apache/1.3.27 Server at” -intitle:index.of
intitle:inf” or “Apache/1.3.27 Server at” -intitle:index.of intitle:error (shown in

229

WWww.syngress.com

230 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Figure 8.5) can be used to locate servers that might be advertising their server
version via an info or error message.

Figure 8.5 A Generic Error Search Locates Apache Servers

A query such as “Apache/2.0.40” intitle:” Object not found!” will locate Apache
2.0.40 Web servers that presented this error message. Figure 8.6 shows an error
page from an Apache 2.0.40 server shipped with Red Hat 9.0.

Figure 8.6 A Common Error Message from Apache 2.0.40

Www.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Although there might be nothing wrong with throwing queries around
looking for commonalities and good base searches, we’ve already seen in the IIS
section that it’s more effective to consult the server software itself for search
clues. Most Apache installations rely on a configuration file called httpd.conf.
Searching through Apache 2.0.40’ httpd.conf file reveals the location of the
HTML templates for error messages. The referenced files (which follow) are
located in the Web root directory—such as
/error/http_ BAD_REQUEST.html.var, which refers to the /var/www/error
directory on the file system:

ErrorDocument 400 /error/HTTP_BAD_REQUEST.html.var
ErrorDocument 401 /error/HTTP_UNAUTHORIZED.html.var
ErrorDocument 403 /error/HTTP_FORBIDDEN.html.var
ErrorDocument 404 /error/HTTP_NOT_FOUND.html.var
ErrorDocument 405 /error/HTTP_METHOD_NOT_ALLOWED.html.var
ErrorDocument 408 /error/HTTP_REQUEST_TIME_OUT.html._var
ErrorDocument 410 /error/HTTP_GONE.html.var

ErrorDocument 411 /error/HTTP_LENGTH_REQUIRED.html.var
ErrorDocument 412 /error/HTTP_PRECONDITION_FAILED.html.var
ErrorDocument 413 /error/HTTP_REQUEST_ENTITY_TOO_LARGE.html.var
ErrorDocument 414 /error/HTTP_REQUEST URI_TOO_LARGE.html.var
ErrorDocument 415 /error/HTTP_SERVICE_UNAVAILABLE.html.var
ErrorDocument 500 /error/HTTP_INTERNAL_SERVER_ERROR.html.var
ErrorDocument 501 /error/HTTP_NOT_IMPLEMENTED.html.var
ErrorDocument 502 /error/HTTP_BAD_GATEWAY.html.var
ErrorDocument 503 /error/HTTP_SERVICE_UNAVAILABLE.html.var
ErrorDocument 506 /error/HTTP_VARIANT_ALSO_VARIES.html.var

Taking a look at one of these template files, we can see recognizable HTML
code and variable listings that show the construction of an error page. The file
itself 1s divided into sections by language. The English portion of the
HTTP_NOT_FOUND.html.var file is shown here:

Content-language: en
Content-type: text/html

Body:---——————- en--
<I-—-#set var="TITLE" value="Object not found!" -->
<I--#include virtual="include/top.html" -->

231

WWww.syngress.com

232 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

The requested URL was not found on this server.
<V1--#if expr="$HTTP_REFERER" -->

The link on the

<a href="<!--#fecho encoding="url" var="HTTP_REFERER"-->">referring
page seems to be wrong or outdated. Please inform the author of
<a href=""<!--#fecho encoding="url" var="HTTP_REFERER"-->'"">that page
about the error.

<I--#else -->

IT you entered the URL manually please check your

spelling and try again.
<I--#endif -->

<I-—#include virtual="include/bottom_html" -->

Notice that the sections of the error page are clearly labeled, making it easy
to translate into Google queries. The TITLE variable, shown near the top of the
listing, indicates that the text “Object not found!” will be displayed in the
browser’s title bar. When this file is processed and displayed in a Web browser, it
will look like Figure 8.2. However, Google hacking is not always this easy. A
search for intitle:” Object not found!” is too generic, returning the results shown in
Figure 8.7.

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Figure 8.7 Error Message Text Is Not Enough for Profiling

These results are not what we’re looking for. To narrow our results, we need a
better base search. Constructing our base search from the template files included
with the Apache 2.0 source code not only enables us to locate all the potential
error messages the server is capable of producing, it also shows us how those
messages are translated into other languages, resulting in very solid multilingual
base searches.

The HTTP_NOT_FOUND.html.var file listed previously references two vir-
tual include lines, one near the top (include/top.html) and one near the bottom
(include/bottom.html). These lines instruct Apache to read and insert the contents
of these two files (located in our case in the /var/www/error/include directory)
into the current file. The following code lists the contents of the bottom.html file
and show some subtleties that will help construct that perfect base search:

</dd></dI><dl><dd>

<I--#include virtual="._./contact._html.var" -->

</dd></dI>

<h2>Error <!--#echo encoding=""none" var="REDIRECT_STATUS" --></h2>
<dI>

<dd>

<address>

<l--#echo encoding=""url" var="SERVER_NAME" -->

233

WWww.syngress.com

234

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

<I--#config timefmt="%c" -->

<smalI><!--#echo encoding="none" var="DATE_LOCAL" --></small>

<smalI><!--#echo encoding="none" var="SERVER_ SOFTWARE" --></small>
</address>

</dd>

</dI>

</body>

</html>

First, notice line 4, which will display the word “Error” on the page.
Although this might seem very generic, it’s an important subtlety that would
keep results like the ones in Figure 8.7 from displaying. Line 2 shows that
another file (/var/www/error/contact.html.var) is read and included into this
file. The contents of this file, listed as follows, contain more details we can
include into our base search:

Content-language: en
Content-type: text/html

IT you think this is a server error, please contact

a A w N P
oy]
o
Q
<
I
I
I
I
I
I
I
I
I
|
@
=)
|
I

the <a href="mailto:<!--#echo encoding=""none" var="SERVER_ADMIN" --
>">webmaster

This file, like the file that started this whole “include chain,” is broken up
into sections by language. The portion of this file listed here shows yet another
unique string we can use. We’ll select a fairly unique piece of this line, “think this
is a server error,” as a portion of our base search instead of just the word error,
which we used initially to remove some false positives. The other part of our base
search, intitle: “Object not found!”, was originally found in the
/error/http_ BAD_REQUEST.html.var file. The final base search for this file
then becomes intitle:” Object Not Found!” “think this is a server error”, which
returns very accurate results, as shown in Figure 8.8.

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Figure 8.8 A Good Base Search Evolved

Now that we’ve found a good base search for one error page, we can auto-
mate the query-hunting process to determine good base searches for the other
error pages referenced in the httpd.conf file, helping us create solid base searches
for each and every default Apache (2.0) error page. The contact.html.var file that
we saw previously is included in each and every Apache 2.0 error page via the
bottom.html file. This means that “think this is a server error” will work for all the
different error pages Apache 2.0 will produce. The other critical element to our
search was the intitle search, which we could grep for in each of the error files.
While we're at it, we should also try to grab a snippet of the text that is printed
in each of the error pages, remembering that in some cases a more specific search
might be needed. Using some basic shell commands, we can isolate both the title
of an error page and the text that might appear on the error page:

grep -h -r "Content-language: en"™ -A 10 | grep -A5 "TITLE"™ | grep -v
virtual

This Linux bash shell command, when run against the Apache 2.0 source
code tree, will produce output similar to that shown in Table 8.2.This table lists
the title of each English Apache (2.0 and newer) error page as well as a portion
of the text that will be located on the page. Instead of searching for English mes-
sages only, we could search for errors in other Apache-supported languages by
simply replacing the Content-language string in the previous grep command from
en to either de, es, fr, or sv, for German, Spanish, French, or Swedish, respectively.

235

WWww.syngress.com

236 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Table 8.2 The Title and Partial Text of English Apache 2.0 Error Pages

Error Page Title

Error Page Partial Text

Bad gateway!
Bad request!

Access forbidden!

Resource is no longer
available!

Server error!

Method not allowed!

No acceptable object found!

Object not found!
Cannot process request!

Precondition failed!

Request entity too large!

Request time-out!

Submitted URI too large!

Service unavailable!

Authentication required!

The proxy server received an invalid response
from an upstream server.

Your browser (or proxy) sent a request that this
server could not understand.

You don’t have permission to access the
requested directory. Either there is no index doc-
ument or the directory is read-protected.

The requested URL is no longer available on this
server and there is no forwarding address.

The server encountered an internal error and
was unable to complete your request.

A request with the method is not allowed for
the requested URL.

An appropriate representation of the requested
resource could not be found on this server.

The requested URL was not found on this server.

The server does not support the action
requested by the browser.

The precondition on the request for the URL
failed positive evaluation.

The method does not allow the data trans-
mitted, or the data volume exceeds the capacity
limit.

The server closed the network connection
because the browser didn’t finish the request
within the specified time.

The length of the requested URL exceeds the
capacity limit for this server. The request cannot
be processed.

The server is temporarily unable to service your
request due to maintenance downtime or
capacity problems. Please try again later.

This server could not verify that you are autho-
rized to access the URL. You either supplied the
wrong credentials (such as a bad password) or
your browser doesn’t understand how to supply
the credentials required.

WWww.syngress.com

Continued

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Table 8.2 The Title and Partial Text of English Apache 2.0 Error Pages

Error Page Title Error Page Partial Text

Unsupported media type! The server does not support the media type
transmitted in the request.

Variant also varies! A variant for the requested entity is itself a
negotiable resource. Access not possible.

To use this table, simply supply the text in the Error Page Title column as an
intitle search and a portion of the text column as an additional phrase in the
search query. Since some of the text is lengthy, you might need to select a unique
portion of the text or replace common words with the asterisk, which will
reduce your search query to the 10-word limit imposed on Google queries. For
example, a good query for the first line of the table might be “response from *
upstream server.” intitle:” Bad Gateway!”. Alternately, you could also rely on the
“think this is a server error” phrase combined with a title search, such as “think this
is a server error” intitle:” Bad Gateway!”. Different versions of Apache will display
slightly difterent error messages, but the process of locating and creating solid
base searches from software source code is something you should get comfortable
with to stay ahead of the ever-changing software market.

This technique can be expanded to find Apache servers in other languages by
reviewing the rest of the contact.html.var file. The important strings from that
file are listed in Table 8.3. Because these sentences and phrases are included in
every Apache 2.0 error message, they should appear in the text of every error page
that the Apache server produces, making them ideal for base searches. It is pos-
sible (and fairly easy) to modify these error pages to provide a more polished
appearance when a user encounters an error, but remember: Hackers have dif-
ferent motivations. Some are simply interested in locating particular versions of a
server, perhaps to exploit. With that criteria, there is no shortage of servers on
the Internet that are using these default error phrases.

237

WWww.syngress.com

238

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Table 8.3 Phrases Located on All Default Apache (2.0.28-2.0.52) Error Pages

Language Phrases

German Sofern Sie dies flir eine Fehlfunktion des Servers
halten, informieren Sie bitte den hiertber.

English If you think this is a server error, please contact.

Spanish En caso de que usted crea que existe un error en
el servidor.

French Si vous pensez qu'il s'agit d'une erreur du
serveur, veuillez contacter.

Swedish Om du tror att detta beror pa ett serverfel, van-

ligen kontakta.

Besides Apache and IIS, other servers can be located by searching for server-
produced error messages, but we’re trying to keep this book just a bit thinner
than your local yellow pages, so we’ll draw the line at just these two servers.

Application Software Error Messages

The error messages we’ve looked at so far have all been generated by the Web
server itself. In many cases, applications running on the Web server can generate
errors that reveal information about the server as well. There are untold thou-
sands of Web applications on the Internet, each of which can generate any
number of error messages. Dedicated Web assessment tools such as SPI
Dynamic’s Weblnspect excel at performing detailed Web application assessments,
making it seem a bit pointless to troll Google for application error messages.
However, we search for error message output throughout this book simply
because the data contained in error messages should not be overlooked.

We’ve looked at various error messages in previous chapters, and we’ll see more
error messages in later chapters, but let’s take a quick look at how error messages
can help profile a Web server and its applications. Admittedly, we will hardly scratch
the surface of this topic, but we’ll make an effort to stimulate your thinking about
Google’s ability to locate these sometimes very telling error messages.

One query, “Fatal error: Call to undefined function” -reply -the —next, will locate
Active Server Page (ASP) error messages. These messages often reveal informa-
tion about the database software in use on the server as well as information about
the application that caused the error (see Figure 8.9).

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8 239

Figure 8.9 ASP Custom Error Messages

Although this ASP message 1s fairly benign, some ASP error messages are much
more revealing. Consider the query “ASPNET_Sessionld” “data source=", which
locates unique strings found in ASPNET application state dumps, as shown in
Figure 8.10.These dumps reveal all sorts of information about the running applica-
tion and the Web server that hosts that application. An advanced attacker could use
encrypted password data and variable information in these stack traces to subvert
the security of the application and perhaps the Web server itself.

Figure 8.10 ASP Dumps Provide Dangerous Details

WwWw.syngress.com

240 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

PHP application errors are fairly commonplace. They can reveal all sorts of
information that an attacker can use to profile a server. One very common error
can be found with a query such as intext:” Warning: Failed opening” include_path,
as shown in Figure 8.11.

Figure 8.11 Many Errors Reveal Pathnames and Filenames

CGI programs often reveal information about the Web server and its applica-
tions in the form of environment variable dumps. A typical environmental vari-
able output page is shown in Figure 8.12.

Figure 8.12 CGI Environment Listings Reveal Lots of Information

WwWw.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

This screen shows information about the Web server and the client that con-
nected to the page when the data was produced. Since Google’s bot crawls pages
for us, one way to find these CGI environment pages is to focus on the trail left
by the bot, reflected in these pages as the “HTTP_FROM=googlebot” line. We
can search for pages like this with a query such as “HTTP_FROM=googlebot”
googlebot.com “Server_Software”. These pages are dynamically generated, which
means that you must look at Google’s cache to see the document as it was
crawled.

To locate good base searches for a particular application, it’s best to look at
the source code of that application. Using the techniques we’ve explored so far,
it’s simple to create these searches.

Default Pages

Another way to locate specific types of servers or Web software is to search for
default Web pages. Most Web software, including the Web server software itself,
ships with one or more default or test pages. These pages can make it easy for a
site administrator to test the installation of a Web server or application. By pro-
viding a simple page to test, the administrator can simply connect to his own
Web server with a browser to validate that the Web software was installed cor-
rectly. Some operating systems even come with Web server software already
installed. In this case, the owner of the machine might not even realize that a
Web server is running on his machine. This type of casual behavior on the part
of the owner will lead an attacker to rightly assume that the Web software 1s not
well maintained and is, by extension, insecure. By further extension, the attacker
can also assume that the entire operating system of the server might be vulner-
able by virtue of poor maintenance.

In some cases, Google crawls a Web server while it is in its earliest stages of
installation, still displaying a set of default pages. In these cases there’s generally a
short window of time between the moment when Google crawls the site and
when the intended content is actually placed on the server. This means that there
could be a disparity between what the live page is displaying and what Google’s
cache displays. This makes little difference from a Google hacker’s perspective,
since even the past existence of a default page is enough for profiling purposes.
Remember, we're essentially searching Google’s cached version of a page when
we submit a query. Regardless of the reason a server has default pages installed,
there’s an attacker somewhere who will eventually show interest in a machine
displaying default pages found with a Google search.

241

WWww.syngress.com

242 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

A classic example of a default page is the Apache Web server default page,
shown in Figure 8.13.

Figure 8.13 A Typical Apache Default Web Page

Notice that the administrator’s e-mail 1s generic as well, indicating that not a
lot of attention was paid to detail during the installation of this server. These
default pages do not list the version number of the server, which is a required
piece of information for a successful attack. It is possible, however, that an
attacker could search for specific variations in these default pages to find specific
ranges of server versions. As shown in Figure 8.14, an Apache server running ver-
sions 1.3.11 through 1.3.26 shows a slightly different page than the Apache
server version 1.3.11 through 1.3.26, shown in Figure 8.13.

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Figure 8.14 Subtle Differences in Apache Default Pages

Using these subtle differences to our advantage, we can use specific Google
queries to locate servers with these default pages, indicating that they are most
likely running a specific version of Apache.Table 8.4 shows queries that can be
used to locate specific families of Apache running default pages.

Table 8.4 Queries That Locate Default Apache Installations

Apache Server Version Query

Apache 1.2.6 intitle: “Test Page for Apache Installation” “You
are free”

Apache 1.3.0-1.3.9 intitle: "Test Page for Apache” “It worked!” “this
Web site!”

Apache 1.3.11-1.3.31 intitle:Test.Page.for.Apache seeing.this.instead

Apache 2.0 intitle:Simple.page.for.Apache
Apache.Hook.Functions

Apache SSL/TLS intitle:test.page “Hey, it worked !” “SSL/TLS-
aware”

Apache on Red Hat “Test Page for the Apache Web Server on Red
Hat Linux”

Apache on Fedora intitle: “test page for the apache http server on
fedora core”

Continued

WWww.syngress.com

243

244 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Table 8.4 Queries That Locate Default Apache Installations

Apache Server Version Query

Apache on Debian intitle: "Welcome to Your New Home Page!”
debian

Apache on other Linux intitle: "Test Page Apache Web Server on “ -

red.hat -fedora

IIS also displays a default Web page when first installed. A query such as
intitle:” Welcome to IIS 4.0” can locate very specific versions of IIS, as shown in
Figure 8.15.

Figure 8.15 Locating Default Installations of 1IS 4.0 on Windows NT 4.0/OP

Table 8.5 Queries That Locate Specific IIS Server Versions

IIS Server Version Query

Many intitle: "welcome to” intitle:internet IIS

Unknown intitle: “Under construction” “does not currently have”

IIS 4.0 intitle: “welcome to IIS 4.0”

I1S 4.0 allintitle :Welcome to Windows NT 4.0 Option Pack

I1S 4.0 allintitle :Welcome to Internet Information Server

IIS 5.0 allintitle :Welcome to Windows 2000 Internet Services

IIS 6.0 allintitle : Welcome to Windows XP Server Internet
Services

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8 245

Although each version of IIS displays distinct default Web pages, in some
cases service packs or hotfixes could alter the content of a default page. In these
cases, the subtle page changes can be incorporated into the search to find not
only the operating system version and Web server version but also the service
pack level and security patch level. This information 1s invaluable to an attacker
bent on hacking not only the Web server, but hacking beyond the Web server
and into the operating system itself. In most cases, an attacker with control of the
operating system can wreak more havoc on a machine than a hacker who con-
trols only the Web server.

Netscape servers can also be located with simple queries such as
allintitle: Netscape Enterprise Server Home Page, as shown in Figure 8.16.

Figure 8.16 Locating Netscape Web Servers

Other Netscape servers can be found with simple allintitle searches, as shown
in Table 8.6.

Table 8.6 Queries That Locate Netscape Servers

Netscape Server Type Query

Enterprise Server allintitle:Netscape Enterprise Server Home Page
FastTrack Server allintitle:Netscape FastTrack Server Home Page

WWww.syngress.com

246

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Many difterent types of Web server can be located by querying for default

pages as well. Table 8.7 lists a sample of more esoteric Web servers that can be

profiled with this technique.

Table 8.7 Queries That Locate More Esoteric Servers

Server/Version

Query

Cisco Micro Webserver 200

Generic Appliance
HP appliance sa1

iPlanet/Many
Intel Netstructure

JWS/1.0.3-2.0
J2EE/Many
Jigsaw/2.2.3
Jigsaw/Many
KFSensor honeypot
Kwiki

Matrix Appliance
NetWare 6
Resin/Many
Resin/Enterprise
Sambar Server

Sun AnswerBook Server

TivoConnect Server

“micro webserver home page”

“default web page” congratulations “hosting
appliance”

intitle: "default domain page
Ilhp Web ”

intitle: “web server, enterprise edition”

“congratulations on choosing” intel
netstructure

allintitle:default home page java web server
intitle: “default j2ee home page”
intitle: “jigsaw overview” “this is your”

v

congratulations”

intitle: "jigsaw overview”
“KF Web Server Home Page”

“Congratulations! You've created a new Kwiki
website.”

“Welcome to your domain web page” matrix
intitle: “welcome to netware 6”
allintitle:Resin Default Home Page
allintitle:Resin-Enterprise Default Home Page
intitle: "sambar server” “1997..2004 Sambar”
inurl:"Answerbook2options”
inurl:/TiVoConnect

Default Documentation

Web server software often ships with manuals and documentation that ends up in

the Web directories. An attacker could use this documentation to either profile
or locate Web software. For example, Apache Web servers ship with documenta-

tion in HTML format, as shown in Figure 8.17.

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8 247

Figure 8.17 Apache Documentation Used for Profiling

In most cases, default documentation does not as accurately portray the server
version as well as error messages or default pages, but this information can cer-
tainly be used to locate targets and to gain an understanding of the potential
security posture of the server. If the server administrator has forgotten to delete
the default documentation, an attacker has every reason to believe that other
details such as security have been overlooked as well. Other Web servers, such as
1IS, ship with default documentation as well, as shown in Figure 8.18.

Figure 8.18 IIS Server Profiled Via Default Manuals

WwWw.syngress.com

248

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

In most cases, specialized programs such as CGI scanners or Web application

assessment tools are better suited for finding these default pages and programs,

but if Google has crawled the pages (from a link on a default main page for

example), you’ll be able to locate these pages with Google queries. Some queries

that can be used to locate default documentation are listed in Table 8.8.

Table 8.8 Queries That Locate Default Documentation

Search Subject

Query

Apache 1.3
Apache 2.0
Apache Various

ColdFusion
EAServer

iPlanet Server 4.1/
Enterprise Server 4.0

[IS/Various
Lotus Domino 6
Novell Groupwise 6

Novell Groupwise
WebAccess

Novell Groupwise
WebPublisher

intitle: “Apache 1.3 documentation”
intitle: "Apache 2.0 documentation”

intitle: "Apache HTTP Server” intitle:”
documentation”

inurl:cfdocs
intitle: "Easerver” “Easerver Version Documents”
inurl: “/manual/servlets/” intitle: “programmer”

inurl:iishelp core
intext:/help/help6_client.nsf
inurl:/com/novell/gwmonitor
inurl: “/com/novell/webaccess”

inurl: “/com/novell/webpublisher”

Sample Programs

In addition to documentation and manuals that ship with Web software, it is

fairly common for default applications to be included with a software package.

These default applications, like default Web pages, help demonstrate the func-

tionality of the software and serve as a starting point for developers, providing

sample routines and code that could be used as learning tools. Unfortunately,

these sample programs can be used to not only profile a Web server; often these
sample programs contain flaws or functionality an attacker could use to compro-
mise the server. The Microsoft Index Server simple content query page, shown in
Figure 8.19, allows Web visitors to search through the content of a Web site. In

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8 249

some cases, this query page could locate pages that are not linked from any other
page or that contain sensitive information.

Figure 8.19 Microsoft Index Server Simple Content Query Page

As with default pages, specialized programs designed to crawl a Web site in
search of these default programs are much better suited for finding these pages.
However, if a default page provided with a Web server contains links to demon-
stration pages and programs, Google will find them. In some cases, the cache of
these pages will remain even after the main page has been updated and the links
removed. Table 8.9 shows some queries that can be used to locate default-
installed programs.

WWww.syngress.com

250

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Table 8.9 Queries That Locate Default Programs

Software

Query

Apache Cocoon
Generic

Generic

IBM Websphere

Lotus Domino 4.6
Lotus Domino 4.6
Lotus Domino 4.6
Lotus Domino 4.6
Lotus Domino 4.6
Microsoft Index Server
Microsoft Site Server
Novell NetWare 5
Novell GroupWise WebPublisher
Netware WebSphere
OpenVMS!

Oracle Demos

Oracle JSP Demos
Oracle JSP Scripts

inurl:cocoon/samples/welcome
inurl:demo | inurl:demos
inurl:sample | inurl:samples
inurl:WebSphereSamples
inurl: /sample/framew46
inurl:/sample/faqw46
inurl:/sample/pagesw46
inurl:/sample/siregw46
inurl:/sample/faqw46
inurl:samples/Search/queryhit
inurl:siteserver/docs
inurl:/lcgi/sewse.nlm
inurl:/servlet/webpub groupwise
inurl:/servlet/SessionServlet
inurl:sys$common
inurl:/demo/sql/index.jsp
inurl:demo/basic/info
inurl:ojspdemos

Oracle 9i inurl:/pls/simpledad/admin_
[IS/Various inurl:iissamples
[IS/Various inurl:/scripts/samples/search

Sambar Server

intitle: "Sambar Server Samples”

Locating Login Portals

The term login portal describes a Web page that serves as a “front door” to a Web
site. Login portals are designed to allow access to specific features or functions
after a user logs in. Google hackers search for login portals as a way to profile the

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

software that’s in use on a target and to locate links and documentation that
might provide useful information for an attack. In addition, if an attacker has an
exploit for a particular piece of software, and that software provides a login
portal, the attacker can use Google queries to locate potential targets.

Some login portals, like the one shown in Figure 8.20, captured with
allinurl:”exchange /logon.asp”, are obviously default pages provided by the software
manufacturer—in this case, Microsoft. Just as an attacker can get an idea of the
potential security of a target by simply looking for default pages, a default login
portal can indicate that the technical skill of the server’s administrators is gener-
ally low, revealing that the security of the site will most likely be poor as well. To
make matters worse, default login portals like the one shown in Figure 8.20 indi-
cate the software revision of the program—in this case, version 5.5 SP4. An
attacker can use this information to search for known vulnerabilities in that soft-
ware version.

Figure 8.20 Outlook Web Access Default Portal

By following links from the login portal, an attacker can often gain access to
other information about the target. The Outlook Web Access portal is particu-
larly renowned for this type of information leak because it provides an anony-
mous public access area that can be viewed without logging in to the mail
system. This public access area sometimes provides access to a public directory or
to broadcast e-mails that can be used to gather usernames or information, as
shown in Figure 8.21.

251

WWww.syngress.com

252 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Figure 8.21 Public Access Areas Can Be Found from Login Portals

Some login portals provide more details than others. As shown in Figure
8.22, the Novell Management Portal provides a great deal of information about
the server, including server software version and revision, application software
version and revision, software upgrade date, and server uptime. This type of infor-
mation is very handy for an attacker staging an attack against the server.

Figure 8.22 Novell Management Portal Reveals a Great Deal of Information

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Table 8.9 shows some queries that can be used to locate various login portals.

Refer to Chapter 4 for more information about login portals and the informa-

tion they reveal.

Table 8.9 Queries That Locate Login Portals

Login Portal

Query

4lmages GMS

Apache Tomcat Admin
ASP.NET

Citrix Metaframe

Citrix Metaframe
ColdFusion Admin
ColdFusion Generic
Compaq Insight Manager
CuteNews

Easy File Sharing

Emule
Ensim Enterprise

Generic Admin
Generic User
Generic
GradeSpeed
Infopop UBB
Jetbox CMS

Lotus Domino Admin
Lotus Domino
Mambo CMS Admin

Microsoft Certificate Server

“4images Administration Control Panel”
intitle: “Tomcat Server Administration”
inurl:ASPlogin_aspx
inurl:/Citrix/Nfuse17/
inurl:citrixmetaframexp/default/login.asp
intitle: “ColdFusion Administrator Login”
inurl:login.cfm

inurl:cpqlogin.htm

“powered by CuteNews . © CutePHP

intitle: "Login - powered by Easy File Sharing
Web

“Web Control Panel” “Enter your password
here”

intitle: "Welcome Site/User Administrator”
“Please

inurl:/admin/login.asp

inurl:login.asp

“please log in”
inurl:”“gs/adminlogin.aspx”
inurl:cgi-bin/ultimatebb.cgi?ubb=Ilogin

Login (“Powered by Jetbox One CMS ™" |
“Powered by Jetstream © *)

inurl:"webadmin” filetype:nsf
inurl:names.nsf?opendatabase
inurl:administrator “welcome to mambo”

intitle: "microsoft certificate services”
inurl:certsrv

Microsoft Outlook Web Access allinurl: “exchange/logon.asp”

Continued

WWww.syngress.com

253

254

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Table 8.9 Queries That Locate Login Portals

Login Portal

Query

Microsoft Outlook Web Access

Microsoft Remote Desktop

Network Appliance Admin

Novell Groupwise Web Access

Novell Groupwise
Novell Management Portal
OpenExchange Admin

phpMySearch Admin
PhpWebMail

Remedy Action Request
SAP ITS

Shockwave Flash Login
SilkRoad Eprise
SQWebmail
Synchronet BBS
Tarantella

TeamSpeak Admin
Tivoli Server Administration
TUTOS

TYPO3 CMS

Ultima Online Servers
Usermin

UtiliPro Workforce
Management

inurl: “exchange/logon.asp” or
intitle: “Microsoft Outlook Web Access —
Logon”

intitle:Remote.Desktop.Web.Connection
inurl:tsweb

inurl:na_admin
inurl:/servlet/webacc Novell

intitle:Novell intitle:WebAccess “Copyright -
Novell, Inc”

Novell NetWare intext: “netware management
portal version”

filetype:pl “Download: SuSE Linux
Openexchange Server CA”

inurl:search/admin.php

filetype:php login inurl:phpWebMail
(intitle:phpWe

(inurl:"ars/cgi-bin/arweb?0=0" |
inurl:arweb.jsp)

intitle: "ITS System Information
to the SAP System”

inurl:login filetype:swf swf
inurl:/eprise/
inurl:/cgi-bin/sqwebmail?noframes=1
intitle:Node.List Win32.Version.3.11
“ttawlogin.cgi/?action="

intitle: “teamspeak server-administration
intitle: "Server Administration” “Tivoli power”
intitle: "TUTOS Login”

inurl: "typo3/index.php?u="-demo
filetype:cfg login “LoginServer="
“Login to Usermin” inurl:20000

inurl: “utilities/TreeView.asp”

" u

Please log on

WWww.syngress.com

Continued

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Table 8.9 Queries That Locate Login Portals

Login Portal Query

Virtual Network Computing “VNC Desktop” inurl:5800

(VNQ)

WebAdmin filetype:php inurl:“webeditor.php”
Webmail intitle:Login 1&1 Webmailer
Webmin Admin inurl:”:10000" intext:webmin
WebSTAR Mail “WebSTAR Mail - Please Log In”

Login portals provide great information for use during a vulnerability assess-
ment. Chapter 4 provides more details on getting the most from these pages.

Locating Network Hardware

It’s not uncommon for a network-connected device to have a Web page of some
sort. If that device is connected to the Internet and a link to that device’s Web page
ever existed, there’s a good chance that that page is in Google’s database, waiting to
be located with a crafty query. As we discussed in Chapter 5, these pages can reveal
information about the target network, as shown in Figure 8.23.This type of infor-
mation can play a very important role in mapping a target network.

Figure 8.23 Network Device Web Pages Reveal Network Data

255

WWww.syngress.com

256

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

All types of devices can be connected to a network. In Chapter 5, we dis-
cussed network devices that reveal a great deal of information about the network
they are attached to. These devices, ranging from switches and routers to printers
and even firewalls, are considered great finds for any attacker interested in net-
work reconnaissance, but some devices such as Webcams are interesting finds for
an attacker as well.

In most cases, a network-connected Webcam is not considered a security threat
but more a source of entertainment for any Web surfer. Keep a few things in mind,
however. First, some companies consider it trendy and cool to provide customers a
look around their workplace. Netscape was known for this back in its heyday. The
Webcams located on these companies’ premises were obviously authorized by
upper management. A look inside a facility can be a huge benefit if your job boils
down to a physical assessment. Second, it’s not all that uncommon for a Webcam to
be placed outside a facility, as shown in Figure 8.24.This type of cam is a boon for
a physical assessment. Also, don't forget that what an employee does at work doesn’t
necessarily reflect what he does on his own time. If you locate an employee’s per-
sonal Web space, there’s a fair chance that these types of devices will exist.

Figure 8.24 Webcams Placed Outside a Facility

Www.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Most network printers manufactured these days have some sort of Web-based
interface installed. If these devices (or even the documentation or drivers sup-
plied with these devices) are linked from a Web page, various Google queries can
be used to locate them.

Once located, network printers can provide an attacker with a wealth of
information. As shown in Figure 8.25, it is very common for a network printer
to list details about the surrounding network, naming conventions, and more.
Many devices located through a Google search are still running a default, inse-
cure configuration with no username or password needed to control the device.
In a worst-case scenario, attackers can view print jobs and even coerce these
printers to store files or even send network commands.

Figure 8.25 Networked Printers Provide Lots of Details

Table 8.10 shows queries that can be used to locate various network devices.
Refer back to Chapter 5 for more conventional network devices such as routers,
switches, proxy servers, and firewalls.

257

WWww.syngress.com

258

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Table 8.10 Queries That Locate Various Network Devices

Device

Query

Axis Video Server (CAM)
AXIS Video Live Camera
AXIS Video Live View

AXIS 200 Network Camera
Canon Network Camera
Mobotix Network Camera

Panasonic Network Camera
Panasonic Network Camera

Sony Network Camera

Seyeon FlexWATCH Camera

Sony Network Camera
webcamXP

Canon ImageReady
Fiery Printer Interface

Konica Printers

RICOH Copier

RICOH Printers
Tektronix Phaser Printer
Xerox Phaser (generic)

Xerox Phaser 6250 Printer
“XEROX CORPORATION”

Xerox Phaser 740 Printer
“ phaserlink

Xerox Phaser 8200 Printer
Alerts”

Xerox Phaser 840 Printer
Xerox Centreware Printers
XEROX WorkCentre

inurl:indexFrame.shtml Axis
intitle: "Live View / - AXIS”

intitle: “Live View / - AXIS" |
inurl:view/view.sht

intitle: “The AXIS 200 Home Page”
intitle:liveapplet inurl:LvAppl

intext: "MOBOTIX M1” intext: “"Open Menu”
intitle: "WJ-NT104 Main Page”
inurl:"ViewerFrame?Mode="

SNC-RZ30 HOME

intitle:flexwatch intext: "THome page ver”
intitle:snc-z20 inurl:home/

“powered by webcamXP"” “Pro|Broadcast”
intitle: “remote ui:top page”

(“Fiery WebTools” inurl:index2.html) |
“WebTools enable observe,, flow print
jobs”

intitle: “network administration” inurl: “nic”
inurl:sts_index.cgi

intitle:RICOH intitle: "Network Administration”
intitle: "View and Configure PhaserLink”
inurl:live_status.html

“Phaser 6250” “Printer Neighborhood”

“Phaser® 740 Color Printer” “printer named:
“Phaser 8200” "© Xerox” “refresh” “ Email

Phaser® 840 Color Printer
intext:centreware inurl:status
intitle: "XEROX WorkCentre PRO - Index”

WWww.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8

Summary

Attackers use Google for a variety of reasons. An attacker might have access to an
exploit for a particular version of Web software and may be on the prowl for
vulnerable targets. Other times the attacker might have decided on a target and is
using Google to locate information about other devices on the network. In some
cases, an attacker could simply be looking for Web devices that are poorly con-
figured with default pages and programs, indicating that the security around the
device is soft.

Directory listings provide information about the software versions in use on a
device. Server and application error messages can provide a wealth of information
to an attacker and are perhaps the most underestimated of all information-gath-
ering techniques. Default pages, programs, and documentation not only can be
used to profile a target, but they serve as an indicator that the server is somewhat
neglected and perhaps vulnerable to exploitation. Login portals, while serving as
the “front door” of a Web server for regular users, can be used to profile a target,
used to locate more information about services and procedures in use, and as a
virtual magnet for attackers armed with matching exploits. In some cases, login
portals are set up by administrators to allow remote access to a server or net-
work. This type of login portal, if compromised, can provide an entry point for
an intruder as well.

Whatever motivates an attacker, it’s best to understand the techniques he or
she could employ so that you protect yourself and your customers from this type
of threat.

Solutions Fast Track

Locating and Profiling Web Servers

M Directory listings and default server-generated error messages can
provide details about the server. Even though this information could be
obtained by connecting directly to the server, an attacker armed with an
exploit for a particular version of software could find a target using a
Google query designed to locate this information.

M Server and application error message proved a great deal of information,
ranging from software versions and patch level to snippets of source
code and information about system processes and programs. Error

259

www.syngress.com

260 Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

messages are one of the most underestimated forms of information

leakage.

M Default pages, documentation, and programs speak volumes about the
server that hosts them. They suggest that a server is not well maintained
and is by extension vulnerable due to poor maintenance.

Locating Login Portals

M Login portals can draw attackers who are searching for specific types of
software. In addition, they can serve as a starting point for information-
gathering attacks, since most login portals are designed to be user
friendly, providing links to help documents and procedures to aid new
users. Administrative login portals and remote administration tools are
sometimes even more dangerous, especially if they are poorly
configured.

Locating Network Hardware

M All sorts of network devices can be located with Google queries. These
devices are more than a passing technological curiosity for some
attackers, since many devices linked from the Web are poorly
configured, trusted devices often overlooked by typical security auditors.
Web cameras are often overlooked devices that can provide insight for
an attacker, even though an extremely small percentage of targets have
Web cameras installed. Network printers, when compromised, can reveal
a great deal of sensitive information, especially for an attacker capable of
viewing print jobs and network information.

www.syngress.com

Tracking Down Web Servers, Login Portals, and Network Hardware ¢ Chapter 8 261

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q:

I run an IIS 6.0 server, and I don'’t like the idea of those static HTTP 1.1
error pages hanging around my site, luring potential malicious interest in my
server. How can I enable the customized error messages?

: If you aren’t in the habit of just asking Google by now, you should be!

Seriously, try a Google search for site:microsoft.com “Configuring Custom Error
Messages” IS 6.0. At the time of this writing, the article describing this pro-
cedure is the first hit. The procedure involves firing up the IIS Manager,
double-clicking My Computer, right-clicking the Web Sites folder, and
selecting Properties. See the Custom Errors tab.

: I run an Apache server, and I don'’t like the idea of those server tags on error

messages and directory listings. How can I turn these oft?

: To remove the tags, locate the section in your httpd.conf file (usually in

/etc/httpd/conf/httpd.cont) that contains the following:

#

Optionally add a line containing the server version and virtual
host

name to server-generated pages (error documents, FTP directory
listings,

mod_status and mod_info output etc., but not CGI generated
documents) .

Set to "EMail" to also include a mailto: link to the
ServerAdmin.

Set to one of: On | Off | EMail

#

ServerSignature On

www.syngress.com

262

Chapter 8 * Tracking Down Web Servers, Login Portals, and Network Hardware

Q:

The ServerSignature setting can be changed to Off to remove the tag alto-
gether or to Email, which presents an e-mail link with the ServerAdmin e-
mail address as it appears in the httpd.conf file.

I've got an idea for a search that’s not listed here. If you’re so smart about
Google, why isn’t my search listed in this book?

A: This book serves as more of a primer than a reference book. There are so

many possible Google searches out there that it’s impossible to include them
all in one book. Most searches listed in this book are the result of a commu-
nity of people working together to come up with as many eftective searches
as possible. Fortunately, this community of individuals has created a unique
and extensive database that is open to the public for the purposes of ade-
quately defending against this unique threat. The Search Engine Hacking
forum and the Google Hacking Database (GHDB) are both available at
http://johnny.ihackstuft.com. If you’ve got a new search, first search the
database to make sure it’s unique. If you think it is, submit it to the forums,
and your search could be the newest addition to the database. But beware,
Google searcher. Google hacking is fun and addictive. If you submit one
search, I think you’ll find it’s hard to stop. Just ask any of the individuals on
the Google Master’s list. Some of them found it hard to stop at 10 or 20
unique submitted searches! Check out the Acknowledgments page for a list
of users who have made a significant contribution to the Google hacking
community.

www.syngress.com

Chapter 9

Usernames,
Passwords, and

Secret Stuff, Oh My!

Solutions in this Chapter:

m Searching for Usernames
m Searching for Passwords

m Searching for Credit Card Numbers, Social
Security Numbers, and More

m Searching for Other Juicy Info
m List of Sites

M Summary
M Solutions Fast Track
M Frequently Asked Questions

263

264

Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Introduction

This chapter is not about finding sensitive data during an assessment as much as
it is about what the “bad guys” might do to troll for the data. The examples pre-
sented in this chapter generally represent the lowest-hanging fruit on the security
tree. Hackers target this information on a daily basis. To protect against this type
of attacker, we need to be fairly candid about the worst-case possibilities. We
won’t be overly candid, however.

We start by looking at some queries that can be used to uncover usernames,
the less important half of most authentication systems. The value of a username is
often overlooked, but as we saw in Chapters 4 and 5, an entire multimillion-
dollar security system can be shattered through skillful crafting of even the
smallest, most innocuous bit of information.

Next, we take a look at queries that are designed to uncover passwords. Some
of the queries we look at reveal encrypted or encoded passwords, which will take
a bit of work on the part of an attacker to use to his or her advantage. We also
take a look at queries that can uncover cleartext passwords. These queries are some
of the most dangerous in the hands of even the most novice attacker. What could
make an attack easier than handing a username and cleartext password to an
attacker?

We wrap up this chapter by discussing the very real possibility of uncovering
highly sensitive data such as credit card information and information used to
commit identity theft, such as Social Security numbers. Our goal here is to
explore ways of protecting against this very real threat. To that end, we don’t go
into details about uncovering financial information and the like. If you’re a “dark
side” hacker, you’ll need to figure these things out on your own.

Searching for Usernames

Most authentication mechanisms use a username and password to protect infor-
mation. To get through the “front door” of this type of protection, you’ll need to
determine usernames as well as passwords. Usernames also can be used for social
engineering efforts, as we discussed earlier.

Many methods can be used to determine usernames. In Chapter 10, we
explored ways of gathering usernames via database error messages. In Chapter 8
we explored Web server and application error messages that can reveal various
information, including usernames. These indirect methods of locating usernames
are helpful, but an attacker could target a usernames directory with a simple

WWww.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9 265

query like “your username is”. This phrase can locate help pages that describe the
username creation process, as shown in Figure 9.1.

Figure 9.1 Help Documents Can Reveal Username Creation Processes

An attacker could use this information to postulate a username based on
information gleaned from other sources, such as Google Groups posts or phone
listings. The usernames could then be recycled into various other phases of the
attack, such as a worm-based spam campaign or a social-engineering attempt. An
attacker can gather usernames from a variety of sources, as shown in the sample
queries listed in Table 9.1.

Table 9.1 Sample Queries That Locate Usernames

Query Description
inurl:admin inurl:userlist Generic userlist files
inurl:admin filetype:asp Generic userlist files

inurl:userlist
inurl:php inurl:hlistats intext: Half-life statistics file, lists username and

Server Username other information
filetype:ctl inurl: haccess. Microsoft FrontPage equivalent of htaccess
ctl Basic shows Web user credentials

Continued

WWww.syngress.com

266

Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Table 9.1 Sample Queries That Locate Usernames

Query

Description

filetype:reg reg intext:
“internet account manager”
filetype:wab wab
filetype:mdb inurl:profiles
index.of perform.ini
inurl:root.asp?acs=anon
filetype:conf inurl:proftpd.
conf —sample

filetype:log username putty
filetype:rdp rdp

intitle:index.of .bash_history

intitle:index.of .sh_history

“index of ” Ick

+intext:webalizer +intext:
Total Usernames +intext:
“Usage Statistics for”

filetype:reg reg HKEY _
CURRENT _USER username

Microsoft Internet Account Manager can
reveal usernames and more

Microsoft Outlook Express Mail address
books

Microsoft Access databases containing (user)
profiles.

mIRC IRC ini file can list IRC usernames and
other information

Outlook Mail Web Access directory can be
used to discover usernames

PROFTP FTP server configuration file reveals
username and server information

PUTTY SSH client logs can reveal usernames
and server information

Remote Desktop Connection files reveal user
credentials

UNIX bash shell history reveals commands
typed at a bash command prompt; user-
names are often typed as argument strings

UNIX shell history reveals commands typed at
a shell command prompt; usernames are
often typed as argument strings

Various lock files list the user currently using
a file

Webalizer Web statistics page lists Web user-
names and statistical information

Windows Registry exports can reveal
usernames and other information

WWww.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9 267

Underground Googling

Searching for a Known Filename

Remember that there are several ways to search for a known filename.
One way relies on locating the file in a directory listing, like intitle:index.of
install.log. Another, often better, method relies on the filetype operator,
as in filetype:log inurl:install.log. Directory listings are not all that
common. Google will crawl a link to a file in a directory listing, meaning
that the filetype method will find both directory listing entries as well as
files crawled in other ways.

In some cases, usernames can be gathered from Web-based statistical pro-
grams that check Web activity. The Webalizer program shows all sorts of informa-
tion about a Web server’s usage. Output files for the Webalizer program can be
located with a query such as intext:webalizer intext:” Total Usernames” intext:” Usage
Statistics for”. Among the information displayed is the username that was used to
connect to the Web server, as shown in Figure 9.2. In some cases, however, the
usernames displayed are not valid or current, but the “Visits” column lists the
number of times a user account was used during the capture period. This enables
an attacker to easily determine which accounts are more likely to be valid.

Figure 9.2 The Webalizer Output Page Lists Web Usernames

WwWw.syngress.com

268

Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

The Windows registry holds all sorts of authentication information, including
usernames and passwords. Though it is unlikely (and fairly uncommon) to locate
live, exported Windows registry files on the Web, at the time of this writing
there are nearly 100 hits on the query filetype:reg HKEY_CURREN'T_USER
username, which locates Windows registry files that contain the word username
and in some cases passwords, as shown in Figure 9.3.

Figure 9.3 Generic Windows Registry Files Can Reveal Usernames and
Passwords

As any talented attacker or security person will tell you, it’s rare to get infor-
mation served to you on a silver platter. Most decent finds take a bit of persis-
tence, creativity, intelligence, and just a bit of good luck. For example, consider
the Microsoft Outlook Web Access portal, which can be located with a query
like inurl:root.asp?acs=anon. At the time of this writing, fewer than 50 sites are
returned by this query, even though there a certainly more than 50 sites running
the Microsoft Web-based mail portal. Regardless of how you might locate a site
running this e-mail gateway, it’s not uncommon for the site to host a public
directory (denoted “Find Names,” by default), as shown in Figure 9.4.

WWww.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9 269

Figure 9.4 Microsoft Outlook Web Access Hosts a Public Directory

The public directory allows access to a search page that can be used to find
users by name. In most cases, wildcard searching is not allowed, meaning that a
search for * will not return a list of all users, as might be expected. Entering a
search for a space is an interesting idea, since most user descriptions contain a
space, but most large directories will return the error message “This query would
return too many addresses!” Applying a bit of creativity, an attacker could begin
searching for individual common letters, such as the “Wheel of Fortune letters”
R, S, T L, N, and E. Eventually one of these searches will most likely reveal a list
of user information like the one shown in Figure 9.5.

Figure 9.5 Public Outlook Directory Searching for Usernames

WWww.syngress.com

270 Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Once a list of user information is returned, the attacker can then recycle the

search with words contained in the user list, searching for the words Voyager,

Freshmen, or Campus, for example. Those results can then be recycled, eventually

resulting in a nearly complete list of user information.

Searching for Passwords

Password data, one of the “Holy Grails” during a penetration test, should be pro-

tected. Unfortunately, many examples of Google queries can be used to locate
passwords on the Web, as shown in Table 9.2.

Table 9.2 Queries That Locate Password Information

Query

Description

inurl:/db/main.mdb

filetype:cfm “cfapplication
name” password

filetype:pass pass intext:userid
allinurl:auth_user_file.txt
eggdrop filetype:user user
filetype:ini inurl:flashFXRini

filetype:url +inurl:"ftp://"
+inurl:"@"”

inurl:zebra.conf intext:
password -sample -test
-tutorial —download

filetype:htpasswd htpasswd

intitle: “Index of” “.htpasswd”
“htgroup” -intitle:“dist”
-apache -htpasswd.c

intitle: “Index of” “.htpasswd”
htpasswd.bak

“http://*:*@www"” bob:bob
“sets mode: +k”

“Your password is * Remember
this for later use”

signin filetype:url

ASP-Nuke passwords
ColdFusion source with potential passwords

dbman credentials

DCForum user passwords

Eggdrop IRC user credentials
FlashFXP FTP credentials

FTP bookmarks cleartext passwords

GNU Zebra passwords
HTTP htpasswd Web user credentials
HTTP htpasswd Web user credentials

HTTP htpasswd Web user credentials

HTTP passwords (bob is a sample username)
IRC channel keys (passwords)
IRC NickServ registration passwords

JavaScript authentication credentials

WWww.syngress.com

Continued

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9

Table 9.2 Queries That Locate Password Information

Query

Description

LeapFTP intitle:"index.of./”
sites.ini modified

inurl:lilo.conf filetype:conf
password -tatercounter2000
-bootpwd -man

filetype:config config intext:
appSettings “User ID”

filetype: pwd service

intitle:index.of
administrators.pwd

LeapFTP client login credentials

LILO passwords

Microsoft .NET application credentials

Microsoft FrontPage Service Web passwords
Microsoft FrontPage Web credentials

“# -FrontPage-" inurl:service.pwd Microsoft FrontPage Web passwords

ext:pwd inurl:_vti_pvt inurl:

(Service | authors | administrators)

inurl:perform filetype:ini

intitle: “index of” intext:
connect.inc

intitle:“index of” intext:
globals.inc

filetype:conf oekakibbs
filetype:dat wand.dat

inurl:ospfd.conf intext:
password -sample -test
-tutorial —download

index.of passlist
inurl:passlist.txt

filetype:dat “password.dat”
inurl:password.log filetype:log

Microsoft FrontPage Web passwords

mIRC nickserv credentials
mySQL database credentials

mySQL database credentials

Oekakibss user passwords
Opera, AGUMagic Wand,Au Web credentials
OSPF Daemon Passwords

Passlist user credentials
passlist.txt file user credentials
password.dat files

password.log file reveals usernames, pass-
words, and hostnames

filetype:log inurl:"password.log” password.log files cleartext passwords

inurl:people.ist filetype:Ist
intitle:index.of config.php

People.Ist generic password file
PHP Configuration File database credentials

inurl:config.php dbuname dbpass PHP Configuration File database credentials

inurl:nuke filetype:sql

PHP-Nuke credentials

Continued

271

WWww.syngress.com

272

Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Table 9.2 Queries That Locate Password Information

Query

Description

filetype:conf inurl:psybnc.conf
“USER.PASS="

filetype:ini ServUDaemon
filetype:conf slapd.conf

inurl:"slapd.conf” intext:
“credentials” -manpage
-"Manual Page” -man: -sample

inurl:"slapd.conf” intext:
“rootpw” -manpage
-"Manual Page” -man: -sample

filetype:sql “IDENTIFIED BY"” —cvs

filetype:sql password
filetype:ini wex_ftp
filetype:netrc password

index.of.etc
tial files

intitle: “Index of..etc” passwd

intitle:index.of passwd
passwd.bak

intitle: “Index of” pwd.db
intitle:Index.of etc shadow
intitle:index.of master.passwd

intitle: "Index of” spwd.db
passwd -pam.conf

filetype:bak inurl: "htaccess |
passwd |shadow | htusers

filetype:inc dbconn
filetype:inc intext:mysql
connect

filetype:properties inurl:db
intext:password

inurl:vtund.conf intext:pass —cvs

inurl: “wvdial.conf” intext:
“password”

psyBNC IRC user credentials

servU FTP Daemon credentials
slapd configuration files root password
slapd LDAP credentials

slapd LDAP root password

SQL passwords

SQL passwords

Total Commander FTP passwords

UNIX .netrc user credentials

UNIX /etc directories contain various creden-

UNIX /etc/passwd user credentials
UNIX /etc/passwd user credentials

UNIX /etc/pwd.db credentials

UNIX /etc/shadow user credentials
UNIX master.passwd user credentials
UNIX spwd.db credentials

UNIX various password file backups

Various database credentials
Various database credentials, server names

Various database credentials, server names

Virtual Tunnel Daemon passwords
wdial dialup user credentials

WWww.syngress.com

Continued

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9

Table 9.2 Queries That Locate Password Information

Query Description

filetype:mdb wwforum Web Wiz Forums Web credentials
"AutoCreate=TRUE password=*"Website Access Analyzer user passwords
filetype:pwl pwl Windows Password List user credentials
filetype:reg reg +intext: Windows Registry Keys containing user
"defaultusername” intext: credentials

"defaultpassword”

filetype:reg reg +intext: Windows Registry Keys containing user
“internet account manager” credentials

“index of/” “ws_ftp.ini” WS_FTP FTP credentials

“parent directory”

filetype:ini ws_ftp pwd WS_FTP FTP user credentials
inurl:/wwwboard wwwboard user credentials

In most cases, passwords discovered on the Web are either encrypted or
encoded in some way. In most cases, these passwords can be fed into a password
cracker such as John the Ripper from www.openwall.com/john to produce
plaintext passwords that can be used in an attack. Figure 9.6 shows the results of
the search ext:pwd inurl:_vti_pvt inurl:(Service | authors | administrators), which
combines a search for some common Microsoft FrontPage support files.

Figure 9.6 Encrypted or Encoded Passwords

273

WwWw.syngress.com

274

Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Exported Windows registry files often contain encrypted or encoded pass-
words as well. If a user exports the Windows registry to a file and Google subse-
quently crawls that file, a query like filetype:reg intext:”internet account manager”
could reveal interesting keys containing password data, as shown in Figure 9.7.

Figure 9.7 Specific Windows Registry Entries Can Reveal Passwords

Note that live, exported Windows registry files are not very common, but it’s
not uncommon for an attacker to target a site simply because of one exception-
ally insecure file. It’s also possible for a Google query to uncover cleartext pass-
words. These passwords can be used as is without having to employ a
password-cracking utility. In these extreme cases, the only challenge is deter-
mining the username as well as the host on which the password can be used. As
shown in Figure 9.8, certain queries will locate all the following information:
usernames, cleartext passwords, and the host that uses that authentication!

WWww.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9

Figure 9.8 The Holy Grail: Usernames, Cleartext Passwords, and Hostnames!

There is no magic query for locating passwords, but during an assessment,
remember that the simplest queries directed at a site can have amazing results, as
we discussed in , Chapter 7, Ten Simple Searches. For example, a query like “Your
password” forgot would locate pages that provide a forgotten password recovery
mechanism. The information from this type of query can be used to formulate
any of a number of attacks against a password. As always, eftective social engi-
neering is a terrific nontechnical solution to “forgotten” passwords.

Another generic search for password information, intext:(password | passcode |
pass) intext:(username | userid | user), combines common words for passwords and
user IDs into one query. This query returns a lot of results, but the vast majority
of the top hits refer to pages that list forgotten password information, including
either links or contact information. Using Google’s translate feature, found at
http://translate.google.com/translate_t, we could also create multilingual pass-
word searches. Table 9.3 lists common translations for the word password.

275

WWww.syngress.com

276

Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Table 9.3 English Translations of the Word Password

Language Word Translation
German password Kennwort
Spanish password contrasena
French password mot de passe
Italian password parola d’accesso
Portuguese password senha

Dutch password Paswoord

NotE

The terms username and userid in most languages translate to username
and userid, respectively.

Searching for Credit Card Numbers,
Social Security Numbers, and More

Most people have heard news stories about Web hackers making oft with cus-
tomer credit card information. With so many fly-by night retailers popping up
on the Internet, it’s no wonder that credit card fraud is so prolific. These mom-
and-pop retailers are not the only ones successfully compromised by hackers.
Corporate giants by the hundreds have had financial database compromises over
the years, victims of sometimes very technical, highly focused attackers. What
might surprise you is that it doesn’t take a rocket scientist to uncover live credit
card numbers on the Internet, thanks to search engines like Google. Everything
from credit information to banking data or supersensitive classified government
documents can be found on the Web. Consider the (highly edited) Web page
shown in Figure 9.9.

www.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9

Figure 9.9 Google Stores Piles and Piles of Previously Pilfered Personal Data

This document, found using Google, lists hundreds and hundreds of credit
card numbers (including expiration date and card validation numbers) as well as
the owners’ names, addresses, and phone numbers. This particular document also
included phone card (calling card) numbers. Notice the scroll bar on the right-
hand side of Figure 9.9, an indicator that the displayed page is only a small part
of this huge document—Ilike many other documents of its kind. In most cases,
pages that contain these numbers are not “leaked” from online retailers or e-
commerce sites but rather are most likely the fruits of a scam known as phishing,
in which users are solicited via telephone or e-mail for personal information.
Several Web sites, including MillerSmiles.co.uk, document these scams and
hoaxes. Figure 9.10 shows a screen shot of a popular eBay phishing scam that
encourages users to update their eBay profile information.

277

WWww.syngress.com

278 Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Figure 9.10 Screenshot of an eBay Phishing Scam

Once a user fills out this form, all the information is sent via e-mail to the
attacker, who can use it for just about anything.

Tools and Traps

Catching Online Scammers

In some cases, you might be able to use Google to help nab the bad guys.
Phishing scams are effective because the fake page looks like an official
page. To create an official-looking page, the bad guys must have examples
to work from, meaning that they must have visited a few legitimate com-
panies’ Web sites. If the fishing scam was created using text from several
companies’ existing pages, you can key in on specific phrases from the fake
page, creating Google queries designed to round up the servers that hosted
some of the original content. Once you've located the servers that con-
tained the pilfered text, you can work with the companies involved to
extract correlating connection data from their log files. If the scammer vis-
ited each company’s Web page, collecting bits of realistic text, his IP should
appear in each of the log files. Auditors at SensePost (www.sensepost.com)
have successfully used this technique to nab online scam artists.

Continued

Www.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9

Unfortunately, if the scammer uses an exact copy of a page from only one
company, this task becomes much more difficult to accomplish.

Social Security Numbers

Social Security numbers (SSNs) and other sensitive data can be easily located
with Google as well as via the same techniques used to locate credit card num-
bers. For a variety of reasons, SSNs might appear online—for example, educa-
tional facilities are notorious for using an SSN as a student ID, then posting
grades to a public Web site with the “student ID” displayed next to the grade. A
creative attacker can do quite a bit with just an SSN, but in many cases it helps
to also have a name associated with that SSN. Again, educational facilities have
been found exposing this information via Excel spreadsheets listing student’s
names, grades, and SSNs, despite the fact that the student ID number is often
used to help protect the privacy of the student! Although we don't feel it’s right
to go into the details of how this data is located, several media outlets have irre-
sponsibly posted the details online. Although the blame lies with the sites that are
leaking this information, in our opinion it’s still not right to draw attention to
how exactly the information can be located.

Personal Financial Data

In some cases, phishing scams are responsible for publicizing personal informa-
tion; in other cases, hackers attacking online retails are to blame for this breach of
privacy. Sadly, there are many instances where an individual is personally respon-
sible for his own lack of privacy. Such is the case with personal financial infor-
mation. With the explosion of personal computers in today’s society, users have
literally hundreds of personal finance programs to choose from. Many of these
programs create data files with specific file extensions that can be searched with
Google. It’s hard to imagine why anyone would post personal financial informa-
tion to a public Web site (which subsequently gets crawled by Google), but it
must happen quite a bit, judging by the number of hits for program files gener-
ated by Quicken and Microsoft Money, for example. Although it would be
somewhat irresponsible to provide queries here that would unearth personal
financial data, it’s important to understand the types of data that could potentially
be uncovered by an attacker. To that end, Table 9.4 shows file extensions for var-
1ous financial, accounting, and tax return programs. Ensure that these filetypes
aren’t listed on a webserver you’re charged with protecting.

279

Www.syngress.com

280 Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Table 9.4 File Extensions for Various Financial Programs

File Extension

Description

afm
ab4
mmw
lqd

et2

tax
198-104

mny
mbf
inv
ptdb
gbb
qdf
soa
sdb
stx
tmd
tls
fec
wWow

Abassis Finance Manager

Accounting and Business File

AceMoney File

AmeriCalc Mutual Fund Tax Report
Electronic Tax Return Security File (Australia)
Intuit TurboTax Tax Return

Kiplinger Tax Cut File (extension based on two-digit return
year)

Microsoft Money 2004 Money Data Files
Microsoft Money Backup Files

MSN Money Investor File

Peachtree Accounting Database
QuickBooks Backup Files reveal financial data
Quicken personal finance data

Sage MAS 90 accounting software

Simply Accounting

Simply Tax Form

Time and Expense Tracking

Timeless Time & Expense

U.S. Federal Campaign Expense Submission
Wings Accounting File

Searching for Other Juicy Info

As we've seen, Google can be used to locate all sorts of sensitive information. In

this section we take a look at some of the data that Google can find that’s harder

to categorize. From address books to chat log files and network vulnerability

reports, there’s no shortage of sensitive data online. Table 9.5 shows some queries

that can be used to uncover various types of sensitive data.

WWww.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9

Table 9.5 Queries That Locate Various Sensitive Information

Query

Description

intext: “Session Start
* Kok kokex 7 filetype:log

filetype:blt blt +intext:
screenname

buddylist.blt
intitle:index.of cgiirc.config

inurl:cgiirc.config

“Index of” / “chat/logs”

intitle: “"Index Of” cookies.txt
“size”

“phone * * *" “address *"
“e-mail” intitle: “curriculum vitae”
ext:ini intext:env.ini
intitle:index.of inbox

“Running in Child mode”

“:8080” “:3128” “:80"
filetype:txt

intitle: “Index of”
dbconvert.exe chats

“sets mode: +p”
“sets mode: +s”

“Host Vulnerability Summary
Report”

“Network Vulnerability
Assessment Report”

filetype:pot inurl:john.pot

intitle: “Index Of” -inurl:maillog
maillog size

ext:mdb inurl:*.mdb inurl:
fpdb shop.mdb

AIM and IRC log files
AIM buddy lists

AIM buddy lists

CGIIRC (Web-based IRC client) config file,
shows IRC servers and user credentials

CGIIRC (Web-based IRC client) config file,
shows IRC servers and user credentials

Chat logs
cookies.txt file reveals user information

Curriculum vitae (resumes) reveal names
and address information

Generic environment data
Generic mailbox files

Gnutella client data and statistics
HTTP Proxy lists

ICQ chat logs

IRC private channel information
IRC secret channel information

ISS vulnerability scanner reports, reveal
potential vulnerabilities on hosts and
networks

ISS vulnerability scanner reports, reveal
potential vulnerabilities on hosts and net-
works

John the Ripper password cracker results

Maillog files reveals e-mail traffic
information

Microsoft FrontPage database folders

Continued

281

WWww.syngress.com

282

Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Table 9.5 Queries That Locate Various Sensitive Information

Query

Description

filetype:xls inurl:contact
intitle:index.of haccess.ctl

ext:log “Software: Microsoft

Internet Information Services *.*"

filetype:pst inurl: “outlook.pst”

intitle:index.of mt-db-pass.cgi
filetype:ctt ctt messenger

“This file was generated
by Nessus”

inurl: "newsletter/admin/”

inurl: “newsletter/admin/”
intitle: “newsletter admin”

filetype:eml eml intext:
"Subject” +From

intitle:index.of inbox dbx
intitle:index.of inbox dbx

filetype:mbx mbx intext:Subject

inurl:/public/?Cmd=contents

filetype:pdb pdb backup (Pilot
| Pluckerdb)

“This is a Shareaza Node”
inurl:/_layouts/settings
inurl:ssl.conf filetype:conf

site:edu admin grades
intitle:index.of mystuff.xml

inurl:forward filetype:
forward —cvs

intitle:index.of dead.letter

Microsoft Excel sheets containing contact
information.

Microsoft FrontPage equivalent(?)of htac-
cess shows Web authentication info

Microsoft Internet Information Services
(11S) log files

Microsoft Outlook e-mail and calendar
backup files

Movable Type default file
MSN Messenger contact lists

Nessus vulnerability scanner reports, reveal
potential vulnerabilities on hosts and net-
works

Newsletter administration information
Newsletter administration information

Outlook Express e-mail files

Outlook Express Mailbox files
Outlook Express Mailbox files
Outlook v1-v4 or Eudora mailbox files

Outlook Web Access public folders or
appointments

Palm Pilot Hotsync database files

Shareaza client data and statistics
Sharepoint configuration information

SSL configuration files, reveal various con-
figuration information

Student grades
Trillian user Web links

UNIX mail forward files reveal e-mail
addresses

UNIX unfinished e-mails

WWww.syngress.com

Continued

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9 283

Table 9.5 Queries That Locate Various Sensitive Information

Query Description

filetype:conf inurl:unrealircd. UnreallRCd config file reveals configuration
conf -cvs -gentoo information

filetype:bkf bkf Windows XP/2000 backup files

Some of this information is fairly benign—for example, MSN Messenger
contact list files that can be found with a query like filetype:ctt messenger, or AOL
Instant Messenger (AIM) buddy lists that can be located with a query such as file-
type:blt blt +intext:screenname, as shown in Figure 9.11.

Figure 9.11 AIM Buddy Lists Reveal Personal Relationships

This screen shows a list of “buddies,” or acquaintances an individual has
entered into his or her AIM client. An attacker often uses personal information
like this in a social-engineering attack, attempting to convince the target that
they are a friend or an acquaintance. This practice is akin to pilfering a Rolodex
or address book from a target. For a seasoned attacker, information like this can
lead to a successful compromise. However, in some cases, data found with a
Google query reveals sensitive security-related information that even the most
novice attacker could use to compromise a system.

WWww.syngress.com

284

Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

For example, consider the output of the Nessus security scanner available
from www.nessus.org. This excellent open-source tool conducts a series of secu-
rity tests against a target, reporting on any potential vulnerability. The report gen-
erated by Nessus can then be used as a guide to help system administrators lock
down any aftected systems. An attacker could also use a report like this to locate
vulnerabilities on a potential target. Using a Google query such as “This file was
generated by Nessus”, an attacker could locate reports generated by the Nessus
tool, as shown in Figure 9.12.This report lists the IP address of each tested
machine as well as the ports opened and any vulnerabilities that were detected.

Figure 9.12 Nessus Vulnerability Reports Found Online

In most cases, reports found in this manner are samples, or test reports, but in
a few cases, the reports are live and the tested systems are, in fact, exploitable as
listed. One can only hope that the reported systems are honeypots—machines
created for the sole purpose of luring and tracing the activities of hackers. In the
next chapter, we’ll talk more about “document-grinding” techniques, which are
also useful for digging up this type of information. This chapter focused on
locating the information based on the name of the file, whereas the next chapter
focuses on the actual content of a document rather than the name.

WwWw.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9

Summary

Make no mistake—there’s sensitive data on the Web, and Google can find it.
There’s hardly any limit to the scope of information that can be located, if only
you can figure out the right query. From usernames to passwords, credit card and
Social Security numbers, and personal financial information, it’s all out there. As a
purveyor of the “dark arts,” you can relish in the stupidity of others, but as a pro-
tessional tasked with securing a customer’s site from this dangerous form of
information leakage, you could be overwhelmed by the sheer scale of your
defensive duties.

As droll as it might sound, a solid, enforced security policy is a great way to
keep sensitive data from leaking to the Web. If users understand the risks associ-
ated with information leakage and understand the penalties that come with vio-
lating policy, they will be more willing to cooperate in what should be a security
partnership.

In the meantime, it certainly doesn’t hurt to understand the tactics an adver-
sary might employ in attacking a Web server. One thing that should become
clear as you read this book is that any attacker has an overwhelming number of
files to go after. One way to prevent dangerous Web information leakage is by
denying requests for unknown file types. Whether your Web server normally
serves up CFM, ASP, PHP, or HTML, it’s infinitely easier to manage what should
be served by the Web server instead of focusing on what should not be served.
Adjust your servers or your border protection devices to allow only specific con-
tent or file types.

Solutions Fast Track

Searching for Usernames

M Usernames can be found in a variety of locations.

M In some cases, digging through documents or e-mail directories might
be required.

M A simple query such as “your username is” can be very effective in
locating usernames.

285

www.syngress.com

286 Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Searching for Passwords

M Passwords can also be found in a variety locations.

M A query such as “Your password” forgot can locate pages that provide a
forgotten-password recovery mechanism.

M intext:(password | passcode | pass) intext:(username | userid | user) is
another generic search for locating password information.

Searching for Credit Cards

Numbers, Social Security Numbers, and More

M Documents containing credit card and Social Security number
information do exist and are relatively prolific.

M Some irresponsible news outlets have revealed functional queries that
locate this information.

M There are relatively few examples of personal financial data online, but
there is a great deal of variety.

M In most cases, specific file extensions can be searched for.

Searching for Other Juicy Info

M From address books and chat log files to network vulnerability reports,
there’s no shortage of sensitive data online.

www.syngress.com

Usernames, Passwords, and Secret Stuff, Oh My! ¢ Chapter 9 287

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: I'm concerned about phishing schemes. Are there resources to help me
understand the risks and learn some safeguards?

A: There’s an excellent Web site dedicated to the topic of phishing at
www.antiphishing.org. You can also read a great white paper by Next
Generation Security Software Ltd., The Phishing Guide: Understanding and
Preventing Phishing Attacks, available from www.ngssoftware.com/
papers/NISR -WP-Phishing.pdf.

Q: Why don’t you give more details about locating information such as credit
card numbers and Social Security numbers?

A: To be honest, neither the authors nor the publisher is willing to take personal
responsibility for encouraging potential illegal activity. Most individuals inter-
ested in this kind of information will use it for illegal purposes. If you are
interested in scanning for your own personal information online, simply enter
your information into Google. If you get some hits, you should be worried.

Q: Many passwords grant access to meaningless services. Why should I be wor-
ried about the password for a useless service leaking out to the Web?

A: Studies have shown that the majority of people often opt for the easiest path
to completing a task. In the world of security, this means that many people
share passwords (or password cues) across many different applications on
many different servers. This means that one compromised password can pro-
vide clues about passwords used on other systems. Most policies forbid this
type of password sharing, but this restriction is often hard to enforce.

www.syngress.com

288 Chapter 9 ¢ Usernames, Passwords, and Secret Stuff, Oh My!

Q: What can bad guys do with the password to our database? And if the infor-
mation is not sensitive, why go the extra mile to protect it ?

A: Users generally have a small set of passwords they can remember. This means

that once a bad guy has a valid password, chances are good that it will “Open
Sesame” to more sensitive data.

www.syngress.com

Chapter 10

Document

Grinding and
Database Digging

Solutions in this Chapter:

m Configuration Files

m Log Files

m Office Documents

m Database Information
m Automated Grinding
m Google Desktop

m Links to Sites

M Summary
M Solutions Fast Track
M Frequently Asked Questions

289

290

Chapter 10 * Document Grinding and Database Digging

Introduction

There’s no shortage of documents on the Internet. Good guys and bad guys alike
can use information found in documents to achieve their distinct purposes. In
this chapter we take a look at ways you can use Google to not only locate these
documents but to search within these documents to locate information. There
are so many different types of documents that we can’t hope to cover them all,
but we’ll look at the documents in distinct categories based on their function.
Specifically, we’ll take a look at a few categories such as configuration files, log
files, and oftice documents. Once we’ve looked at distinct file types, we’ll delve
into the realm of database digging. We won’t examine the details of the
Structured Query Language (SQL) or database architecture and interaction;
rather, we’ll look at the many ways Google hackers can locate and abuse database
systems armed with nothing more than a search engine.

One important thing to remember about document digging is that Google
will only search the rendered, or visible, view of a document. For example, con-
sider a Microsoft Word document. This type of document can contain metadata,
as shown in Figure 10.1 These fields include such things as the subject, author,
manager, company, and much more. Google will not search these fields. If you're
interested in getting to the metadata within a file, you’ll have to download the
actual file and check the metadata yourself.

Figure 10.1 Microsoft Word Metadata

WwWw.syngress.com

Document Grinding and Database Digging * Chapter 10

Configuration Files

Configuration files store program settings. An attacker (whether a good guy or a
bad guy) can use these files to glean insight into the way the program is used and
perhaps, by extension, into how the system or network it’s on is used or config-
ured. As we’ve seen in previous chapters, even the smallest tidbit of information
is of interest to a skilled attacker.

Consider the file shown in Figure 10.2.This file, found with a query such as
Siletype:ini inurl:ws_ftp, 1s a configuration file used by the WS_FTP client pro-
gram. When the WS_FTP program 1s downloaded and installed, the configura-
tion file contains nothing more than a list of popular, public Internet FTP
servers. However, over time, this configuration file can be automatically updated
to include the name, directory, username, and password of FTP servers the user
connects to. Although the password is encoded when it is stored, some free pro-
grams can crack these passwords with relative ease.

Figure 10.2 The WS_FTP.INI File Contains Hosts, Usernames, and Passwords

291

WWww.syngress.com

292

Chapter 10 * Document Grinding and Database Digging

Underground Googling

Locating Files

To locate files, it's best to try different types of queries. For example,
intitle:index.of ws_ftp.ini will return results, but so will filetype:ini
inurl:ws_ftp.ini. The inurl search, however, is often the better choice. First,
the filetype search allows you to browse right to a cached version of the
page. Second, the directory listings found by the index.of search might
not allow you access to the file. Third, directory listings are not overly
common. The filetype search will locate your file no matter how Google
found it.

Regardless of the type of data in a configuration file, sometimes the mere exis-
tence of a configuration file is significant. If a configuration file is located on a
server, there’s a chance that the accompanying program is installed somewhere on
that server or on neighboring machines on the network. Although this might not
seem like a big deal in the case of FTP client software, consider a search like file-
type:conf inurl:firewall, which can locate generic firewall configuration files. This
example demonstrates one of the most generic naming conventions for a configu-
ration file, the use of the conf file extension. Other generic naming conventions can
be combined to locate other equally common naming conventions. One of the
most common base searches for locating configuration files is simply (inurl:conf OR
inurl:config OR inurl:¢fg), which incorporates the three most common configuration
file prefixes. This base search uses the inurl operator, since the filetype operator
cannot be successfully ORed together at the time of this writing.

If an attacker knows the name of a configuration file as it shipped from the
software author or vendor, he can simply create a search targeting that filename
using the filetype and inurl operators. However, most programs allow you to refer-
ence a configuration file of any name, making a Google search slightly more dif-
ficult. In these cases, it helps to get an idea of the contents of the configuration
file, which could be used to extract unique strings for use in an effective base
search. Sometimes, combining a generic base search with the name (or acronym)
of a software product can have satisfactory results, as a search for (inurl:conf OR
inurl:config OR inurl:¢fg) MRTG shows in Figure 10.3.

Www.syngress.com

Document Grinding and Database Digging * Chapter 10 293

Figure 10.3 Generic Configuration File Searching

Although this first search is not far off the mark, it’s fairly common for even
the best config file search to return page after page of sample or example files,
like the sample MRTG configuration file shown in Figure 10.4.

Figure 10.4 Sample Config Files Need Filtering

WWww.syngress.com

294 Chapter 10 * Document Grinding and Database Digging

This brings us back, once again, to perhaps the most valuable weapon in a

Google hacker’s arsenal: eftective search reduction. Here’s a list of the most

common points a Google hacker considers when trolling for configuration files:

Create a strong base search using unique words or phrases from live files.

Filter out the words sample, example, test, howto, and tutorial to narrow the
obvious example files.

Filter out CVS repositories, which often house default config files,
with —cvs.

Filter out manpage or Manual if you're searching for a UNIX program’s
configuration file.

Locate the one most commonly changed field in a sample configuration
file and perform a negative search on that field, reducing potentially
“lame” or sample files.

To illustrate these points, consider the search filetype:cfg mrtg “target[* |” -sample

-cvs —example, which locates potentially live MRTG files. As shown in Figure

10.5, this query uses a unique string (“farget[*|”) and removes potential example
and CVS files, returning decent results.

Figure 10.5 A Common Search Reduction Technique

WWww.syngress.com

Document Grinding and Database Digging * Chapter 10

Some of the results shown in Figure 10.5 might not be real, live MRTG
configuration files, but they all have potential, with the exception of the first hit,
located in “/Squid-Book.” There’s a good chance that this is a sample file, but
because of the reduction techniques we’ve used, the other results are potentially
live, production MRTG configuration files.

WARNING

The filetype argument cannot be properly ORed at the time of this
writing. This means that if you have a couple file extensions you need to
search for in the same query, you should steer away from filetype and
lean more toward inurl, which ORs wonderfully!

Table 10.1 lists a collection of searches that locate various configuration files.
These entries are gathered from the many contributions to the GHDB. This list
highlights the various methods that can be used to target configuration files.
You’ll see examples of CVS reduction, sample reduction, unique word and phrase
isolation, and more. Most of these queries took imagination on the part of the
creator and in many cases took several rounds of reduction by several searchers to
get to the query you see here. Learn from these queries, and try them out for
yourself. It might be helpful to remove some of the qualifiers, such as —cvs or
—sample, where applicable, to get an idea of what the “messy” version of the
search might look like.

Table 10.1 Configuration File Search Examples

Query Program Information Exposure
filetype:cfg ks intext: Anaconda Password

rootpw —-sample -test

-howto

filetype:conf inurl:firewall Firewall Config Files Varied
-intitle:cvs

inurl:ospfd.conf intext: GNU Zebra Network data
password -sample -test
-tutorial -download

eggdrop filetype:user user IRC Eggdrop Usernames, passwords,
channels

Continued

295

Www.syngress.com

296 Chapter 10 * Document Grinding and Database Digging

Table 10.1 Configuration File Search Examples

Query Program Information Exposure
LeapFTP intitle: "index.of LeapFTP client Login credentials

/" sites.ini modified

inurl:lilo.conf filetype: LILO Password

conf password

-tatercounter2000

-bootpwd -man

filetype:cfg mrtg “target[*]” MRTG SNMP Community strings
-sample -cvs —example

filetype:cnf my.cnf MySQL database Usernames, passwords,
-cvs -example database, path information
filetype:ini inurl: mIRC Channel information,
perform.ini nicknames, passwords

filetype:cfg auto_inst.cfg ~ Mandrake auto-install Usernames, installed pack-
ages, network settings

filetype:config config .NET Web

intext:appSettings Application Connection strings

“User ID”

allinurl:”.nsconfig” -sample Netscape Access Access information

-howto -tutorial Control

Inurl:odbc.ini ext:ini -cvs ODBC various

filetype:conf oekakibbs Oekakibss Passwords

filetype:conf slapd.conf OpenlLDAP Passwords, path informa-
tion, application data

inurl:“slapd.conf” intext: ~ OpenLDAP Credentials

“credentials” -manpage

-"Manual Page” -man:

-sample

inurl: “slapd.conf” intext: ~ OpenLDAP rootdn credentials

“rootpw” -manpage

-"Manual Page” -man:

-sample

intitle:index.of config.php PHP Usernames and passwords

Inurl:config.php dbuname PHP Usernames and passwords

dbpass

Inurl:php.ini filetype:ini PHP Usernames, passwords,

hostnames, IP

Continued

WWww.syngress.com

Table 10.1 Configuration File Search Examples

Document Grinding and Database Digging * Chapter 10

Query

Program

Information Exposure

filetype:conf inurl:
proftpd.conf -sample

filetype:conf inurl:
psybnc.conf
“USER.PASS="

inurl:"smb.conf” intext:
"workgroup” filetype:conf

filetype:ini ServUDaemon

Inurl:ssl.conf filetype:conf
filetype:ini inurl:trillian.ini

filetype:conf inurl:
unrealircd.conf -cvs
-gentoo

Inurl:vtund.conf intext:
pass —cvs

filetype:riw riw
filetype:r2w r2w
filetype:rdw r4dw
filetype:ini ws_ftp pwd

intitle:index.of ws_ftp.ini

PROFTP Server

psyBNC

Samba
ServUDaemon
SSL

Trillian

UnreallRCd

Paths, log information,
usernames

Usernames, password

Network information

Setting information, user-
names, passwords

SSL data, various

Usernames, passwords,
buddy lists, e-mail
addresses

Server and client data,
usernames, etc.

Virtual Tunnel (vtund)Passwords

WRQ Reflection
WRQ Reflection
WRQ Reflection
WS_FTP

WS_FTP

Server connection settings
Server connection settings
Server connection settings

Usernames, passwords,
host information

Usernames, passwords,
host information

Log Files

Log files record information. Depending on the application, the information

recorded in a log file can include anything from timestamps and IP addresses to

usernames and passwords—even incredibly sensitive data such as credit card

numbers!

Like configuration files, log files often have a default name that can be used

as part of a base search. The most common file extension for a log file is simply

WWww.syngress.com

297

298

Chapter 10 * Document Grinding and Database Digging

log, making the simplest base search for log files simply filetype:log inutl:log or the
even simpler ext:log log. Remember that the ext (filetype) operator requires at least
one search argument. Log file searches seem to return less sample and example
files than configuration file searches, but search reduction is still required in some
cases. Refer to the rules for configuration file reduction listed previously.

Table 10.2 lists a collection of log file searches collected from the GHDB.
These searches show the various techniques that are employed by Google hackers
and serve as an excellent learning tool for constructing your own searches during

a penetration test.

Table 10.2 Log File Search Examples

Query

Program

inurl:error.log filetype:log -cvs
inurl:access.log filetype:log —cvs
filetype:log inurl:cache.log
filetype:log inurl:store.log RELEASE
filetype:log inurl:access.log TCP_HIT
filetype:log inurl:useragent.log
filetype:log hijackthis “scan saved”

ext:log “Software: Microsoft
Internet Information Services *.*"”

filetype:log iserror.log
intitle:index.of .bash_history
intitle:index.of .sh_history

“Index of” / “chat/logs”
filetype:log username putty
filetype:log inurl: “password.log”
filetype:log cron.log

filetype:log access.log —CVS
+htpasswd WS _FTRLOG filetype:log
“sets mode: +k”

“sets mode: +s”

intitle: “Index Of” -inurl:maillog
maillog size

Apache error log

Apache access log (Windows)
Squid cache log

Squid disk store log

Squid access log

Squid useragent log
Hijackthis scan log

[IS server log files

MS Install Shield logs
UNIX bash shell history file
UNIX shell history file

Chat logs

Putty SSH client logs
Password logs

UNIX cron logs

HTTPD server access logs
WS_FTP client log files

IRC logs, channel key set
IRC logs, secret channel set
Mail log files

WWww.syngress.com

Continued

Document Grinding and Database Digging * Chapter 10 299

Table 10.2 Log File Search Examples

Query Program

intext: “Session Start IRC/AIM log files
* Kok kokex 7 filetype:log

filetype:cfg login “LoginServer=" Ultima Online log files

ext:log password END_FILE Java password files
“"ZoneAlarm Logging Client” ZoneAlarm log files
filetype:log “PHP Parse error” PHP error logs

”

| “PHP Warning”

Log files reveal various types of information, as shown in the search for file-
type:log username putty in Figure 10.6.This log file lists machine names and asso-
ciated usernames that could be reused in an attack against the machine.

Figure 10.6 Putty Log Files Reveal Sensitive Data

Office Documents

The term office document generally refers to documents created by word pro-
cessing software, spreadsheet software, and lightweight database programs.
Common word processing software includes Microsoft Word, Corel WordPerfect,
MacWrite, and Adobe Acrobat. Common spreadsheet programs include

WWww.syngress.com

300

Chapter 10 * Document Grinding and Database Digging

Microsoft Excel, Lotus 1-2-3, and Linux’s Gnumeric. Other documents that are
generally lumped together under the office document category include Microsoft
PowerPoint, Microsoft Works, and Microsoft Access documents. Table 10.3 lists
some of the more common office document file types, organized roughly by
their Internet popularity (based on number of Google hits).

Table 10.3 Popular Office Document File Types

Extension File Type

PDF Adobe Portable Document Format
DOC Microsoft Word document

TXT TEXT file

XLS Microsoft Excel or Works spreadsheet
PPT Microsoft PowerPoint

RTF Rich Text Format document

WP WordPerfect document

WK1 Lotus 1-2-3 spreadsheet

PS Microsoft Works word processor file
MDB Microsoft Access database

MCW, MW MacWrite file

In many cases, simply searching for these files with filetype is pointless
without an additional specific search. Google hackers have successtully uncovered
all sorts of interesting files by simply throwing search terms such as private or
password or admin onto the tail end of a filetype search. However, simple base
searches such as (inurl:xls OR inurl:doc OR inurl:mdb) can be used as a broad
search across many file types.

Table 10.4 lists some searches from the GHDB that specifically target office
documents. This list shows quite a few specific techniques that we can learn
from. Some searches, such as filetype:xls inurl:password.xls, focus on a file with a
specific name. The password.xls file does not necessarily belong to any specific
software package, but it sounds interesting simply because of the name. Other
searches, such as filetype:xls username password email, shift the focus from the file’s
name to its contents. The reasoning here is that if an Excel spreadsheet contains
the words username password and e-mail, there’s a good chance the spreadsheet
contains sensitive data such as passwords. The heart and soul of a good Google
search involves refining a generic search to uncover something extremely rele-

WWww.syngress.com

Document Grinding and Database Digging * Chapter 10

vant. Google’s ability to search inside different types of documents is an
extremely powerful tool in the hands of an advanced Google user.

Table 10.4 Sample Queries That Locate Potentially Sensitive Office
Documents

Query Potential Exposure

filetype:xls username Passwords
password email

filetype:xls inurl: “password.xIs” Passwords

filetype:xls private Private data (use as base search)
Inurl:admin filetype:xls Administrative data

filetype:xls inurl:contact Contact information, e-mail addresses
filetype:xls inurl: “email xIs"” E-mail addresses, names

allinurl: admin mdb Administrative database
filetype:mdb inurl:users.mdb User lists, e-mail addresses
Inurl:email filetype:mdb User lists, e-mail addresses

Data filetype:mdb Various data (use as base search)
Inurl:backup filetype:mdb Backup databases

Inurl:profiles filetype:mdb User profiles

Inurl:*db filetype:mdb Various data (use as base search)

Database Digging

There has been intense focus recently on the security of Web-based database appli-
cations, specifically the front-end software that interfaces with a database. Within
the security community, talk of SQL injection has all but replaced talk of the once-
common CGI vulnerability, indicating that databases have arguably become a
greater target than the underlying operating system or Web server software.

An attacker will not generally use Google to break into a database or muck
with a database front-end application; rather, Google hackers troll the Internet
looking for bits and pieces of database information leaked from potentially vul-
nerable servers. These bits and pieces of information can be used to first select a
target and then to mount a more educated attack (as opposed to a ground-zero
blind attack) against the target. Bearing this in mind, understand that here we do
not discuss the actual mechanics of the attack itself, but rather the surprisingly

301

WWww.syngress.com

302

Chapter 10 * Document Grinding and Database Digging

invasive information-gathering phase an accomplished Google hacker will
employ prior to attacking a target.

Login Portals

As we discussed in Chapter 8, a login portal is the “front door” of a Web-based
application. Proudly displaying a username and password dialog, login portals
generally bear the scrutiny of most Web attackers simply because they are the
one part of an application that is most carefully secured. There are obvious
exceptions to this rule, but as an analogy, if youre going to secure your home,
aren’t you going to first make sure your front door is secure?

A typical database login portal is shown in Figure 10.7.This login page
announces not only the existence of an SQL Server but also the Microsoft Web
Data Administrator software package.

Figure 10.7 A Typical Database Login Portal

Regardless of its relative strength, the mere existence of a login portal pro-
vides a glimpse into the type of software and hardware that might be employed
at a target. Put simply, a login portal is terrific for footprinting. In extreme cases,
an unsecured login portal serves as a welcome mat for an attacker. To this end,
let’s look at some queries that an attacker might use to locate database front ends
on the Internet. Table 10.5 lists queries that locate database front ends or inter-
faces. Most entries are pulled from the GHDB.

WwWw.syngress.com

Document Grinding and Database Digging * Chapter 10

Table 10.5 Queries That Locate Database Interfaces

Query

Potential Exposure

“ClearQuest Web Logon”

filetype:fp5 fp5 -"cvs log”

filetype:fp3 fp3

filetype:fp7 fp7

“Select a database to view” intitle: "filemaker pro”
“Welcome to YourCo Financial”

“(C) Copyright IBM"” “Welcome to Websphere”
inurl:names.nsf?opendatabase
inurl:"/catalog.nsf” intitle:catalog

intitle: "messaging login” “© Copyright IBM”
intitle: "Web Data Administrator - Login”
intitle: “Gateway Configuration Menu”

intitle: "oracle http server index” “Copyright *
Oracle Corporation.”

inurl:admin_/globalsettings.htm
inurl:pls/admin_/gateway.htm
inurl:/pls/sample/admin_/help/

“phpMyAdmin” “running on” inurl:“main.php”
“Welcome to phpMyAdmin” “ Create new database”
intitle: “index of /phpmyadmin” modified

intitle:phpMyAdmin “Welcome to phpMyAdmin
***” “running on * as root@*"

inurl:main.php phpMyAdmin
intext:SQLiteManager inurl:main.php

ClearQuest (CQWEB)
FileMaker Pro
FileMaker Pro
FileMaker Pro
FileMaker Pro

IBM Websphere
IBM Websphere
Lotus Domino
Lotus Domino
Lotus Messaging
MS SQL login
Oracle

Oracle HTTP Server

Oracle HTTP Listener
Oracle login portal
Oracle default manuals
phpMyAdmin
phpMyAdmin
phpMyAdmin
phpMyAdmin

phpMyAdmin
SQLite Manager

303

WWww.syngress.com

304 Chapter 10 * Document Grinding and Database Digging

Underground Googling

Login Portals

One way to locate login portals is to focus on the word login. Another
way is to focus on the copyright at the bottom of a page. Most big-name
portals put a copyright notice at the bottom of the page. Combine this
with the product name, and a welcome or two, and you‘re off to a good
start. If you run out of ideas for new databases to try, go to
http://labs.google.com/sets, enter oracle and mysql, and click Large Set
for a list of databases.

Support Files

Another way an attacker can locate or gather information about a database is by
querying for support files that are installed with, accompany, or are created by the
database software. These can include configuration files, debugging scripts, and
even sample database files. Table 10.6 lists some searches that locate specific sup-
port files that are included with or are created by popular database clients and
servers.

Table 10.6 Queries That Locate Database Support Files

Query Description

inurl:default_content.asp ClearQuest ClearQuest Web help files

intitle: “index of” intext:globals.inc MySQL globals.inc file, lists connection
and credential information

filetype:inc intext:mysql_connect PHP MySQL Connect file, lists connec-
tion and credential information
filetype:inc dbconn Database connection file, lists connec-

tion and credential information

intitle: “index of” intext:connect.inc MySQL connection file, lists connection
and credential information

filetype:properties inurl:db intext: db.properties file, lists connection
password information

Continued

Www.syngress.com

Document Grinding and Database Digging * Chapter 10

Table 10.6 Queries That Locate Database Support Files

Query

Description

intitle: “index of” mysql.conf OR
mysql_config

inurl:php.ini filetype:ini
filetype:ldb admin
inurl:config.php dbuname dbpass
intitle:index.of config.php
“phpinfo.php” -manual

intitle: “index of” +myd size
filetype:cnf my.cnf -cvs -example

filetype:ora ora

filetype:pass pass intext:userid

filetype:pdb pdb backup (Pilot
| Pluckerdb)

MySQL configuration file, lists port
number, version number, and path
information to MySQL server

PHP.INI file, lists connection and cre-
dential information

Microsoft Access lock files, list
database and username

The old config.php script, lists user
and password information

The config.php script, lists user and
password information

The output from phpinfo.php, lists a
great deal of information

The MySQL data directory

The MySQL my.cnf file, can list infor-
mation, ranging from paths and
database names to passwords and
usernames

ORA configuration files, list Oracle
database information

dbman files, list encoded passwords

Palm database files, can list all sorts of
personal information

As an example of a support file, PHP scripts using the mysql_connect function

reveal machine names, usernames, and cleartext passwords, as shown in Figure
10.8. Strictly speaking, this file contains PHP code, but the INC extension makes
it an include file. It’s the content of this file that is of interest to a Google hacker.

305

WWww.syngress.com

306 Chapter 10 * Document Grinding and Database Digging

Figure 10.8 PHP Files Can Reveal Machine Names, Usernames, and

Passwords

Error Messages

As we’ve discussed throughout this book, error messages can be used for all sorts

of profiling and information-gathering purposes. Error messages also play a key

role in the detection and profiling of database systems. As is the case with most

error messages, database error messages can also be used to profile the operating

system and Web server version. Conversely, operating system and Web server
error messages can be used to profile and detect database servers. Table 10.7
shows queries that leverage database error messages.

Table 10.7 Queries That Locate Database Error Messages

Query

Description

intitle: “Error Occurred While
Processing Request”

intitle: “"Error Occurred” “The
error occurred in” filetype:cfm

“detected an internal error [IBM]
[CLI Driver][DB2/6000]"

ColdFusion error message, can reveal SQL
statements and server information

ColdFusion error message, can reveal
source code, full pathnames, SQL query
info, database name, SQL state informa-
tion, and local time information

DB2 error message, can reveal
pathnames, function names, filenames,
partial code, and program state

WWww.syngress.com

Continued

Document Grinding and Database Digging * Chapter 10

Table 10.7 Queries That Locate Database Error Messages

Query

Description

An unexpected token
“END-OF-STATEMENT” was found

“Error Diagnostic Information”
intitle: "Error Occurred While”

“You have an error in your SQL
syntax near”

“MySQL error with query”

“supplied argument is not a valid
MySQL result resource”

“ORA-12541: TNS:no listener”
intitle: “error occurred”

“Warning: pg_connect(): Unable
to connect to PostgreSQL server:
FATAL"

“ORA-00921: unexpected end of
SQL command”

“ORA-00933: SQL command not
properly ended”

”

“ORA-00936: missing expression

“PostgreSQL query failed: ERROR:

parser: parse error”

“Supplied argument is not a valid
PostgreSQL result”

“Unclosed quotation mark before
the character string”

“Incorrect syntax near”

DB2 error message, can reveal
pathnames, function names, filenames,
partial code, and program state

Generic error message, reveals various
information

Generic SQL message, can reveal
pathnames and partial SQL code

MySQL error message, reveals various
information

MySQL error message, reveals real
pathnames and listings of other PHP
scripts on the server

Oracle error message, reveals SQL code,
pathnames, filenames, and data sources

Postgresql error message, reveals path
information and database names

Oracle SQL error message, reveals full
Web pathnames and/or php filenames

Oracle SQL error message, reveals
pathnames, function names, filenames,
and partial SQL code

Oracle SQL error message, reveals path-
names, function names, filenames, and
partial SQL code

PostgreSQL error message, can reveal
pathnames, function names, filenames,
and partial code

PostgreSQL error message, can reveal
pathnames, function names, filenames,
and partial code

SQL error message, can reveal
pathnames, function names, filenames,
and partial code

SQL error message, can reveal path-
names, function names, filenames, and
partial code

Continued

307

WWww.syngress.com

308 Chapter 10 * Document Grinding and Database Digging

Table 10.7 Queries That Locate Database Error Messages

Query Description

“Incorrect syntax near” -the SQL error message, can reveal path-
names, function names, filenames, and
partial code (variation)

“access denied for user” SQL error message, can reveal

“using password” pathnames, function names, filenames,
and partial code (variation)

“Can’t connect to local” intitle: SQL error message, can reveal

warning pathnames, function names, filenames,

and partial code (variation)

In addition to revealing information about the database server, error messages
can also reveal much more dangerous information about potential vulnerabilities
that exist in the server. For example, consider an error such as “SQL command not
properly ended”, displayed in Figure 10.9.This error message indicates that a ter-
minating character was not found at the end of an SQL statement. For example,
if a command accepts user input, an attacker could leverage the information in
this error message to execute an SQL injection attack.

Figure 10.9 The Discovery of a Dangerous Error Message

WWww.syngress.com

Document Grinding and Database Digging * Chapter 10

Database Dumps

The output of a database into any format can be constituted as a database dump.
For the purposes of Google hacking, however, we’ll us the term database dump to
describe the text-based conversion of a database. As we’ll see next in this chapter,
it’s entirely possible for an attacker to locate just about any type of binary
database file, but standardized formats (such as the text-based SQL dump shown
in Figure 10.10) are very commonplace on the Internet.

Figure 10.10 A Typical SQL Dump

Using a full database dump, a database administrator can completely rebuild a
database. This means that a full dump details not only the structure of the
database’s tables but also every record in each and every table. Depending on the
sensitivity of the data contained in the database, a database dump can be very
revealing and obviously makes a terrific tool for an attacker. There are several
ways an attacker can locate database dumps. One of the most obvious ways is by
focusing on the headers of the dump, resulting in a query such as “H#Dumping
data for table”, as shown in Figure 10.10.This technique can be expanded to
work on just about any type of database dump headers by simply focusing on
headers that exist in every dump and that are unique phrases that are unlikely to
produce false positives.

Specifying additional specific interesting words or phrases such as username,
password, or user can help narrow this search. For example, if the word password

309

WWww.syngress.com

310

Chapter 10 * Document Grinding and Database Digging

exists in a database dump, there’s a good chance that a password of some sort 1is
listed inside the database dump. With proper use of the OR symbol (|), an
attacker can craft an extremely eftective search, such as “H# Dumping data for table”
(user | username | pass | password). In addition, an attacker could focus on file

extensions that some tools add to the end of a database dump by querying for
filetype:sql sql and further narrowing to specific words, phrases, or sites. The SQL
file extension is also used as a generic description of batched SQL commands.
Table 10.8 lists queries that locate SQL database dumps.

Table 10.8 Queries That Locate SQL Database Dumps

Query

Description

inurl:nuke filetype:sql
filetype:sql password

filetype:sql “IDENTIFIED BY” —cvs

“# Dumping data for table
(username |user |users | password)”

“#mysql dump” filetype:sql

“# Dumping data for table”

“# phpMyAdmin MySQL-Dump”
filetype:txt

“# phpMyAdmin MySQL-Dump”
“INSERT INTO"” -"the”

php-nuke or postnuke CMS dumps

SQL database dumps or batched SQL
commands

SQL database dumps or batched SQL
commands, focus on “IDENTIFIED BY”,
which can locate passwords

SQL database dumps or batched SQL
commands, focus on interesting terms

SQL database dumps
SQL database dumps

SQL database dumps created by
phpMyAdmin

SQL database dumps created by
phpMyAdmin (variation)

Actual Database Files

Another way an attacker can locate databases is by searching directly for the

database itself. This technique does not apply to all database systems, only those

systems in which the database is represented by a file with a specific name or
extension. Be advised that Google will most likely not understand how to pro-

cess or translate these files, and the summary (or “snippet”) on the search result
page will be blank and Google will list the file as an “unknown type,” as shown

in Figure 10.11.

WWww.syngress.com

Document Grinding and Database Digging * Chapter 10

Figure 10.11 Database Files Themselves Are Often Unknown to Google

If Google does not understand the format of a binary file, as with many of

those located with the filetype operator, you will be unable to search for strings
within that file. This considerably limits the options for effective searching, forcing

you to rely on inurl or site operators instead. Table 10.9 lists some queries that can

locate database files.

Table 10.9 Queries That Locate Database Files

Query

Description

filetype:cfm “cfapplication name”
password

filetype:mdb inurl:users.mdb
inurl:email filetype:mdb
inurl:backup filetype:mdb
inurl:forum filetype:mdb
inurl:/db/main.mdb
inurl:profiles filetype:mdb

filetype:asp DBQ="* Server.
MapPath(“*.mdb”)

allinurl: admin mdb

ColdFusion source code

Microsoft Access user database
Microsoft Access e-mail database
Microsoft Access backup databases
Microsoft Access forum databases
ASP-Nuke databases

Microsoft Access user profile databases

Microsoft Access database connection
string search

Microsoft Access administration
databases

311

WWww.syngress.com

312

Chapter 10 * Document Grinding and Database Digging

Automated Grinding

Searching for files 1s fairly straightforward—especially if you know the type of
file you're looking for. We’ve already seen how easy it is to locate files that con-
tain sensitive data, but in some cases it might be necessary to search files offline.
For example, assume that we want to troll for yahoo.com e-mail addresses. A
query such as “@yahoo.com” email is not at all effective as a Web search, and even
as a Group search it is problematic, as shown in Figure 10.12.

Figure 10.12 A Generic E-Mail Search Leaves Much to Be Desired

This search located one e-mail address, j¢65_83@yahoo.com, but also keyed on
store.yahoo.com, which is not a valid e-mail address. In cases like this, the best
option for locating specific strings lies in the use of regular expressions. This
involves downloading the documents you want to search (which you most likely
found with a Google search) and parsing those files for the information you’re
looking for.You could opt to automate the process of downloading these files, as
we’ll show in Chapter 12, but once you have downloaded the files, you’ll need
an easy way to search the files for interesting information. Consider the following
Perl script:

WWww.syngress.com

Document Grinding and Database Digging * Chapter 10 313

#1/usr/bin/perl

#

Usage: ./ssearch.pl FILE_TO_SEARCH WORDLIST
#

Locate words in a file, coded by James Foster

#

use strict;

open(SEARCHFILE,$ARGV[0]) || die('Can not open searchfile because $!");

open(WORDFILE,$ARGV[1]) || die('Can not open wordfile because $!");
my @WORDS=<WORDFILE>;
close(WORDFILE);

my $LineCount = 0;

whi le(<SEARCHFILE>) {
foreach my $word (@WORDS) {
chomp($word) ;
++$LineCount;
if(m/$word/) {
print "$&\n";
last;

b
close(SEARCHFILE);

This script accepts two arguments: a file to search and a list of words to
search for. As it stands, this program is rather simplistic, acting as nothing more
than a glorified grep script. However, the script becomes much more powerful
when instead of words, the word list contains regular expressions. For example,
consider the following regular expression, written by Don Ranta:

[a-zA-Z0-9. -1+@(([a-zA-Z0-9_-1{2,99}\.)+[a-zA-Z]1{2,4}) | ((25[0-5] | 2[0-
AN ININD | [1-9T\d | [1-9D\. (25[0-5] | 2[0-41\d | 1\d\d | [1-9]\d | [1-9D\. (25[0-
5]112[0-41\d | 1\d\d] [1-9]\d | [1-9])\. (25[0-5] | 2[0-4]\d | 1\d\d | [1-9]\d | [1-91))

Unless you’re somewhat skilled with regular expressions, this might look like
a bunch of garbage text. This regular expression is very powerful, however, and

WWww.syngress.com

will locate various forms of e-mail address.

314

Chapter 10 * Document Grinding and Database Digging

Let’s take a look at this regular expression in action. For this example, we’ll
save the results of a Google Groups search for “@yahoo.com” email to a file called
results.html, and we’ll enter the preceding regular expression all on one line of a
file called wordlfile.txt. As shown in Figure 10.13, we can grab the search results
from the command line with a program like Lynx, a common text-based Web
browser. Other programs could be used instead of Lynx—Curl, Netcat, Telnet, or
even “save as” from a standard Web browser. Remember that Google’s terms of
service frown on any form of automation. In essence, Google prefers that you
simply execute your search from the browser, saving the results manually.
However, as we’ve discussed previously, if you honor the spirit of the terms of
service, taking care not to abuse Google’s free search service with excessive
automation, the folks at Google will most likely not turn their wrath upon you.
Regardless, most people will ultimately decide for themselves how strictly to
follow the terms of service.

Back to our Google search: Notice that the URL indicates we’re grabbing
the first hundred results, as demonstrated by the use of the num=100 parameter.
This will potentially locate more e-mail addresses. Once the results are saved to
the results.html tile, we’ll run our ssearch.pl script against the results.html file,
searching for the e-mail expression we’ve placed in the wordfile.txt file. To help
narrow our results, we’ll pipe that output into “grep yahoo | head —15 | sort —u”
to return at most 15 unique addresses that contain the word yahoo. The final
(obfuscated) results are shown in Figure 10.13.

Figure 10.13 ssearch.pl Hunting for E-Mail Addresses

Www.syngress.com

Document Grinding and Database Digging * Chapter 10

As you can see, this combination of commands works fairly well at
unearthing e-mail addresses. If you’re familiar with UNIX commands, you might
have already noticed that there is little need for fwo separate commands. This
entire process could have been easily combined into one command by modifying
the Perl script to read standard input and piping the output from the Lynx com-
mand directly into the ssearch.pl script, effectively bypassing the results.html file.
Presenting the commands this way, however, opens the door for irresponsible
automation techniques, which isn’t overtly encouraged.

Other regular expressions can come in handy as well. This expression, also by
Don Ranta, locates UR Ls:

[a-zA-Z]1{3,4}[5517: 77 (((D\W\A\-T+\.)+[a-zA-Z]{2,4}) | ((25[0-5] | 2[O-

4IN\d | 1\d\d | [1-9T\d | [1-9DD\. (25[0-5] | 2[0-41\d | 1\d\d | [1-91\d | [1-9])\ . (25[0-
5112[0-41\d | 1\d\d | [1-91\d | [1-91)\ - (25[0-5] | 2[0-4]1\d | 1\d\d | [1-9]\d | [1-
I (21D [\W/=+#_~&: ;%-\?\.T*)

This expression, which will locate URLs and parameters, including addresses
that consist of either IP addresses or domain names, is great at processing a
Google results page, returning all the links on the page. This doesn’t work as well
as the API-based methods we’ll explore in the next chapter, but it is simpler to
use than the API method. This expression locates IP addresses:

(25[0-5] |2[0-4]\d | 1\d\d | [1-9]\d | [1-91)\. (25[0-5] | 2[0-4]\d | 1\d\d | [1-9]\d | [1-
9D\ (25[0-5] | 2[0-4]1\d | 1\d\d | [1-9]1\d | [1-9I)\ - (25[0-5] | 2[0-4]\d | 1\d\d | [1-
9I\d|[1-9])

We can use an expression like this to help map a target network. These tech-
niques could be used to parse not only HTML pages but also practically any type
of document. However, keep in mind that many files are binary, meaning that
they should be converted into text before theyre searched. The UNIX strings
command (usually implemented with strings —8 for this purpose) works very well
for this task, but don’t forget that Google has the built-in capability to translate
many different types of documents for you. If you’re searching for visible text,
you should opt to use Google’s translation, but if you’re searching for nonprinted
text such as metadata, you’ll need to first download the original file and search it
offline. Regardless of how you implement these techniques, it should be clear to
you by now that Google can be used as an extremely powerful information-
gathering tool when it’s combined with even a little automation.

315

WWww.syngress.com

316

Chapter 10 * Document Grinding and Database Digging

Google Desktop Search

The Google Desktop, available from http://desktop.google.com, is an application
that allows you to search files on your local machine. Currently available for
Windows 2000 and Windows XP, Google Desktop Search allows you to search
many types of files, as shown in Table 10.10.

Table 10.10 Google Desktop Search File Types

File Type Version

Outlook 2000+ e-mail Outlook 2000 and newer
Outlook Express 5+ e-mail Outlook Express 5 and newer
Text documents N/A

HTML documents N/A

Word documents Office 2000 and newer

Excel spreadsheets Office 2000 and newer
PowerPoint presentations Office 2000 and newer

AOL Chat conversations AOL 7 and newer

AOL Instant Messenger Chat AIM 5 and newer
conversations

Viewed Web pages Internet Explorer 5 and newer

The Google Desktop search ofters many features, but since it’s a beta
product, you should check the desktop Web page for a current list of features.
For a document-grinding tool, you can simply download content from the target
server and use Desktop Search to search through those files. This offers a distinct
advantage over searching the content online through Google; you can’t OR the

filetype operator in an online search. With Google Desktop Search, you can

search many different file types with only one query. In addition, the Desktop
Search tool captures Web pages that are viewed in Internet Explorer 5 and
newer. This means you can always view an older version of a page you’ve visited
online, even when the original page has changed. In addition, once Desktop
Search is installed, any online Google Search you perform in Internet Explorer
will also return results found on your local machine.

WWww.syngress.com

Document Grinding and Database Digging * Chapter 10

Summary

The subject of document grinding is topic worthy of an entire book. In a single
chapter, we can only hope to skim the surface of this topic. An attacker (black or
white hat) who is skilled in the art of document grinding can glean loads of
information about a target. In this chapter we’ve discussed the value of configu-
ration files, log files, and office documents, but obviously there are many other
types of documents we could focus on as well. The key to document grinding is
first discovering the types of documents that exist on a target and then,
depending on the number of results, narrowing the documents to the ones that
might be the most interesting. Depending on the target, the line of business
they’re in, the document type, and many other factors, various keywords can be
mixed with filetype searches to locate key documents.

Database hacking is also a topic for an entire book. However, there is obvious
benefit to the information Google can provide prior to a full-blown database audit.
Login portals, support files, and database dumps can provide various information
that can be recycled into an audit. Of all the information that can be found from
these sources, perhaps the most telling (and devastating) is source code. Lines of
source code provide insight into the way a database is structured and can reveal
flaws that might otherwise go unnoticed from an external assessment. In most
cases, though, a thorough code review is required to determine application flaws.
Error messages can also reveal a great deal of information to an attacker.

Automated grinding allows you to search many documents programmatically
for bits of important information. When it’s combined with Google’s excellent
document location features, you've got a very powerful information-gathering
weapon at your disposal.

Solutions Fast Track

Configuration Files

M Configuration files can reveal sensitive information to an attacker.

M Although the naming varies, configuration files can often be found with
file extensions like INI, CONE CONFIG, or CFG.

317

www.syngress.com

318

Chapter 10 * Document Grinding and Database Digging

Log Files

4]

4]

Log files can also reveal sensitive information that is often more current
than the information found in configuration files.

Naming convention varies, but log files can often be found with file
extensions like LOG.

Office Documents

4]

=

In many cases, office documents are intended for public release.
Documents that are inadvertently posted to public areas can contain
sensitive information.

Common office file extensions include PDE DOC, TXT, or XLS.

Document content varies, but strings like private, password, backup, or
admin can indicate a sensitive document.

Database Digging

4]

N ™

Login portals, especially default portals supplied by the software vendor,
are easily searched for and act as magnets for attackers seeking specific
versions or types of software. The words login, welcome, and copyright
statements are excellent ways of locating login portals.

Support files exist for both server and client software. These files can
reveal information about the configuration or usage of an application.

Error messages have varied content that can be used to profile a target.

Database dumps are arguably the most revealing of all database finds
because they include full or partial contents of a database. These dumps

can be located by searching for strings in the headers, like “H# Dumping
data for table”.

Links to Sites

4}

4]

www.filext.com A great resource for getting information about file
extensions.

http://desktop.google.com The Google Desktop Search application.

www.syngress.com

Document Grinding and Database Digging * Chapter 10

M http://johnny.ihackstuff.com The home of the Google Hacking
Database, where you can find more searches like those listed in this
chapter.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q:
A:

Q:

What can I do to help prevent this form of information leakage?

To fix this problem on a site you are responsible for, first review all docu-
ments available from a Google search. Ensure that the returned documents
are, in fact, supposed to be in the public view. Although you might opt to
scan your site for database information leaks with an automated tool (see the
Protection chapter), the best way to prevent this is at the source. Your
database remote administration tools should be locked down from outside
users, default login portals should be reviewed for safety and checked to
ensure that software versioning information has been removed, and support
files should be removed from your public servers. Error messages should be
tailored to ensure that excessive information is not revealed, and a full appli-
cation review should be performed on all applications in use. In addition, it
doesn’t hurt to configure your Web server to only allow certain file types to
be downloaded. It’s much easier to list the file types you will allow than to
list the file types you don’t allow. See the Appendix for more information
about Web application security testing.

I’'m concerned about excessive metadata in office documents. Can I do any-
thing to clean up my documents?

A: Microsoft provides a Web page dedicated to the topic: http://support.

microsoft.com/default.aspx?scid=kb;EN-US;Q223396. In addition, several
utilities are available to automate the cleaning process. One such product,
ezClean, is available from www.kklsoftware.com.

319

www.syngress.com

320

Chapter 10 * Document Grinding and Database Digging

Q:

A:

> Q0 2 0

Many types of software rely on include files to pull in external content. As I
understand it, include files, like the INC files discussed in this chapter, are a
problem because they often reveal sensitive information meant for programs,
not Web visitors. Is there any way to resolve the dangers of include files?

Include files are in fact a problem because of their file extensions. If an
extension such as .INC is used, most Web servers will display them as text,
revealing sensitive data. Consider blocking .INC files (or whatever extension
you use for includes) from being downloaded. This server modification will
keep the file from presenting in a browser but will still allow back-end pro-
cesses to access the data within the file.

: Our software uses .INC files to store database connection settings. Is there

another way?

Rename the extension to .PHP so that the contents are not displayed.

: How can I avoid our X application database from being downloaded by a

Google hacker?

Read the documentation. Some badly written software has hardcoded paths
but most allow you to place the file outside the Web server’s docroot.

www.syngress.com

Chapter 11

Protecting

Yourself from
Google Hackers

Solutions in this Chapter:

m A Good, Solid Security Policy
m Web Server Safeguards

m Hacking Your Own Site

m Getting Help from Google

m Links to Sites

M Summary
M Solutions Fast Track
M Frequently Asked Questions

321

322

Chapter 11 ¢ Protecting Yourself from Google Hackers

Introduction

The purpose of this book is to help you understand the tactics a Google hacker
might employ so that you can properly protect yourself and your customers from
this seemingly innocuous threat. The best way to do this, in our opinion, is to
show you exactly what an attacker armed with a search engine like Google is
capable of. There 1s a point at which we must discuss in no uncertain terms
exactly how to prevent this type of information exposure or how to remedy an
existing exposure. This chapter is all about protecting your site (or your cus-
tomer’s site) from this type of attack.

We’ll look at this topic from several perspectives. First, it’s important that you
understand the value of strong policy with regard to posting data on the
Internet. This is not a technical topic and could very easily put the techie in you
fast asleep, but a sound security policy is absolutely necessary when it comes to
properly securing any site. Second, we’ll look at slightly more technical topics
that describe how to secure your Web site from Google’s (and other search
engine’s) crawlers. We’ll then look at some tools that can be used to help check a
Web site’s Google exposure, and we’ll spend some time talking about ways
Google can help you shore up your defenses.

Underground Googling

Where Are the Details?

There are too many types of servers and configurations to show how to
lock them all down. A discussion on Web server security could easily span
an entire book series. We'll look at server security at a high level here,
focusing on strategies you can employ to specifically protect you from the
Google hacker threat. For more details, please check the references in the
“Links to Sites” section.

A Good, Solid Security Policy

The best hardware and software configuration money can buy can’t protect your
resources if you don’t have an effective security policy. Before implementing any

Www.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

software assurances, take the time to review your customer’s (or your own) secu-
rity policy. A good security policy, properly enforced, outlines the assets you’re
trying to protect, how the protection mechanisms are installed, the acceptable

level of operational risk, and what to do in the event of a compromise or disaster.

Without a solid, enforced security policy, you're fighting a losing battle.

Web Server Safeguards

There are several ways to keep the prying eyes of a Web crawler from digging
too deeply into your site. However, bear in mind that a Web server is best suited
for storing data that is meant for public consumption. Despite all the best protec-
tions, information leaks happen. If youre really concerned about keeping your
sensitive information private, keep it away from your public Web server. Move
that data to an intranet or onto a specialized server that is dedicated to serving
that information in a safe, responsible, policy-enforced manner.

Don’t get in the habit of splitting a public Web server into distinct roles
based on access levels. It’s too easy for a user to copy data from one file to
another, which could render some directory-based protection mechanisms use-
less. Likewise, consider the implications of a public Web server system compro-
mise. In a well thought out, properly constructed environment, the compromise
of a public Web server only results in the compromise of public information.
Proper access restrictions would prevent the attacker from bouncing from the
Web server to any other machine, making further infiltration of more sensitive
information all the more difficult for the attacker. If sensitive information were
stored alongside public information on a public Web server, the compromise of
that server could potentially compromise the more sensitive information as well.

We’ll begin by taking a look at some fairly simple measures that can be taken
to lock down a Web server from within. These are general principles; they’re not
meant to provide a complete solution but rather to highlight some of the
common key areas of defense. We will not focus on any specific type of server
but will look at suggestions that should be universal to any Web server. We will
not delve into the specifics of protecting a Web application, but rather we’ll
explore more common methods that have proven especially and specifically
effective against Web crawlers.

323

WWww.syngress.com

324

Chapter 11 ¢ Protecting Yourself from Google Hackers

Directory Listings and Missing Index Files

We’ve already seen the risks associated with directory listings. Although minor
information leaks, directory listings allow the Web user to see most (if not all) of
the files in a directory, as well as any lower-level subdirectories. As opposed to
the “guided” experience of surfing through a series of prepared pages, directory
listings provide much more unfettered access. Depending on many factors, such
as the permissions of the files and directories as well as the server’s settings for
allowed files, a casual Web browser could get access to files that should not be
public.

Figure 11.1 demonstrates an example of a directory listing that reveals the
location of an htaccess file. Normally, this file (which should be called .htaccess,
not htaccess) serves to protect the directory contents from unauthorized viewing.
However, a server misconfiguration allows this file to be seen in a directory
listing and even read.

Figure 11.1 Directory Listings Provide Road Maps to Nonpublic Files

Directory listings should be disabled unless you intend to allow visitors to
peruse files in an FTP-style fashion. On some servers, a directory listing will
appear if an index file (as defined by your server configuration) is missing. These
files, such as index.html, index.htm, or default.asp, should appear in each and
every directory that should present a page to the user. On an Apache Web server,
you can disable directory listings by placing a dash or minus sign before the word

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 325

Indexes in the httpd.conf file. The line might look something like this if directory
listings (or “indexes,” as Apache calls them) are disabled:

Options -Indexes FollowSymLinks MultiViews

Blocking Crawlers with Robots.txt

The robots.txt file provides a list of instructions for automated Web crawlers, also
called robots or bots. Standardized at www.robotstxt.org/wc/norobots.html, this
file allows you to define, with a great deal of precision, which files and directo-
ries are off-limits to Web robots. The robots.txt file must be placed in the root of
the Web server with permissions that allow the Web server to read the file. Lines
in the file beginning with a # sign are considered comments and are ignored.
Each line not beginning with a # should begin with either a User-agent or a dis-
allow statement, followed by a colon and an optional space. These lines are
written to disallow certain crawlers from accessing certain directories or files.
Each Web crawler should send a wuser-agent field, which lists the name or type of
the crawler. The value of Google’s user-agent field is Googlebot. To address a disallow
to Google, the user-agent line should read:

User-agent: Googlebot

According to the original specification, the wildcard character * can be used
in the user-agent field to indicate all crawlers. The disallow line describes what,
exactly, the crawler should not look at. The original specifications for this file
were fairly inflexible, stating that a disallow line could only address a full or par-
tial URL. According to that original specification, the crawler would ignore any
URL starting with the specified string. For example, a line like Disallow: /foo
would instruct the crawler to ignore not only /foo but /foo/index.html, whereas a
line like Disallow: /foo/ would instruct the crawler to ignore /foo/index.html but
not /foo, since the slash trailing foo must exist. For example, a valid robots.txt file
is shown here:

#abandon hope all ye who enter
User-Agent: *

Disallow: /

This file indicates that no crawler is allowed on any part of the site—the ulti-
mate exclude for Web crawlers. The robots.txt file is read from top to bottom as
ordered rules. There is no allow line in a robots.txt file. To include a particular

WWww.syngress.com

326

Chapter 11 ¢ Protecting YOurself from Google Hackers

crawler, disallow it access to nothing. This might seem like backward logic, but the
following robots.txt file indicates that all crawlers are to be sent away except for
the crawler named Palookaville:

#Bring on Palookaville
User-Agent: *

Disallow: /

User-Agent: Palookaville

Disallow:

Notice that there is no slash after Palookaville’s disallow. (Norman Cook fans
will be delighted to notice the absence of both slashes and dots from anywhere
near Palookaville.) Saying that there’s no disallow is like saying that user agent is
allowed—sloppy and confusing, but that’s the way it is.

Google allows for extensions to the robots.txt standard. A disallow pattern
may include * to match any number of characters. In addition, a § indicates the
end of a name. For example, to prevent the Googlebot from crawling all your
PDF documents, you can use the following robots.txt file:

#Away from my PDF files, Google!
User-Agent: Googlebot
Disallow: /*_PDF$

Once you’ve gotten a robots.txt file in place, you can check its validity by
visiting the Robots.txt Validator at www.searchengineworld.com/cgi-bin/
robotcheck.cgi.

Underground Googling

Web Crawlers and Robots.txt

Hackers don’t have to obey your robots.txt file. In fact, Web crawlers
really don’t have to, either, although most of the big-name Web crawlers
will, if only for the “CYA” factor. One fairly common hacker trick is to view
a site’s robots.txt file first to get an idea of how files and directories are
mapped on the server. In fact, as shown in Figure 11.2, a quick Google
query can reveal lots of sites that have had their robots.txt files crawled.
This, of course, is a misconfiguration, because the robots.txt file is meant
to stay behind the scenes.

Www.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

Figure 11.2 Robots.txt Should Not Be Crawled

NOARCHIVE: The Cache “Killer”

The robots.txt file keeps Google away from certain areas of your site. However,
there could be cases where you want Google to crawl a page, but you don’t want
Google to cache a copy of the page or present a “cached” link in its search
results. This is accomplished with a META tag. To prevent all (cooperating)
crawlers from archiving or caching a document, place the following META tag
in the HEAD section of the document:

<META NAME="'ROBOTS'" CONTENT="NOARCHIVE">

If you prefer to keep only Google from caching the document, use this
META tag in the HEAD section of the document:
<META NAME=""GOOGLEBOT" CONTENT=""NOARCHIVE">"

Any cooperating crawler can be addressed in this way by inserting its name as

the META NAME. Understand that this rule only addresses crawlers. Web visi-
tors (and hackers) can still access these pages.

NOSNIPPET: Getting Rid of Snippets

A snippet is the text listed below the title of a document on the Google results
page. Providing insight into the returned document, snippets are convenient
when you'’re blowing through piles of results. However, in some cases, snippets

327

WWww.syngress.com

328

Chapter 11 ¢ Protecting Yourself from Google Hackers

should be removed. Consider the case of a subscription-based news service.
Although this type of site would like to have the kind of exposure that Google
can offer, it needs to protect its content (including snippets of content) from
nonpaying subscribers. Such a site can accomplish this goal by combining the
NOSNIPPET META tag with IP-based filters that allow Google’s crawlers to
browse content unmolested. To keep Google from displaying snippets, insert this
code into the document:

<META NAME="GOOGLEBOT" CONTENT=""NOSNIPPET">

An interesting side effect of the NOSNIPPE'T tag is that Google will not cache
the document. NOSNIPPET removes both the snippet and the cached page.

Password-Protection Mechanisms

Google does not fill in user authentication forms. When presented with a typical
password form, Google seems to simply back away from that page, keeping
nothing but the page’s URL in its database. Although it was once rumored that
Google bypasses or somehow magically bypasses security checks, those rumors
have never been substantiated. These incidents are more likely an issue of timing.

If Google crawls a password-protected page either before the page is pro-
tected or while the password protection is down, Google will cache an image of
the protected page. Clicking the original page will show the password dialog, but
the cached page does not—providing the illusion that Google has bypassed that
page’s security. In other cases, a Google news search will provide a snippet of a
news story from a subscription site (shown in Figure 11.3), but clicking the link
to the story presents a registration screen, as shown in Figure 11.4.This also cre-
ates the illusion that Google can magically bypass pesky password dialogs and
registration screens.

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 329

Figure 11.3 Google Reveals a Page Snippet

Figure 11.4 ...Although the Site Requires Registration

If you're really serious about keeping the general public (and crawlers like
Google) away from your data, consider a password authentication mechanism. A
basic password authentication mechanism, htaccess, exists for Apache. An htaccess
file, combined with an htpasswd file, allows you to define a list of username/
password combinations that can access specific directories. You’'ll find an Apache

WWww.syngress.com

330

Chapter 11 ¢ Protecting Yourself from Google Hackers

htaccess tutorial at http://httpd.apache.org/docs/howto/htaccess.html, or try a
Google search for htaccess howto.

Software Default Settings and Programs

As we've seen throughout this book, even the most basic Google hacker can
home in on default pages, phrases, page titles, programs, and documentation with
very little effort. Keep this in mind and remove these items from any Web soft-
ware you install. It’s also good security practice to ensure that default accounts
and passwords are removed as well as any installation scripts or programs that
were supplied with the software. Since the topic of Web server security is so vast,
we’ll take a look at some of the highlights you should consider for a few
common servers.

The Microsoft IIS 5.0 Security Checklist (see the “Links to Sites” section at
the end of this chapter) lists quite a few tasks that can help lock down an IIS 5.0
server in this manner:

® Remove the \IISSamples directory (usually from c:\inetpub\iissamples).

Remove the \IISHelp directory (usually from c:\winnt\help\iishelp).

® Remove the \MSADC directory (usually from c:\program
files\common files\system\msadc).

Remove the IISADMPWD virtual directory (found in
c:\winnt\system32\inetsrv\iissadmpwd directory and the ISM.dII file).

m Remove unused script extensions:

m Web-based password change: .htr

m [nternet database connector: .idc

B Server-side includes: .stm, .shtm and .shtml
B [nternet printing: .printer

®m Index server: .htw, .ida and .idq

The Apache 1.3 series comes with fewer default pages and directories, but
keep an eye out for the following:

® The /manual directory from the Web root contains the default docu-
mentation.

m Several language files in the Web root beginning with index.html. These
default language files can be removed if unused.

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 331

Underground Googling

Patch That System

It certainly sounds like a cliché in today’s security circles, but it can’t be
stressed enough: If you choose to do only one thing to secure any of your
systems, it should be to keep up with and install all the latest software
security patches. Misconfigurations make for a close second, but without
a firm foundation, your server doesn’t stand a chance.

Hacking Your Own Site

Hacking into your own site is a great way to get an idea of its potential security
risks. Obviously, no single person can know everything there is to know about
hacking, meaning that hacking your own site is no replacement for having a real
penetration test performed by a professional. Even if you are a pen tester by
trade, it never hurts to have another perspective on your security posture. In the
realm of Google hacking, there are several automated tools and techniques you
can use to give yourself another perspective on how Google sees your site. We’ll
start by looking at some manual methods, and we’ll finish by discussing some
automated alternatives.

\WARNING

As we'll see in this chapter, there are several ways a Google search can
be automated. Google frowns on any method that does not use its sup-
plied Application Programming Interface (API) along with a Google
license key. Assume that any program that does not ask you for your
license key is running in violation of Google’s terms of service and could
result in banishment from Google. Check these important links,
www.google.com/terms_of service.html and www.bmedia.org/
archives/00000109.php, for more information. Be nice to Google and
Google will be nice to you!

WwWw.syngress.com

332

Chapter 11 ¢ Protecting Yourself from Google Hackers

Site Yourself

We've talked about the site operator throughout the book, but remember that site
allows you to narrow a search to a particular domain or server. If you're sullo, the
author of the (most impressive) NIKTO tool and administrator of cirt.net, a
query like site:cirt.net will list all Google’s cached pages from the cirt.net server, as
shown in Figure 11.5.

Figure 11.5 A Site Search is One Way to Test Your Google Exposure

You could certainly click each and every one of these links or simply browse
through the list of results to determine if those pages are indeed supposed to be
public, but this exercise could be very time consuming, especially if the number
of results is more than a few hundred. Obviously, you need to automate this pro-
cess. Let’s take a look at some automation tools.

Gooscan

Gooscan, written by Johnny Long, is a Linux-based tool that enables bulk
Google searches. The tool was not written with the Google API and therefore
violates Google’s Terms of Service (TOS). Its a judgment call as to whether or
not you want to knowingly violate Google’s TOS to scan Google for informa-
tion leaks originating from your site. If you decide to use a non-API-based tool,
remember that Google can (though very rarely does) block certain IP ranges

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

from using its search engine. Also keep in mind that this tool was designed for
securing your site, not breaking into other people’s sites. Play nice with the other
children, and unless you’re accustomed to living on the legal edge, use the
Gooscan code as a learning tool and don’t actually run it!

Gooscan is available from http://johnny.ihackstuft.com. Don’t expect much
in the way of a fancy interface or point-and-click functionality. This UNIX-
based tool is command-line only and requires a smidge of technical knowledge
to install and run. The benefit is that Gooscan is lean and mean and the best cur-
rent alternative to the Windows-only tools.

Installing Gooscan

To install Gooscan, first download the tar file, decompressing it with the tar com-
mand. Gooscan comes with one C program, a README file, and a directory
filled with data files, as shown in Figure 11.6.

Figure 11.6 Gooscan Extraction and Installation

Once the files have been extracted from the tar file, you must compile
Gooscan with a compiler such as GCC. Mac users should first install the XCode
package from the Apple Developers Connection Web site,
http://connect.apple.com/. Windows users should consider a more “graphical”
alternative such as Athena or SiteDigger, because Gooscan does not currently
compile under environments like CYGWIN.

333

WWww.syngress.com

334

Chapter 11 ¢ Protecting Yourself from Google Hackers

Gooscan’s Options

Gooscan’s usage can be listed by running the tool with no options (or a combi-

nation of bad options), as shown in Figure 11.7.

Figure 11.7 Gooscan'’s Usage

Gooscan’s most commonly used options are outlined in the included
README file. Let’s take a look at how the various options work:

<-t target> (required argument) This is the Google appliance or
server to scan. An IP address or host name can be used here. Caution:
Entering www.google.com here violates Google’s terms of service and is
neither recommended nor condoned by the author.

<-q query | -i query_file> (required argument) The query or query
file to send. Gooscan can be used to send an individual query or a series
of queries read from a file. The -g option takes one argument, which can
be any valid Google query. For example, these are valid options:

-g googledorks
-gq "microsoft sucks"

-g "intitle:index.of secret"

[-i input_file] (optional argument) The -i option takes one argu-
ment—the name of a Gooscan data file. Using a data file allows you to

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 335

perform multiple queries with Gooscan. See the following list for infor-
mation about the included Gooscan data files.

® [-0 output_file] (optional argument) Gooscan can create a nice
HTML output file. This file includes links to the actual Google search
results pages for each query.

m [-p proxy:port] (optional argument) This is the address and port of
an HTML proxy server. Queries will be sent here and bounced off to
the appliance indicated with the -t argument. The format can be similar
to 10.1.1.150:80 or proxy.validcompany.com:8080.

m [-v] (optional argument) Verbose mode. Every program needs a ver-
bose mode, especially when the author sucks with a command-line
debugger.

m [-s site] (optional argument) This filters only results from a certain
site, adding the site operator to each query Gooscan submits. This argu-
ment has absolutely no meaning when used against Google appliances,
since Google appliances are already site filtered. For example, consider
the following Google queries:

site:microsoft.com linux
site:apple.com microsoft

site:linux.org microsoft

With advanced express permission from Google, you could run the
following with Gooscan to achieve the same results:

$./gooscan -t www.google.com -s microsoft.com linux
$./gooscan -t www.google.com -s apple.com microsoft

$./gooscan -t www.google.com -s linux.org microsoft

m The [-x] and [-d] options are used with the Google appliance. We don’t
talk too much about the Google appliance in this book. Suftice it to say
that the vast majority of the techniques that work against Google.com
will work against a Google appliance as well.

Gooscan’s Data Files

Used in multiple query mode, Gooscan reads queries from a data file. The format
of the data files is as follows:

WWww.syngress.com

336 Chapter 11 ¢ Protecting Yourself from Google Hackers

search_type | search_string | count | description
search_type can be one of the following:

m intitle Finds search_string in the title of the page. If requested on the
command line, Gooscan will append the site query. Example:

intitle]error]|

This will find the word error in the title of a page.

®m inurl Finds search_string in the URL of the page. If requested on the
command line, Gooscan will append the site query. Example:

inurladmin]|

This will find the word admin in the URL of a page.

m indexof Finds search_string in a directory listing. If requested on the
command line, Gooscan will append the site query. Directory listings
often will have the term index of in the title of the page. Gooscan will
generate a Google query that looks something like this:

intitle:index.of search_string

NoTE

When using the site switch, Gooscan automatically performs a generic
search for directory listings. That query looks like this: intitle:index.of
site:site_name. If this generic query returns no results, Gooscan will skip
any subsequent indexof searches. It is a logical conclusion to skip spe-
cific indexof searches if the most generic of indexof searches returns
nothing. For example: indexof | htaccess| |

This search will find .htaccess files sitting in a directory listing on the
server.

m filetype Finds search_string as a filename, inserting the site query if
requested on the command line. For example:

filetype|cgi cgill

This search will find files that have an extension of .cgi.

www.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

raw This search_type allows the user to build custom queries. The query
1s passed to Google unmodified, adding a site query if requested in the
command line. For example:

raw]filetype:xls email username password]| |

This example will find Excel spreadsheets with the words email, user-
name, and password inside the document.

search string The search_string 1s fairly straightforward. Any string is
allowed here except chars \n and |.This string is HTML-ized before
sending to Google. The A character is converted to %65, and so on.
There are some exceptions, such as the fact that spaces are converted to
the + character.

count This field records the approximate number of hits found when a
similar query is run against all of Google. Sife is not applied. This value is
somewhat arbitrary in that it is based on the rounded numbers supplied
by Google and that this number can vary widely based on when and
how the search is performed. Still, this number can provide a valuable
watermark for sorting data files and creating custom data files. For
example, zero count records could safely be eliminated before running a
large search. (This field is currently not used by Gooscan.)

description This field describes the search type. Currently, only the file-
type.gs data file populates this field. Keep reading for more information
on the filetype.gs data file.

Several data files are included with Gooscan, each with a distinct purpose:

gdork.gs This file includes excerpts from the Google Hacking
Database (GHDB) hosted at http://johnny.ihackstuft.com. The GHDB
is the Internet’s largest database of Google hacking queries maintained
by thousands of members who make up the Search Engine Hacking
Forums, also hosted at http://johnny.ihackstuft.com. Updated many
times a week, the GHDB currently sits at around 750 unique queries.

filetype.gs This huge file contains every known filetype in existence,
according to www.filext.com. By selecting interesting lines from this
file, you can quickly determine the types of files that exist on a server
that might warrant further investigation. We suggest creating a subset of
this file (with a Linux command such as:

337

WWww.syngress.com

338 Chapter 11 ¢ Protecting Yourself from Google Hackers

head -50 filetype.gs > short_filetype.gs

for use in the field. Do not run this file as is. It’s too big. With over
8,000 queries, this search would certainly take quite a while and burn
precious resources on the target server. Instead, rely on the numbers in
the count field to tell you how many (approximate) sites contain these
files in Google, selecting only those that are the most common or rele-
vant to your site. The filetypes.gs file lists the most commonly found
extensions at the top.

® inurl.gs This very large data file contains strings from the most popular
CGI scanners, which excel at locating programs on Web servers. Sorted
by the approximate number of Google hits, this file lists the most
common strings at the top, with very esoteric CGI vulnerability strings
listed near the bottom. This data file locates the strings in the URL of a
page. This is another file that shouldn’t be run in its entirety.

® indexof.gs Nearly identical to the inurl.gs file, this data file finds the
strings in a directory listing. Run portions of this file, not all of it!

Using Gooscan

Gooscan can be used in two distinct ways: single-query mode or multiple-query
mode. Single-query mode is little better than using Google’s Web search feature,
with the exception that Gooscan will provide you with Google’s number of
results in a more portable format. As shown in Figure 11.8, a search for the term
daemon9 returns 2440 results from all of Google. To narrow this search to a specific
site, such as phrack.org, add the [-s] option. For example:

gooscan -qg '‘daemon9" -t www.google.com -s phrack.org.

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 339

Figure 11.8 Gooscan’s Single-Query Mode

Notice that Gooscan presents a very lengthy disclaimer when you select
www.google.com as the target server. This disclaimer is only presented when you
submit a search that potentially violates Google TOS. The output from a standard
Gooscan run is fairly paltry, listing only the number of hits from the Google
search.You can apply the [-o] option to create a nicer HTML output format. To
run the daemon9 query with nicer output, run:

gooscan -qg '‘daemon9"™ -t www.google.com -o daemon9.html

As shown in Figure 11.9, the HTML output lists the options that were applied
to the Gooscan run, the date the scan was performed, a list of the queries, a link
to the actual Google search, and the number of results.

Figure 11.9 Gooscan’s HTML Output in Single-Query Mode

WwWw.syngress.com

340

Chapter 11 ¢ Protecting Yourself from Google Hackers

The link in the HTML output points to Google. Clicking the link will per-
form the Google search for you. Don’t be too surprised if the numbers on
Google’s page differ from what is shown in the Gooscan output; Google’s search
results are sometimes only approximations.

Running Google in multiple-query mode is a blatant violation of Google’s
TOS but shouldn’t cause too much of a Google-stink if it’s done judiciously.
One way to keep Google on your good side is to respect the spirit of its TOS by
sending small batches of queries and not pounding the server with huge data
files. As shown in Figure 11.10, you can create a small data file using the head
command. A command such as:

head -5 data files/gdork.gs > data files/little_gdork.gs

will create a four-query data file, since the gdork.gs file has a commented header
line.

Figure 11.10 Running Small Data Files Could Keep Google from Frowning at
You

The output from the multiple-query run of Gooscan is still paltry, so let’s
take a look at the HTML output shown in Figure 11.11.

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

Figure 11.11 Gooscan’s HTML Output in Multiple-Query Mode

Using Gooscan with the [-s] switch we can narrow our results to one partic-
ular site, in this case http://johnny.ihackstuff.com, with a command such as:

Gooscan -t www.google.com -i data files/little _gdork.gs -o ihackstuff_html -
s johnny.ihackstuff.com

as shown in Figure 11.12.

Figure 11.12 A Site-Narrowed Gooscan Run

Most site-narrowed Gooscan runs should come back pretty clean, as this run
did. If you see hits that look suspicious, click the link to see exactly what Google
saw. Figure 11.13 shows the Google search in its entirety.

WWww.syngress.com

341

342 Chapter 11 ¢ Protecting Yourself from Google Hackers

Figure 11.13 Linking to Google’s Results from Gooscan

In this case, we managed to locate the Google Hacking Database itself, which
included a reference that matched our Google query. The other searches didn’t
return any results, because they were a tad more specific than the Calamaris
query, which didn’t search titles, URLs, filetypes, and the like.

In summary, Gooscan is a great tool for checking your Web site’s exposure,
but it should be used cautiously since it does not use the Google API. Break your
scans into small batches, unless you (unwisely) like thumbing your nose at the
Establishment.

Windows Tools and the .NET Framework

The Windows tools we’ll look at all require the Microsoft .NET framework,
which can be located with a Google query of .NET framework download. The suc-
cesstul installation of the framework depends on a number of factors, but regard-
less of the version of Windows you’re running, assume that you must be current
on all the latest service packs and updates. If Windows Update is available on
your version of Windows, run it. The Internet Explorer upgrade, available from
the Microsoft Web site (Google query: Internet Explorer upgrade) is the most
common required update for successful installation of the .NET Framework.
Before downloading and installing Athena or SiteDigger, make sure you’ve got
the .NET Framework properly installed.

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

Athena

Athena by Steve Lord (steve@buyukada.co.uk) is a Windows-based Google
scanner that is not based on the Google API. As with Gooscan, the use of this
tool is in violation of Google’s TOS and that as a result, Google can block your
[P range from using its search engine. Athena is potentially less intrusive than
Gooscan, since Athena only allows you to perform one search at a time, but
Google’s TOS 1s clear: no automated scanning is allowed. Just as we discussed
with Gooscan, use any non-API tool judiciously. History suggests that if you're
nice to Google, Google will be nice to you.

Athena can be downloaded from http://snakeoillabs.com/. The download con-
sists of a single MSI file. Assuming you’ve installed the .NET Framework, the
Athena installer is a simple wizard, much like most Windows-based software. Once
installed and run, Athena presents the main screen, as shown in Figure 11.14.

As shown, this screen resembles a simple Web browser. The Refine Search
text box allows you to enter or refine an existing query. The Search button is
similar to Google’s Search button and executes a search.

Figure 11.14 Athena’s Main Screen

To perform basic searches with Athena, you need to load an XML file con-
taining your desired search strings. Simply open the file from within Athena and all
the searches will appear in the Select Query drop-down box. Simply select your

343

WWww.syngress.com

344 Chapter 11 ¢ Protecting Yourself from Google Hackers

query and click the Search button. Selecting buddylist.blt and clicking Search
will deliver the Google results from that search, as shown in Figure 11.15.

Figure 11.15 Basic Search Results

As you can see, the results of the query contain undesired items. Fortunately,
Athena allows you to refine your query using the Refine Search box. Using the
previous query, entering inurl:’buddylist.blt” into the Refine Search box and
clicking the Search button provides a much cleaner search (see Figure 11.16).

Figure 11.16 Athena’s Refine Query Feature in Action

Www.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

At this point, Athena might seem rather pointless. It functions just like a Web
browser, submitting queries into Google and displaying the results. However,
Athena’s most powerful functionality lies in its XML-based configuration files.

Using Athena’s Config Files

Two of these files are included with Athena: Athena.xml and digicams.xml. These
files contain custom queries and descriptions of those queries. The digicams file

contains sample queries for finding images; the Athena.xml file contains the
queries found in the GHDB.

To load these files, click File | Open Config and select the XML file you'd
like to use. Figure 11.17 shows Athena’s main screen after you load athena.xml.

Figure 11.17 Athena Loaded with Athena. XML

As mentioned, Athena uses the GHDB as a source for its searches, making it
a very thorough scanning tool. The SiteDigger tool uses similar searches but has
chosen not to officially support the GHDB. This means that SiteDigger has far
tewer researchers submitting new searches, making for a potentially less thorough
search database.

345

WWww.syngress.com

346

Chapter 11 ¢ Protecting Yourself from Google Hackers

Constructing Athena Config Files

Athena’s XML-based config files, which are compatible with Foundstone’s
SiteDigger, can be modified or even completely overhauled based on your needs.
There are two main sections to the XML file: a searchEngine section and the sig-
nature section. The searchEngine section describes how a particular search engine’s
queries are constructed. A typical searchEngine section is shown in the following
code examples.

<searchEngine>
<searchEngineName>Google (UK)</searchEngineName>
<searchEnginePrefixUrl>http://www.google.co.uk/search?q=
</searchEnginePrefixUril>
<searchEnginePostfixUr 1>%261e=UTF-8%26h 1=en%26meta=
</searchEnginePostfixUrl>

</searchEngine>

This section is responsible for describing how the various search engines
handle search requests. The searchEngineName field is simply a text-based field
that describes the name of the search engine. This name will appear in Athena’s
drop-down box, allowing you to select from among difterent search engines. The
searchEnginePrefixUrl field represents the first part of the search URL that is sent
to the search engine. It is assumed that the query part of the search will be filled
in after this prefix. The searchEnginePostfixURL field describes the part of the
URL that will come after the prefix and the query. This usually describes various
options such as output format (UTF-8). Note that Athena uses the <searchEngine>
section, and SiteDigger does not. This section could be reworked to search the
U.S.-based Google engine with the following searchEngine section:

<searchEngine>
<searchEngineName>Google (US)</searchEngineName>
<searchEnginePrefixUrI>http://www.google.com/search?q=
</searchEnginePrefixUril>
<searchEnginePostfixUr 1>%261e=UTF-8%26h 1=en%26meta=
</searchEnginePostfixUrl>

</searchEngine>

The signature section describes the individual searches that are to be per-
formed. A typical signature section is shown in the following code example:

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

<signature>
<signatureReferenceNumber>22
</signatureReferenceNumber>
<categoryref>T1</categoryref>
<category>TECHNOLOGY PROFILE</category>
<querytype>DON</querytype>
<querystring>intitle:"Index of" secring.bak
</querystring>
<shortDescription>PGP Secret KeyRing Backup
</shortDescription>

<textualDescription>This query looked for a backup of the PGP secret
key ring. With this keyring an attacker could decrypt messages
encrypted by the user. </textualDescription>

<cveNumber>1000</cveNumber>
<cvelLocation>http://johnny.ihackstuff.com</cvelLocation>

</signature>

The signatureReferenceNumber is a unique number assigned to each signature.
The categoryref 1s a unique number that describes the signature in the context of
its category, which is described in full by category. The querystring is the Google
query that is to be performed. It is made HTML-friendly and inserted between
the searchEnginePrefixUrl and the searchEnginePostfixUrl in the URL sent to
Google. shortDescription and textualDescription are short and long descriptions of
the search, respectively. The cveNumber and cveLocation refer to the
www.cve.mitre.org Common Vulnerabilities and Exposures list.

The header of the XML file should contain these lines:

<?xml version="1.0" encoding=""utf-8"?>

<searchEngineSignature>

and the file should be closed out with a </searchEngineSignature> line as well.
Using this format, it’s fairly simple to create a file of custom queries. The file
must conform to the UTF-8 character set and be strictly XML compliant. This
means that HTML tags such as <A HREF> and
 must not only be
matched with closing tags but that each HTML tag be case sensitive. Microsoft’s
XML scanner will complain about an opening
 tag followed by a closing

 tag, since the case of the tags is different. The less-than and greater-than
symbols (< and >) can also cause problems when used improperly. If your data

347

WWww.syngress.com

348 Chapter 11 ¢ Protecting Yourself from Google Hackers

contains the Internet shorthand for “grin,” which is <G>, the MS XML scanner
will complain.

Tools and Traps

Current Config Files

The maintainers of the GHDB make available current config files for use
with Athena. This file can be downloaded from http:/johnny.
ihackstuff.com.

The Google API and License Keys

The only way Google will explicitly allow you to automate your queries is via the
Google Application Programming Interface. We’ll talk about programming in more
detail later, but to obtain programs written with the Google API running, you’ll
need to obtain a license key, and to do that you must first create a Google account
by visiting www.google.com/accounts/NewAccount. If you already have a Google
account (obtained through Google Groups or the Gmail service, for example) you
can log into that account through the Google accounts page, located at
www.google.com/accounts. Once logged in, you can proceed to http://api.google.
com/createkey to obtain your key. The license key is a sequence of characters that
when entered into any tool created with the Google API, allows you to perform
1000 automated queries per day.

SiteDigger

SiteDigger is a tool very similar to Athena, but it is automated and uses the
Google API.You must acquire a Google license key to use this program.
SiteDigger was architected by Mark Curphey, and development credit goes to
Kartik Trivedi, Eric Heitzman, Aaron Higbee and Shanit Gupta.You can down-
load SiteDigger from www.foundstone.com/resources/proddesc/sitedigger.htm.
In addition to a license key, you will need to download and install the Microsoft
.NET Framework, as we discussed earlier in this chapter. There is no installation
for SiteDigger—simply unzip the files into a directory and go.

Once launched, SiteDigger presents the main screen, shown in Figure 11.18.

Www.syngress.com

Protecting Yourself from Google Hackers * Chapter 11 349

Figure 11.18 SiteDigger’'s Main Screen

The main screen allows you to enter a domain (such as those used with the
site operator) and your Google license key. The Search, Stop, and Clear buttons
are self-explanatory. SiteDigger’s menu bar is fairly useless. The only item worth
using i1s Options, which allows you to update SiteDigger’s signatures from
Foundstone’s Web site. The Signatures tab, shown in Figure 11.19, lists the
queries that SiteDigger is capable of executing.

Figure 11.19 SiteDigger’s Familiar Signatures

Www.syngress.com

350

Chapter 11 ¢ Protecting Yourself from Google Hackers

The signatures in SiteDigger’s list should look familiar. They are very similar
to the queries executed by Athena, since many of them came from the GHDB, as
you can see when you compare the signature highlighted in Figure 11.19 to the
much earlier signature from the GHDB, shown in Figure 11.20.

Figure 11.20 Some SiteDigger Searches Look Too Familiar

SiteDigger does not ofticially use the GHDB as its foundation, and it is less
than one-third the size of the GHDB, which is free to developers with attribu-
tion to the GHDB Web site. Without the addition of the signatures from the
GHDB, SiteDigger sufters. Unfortunately, at the time of this writing, the current
version of SiteDigger is incompatible with the GHDB. In addition, there are size
constraints to the SiteDigger signature database. The developers obviously never
imagined a signature database of more than 550 entries, meaning that even in its
current state, the GHDB is larger than the maximum SiteDigger can handle. It is
unfortunate that such an excellent tool has such obvious shortcomings.

The Export Results button on the main screen allows you to create a very
nice HTML report listing the results of a scan, as shown in Figure 11.21.

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

Figure 11.21 SiteDigger’'s HTML Report

The report lists the category, one result from the search, the summary of the
search, and a longer description of the significance of the search. Notice that
only one URL is returned. It is most unfortunate that SiteDigger only returns
one URL, since this severely limits the tool’s effectiveness during a penetration
test. Even though you can narrow the search to a particular site or domain,
weeding through false positives is part of the Google hacking experience and
really can’t be automated. Clicking the provided URL takes you not to the
Google search page with the listed results (which would be preferred) but to the
first page that matched the query. There’s no easy way to get back to the Google
search page from SiteDigger to check out other query results.

Despite SiteDigger’s shortcomings, it is still worth using because its automa-
tion, much like Gooscan’s, makes fairly quick work of large query lists.

Wikto

Wikto 1s another tool similar to both Athena and SiteDigger. Like SiteDigger,
Wikto requires a Google license key to be entered before you can use the
GoogleHacks portion of this tool. Wikto, developed by Roelof Temmingh of
Sensepost (www.sensepost.com), does far more than merely query Google.
However, this book focuses only on that aspect of the tool. Figure 11.22 shows
the default GoogleHacks screen.

351

WWww.syngress.com

352 Chapter 11 ¢ Protecting Yourself from Google Hackers

Figure 11.22 Wikto’s GoogleHacks Screen

The Wikto download does not include a copy of the GHDB but is fully
compatible, as evidenced by the Load GHDB button. Simply download the latest
GHDB update from http://johnny.thackstuff.com and import it using the Load
GHDB button. Once it’s loaded, you will see the first box populated with the
GHDB entries, as shown in Figure 11.23.

Figure 11.23 Wikto Loaded with the GHDB and Ready to Go

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 353

Wikto works in two ways. Entering your domain into the Target box is the
equivalent of appending Site:yourdomain.com to each of the searches. Click the
Start GH button and Wikto will work its way through the GHDB, one entry at
a time (see Figure 11.24).

Figure 11.24 Wikto Site Scan in Progress

Wikto displays the information about each query as it passes it, as shown in
Figure 11.24. Information about the query (search string, reference 1D, general
description, and category) are displayed in the middle window, and returned
results are displayed in the bottom window.

Wikto will also perform single queries without the Sife: tag. By highlighting
your desired search string from the GHDB in the top window and clicking the
Manual button, Wikto queries Google and returns all results found, as shown in
Figure 11.25.

WWww.syngress.com

354 Chapter 11 ¢ Protecting Yourself from Google Hackers

Figure 11.25 Wikto Manual Search Results

As you can see, the output differs only in the lower window, which displays
all the results returned from the query. This is identical to going to Google.com
and manually entering the search string, only Wikto is much more convenient.

The one downside to Wikto as of the time of this writing is its lack of a log-
ging feature. Results must be manually cut and pasted if you want to save them.
Despite this shortcoming, Wikto’s compatibility with the GHDB and its exten-
sive features currently make it one of the better tools available.

Getting Help from Google

So far we’ve looked at various ways of checking your site for potential informa-
tion leaks, but what can you do if you detect such leaks? First and foremost, you
should remove the offending content from your site. This may be a fairly
involved process, but to do it right, you should always figure out the source of
the leak, to ensure that similar leaks don’t happen in the future. Information leaks
don’t just happen; they are the result of some event that occurred. Figure out the
event, resolve it, and you can begin to stem the source of the problem. Google
makes a great Web page available that helps answer some of the most commonly
asked questions from a Webmaster’s perspective. The “Google Information for
Webmasters” page, located at www.google.com/webmasters, lists all sorts of
answers to commonly asked questions.

WWww.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 355

Solving the local problem is only half the battle. In some cases, Google has a
cached copy of your information leak just waiting to be picked up by a Google
hacker. There are two ways you can delete a cached version of a page. The first
method involves the automatic URL removal system at
http://services.google.com/urlconsole/controller. This page, shown in Figure
11.26, requires that you first verify your e-mail address. Although this appears to
be a login for a Google account, Google accounts don’t seem to provide you
access. In most cases, you will have to reregister, even if you have a Google
account. The exception seems to be Google Groups accounts, which appear to
allow access to this page without a problem.

Figure 11.26 Google’s Automatic URL Removal Login

Once logged in, you will receive an e-mail verification link that, when
clicked, will allow you access to the Remove URL options screen, shown in
Figure 11.27.This screen provides links to various sets of instructions to help you
remove pages from Google’s index.

WWww.syngress.com

356 Chapter 11 ¢ Protecting Yourself from Google Hackers

Figure 11.27 URL Removal Main Page Options

The first option allows you to point Google at a robots.txt page that exists
on your site. Google will process that robots.txt file, and if it is valid, will begin
the processing to remove the pages affected by that file. According to Google,
these requests are usually processed within 24 hours. This option is especially
handy if you have made changes to your robots.txt file and would like Google to
retroactively update its database, removing any newly referenced files.

The second option allows you to remove a page based on a META tag refer-
ence.You can use this option when you discover a page that you'd like to make
available to Google, but you’d prefer not to have it cached. Simply update your
META tag tor the document and submit the document to this removal page.

The third option is the real “Oh, crap!” page. If you find a document that
absolutely, positively was not supposed to be public, first remove the document,
log into the removal system, and click Remove an Outdated Link. The
resulting screen, shown in Figure 11.28, allows you several options for removing
the oftending data. If you're really terrified of the implications of the document,
click the first removal option. This option should nail everything associated_with
the document. The second option removes the snippet that appears on the search
results page as well as the cached version of the page. The third removal option
only deletes the cached version of the page, leaving the snippet on the results
page. All these options require that the original page be deleted first. According
to Google, this option takes approximately three to five days to process.

WwWw.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 357

Figure 11.28 Google’s “Oh, Crap!"” Removal Option

The final removal option allows you to remove one of your posts from
Google Groups. Unlike the old USENET system, you can make your halt-dazed
2:00 A.M. inflammatory comments to a newsgroup go away. To delete a
USENET post, log in as the e-mail address from which you posted. Enter either
the full Groups URL or the Message ID of the message you want to delete. This
request usually takes 24 hours to process.

WWww.syngress.com

358

Chapter 11 ¢ Protecting Yourself from Google Hackers

Summary

The subject of Web server security is too big for any one book. There are so
many varied requirements combined with so many different types of Web server
software, application software, and operating system software that no one book
could do the topic justice. However, a few general principles can at least help you
prevent the devastating effects a malicious Google hacker could inflict on a site
you're charged with protecting.

First, understand how the Web server software operates in the event of an
unexpected condition. Directory listings, missing index files, and specific error
messages can all open up avenues for oftensive information gathering. Robots.txt
files, simple password authentication, and effective use of META tags can help
steer Web crawlers away from specific areas of your site. Although Web data is
generally considered public, remember that Google hackers might take interest in
your site if it appears as a result of a generic hacking search. Default pages, direc-
tories and programs can serve as an indicator that there is a low level of technical
know-how behind a site. Servers with this type of default information serve as
targets for hackers. Get a handle on what, exactly, a search engine needs to know
about your site to draw visitors without attracting undue attention as a result of
too much exposure. Use any of the available tools, such as Gooscan, Athena,
Wikto or SiteDigger, to help you search Google for your site’s information leaks.
If you locate a page that shouldn’t be public, use Google’s removal tools to flush
the page from Google’s database.

Solutions Fast Track

A Good, Solid Security Policy

M An enforceable, solid security policy should serve as the foundation of
any security effort.

M Without a policy, your safeguards could be inefficient or unenforceable.

Web Server Safeguards

M Directory listings, error messages, and misconfigurations can provide too
much information.

www.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11

M Robots.txt files and specialized META tags can help direct search
engine crawlers away from specific pages or directories.

M Password mechanisms, even basic ones, keep crawlers away from
protected content.

M Default pages and settings indicate that a server is not well maintained
and can make that server a target.

Hacking Your Own Site
M Use the site operator to browse the servers youre charged with
protecting. Keep an eye out for any pages that don’t belong.

M Use a tool like Gooscan or Athena to assess your exposure. These tools
do not use the Google API, so be aware that any blatant abuse or
excessive activity could get your IP range cut oft from Google.

M Use a tool like SiteDigger or Wikto, which uses the Google API and
should free you from fear of getting shut down.

M Use the Google Hacking Database to monitor the latest Google hacking
queries. Use the GHDB exports with tools like Gooscan, Athena, or
SiteDigger.

Getting Help from Google
M Use Google’s Webmaster page for information specifically geared toward
Webmasters.

M Use Google’s URL removal tools to get sensitive data out of Google’s
databases.

Links to Sites

m http://johnny.ihackstuff.com The home of the Google Hacking
Database (GHDB), the search engine hacking forums, the Gooscan tool,
and the GHDB export files.

m www.snakeoillabs.com Home of Athena.
= www.foundstone.com/resources/proddesc/sitedigger.htm

® www.sensepost.com/research/wikto The Wikto Scanner by
Sensepost

359

www.syngress.com

360 Chapter 11 ¢ Protecting Yourself from Google Hackers

m www.searchengineworld.com/robots/robots_tutorial.htm A
good tutorial on using the robots.txt file.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q:

A:

> O

What is the no-cache pragma? Will it keep my pages from caching on
Google’s servers?

The no-cache pragma is a META tag that can be entered into a document to
instruct the browser not to load the page into the browser’s cache. This does
not affect Google’s caching feature; it is strictly an instruction to a client’s
browser. See www.htmlgoodies.com/beyond/nocache.html for more infor-
mation.

: Can you provide any more details about securing IIS?

. Microsoft makes available a very nice IIS Security Planning Tool. Try a

Google search for IIS Security Planning Tool. Microsoft also makes available an
IIS 5 security checklist; Google for IIS 5 services checklist. An excellent read
pertaining to IIS 6 can be found with a query like “elements of IIS security”.
Also, frequent the IIS Security Center. Try querying for IIS security center.

: Okay, enough about IIS. What about securing Apache servers?

: Securityfocus.com has a great article, “Securing Apache: Step-by-Step,” avail-

able from www.securityfocus.com/infocus/1694.

: Which is the best tool for checking my Google exposure?

: That’s a tough question, and the answer depends on your needs. The absolute

most through way to check your Web site’s exposure is to use the sife operator.
A query such as site:gulftech.org will show you all the pages on gulftech.org that
Google knows about. By looking at each and every page, you’ll absolutely
know what Google has on you. Repeat this process once a week.

www.syngress.com

Protecting Yourself from Google Hackers ¢ Chapter 11 361

If this 1s too tedious, you’ll need to consider an automation tool. A step
above the sife technique is Athena. Athena reads the full contents of the
GHDB and allows you to step through each query, applying a site value to
each search. This allows you to step through the comprehensive list of “bad
searches” to see if your site is affected. Athena does not use the Google API
but is not automated in the truest sense of the word. SiteDigger by
Foundstone is automated, and a GHDB config file is available, giving you
access to the latest hacking queries. SiteDigger has a nice reporting feature
and uses the Google API, making it a friendlier alternative to the non-API
tools. Gooscan is potentially the biggest Google automation offender when
used improperly, since it is built on the GHDB and will crank through the
entire GHDB i1n fairly short order. It does not use the Google API, and
Google will most certainly notice you using it in its wide-open configura-
tion. This type of usage is not recommended, since Google could make for a
nasty enemy, but when Gooscan is used with discretion and respect for the
spirit of Google's no-automation rule, it is a most thorough automated tool.
As far as overall usefullness, we like Wikto. It allows for Google scanning
functionality (legal', via the API) and also incorporates a slew of host scan-
ning features backed by the Nikto database.

www.syngress.com

Chapter 12

Automating

Google Searches

Foster

by James C.

Solutions in this Chapter:

Understanding Google Search Criteria
Understanding the Google API
Understanding Google Automation Libraries

Scanning the Web with Google Attack
Libraries

Links to Sites

M Summary

M Solutions Fast Track

M Frequently Asked Questions

363

364

Chapter 12 « Automating Google Searches

Introduction

In a relatively short time, Google has become one of the largest collections of
information in the world—certainly one of the largest freely available on the
Internet. Outside the corporate anomaly and considering its founders and go-to-
market strategy, it is nothing short of amazing that this Internet search power-
house has become the de facto standard for searching the Internet for desired
information. That said, Google’s collected information has become more sought
after than the proprietary Web-crawling algorithms, massive storage techniques,
or information retrieval system that seems to offer up the requested search infor-
mation in mere nanoseconds.

Similar to nearly all other high-technology industries, the niche information
security industry continues to assimilate advanced algorithms for the quick deter-
mination of more accurate information. Expert systems, artificial intelligence,
dynamic database-driven applications, and profiling are four of the overarching
initiatives that are currently driving the security applications to the next level of
automated computation.

Numerous mechanisms exist for collecting information from Google’s online
index of Web sites. Throughout this chapter, we discuss multiple methods for
retrieving information from Google’s database, including an overview of Google’s
API and manual Web page scraping. Manual Web page scraping is the technique
of pulling out desired information from a returned Web page after a query is
sent. These page-scraping techniques are quickly gaining in popularity and are
currently being utilized in a number of security, information-gathering, and
other gimmick search engines. Although the underlying algorithm is nearly iden-
tical, the particular implementations of the search algorithm are quite different
when written in different programming languages. Last but not least, we discuss
how ethical automated scanning applications can be written that do not abuse
the Google site by bombarding it with queries. This will be our equivalent to
show how page-scraping applications can be written from a “white-hat” perspec-
tive. A note of caution: This chapter is written for programmers. You’ll need a
background in various programming languages to get the most from this chapter.
Simpler code examples are used throughout this book.

WWww.syngress.com

Automating Google Searches * Chapter 12 365

WARNING!

Google’s stance on automation is that Google does not approve of auto-
mated scanning outside its provided Google API. Utilizing manual page-
scraping techniques violates Google’s terms of service; therefore, all the
information in this book is provided for educational purposes. The code
and libraries included in this chapter were developed as prototypes and
are meant to serve as examples only! Please review Google’s Standard
Terms and Conditions for the company’s current searching policy.

Understanding Google Search Criteria

As you have learned, Google provides access to an extremely large database of
information ascertained from online applications and Web sites. As an end user,
you have the ability to query this information in two general ways. The first is
through the common search interface located on the main page at
www.google.com. In general, this mechanism utilizes one or multiple words (or
strings) and returns a list of the highest-rated sites with these strings. The other,
less common mechanism is the advanced search page that resides on the Google
Web site in a somewhat hidden form. Here is a direct Web link to the advanced
Google search page in English: www.google.com/advanced_search?hl=en.

Advanced Google querying not only aids in our cause of retrieving sensitive
information from the Google database, it also helps educate users on the dangers
of storing potentially sensitive information on distributed applications or Web
applications. This chapter dives into these intricacies.

NoTE

Google searching parameters are covered in detail in Chapter 1. Please
refer to Chapter 1 for more information on specific Google searching
parameters.

Results from advanced and complex Google queries can be captured in one
of two ways. The first and easiest is to grab results straight from a browser’s
address bar after the query is submitted to Google. Another method for obtaining
the full query is to utilize a network traffic analyzer or sniffer.

Www.syngress.com

366 Chapter 12 « Automating Google Searches

Our recommended sniffer is Ethereal (www.ethereal.org). The newer versions
of Ethereal can convert HTTP to ASCII, minimizing the manual conversion
necessary to enable humans to read the queries. An advanced Google query
looking for exploits is shown in Figure 12.1.

Figure 12.1 Programmatic Yet Not Automatic Advanced Google Querying

Running an advanced query utilizing the previous Google-supplied form is
not a difficult task when you are seeking information or contacts on a specific
subject. Although the results of an advanced query, shown in Figure 12.2, are easy
to read from a human perspective, it’s quite different from a programmatic stand-
point. The real issue of this seemingly simple task is magnified when you want to
query Google 10,000 times and log the results for later correlation, analysis, or

WwWw.syngress.com

Automating Google Searches * Chapter 12 367

reporting. At that point, automating the transmission and reception of the Google
queries is no longer an option—it’s mandatory.

Figure 12.2 Formalized Yet Not So Normalized Advanced Google Query

As an additional note, the latest version of Ethereal incorporated an extremely
useful feature: cut and paste. You are now able to cut and paste raw packet or
ASClI-converted information straight from the Ethereal analysis pane into com-
puter memory for later use. Gaining access to packet data in older versions of
Ethereal was a cumbersome task that included saving captured streams in .PCAP
format, then later manually converting data into a straight text form from .PCAP.

WWww.syngress.com

368 Chapter 12 « Automating Google Searches

Analyzing the Business
Requirements for Black Hat Auto-Googling

Although we won'’t attempt to justify the absolute need to automate Google
querying and page scraping here, we will point out that it’s illegal, unethical, and
in some cases, as in securing your Web site or customer’s Web site, unavoidably
necessary.

Google sets limitations that limit your true ability to monitor your Web
applications with complete visibility. That said, we will demonstrate techniques
that can be implemented to “more ethically” automatically query Google or
avoid the dreaded (and alleged) Google IP blacklist. (Supposedly, a “living”
Google blacklist exists to log and limit Google service offenders, whether human
or Web bot.)

The following is a list of self-governing Google pen-testing ethics:

B [mplement sleep timers in your applications that will not affect Google’s
response time on a global level. For instance, do not send 10,000 Google
queries as fast as you can write them to the wire; sleep for 2 or 3 sec-
onds between each transmission.

B Do not simply mirror aged Google results. Better to link queries to real-
time results than to create an aged database of results that needs constant
updating.

B Test or query with permission ascertained from the “target” site.

Query intelligently, thereby minimizing the number of queries sent to
Google. If you have a blanket database that you fire against all sites on Google,
even though half are irrelevant, you’re unnecessarily abusing the system. Why
scan for Linux-based CGI vulnerabilities if the target applications or organization
only implement Windows systems?

More information on Google lockouts can be found in the article located at
www.bmedia.org/archives/00000109.php.

Google Terms and Conditions

The following are important links to Google’s official terms and conditions as
they pertain to this book and chapter:

WWww.syngress.com

Automating Google Searches * Chapter 12

B Standard Searching Service Terms and Agreements
www.google.com/terms_of_service.html

B Google API Service Terms and Agreements
www.google.com/apis/api_terms.html

Understanding the Google API

The Google API or development kit was created for programmers who want to
interface with Google’s online “googleplex” of data. The API is a fully supported
set of API calls that can be accessed or leveraged in multiple languages. The most
common language to hook into the Google development API is Microsoft C#
for .NET.

Unfortunately, you cannot simply read a document on the API set and begin
to code.You must complete a few steps before you’ll be able to utilize the
Google API. As a quick note, do not bet on beating the system’s 1000 queries per
day. When you use the Google API, each query is accompanied by the Google
API key. A local Google cache database keeps track of each key usage to ensure
that on any sliding 24-hour scale, a key is not sent more than 1000 times.

The following steps outline Googling as Google intended:

Download the development kit at www.google.com/apis/

2. Register to create a new Google API developer account:

B www.google.com/accounts/NewAccount?continue=http://
api.google.com/createkey&followup=http://api.google.com/createkey.

B Be prepared to provide your e-mail address, which will end up being
your username, and a secure password, as shown in Figure 12.3.

NoTE

You will be required to verify the supplied e-mail address before your
account license will be created and sent to you.

369

Www.syngress.com

370 Chapter 12 « Automating Google Searches

Figure 12.3 Creating a Google Development API Account

After submission, you need to wait about 10 minutes to get your Google API
verification e-mail. This e-mail will be sent to your username/e-mail account.
Simply click the supplied link and you will see a page similar to the one shown in
Figure 12.4. Keep your Google License Key (a lengthy string of upper and lower
case characters) handy. All tools written with the Google API will require it.

WWww.syngress.com

Automating Google Searches * Chapter 12

Figure 12.4 Google Account Creation Key Success

License Key Generated

We have generated a Google Web APIs license key and sent it
to your email address.

Your license key provides you access to the Google Web APIs
service and entitles you to 1,000 queries per day.

For more information, please visit our Getting Help page.

<< Return to Google Web APIs Home.

The last step before coding is to unzip the Google API download and start
parsing through the example code and reading the documentation. If you are not
familiar with Java or Microsoft C#, you might have serious issues with creating a
program that has the ability to access the Google API feature set. We recommend
that you become familiar with one of those languages before you dive into the
task of creating a program that implements the Google API. Also, keep the
GoogleSearch.wsdll file from the API download handy. Most API applications

require it.

Understanding a Google Search Request

The Google search parameters and formats differ slightly between the
Development API and standard Web client search parameters. In this section we
attempt to document the most commonly utilized, required, or requested search
parameters that are transmitted through the development API. The parent Google
API search parameters are located in Table 12.1, with brief corresponding
descriptions. Note that this matches some of the URL parameters we covered in
Chapter 1.

371

Www.syngress.com

372

Chapter 12 « Automating Google Searches

Table 12.1 Google API Search Parameters

Name Description

Filter An extremely useful parameter designed to return only the
most relevant link per major domain. For instance, if this
parameter was set, you would not see more than one link
for Web-based e-mail for www.hotmail.com.

le This parameter is no longer supported.

Key This parameter is required when utilizing the Google
Development API suite. It is utilized to authenticate to
Google and track your queries.

Lr This parameter limits the results to a defined language, such
as English, Chinese, or French.

maxResults Sets the maximum results returned from a specific query. By
default, the results are returned with 10 entries per page.

Oe This parameter is no longer supported.

Q This parameter is utilized to specify a specific query against
Google.

Restricts This parameter limits the results to a potential subset of the
entire results. For instance, a restriction could be set to
return information only on the United Kingdom or pages
written in German.

safeSearch A Boolean parameter meant to be utilized to disallow
“adult” content to be returned for a search request.

start This is an index of the first desired result.

The Google API filter rule can help remove useless Google results. The
description of the filter flag is included in Table 12.2. Expect additional Google
flags to be added in 2005.

Table 12.2 Google API Filter Parameter

Flag

Description

Filter

filter is a Boolean parameter that utilizes two forms of
response filtering. The first removes any similar results via a
comparison algorithm (similar to diff); the second mechanism
ensures that only one result comes from one parent domain.

WWww.syngress.com

Automating Google Searches * Chapter 12

Table 12.3 contains a comprehensive list of the language restrictions available
for use within the Google Development API. These are extremely similar to the
search request language peremeters we discussed in Chapter 1..

Table 12.3 Google API Language Restrictions

Language Value Language Value

Arabic lang_ar Icelandic lang _is
Chinese (S) lang_zh-CN Italian lang it
Chinese (T) lang zh-TW Japanese lang ja
Czech lang cs Korean lang ko
Danish lang da Latvian lang Iv
Dutch lang nl Lithuanian lang It
English lang_en Norwegian lang_no
Estonian lang et Portuguese lang pt
Finnish lang_fi Polish lang pl
French lang fr Romanian lang_ro
German lang de Russian lang ru
Greek lang el Spanish lang es
Hebrew lang_iw Swedish lang sv
Hungarian lang hu Turkish lang tr

Appendix C lists a directory of countries with their corresponding country
restriction values that can be implemented or leveraged in the Google develop-
ment APL. These values are extremely useful in combination with language filters
and can significantly filter out results from pages containing “Greek.”

A major difference between the Web user interface and the Google API is
the built-in topic restriction rules. For instance, if you wanted to filter results for
Microsoft-related information only, you would execute your search from
www.google.com/microsoft as opposed to setting the topic restriction flag to
equal a value of Microsoft. Table 12.4 contains a list of the Google topic restric-
tions and their corresponding values.

373

WWww.syngress.com

374 Chapter 12 « Automating Google Searches

Table 12.4 Google API Topic Restrictions

Topic Value
FreeBSD Bsd

Linux Linux
Macintosh mac
Microsoft microsoft
United States government Unclesam

The full value of Google’s API search capabilities is realized when you start to

utilize API restriction parameter combinations. A set of operators exists to give

you the ability to limit results utilizing Boolean and mathematical logic. The
AND, OR, and NOT Boolean operators, described in Table 12.5, are fantastic at
searching for language and country restrictions; the parentheses () are ideal for

encapsulating logic containing multiple operators or search terms.

Table 12.5 Google API Restriction Parameter Combinations

Name Operator

Description Example

AND

NOT -

OR

The AND operator is utilized to lang_es.countryMX
combine more than one

restriction, thereby further

limiting the results.

Limits results to responses
from Mexican domains
written in Spanish.

The NOT operator is utilized to -countryCU
negate the value of a specified

variable, or in Google’s case, a

search sequence.

Eliminates all sites generated in
a request with a parent domain
in Cuba.

The OR operator is utilized ina countryCU |
Boolean manner to state TRUE countrylQ
if one of two scenarios are TRUE.

Allows only sites generated in a
request with a parent domain
in Cuba or Iraq.

WWww.syngress.com

Continued

Automating Google Searches * Chapter 12

Table 12.5 Google API Restriction Parameter Combinations

Name Operator

Description Example

Parentheses ()

The parentheses should be -(lang CU|lang_PL)
used when you send

multiple assignments to

Google. Statements in

parentheses are evaluated

before statements outside

parentheses.

Eliminates any responses that were returned in
Cuban or Polish.

NoTE

Google search parentheses are implemented only for the Google
Development API; hence, they will not work within the regular search
fields or with any other automated page-scraping techniques.

Auto-Googling the Google Way

Utilizing the Google API to conduct automated Google searches is much easier
from a development perspective than creating your own API set via manual
response page scraping, since all the back-end code is already written for you.
The included methods and properties open a vast list of variables that can be put
at your development fingertips with the mere instantiation and use of a desired

API object.

Google API Search Requests

The following is a list of the Google API results that can be ascertained from the
supplied methods. Each of these properties can be implemented to assist you in
sending a Google API search request:

B <documentFiltering>

B <directoryCategories>

B <endIndex>

375

Www.syngress.com

376 Chapter 12 « Automating Google Searches

<estimatelsExact>
<estimated Total Results Count>
<resultElements>
<searchComments>

<search Time>

<searchTips>

<startIndex>

R eading Google API Results Responses

The following is a list of the Google API results that can be ascertained from the
supplied methods. Each of these properties can be directly accessed once a Google
search request has been successfully completed:

<cached Size>
<directory Category>
<directory Title>

<hostname>

<snippet>
<summary>
<title>

|

|

|

|

B <yelatedInformationPresent™>
|

|

|

B <URL>

As we have discussed, the Google Development APIs come with a slew of
limitations. From a developer’s perspective, some of these limitations are more
apparent and devastating than others. For instance, the well-known 1000 queries
will limit your ability to fully test your Google footprint; however, the maximum
10 results per query will also limit your ability to potentially test or fingerprint
the Internet for certain vulnerabilities. The full listing of Google API limitations
as seen by Google Labs is displayed in Table 12.6.

WWww.syngress.com

Table 12.6 Google API Limitations

Automating Google Searches * Chapter 12

Component Limitation
Search request length 2048 bytes
Maximum words utilized to form 10

a query

Maximum sites (site) in a query 1
Maximum results per query 10
Maximum results 1000

Sample API Code

Before we dig into the API code, we must meet a few requirements that are

common to most Perl-based Google querying scripts. These are the same

requirements we covered in Chapter 4, but we’ll list them again for convenience.

In order to use this tool, you must first obtain a Google API key from

www.google.com/apis. Download the developer’s kit, copying the

GoogleSearch.wsdl file into the same directory as this script. Next, download and

install the expat package from sourceforge.net/projects/expat. This installation

will require a ./configure and a make as is typical with most modern UNIX-

based installers. This script also uses SOAP::Lite, which is easiest to install via
CPAN. Simply run CPAN from your favorite flavor of UNIX, and issue the fol-
lowing commands from the CPAN shell to install SOAP::Lite and various
dependencies (some of which may not be absolutely necessary on your plat-

form):

install LWP::UserAgent
install XML::Parser
install MIME::Parser

force install SOAP::Lite

This script was written by Roelof Temmingh from SensePost (www.sense-

post.com). SensePost uses this tool as part of their footprinting process which

really accentuates the power of Google for reconnaissance purposes. For more

information about their techniques, try Googling for sensepost tea or sense-

post obvious. The first hit for these searches brings up two excellent papers that

are a great read filled with excellent information.

377

WWww.syngress.com

378

Chapter 12 « Automating Google Searches

The script, called dns-mine.pl is listed below:

#1/usr/bin/perl

Google DNS name / sub domain miner

SensePost Research 2003

roelof@sensepost.com

#

Assumes the GoogleSearch.wsdl file is in same directory
#

#Section 1

use SOAP::Lite;

ifT ($#ARGV<0){die "perl dns-mine.pl domainname\ne.g. perl dns-mine.pl
cnn.com\n';}

my $company = $ARGV[O];

#HH#H#H#H You want to edit these Tour lines: #HHHHHHHHHHHIHE

$key = "----YOUR GOOGLE APl KEY HERE----"";
@randomwords=("'site",""web",""document","internet”,"link","about", $company) ;
my $service = SOAP::Lite->service("file:./GoogleSearch.wsdl");

my $numloops=3; #number of pages - max 100

FHHHHHHHHHH R HHHH A

#Section 2
Loop through all the words to overcome Google®"s 1000 hit limit
foreach $randomword (@randomwords){

print "\nAdding word [$randomword]\n"';

#method 1
my $query = "$randomword $company -www.$company';

push @allsites,DoGoogle($key,$query,$company) ;

#method 2
my $query = "-www.$company $randomword site:$company';

push @allsites,DoGoogle($key,$query,$company) ;

WWww.syngress.com

Automating Google Searches * Chapter 12

#Section 3
Remove duplicates
@allsites=dedupe(@allsites);
print STDOUT "\n---——-————————- \nDNS names:\n-----—————————— \n"';
foreach $site (@allsites){
print STDOUT "$site\n";

#Section 4
Check for subdomains
foreach $site (@allsites){
my $splitter="_"_$company;
my ($frontpart,$backpart)=split(/$splitter/,$site);
if ($frontpart =~ /\./){
@subs=split(/\.7/,$frontpart);
my $temp=""';
for (my $i=1; $i<=$#subs; $i++){
$temp=$temp. (@subs[$i]."."");

}
push @allsubs,$temp.$company;
}
}
print STDOUT "\n------——-—-—————- \nSub domains:\n------—————————- \n"';

@al lsubs=dedupe(@al Isubs);
foreach $sub (@allsubs){
print STDOUT "$sub\n';

#Section 5
HEHHH AR —————— subs----—-- W
sub dedupe{

my (@keywords) = @_;

379

WWww.syngress.com

380 Chapter 12 « Automating Google Searches

my %hash = ;
foreach (@keywords) {
$_ =~ tr/[A-Z]/[a-21/;
chomp;
if (length($)>1){$hash{$_} = $:;}

}

return keys %hash;
}
#Section 6

sub parseURL{
my ($site,$Scompany)=0_;
it (length($site)>0){
if ($site =~ /7:\/\/([I\\wIH)[\:\/]1/){
my $mined=$1;
if ($mined =~/$company/){

return $mined;

}
}
}
return "';
}
#Section 7

sub DoGoogle{
my ($GoogleKey,$GoogleQuery,$company)=0_;
my @GoogleDomains=""";
for ($J=0; $j<snumloops; $j++){
print STDERR "$j
my $results = $service
->

doGoogleSearch($GoogleKey,$GoogleQuery, (10*$j),10, "true',” ,"true™, """ ,"latin
1","latinl™);

my $re=(@{$results->{resultElements}});
foreach my $results(@{$results->{resultElements}}){

my $site=$results->{URL};
WWW.syngress.com

Automating Google Searches * Chapter 12

my $dnsname=parseURL($site,$company);
ifT (length($dnsname)>0){
push @GoogleDomains,$dnsname;

¥
it (Bre 1=10){last;}
}

return @GoogleDomains;

}

Source Documentation

The Google_ DNS_Mine Perl script utilizes the Google Development API
through the Perl SOAP module. The script was created to identify and retrieve
all of the sub domains and DNS names associated with a particular parent web
site. The links and strings retrieved would be extremely useful for anyone seeking
to identify directories, CGI bins, or sub domains that could be later utilized or
leverage when penetration testing.

Section 1 is utilized to declare the variables and arrays for the script in addi-
tion to specifying the modules required. The second section of the script loops
through the random word engine querying Google for multiple search terms. All
sites and sub-domains that are found within the response pages are then pushed
to an associative array (@allsites). The random words, company, and key variables
were defined in section 1.

The third section of the script was created for ease of use and educational
purposes only. It serves two purposes. The first is to call the subfunction dedupe()
that removes duplicate sites from the array then prints each unique site to
STDOUT. The sites that are printed to STDOUT during this section are full
strings that still contain the parent strings.

Section 4 splits the entire retrieved strings from the Google responses to con-
tain only sub-domains. Once the subdomains are properly stripped and for-
matted, they are pushed to the @allsubs array then in the same manner covered
in Section 3 are removed of duplicates and printed to STDOUT.

The fifth section contains the dedupe() function which removes all of the
duplicates for subdomains. The passed array is converted from the memory resi-
dent bufter to the @keywords array. Each keyword in the array is then converted
to lowercase and the carriage return is removed. The hashes are then compared
and returned in a hash table. The sixth section parses out all of the URL infor-

381

WWww.syngress.com

382

Chapter 12 « Automating Google Searches

mation from the returned Google strings. The memory bufter is parsed into a site
variable and company variable which is then utilized to determine the length of
the site string. The company variable is later utilized to help slice the pertinent
URL string before returning the "mined" string.

The last section of this script contains the bulk of the Google API code
required to execute the query on the remote system. The subfunction accepts the
GoogleKey, GoogleQuery, and company variables. The my $results line executes
the Google query utilizing the SOAP service and corresponding method
doGoogleSearch. The results are then parsed and pushed to the
@GoogleDomains array before being returned back to the calling function.

When run, the tool launches multiple Google queries (built from the @rand-
words list) that locate domain names and subdomains nested in Google result
fields. These names and subdomains are output to the screen. For example, run-
ning the tool against Google.com produces the following output:

news.google.com.au
catalogs.google.com
www . cantfindongoogle.com
toolbar.google.com
services.google.com
news.google.com
labs1l.google.com
gmail .google.com
adwords.google.com
labs.google.com
froogle.google.com
api.google.com
print.google.com
answers.google.com
desktop.google.com
local .google.com

directory.google.com

WWww.syngress.com

Automating Google Searches * Chapter 12 383

cantfindo.google.com

This tool provides excellent mapping data for a penetration test, and the
results can be extended by increasing the $numloops variable.

Tools and Traps...

Foundstone’s SiteDigger

Kudos to the Foundstone consulting team for their slick Windows inter-
face for assessing Web sites. Their tool “plays by the rules,” since they do
require you to obtain a Google developer license key to power the scan-
ning portion of the application. The upside to this method and to utilizing
this tool is that you are doing no wrong (provided that you have permis-
sion to query-bang a site); the downside is that you are limited to 1000
queries per day. As you can imagine, these 1000 queries could go rather
quickly if you were to scan more than one site or if you wanted to run
multiple scans on an individual site. It is only a matter of time until the
GoogleDork DB is larger than 1000 queries. This tool can be downloaded
from Foundstone’s homepage at www.foundstone.com under the
Resources link. Foundstone’s SiteDigger Win32 interface is shown in
Figure 12.5. Also consider the Wikto tool from SensePost, (www.sense-
post.com), which allows for Google searching and more specific Web
server testing.

WwWw.syngress.com

384 Chapter 12 « Automating Google Searches

Figure 12.5 SiteDigger Win32 Interface

Understanding Google Attack Libraries

Google attack libraries refer to our (Google Pen Testers) code that has been cre-
ated to aid in the development of education about applications and tools that
query the Google database, retrieve results, and scrap through those results. At the
onset of this endeavor, we decided that we should first create a list of goals that
we want our codebase to adhere to, as well as a list of challenges that we should
acknowledge:

1. Execute queries against the Google database without using it’s Google
Development API.

2. Retrieve specific results from the executed Google queries.

3. Parse and scrap through results to provide useful information to the
calling program.

4. Utilize components in the particular implementations that use the
inherent advantages of each language.

5. Code efticiently.

WWww.syngress.com

Automating Google Searches * Chapter 12

Pitfalls:
1. Inaccurate development could lead to poor results.

2. Avoid unstable response parsing that is too static to interpret atypical
Google page responses.

3. Avoid lengthy or buggy socket code that utilizes too many socket con-
nections or does not close them at the appropriate times.

4. Avoid poor query cannon development that will not handle complex or
lengthy Google queries.

Pseudocoding

The concept of pseudocoding software or a tool before you start developing is
something that is regularly taught in college courses as well as embraced in the
commercial software development world. One popular form of this practice is
creating a Unified Modeling Language (UML) diagram. UML is most com-
monly utilized in developing object-oriented software, but it can also be used to
create even the smallest of tools. More commonly than UML and a predecessor
1s the ever-present graphical flowchart depicting the overarching processes and
components that, housed together, collectively make up an application.

One of our goals 1s to discuss different implementations for automating
Google queries and the minute or large differences between the languages.
Before we dive into the implementations, let’s describe the overall process to
achieve our Google Query Library goals in a software process flow diagram. See
Figure 12.6.

Figure 12.6 Google Query Library Process

385

WWww.syngress.com

386 Chapter 12 « Automating Google Searches

The Google attack libraries are divided into five overarching categories that
will commonly be included within all the different language implementations:

Socket initialization This is the first category, starting left to right..
Each of the different language implementations will create and establish
a socket that will then be utilized to transfer and receive data from
Google.

Send a Google request or query Following the arrows, this is the
second milestone. Notice that submilestones not mentioned include
ascertaining the query and formatting potential arguments within that
query.

Retrieve the Google response generated from your query This
response will contain several sets or (carriage-returned lines) of informa-
tion; most important, it will include the total number of hits your query
generated. Other bits of information that we are currently less interested
in include Web sites and the full URLs for the responses.

Scrape or separate The fourth process will be to scrape or separate
the useful desired information from the less useful and commonly over-
whelming amount of information that Google returns on the main
pages in response to search requests. In this case, we will search for a “of
about” string that precedes the total hits count for the page. It will act as
a landmark for us, helping pinpoint the location of the total hits
number.

Return the total number of hits Last but certainly not least, we
will return the total number of hits that the query generated to the
calling location within the script or program. This allows us to create
flexible code that can be further extended at a later time or included
within a larger pen-testing script or program.

Perl Implementation

The following Perl implementation has very little debug code and was created to

depict how easy it is to automate custom querying on Google and page scraping
within ascertained Web pages. The code is divided into three main components.
The first is a dump of the source, second is the script’s execution output, and
lastly is documentation for the script’s logic and code implementation.

WWww.syngress.com

Automating Google Searches * Chapter 12 387

GOOGLE_PERL.PL

SOURCE

#Section 1

#Google Hacking in Perl
#Written by Foster
#1/usr/bin/perl -w

use 10::Socket;

#Section 2

$query = "/search?hl=en&q=dog- ;
$server = "www.google.com”;
$port = 80;

#Section 3
HAH L L S P L
sub socketlnit()

{
$socket = 10::Socket: : INET->new(
Proto => "tcp”,
PeerAddr => $server,
PeerPort => $port,
Timeout => 10,
)
unless($socket)
{
die("'Could not connect to $server:$port™);
}
$socket->autoflush(l1);
}
#Section 4

HHHH B AR
sub sendQuery($)
{

WWww.syngress.com

388 Chapter 12 « Automating Google Searches

my ($myquery) = @_;
print $socket ('GET $myquery HTTP/1.0\n\n");

while ($line = <$socket>)

{
if ($line =~ /Results.*of\sabout/)
{
return $line;
}
}
}
#Section 5

HHHHAHH B
sub getTotalHits($)
{
my ($ourline) = @_;
$hits="";
$index = index($ourline, "of about™);
$str = substr($ourline, $index, 30);
@buf=split(//,$str);
for ($i = 0; $i < 30; $i++)

{
it ($buf[$i] =~ /[0-9]/)
{
$hits=$hits.$buf[$i];
}
}

return $hits;

}
HHHHRH AR AR

#Section 6

socketlnit();

$string = sendQuery($query);
$totalhits = getTotalHits($string);

WWww.syngress.com

Automating Google Searches * Chapter 12

#Printing to STDOUT the Total Hits Retrieved from Google
print ($totalhits);

Output

When you execute the previous Perl script with the embedded Google Attack
Libraries, you will receive the following standard out (STDOUT). The output
represents the total number of Google pages that are returned with the submitted
query:

%GABE%\ perl google perl._pl

$GABE%\ 53400000

Source Documentation

The first section of this program, or Section 1, contains the header information
for the script. It contains the local directory in which the Perl executable is
stored, along with the socket module initialization.

Section 2 sets the three global variables that are required to test these Google
Attack Libraries using a live example against Google.com. The first is the query
that will be passed to the functions later down the line. If you need to automate
these functions as a part of a larger Google scanning application, they could be
replaced with a looping mechanism to pass multiple queries to the Google
Attack Library functions. The second variable stores Google’s server address or
domain name and the corresponding port it resides on. We realize we could have
hardcoded the port number to 80, but to make the code more flexible the vari-
ables are left as dynamic.

The first function in our Perl example contains our socketInit function. The
initial part creates the socket structure with the corresponding protocol, server
address, port, and socket timeout value. The TCP protocol was utilized, not
HTTP.The HTTP protocol will be manually created and forced onto the wire.
The unless function attempts to establish the socket. If the unless function is
unsuccessful, it will exit the program with the die statement and print an error
message to the screen. The last line “autoflushes” the data from the socket to pre-
pare for data transmission.

The fourth section is the sendQuery function. This function requires one
parameter, the query that you want to run on Google. The parameter is stored in
memory on the first line and saved to the local $myquery variable. The second
line in the parameter writes the HTTP request to the socket, which contains the

389

WWww.syngress.com

390

Chapter 12 « Automating Google Searches

desired query. The while loop is utilized to read in each line of the multiple lines,
one at a time, for the Google page’s response. The encapsulated IF statement is
used to find the line that contains the total hit count by referencing an “about”
string that 1s always found on the Google page. Once that line is identified, it is
returned to the calling function.

Section 5 is the meat of the script, containing all the page-scraping code. It
also takes in one parameter, stores it in memory, then stores it to the local scope
variable $ourline. The global $hits variable is initialized and will later be used to
store the total number of Google hits before it is returned. The index() line finds
the numerical location of the string “of about”, which is located right before the
totals hits on the response page of a Google query. The next line then utilizes the
substr() function to grab 30 characters, starting at the index location. (The total
hits number will be included as a part of those 30 characters.) The looping con-
struct underneath is then utilized to grab all digits from that string and store
them into the $hits variable. Lastly, the $hits variable is returned to the calling
function location.

Section 6 comprises four main components. The first component calls the
socket initialization function. The second line is subdivided into two parts. The
right side of the equal sign is utilized to call the sendQuery function with the
desired query. In the case of a Google Pen Tester, this query could be a CGI scan,
exploit search, or allinurl: vulnerability scan. Whatever the search, the response of
that search is saved in the $string variable. That $string variable is then passed to
the getTotalhits function. The total number of hits is stored in the new $totalhits
variable, then printed to stardard out (STDOUT) via the last line of the program.

Python Implementation

The Python language proved an extremely efficient language in regard to number
of lines of code to reach success. Not only was it easy to write due to the object-
oriented nature of Python, but few actual lines of code were needed to obtain the
results we were looking for. When you compare the Python code to that of the
Perl code, you will undoubtedly notice a few key difterences. For instance, in the
Python code, we strip out digits using a regular expression instead of parsing
through a looping construct. The other major difference is that we have encapsu-
lated our socket establishment code within try/except blocks. These blocks aid in
exception handling and debugging if there is an error.

WWww.syngress.com

Automating Google Searches * Chapter 12

This was hands-down our favorite Google Query Library—two thumbs up
for object-oriented scripting languages. Included in this example is our source,
output, and source documentation.

Source

#Google Hacking in Python
#Written by Foster
#Section 1

import socket

import sys

import re #Regular Expression Module

#Section 2

HOST = “www.google.com*® # The remote host

PORT = 80 # The same port as used by the server
s = None

query = "/search?hl=en&q=dog"

#Section 3

for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC,
socket.SOCK_STREAM):

af, socktype, proto, canonname, sa = res
try:
s = socket.socket(af, socktype, proto)

except socket.error, msg:

s = None
continue
try:

s.connect(sa)
except socket.error, msg:
s.close()
s = None
continue
break
if s is None:

print “"could not open socket”

391

WWww.syngress.com

392

Chapter 12 « Automating Google Searches
sys.exit(1l)

#Section 4
s.send("GET " +query+ " HTTP/1.0\n\n")
myindex = 0
whille myindex < 1:
data = s.recv(8096)
myindex = data.find("about')

s.close()

#Section 5

mysubstr = data[myindex : myindex + 30]
regexObj = re.compile("\d")

list = regexObj.findal l(mysubstr)
totalHits = """ _join(list)

print totalHits

Output

The following output represents the corresponding total hits retrieved from
Google:

53500000

Source Documentation

The first section of the Python script, Section 1, defines the modules that are
required to run the script. It uses Import to allow the script access to particular
objects and methods. Section 2 contains our four global variables that we have
become accustomed to declaring in the beginning of our examples. They include
our socket object, host, port, and query variables.

The third section contains all our socket initialization code. It creates the
appropriate socket structure on line one. The two fry/except blocks encapsulate
the socket creation and connection code. If the except statements are executed,
the corresponding error messages will be output to STDOUT. If a socket could
not be created at all, the debug message “Could not open socket” will be sent to
STDOUT.

Section 4 is utilized to both send the Google query and store the appropriate
Google response. The first line of code writes the HTTP request to the socket.

WWww.syngress.com

Automating Google Searches * Chapter 12

The myindex variable is initially declared to zero because it will be utilized as our
counter to determine when we receive the Google response line with our total
hits number. Since Google responses are sent in a series of text lines, we must
loop through each individually until the desired line is in the memory buffer.
The While loop is utilized to loop through the response strings, and once the
“about” string is identified, it sets the value of myindex to a number greater than
one, thereby causing the loop to break. Lastly, the socket is closed.

The last section of this script is Section 5.The first line of code utilizes the
index ascertained in Section 4 to grab a 30-character slice of the complete
Google response. The total hits number is encapsulated within this 30-character
string. The second line compiles a regular expression to identify all digits within
a particular string. The Findall method 1s then utilized to create a list of the digits
within the slice. The list is then converted back to a string using the Join method
before being printed to STDOUT on the last line of the script.

Extending this script to scrape sites that are included in Google’s responses or
the specific URL hits contained in the response is not terribly difficult; however,
it does add another layer of complexity. We would only need to create a looping
structure, then implement a regular expression engine to search out URL-like
strings within the response page. Once they’re retrieved, the option exists to
print them to standard out or push them to an associative array. Chapter 10 has
more information on utilizing regular expressions within Google searches.

C# Implementation (.NET)

C#, pronounced C sharp, is a much difterent beast when it comes to imple-
menting Google attack libraries within applications or automated penetration
testing tools. First, the entire language was created in an object-oriented manner
for object-oriented programming (OOP) developers. As you will see in our code
demonstration, the previous concept of an attack function utilized in the Perl
example no longer exists. Instead we have created a .INET C# object that con-
tains the functionality for auto-querying Google, scraping the page results, then
returning the number of total hits for any specified query. Since this example has
the same output as the Perl example, we have alleviated that section and only
provided the source along with its documentation.

GOOGLE_CSHARPE .CS

SOURCE

//Google Hacking in C#
//Written by the master BW

393

WWww.syngress.com

394 Chapter 12 « Automating Google Searches

using System;

using System.Text;

using System.Text.RegularExpressions;
using System.Net;

using System.Net.Sockets;

namespace ConsoleApplication2

{
class GoogleQuery
{
//Required Socket Variables
private const string query = "/search?hl=en&q=dog";
private const string server = "www.google.com";

private const int port = 80;
private Socket socket;

//Method #1
public void Socketlnit()
{

socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);

IPHostEntry ipHostinfo = Dns.Resolve(server);
IPAddress ipAddress = ipHostinfo.AddressList[0];
socket.Connect(new IPEndPoint(ipAddress, port));

//Method #2
public void SendQuery()

{

socket.Send(ASCIIEncoding.ASCI I .GetBytes(string.Format("'GET {0}
HTTP/1.0\n\n", query)));

}

//Method #3
public string GetTotalHits()
{

WWww.syngress.com

Automating Google Searches * Chapter 12 395

// receive the total page
byte[] buffer = null;

byte[] chunk = new byte[4096];
try

{

while (socket.Receive(chunk) > 0)

{

byte[] tmp = new byte[(buffer == null ? 0 : buffer.Length)
+ chunk.Length];

if (buffer != null)
buffer.CopyTo(tmp, 0);
chunk.CopyTo(tmp, buffer !'= null ? buffer.Length : 0);

buffer = tmp;
}
}
catch
{
it (buffer == null)
throw new Exception('No data read from host™);
}

// find the total hits

string text = System.Text.ASCIIEncoding.ASCII.GetString(buffer);
Regex regex = new Regex(@"of about (?<count>[0-9,]+)"):;
Match m = regex.Match(text);

if (m.Success == false)

throw new Exception(''Parse error’);

return m.Groups["'count'] .Value;

/// <summary>
/// Summary description for Classl.
/// </summary>

class AppClass

WWww.syngress.com

396 Chapter 12 « Automating Google Searches

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args)
{
GoogleQuery gg = new GoogleQuery(Q);
gq-SocketInit();

gq-SendQuery();
Console._WriteLine("Total Hits {0}", gq-GetTotalHits());

}

Source Documentation

The code for the Google C# application 1s much different from that of the Perl
script because it’s object oriented and located in a single object as opposed to
functions. Initially, we’ll create a new object that will be responsible for the core
of our functionality. This new object will allow us to easily reuse our code in
other projects or in applications that attempt to wrap or further automate the
Google querying process. The name of the object that we have created is
GoogleQuery. GoogleQuery has three public methods that we'’re interested in:
SendQuery, GetTotalHits, and its constructor.

The first public method, GoogleQuery, has three private constant variables:
string query, string server, and int port. These store the program’s required variables
for instantiating and establishing the socket connection. GoogleQuery’s constructor
creates a new TCP socket via the Socket object’s constructor. Following the cre-
ation of the TCP socket, it looks up the IP address of google.com by means of
the static, built-in C# method Duns.Resolve. Dns.Resolve returns an object of type
IPHostEntry. The IP address of google.com can be extracted from this object by
referencing the first index of the AddressList member of IPHostEntry
(ipHostInfo. AddressList[0]). Next, the code creates an object of type IPEndPoint
and passes two arguments to its constructor: the IP address gleaned from
IPHostEntry and the port number to connect to. This IPEndPoint object is then

WWww.syngress.com

Automating Google Searches * Chapter 12

passed as an argument to the socket object’s Connect method. Should all this suc-

ceed, the socket is connected to google.com’s port 80. If it fails, an exception will
be thrown; however, due to the demonstrative nature of this example, error han-

dling has been omitted from the program.

GoogleQuery’s SendQuery method is rather simple. It merely passes an HTTP
GET request string to the established Google socket. One thing to note is that
Socket.Send expects a byte array rather than an ASCII string. For that reason, we
need to convert the ASCII string to a byte array using the
ASCIIEncoding. ASCII. GetBytes static method.

The last method of interest, or Method 3, is GetTotalHits. The first 19 lines of
code wait until all data is received from the socket and concatenate it into one
buffer. This code uses the method Socket. Receive, which fills a byte array. The last
segment of interesting code is the utilization of .NET regular expressions. First,
we instantiate a Regex object and pass it one parameter—the pattern to search
for. The pattern string consists of the literal phrase “of about” followed by a
named group count, for which the pattern consists of a number. By naming the
components of a regular expression, it becomes easier to reference them after the
pattern has been matched (m. Groups[“count”]. Value). Next, the Regex object is
passed the buffer returned from Google via the Match method. After that, if the
pattern matches, a string is returned that contains the number of hits found from
the query.

Underground Googling...

Where Credit Is Due

A special thank you goes out to Blake Watts (www.blakewatts.com) for
his assistance with the C# code and knowledge. You continue to rock.
Thanks, dude!

C Implementation

The following C implementation was provided by our friend 10om to be utilized
as an educational tool in this book. As you will quickly come to see, the C
implementation is somewhat different from the other language implementations
described in this chapter. Not only is this implementation longer, it includes

397

WwWw.syngress.com

398 Chapter 12 « Automating Google Searches

additional functionality that the other language kits have left out. Additional
functionality includes command line help documentation and the ability to
receive command-line arguments and return a list of sites included within the
response. Only the complete source and corresponding documentation have been
incorporated into this section.

SOURCE

//Google Hacking in Good Old-Fashioned C
//Written by 10om

//Revised and Documented by Foster

J*

I O DOl DI
7 1 171
/

« — _(
|
|

Igool vV 0.2
written by 10om
WWW_EXCLUDED.ORG - l10om[a7]excluded[dO7]org
idea based on johnny longs gooscan and goole dorking itself. thanks john.

this is a part of a proof-of-concept project in automate attacks with
googles help.

greets to goolemasters:
murfie,klouw, ThePsyko, jimmyneutron,
MILKMAN,Deadl ink,crash_monkey,zoro25

cybercide,wasabi
greets to geeks/freaks/nice_people like:

proxy, detach, takt, dna,

maximilan, capt.boris, dr.dohmen,

WWww.syngress.com

Automating Google Searches * Chapter 12

mattball

*/

#Section 1

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>

#Section 2

#define GOOGLE "www.google.com" //default google server to send query
#define PATTERN "<p class=g><a href=" //indentifies links in googles results
#define RESULTS "" //show results

char *encode(char *str); // NULL on failure / the encoded query on success

int connect_me(char *dest, int port); // -1 on failure / connected socket
on success

int grep_google(char *host, int port, int proxy, char *query, int mode, int
start);

void help(char *usage);

void header(void);

#Section 3
int main(int argc, char **argv)
{
int i, port, valswap, max = 0, only_results = 0, site = 0, proxl = 0;
// greets at proxy - this variable is dedicated to you ;D h4h4h4
char *host, *query = NULL;

if(argc == 1) {

help(argv[0]);
return(1);

399

WWww.syngress.com

400 Chapter 12 « Automating Google Searches

} else for(i = 1; i1 < argc;

if(argv[i][0] == *-°)
switch(argv[i1[1]) {

case "V-":

header();
return(0);

case “r":

only results = 1;

break
case "m":
max =
break

case "p":

i++)

atoi(argv[++i]);

if((host = strchr(argv[++i], ":")) ==
fprintf(stderr, "illegal proxy syntax

[host:port]\n");

return(l1);
T
port = atoi(strtok(host,
host = strtok(argv[i], "

proxl = 1; // "gib frei

break

case "h":

help(argv[0]);
return(0);

} else query = argv[i];

if(query == NULL) {
fprintf(stderr, ""no query!\n');

help(argv[0]);
return(1);

if((query = encode(query)) ==

NULL) {

")
;s

ich will rein”

fprintf(stderr, "string encoding faild!\n");

return(2);

WWww.syngress.com

NULL) {

Automating Google Searches * Chapter 12

if(Imax) {
if(grep_google(host, port, proxl, query, only results, site) > 0)
return(0);

else return(l);

for(i = 0; 1 < max;)
iT((valswap = grep_google(host, port, proxl, query, only_results,
site)) <= 0) return(l);
else if(valswap < 10) return(0);

else { i+=valswap; site+=10; }

return(0);

#Section 4
int grep_google(char *host, int port, int proxl, char *query, int mode, int
site)
{
unsigned int results = 0;

int sockfd, nbytes, stdlen = 31, prxlen = 38+strlen(GOOGLE), buflen =
100;

char *sendthis, *readbuf, *buffer, *ptr;

if(proxl) {
if((sockfd = connect_me(host, port)) == -1) // connect to proxy
return(-2);
if((sendthis = (char *)malloc(prxlen+strlien(query)+7)) == NULL) {
perror(“'malloc™);
return(-1);

} else sprintf(sendthis,"GET http://%s/search?q=%s&start=%d
HTTP/1.0\n\n",GOOGLE,query,site);

} else {
iT((sockfd = connect_me(GOOGLE, 80)) == -1)
return(-2);

401

WWww.syngress.com

402 Chapter 12 « Automating Google Searches

if((sendthis = (char *)malloc(stdlen+strien(query)+7)) == NULL) {
perror(“'malloc™);
return(-1);

} else sprintf(sendthis, "GET /search?q=%s&start=%d
HTTP/1.0\n\n",query,site);

}

if((readbuf = (char *)malloc(255)) == NULL) {
perror(“'malloc™);
return(-1);

}

iT((buffer = (char *)malloc(l)) == NULL) {
perror(“'malloc™);
return(-1);

if(send(sockfd, sendthis, strlen(sendthis),0) <= 0)
return(-2);

while((nbytes = read(sockfd, readbuf, 255)) > 0) {
if((buffer = (char *)realloc(buffer, buflent=nbytes)) == NULL) {
perror('realloc™);
return(-1);
} else { strcat(buffer, readbuf); memset(readbuf, 0x00, 255); }

}
close(sockfd);
ptr=buffer;
while(buflen--)

if(mode) {
if(memcmp(ptr++, RESULTS, strlen(RESULTS)) == 0) {
ptr += strlen(RESULTS)-1;
while(memcmp(ptr, "for"”, 3) 1= 0) {
if(memcmp(ptr, '"", 3) == 0) ptr+=3;
else if(memcmp(ptr, "", 4) == 0) ptr+=4;

else printf("%c",*ptr++);

WWww.syngress.com

Automating Google Searches * Chapter 12 403

}

} else continue;

printf("'\n");

return(0);

} else

if(memcmp(ptr++, PATTERN, strlen(PATTERN)) == 0) {

ptr += strlen(PATTERN)-1;

results++;

while(memcmp(ptr, ">", 1) && buflen--) printf("'%c",*ptr++);
printf(''\n");

}
free(sendthis);
free(readbuf);
return(results);

}
#Section 5

char *encode(char *str)
{
static char *query;
char *ptr;

int nlen, 1i;

nlen = strilen(str)*3;

if((query = (char *)malloc(nlen)) == NULL) {
perror(“'malloc™);
return(NULL);

} else ptr = str;

for(i = 0; 1 < nlen; 1+=3)
sprintf(&query[i], "%c%X", %" ,*ptr++);
query[nlen] = "\0";

return(query);

WWww.syngress.com

404

Chapter 12 « Automating Google Searches

#Section 6

int connect_me(char *dest, int port)

{

int sockfd;
struct sockaddr_in servaddr;

struct hostent *he;

iT((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror(*'socket™);
return(-1);

iT((he = gethostbyname(dest)) == NULL) {
fprintf(stderr, "cannot resovle hostname\n™);

return(-1);

servaddr.sin_addr = *((struct in_addr *) he->h_addr);
servaddr.sin_port = htons(port);

servaddr.sin_family = AF_INET;

if(connect(sockfd, (struct sockaddr *)&servaddr, sizeof(struct

sockaddr)) == -1) {

perror(*'connect');
return(-1);
} else return(sockfd);

#Section 7

void help(char *usage)

{

printf("'%s help\n'",usage);
printf("%s <query> [options]\n™);
puts(*options:");

puts(*'-h: this help menu™);

puts(*'-p: request google with a proxy. next argument must be

proxy');

WWww.syngress.com

the

Automating Google Searches * Chapter 12

puts(" and the port in the following format \"host:port\'"'");

puts(*'-m: next argument must be the count of results you want to
see');

puts(*'-V: prints versions info');

puts(*-r: prints only the results count and exit");

puts(“'examples:');
printf("%s \"filetype:pwd inurl:service.pwd\" -r # show results\n");

printf(""%s \'"filetype:pwd inurl:service.pwd\" -m 30 # print about 30
results\n');

}

#Section 8
void header(void)
{
puts(*"\tlgool V 0.2");
puts("'written by 10om - WWW.EXCLUDED.ORG -
10om[47]excluded[d07]org\n™);

}

Source Documentation

The first section of this program (yes, it’s a program, not script) sets the required
libraries that must be included to complete successful compilation. The second
section includes the global variables needed in the program and the prototypes.

Section 3 is the Main() tunction of the program, whereas the fourth section is
dedicated to “grepping the Google site.” Section 4 contains the meat of the pro-
gram because the searching and proxying logic is included within that function.

Section 5 is somewhat than our scripting querying libraries or even the C#
implementation. It’s utilized to convert the desired search string in the program
to a HTTP-compliant Google query string. Notice the conversion housed
within the For loop. Once the string is properly formatted, the string is returned.

The sixth section is one of our favorites because it’s similar to the socket ini-
tialization functions within the other Google attack libraries. All the code to
establish and connect to Google is contained in connect_me(). The socket structure
and connection attempts are encapsulated in IF statements. Another alternative to
utilizing IF statements is try catch blocks. The seventh section of the program
prints the Help menu. Last but not least, Section 8 is a header that prints every
time the program is executed.

405

WWww.syngress.com

406

Chapter 12 « Automating Google Searches

Scanning the Web
with Google Attack Libraries

We’ve covered the concept of automating Google query transmissions and
retrieving data, but we have yet to prove that our libraries work in a real-world
environment. The libraries were all created with dynamic usage in mind, thereby
permitting our querying bots to reuse the Google query and scraping code with
minimized inline modifications. The following tool leverages the attack signatures
found in the NIKTO security database, which can be found at www.cirt.net.

CGI Vulnerability Scanning

The following is a CGI scanner that we have created by quickly extending the
Perl implementation code. Before we display and document our source, a snippet
of the NIKTO database has been included. The NIKTO database is a flat text
file for which the fields are separated by commas (,). In this scenario, we are only
concerned with the HTTP string that is meant to be sent to the target Web
servers.

It is critical to note that the NIKTO text-based database is completely
broken from a consistency perspective. That said, every “attack” is listed in the
second column of the file, and by no coincidence that is the field that we are
ripping with our Google CGI Vulnerability Scanning tool.

NIKTO Vulnerability Database Snippet

#VERSION,1.189

#LASTMOD,09.06.2004

http://www.cirt.net

LA L L A (L L A L L L L L L L L L L L L L
Checks: ws type,root,method,file,result, information,data to send

LA A I L (L L L A (L L L L L S L L L L L S L

#
<script>alert("Vulnerable®)</script>","<script>alert("Vulnerable®)</script>"
GET™

is vulnerable to Cross Site Scripting (XSS). CA-2000-02."

These are normal tests

"generic","/index.php?module=ew_filemanager&type=admin&func=manageré&pathext=.
/../._ /etc","passwd",""GET","EW FileManager for PostNuke allows arbitrary
file retrieval. OSVDB-8193."

WWww.syngress.com

Automating Google Searches * Chapter 12

""generic","/index.php?module=ew_filemanageré&type=admin&func=manager&pathext=.
/../._./etc/&view=passwd", " root:","GET","EW FileManager for PostNuke allows
arbitrary file retrieval. 0OSVDB-8193."

""generic","/logs/str_err.log","200","GET","Bmedia error log, contains
invalid login attempts which include the invalid usernames and passwords
entered (could just be typos & be very close to the right entries)."”

""abyss", "' /%5c%h2e%2e%5ch2e%2eh5ch2e%h2en5ch2eh2en5cwinnths5ewin. ini', " [fonts]",
“"GET","Abyss allows directory traversal if %5c is in a URL. Upgrade to the
latest version."

"abyss", " /%5ch2e%2eh5ch2e%2en5ch2eh2en5ch2eh2eh5cwinnths5ewin. ini', " [windows]
", UGET","Abyss allows directory traversal if %5c is in a URL. Upgrade to
the latest version."

“abyss" " I/11111777777/1111177777777///////77777//////////7777/////////7777
L117777777777777777777777777777777777////777777777//////777777//////7///7777
L1177777771777777777777777777777777/77/77777777777////////7777//////////77777
L1177/ //7777777777777///////7/77777//7/777,"index of","GET","Abyss 1.03 reveals
directory listing when 256 /"s are requested."
"abyss","/conspass.chl+","200","GET","Abyss allows hidden/protected files to
be served if a + is added to the request."
""abyss","/consport.chl+","200","GET",""Abyss allows hidden/protected files to
be served if a + is added to the request."

"abyss",""/general .chl+","200","GET",""Abyss allows hidden/protected files to
be served iIf a + is added to the request.”
"abyss","/srvstatus.chl+","200","GET",""Abyss allows hidden/protected files
to be served if a + is added to the request."

"alchemyeye" ,"@CGIDIRS../.. /.. /.. /../.. /.. /._/../. . /WINNT/system32/ipconfig.e
xe"," 1P Configuration',"GET","Alchemy Eye and Alchemy Network Monitor for
Windows allow attackers to execute arbitrary commands."

"alchemyeye" ,"@CGIDIRSNUL/ . ./../. . /.. /.. /.. /.. /../._ /WINNT/system32/ipconfig.
exe","IP Configuration","GET","Alchemy Eye and Alchemy Network Monitor for
Windows allow attackers to execute arbitrary commands."

"alchemyeye" ,"@CGIDIRSPRN/ . ./../../../.. /.. /../../. /WINNT/system32/ipconfig.
exe","IP Configuration”,"GET","Alchemy Eye and Alchemy Network Monitor for
Windows allow attackers to execute arbitrary commands."
""apache","/.DS_Store","Budl","GET",""Apache on Mac OSX will serve the
.DS_Store file, which contains sensitive information. Configure Apache to
ignore this file or upgrade to a newer version."
""apache","/.FBCIndex","Bud2","GET","This file son 0SX contains the source of
the files In the directory.
http://www.securiteam.com/securitynews/5LPOO005FS . html"

""apache","//" ,"index of","GET","Apache on Red Hat Linux release 9 reveals
the root directory listing by default if there is no index page."

407

WWww.syngress.com

408 Chapter 12 « Automating Google Searches

"apache","//","not found for:","OPTIONS","By sending an OPTIONS request for
/, the physical path to PHP can be revealed."

The following is our developed source code to scan a particular site using the
signatures housed within CIRT’s NIKTO database.
SOURCE
#1/usr/bin/perl -w

use 10::Socket;

$server = “www.google.com®;
$port = 80;

HAH AR R AR
sub socketlnit()
{
$socket = 10::Socket:: INET->new(
Proto => "tcp”,
PeerAddr => $server,
PeerPort => $port,
Timeout => 10,

);

unless($socket)
{

die(""Could not connect to $server:$port');

}

$socket->autoflush(1);

}
HHHH AR

sub sendQuery($)
{
my ($myquery) = @_;
print $socket ('GET $myquery HTTP/1.0\n\n"");
while ($line = <$socket>)
{
if ($line =~ /Results.*of\sabout/)

WWww.syngress.com

Automating Google Searches * Chapter 12 409

return $line;

}
HHHAHHHAHHHH AR

sub getTotalHits($)

{
my ($ourline) = @_;
$hits=""";

$index = index($ourline, "of about');
if ($index > -1)
{
$str = substr($ourline, $index, 30);
@buf=split(//,$str);
for ($i = 0; $i < 30; $i++)

{
if ($buf[$i] =~ /[0-9]1/)
{
$hits=$hits.$buf[$i];
b
3
return $hits;
3
else
{
return $index;
3
b

FH T T
socketInit();
T

#Code added to make this a CGl scanner

$targetsite = '"/search?sourceid=navclient&ie=UTF-8&g=site:syngress.com+";

WWww.syngress.com

410 Chapter 12 « Automating Google Searches

$cgifile = "nikto.txt";

$allinurl = "allinurl:";

open(CGl, S$cgifile)
|l warn "could not open the CGI query file";

while (<CGI>)
{
chop;
#stripping comments
next if (/*$/); #ignore null lines
next if (/MN\s*#/); # ignore comment lines

next if (/"\%/); #ignore documentation lines

#spliting up the NIKTO database and storing elements
($type, $attack, $file, $method, $name) = split(/","/);

$attack =~ s/™M\s+//; #remove leading whitespaces

$attack =~ s/\s+$//; #remove trailing whitespaces

$attack = S$targetsite.$allinurl.$attack;

#In case you would like to see all the queries you are sending to Google

#print "Trying Google Query: ", $attack, "\n";

$string = sendQuery($attack);
$totalhits = getTotalHits($string);

#Printing to STDOUT the Total Hits Retrieved from Google is Greater than

0
if ($index > 0)
{
print "VULNERABILITY FOUND WITH ™, $totalhits,"TOTAL HITS\n";
b
}
close CGI;

WWww.syngress.com

Automating Google Searches * Chapter 12 411

Output

First you will notice warnings when you run this script. These appear because we
are splitting the NIKTO database into separate variables and utilizing the second
variable, $attack. No need to be concerned; as these warnings are meant to be

included.
The script will run all the NIKTO vulnerability checks within a set of Google

queries and output when a vulnerability is found in Google’s cache. No output
will be displayed outside the warning if vulnerabilities are not found.

WWww.syngress.com

412 Chapter 12 « Automating Google Searches

Summary

In any implementation, automating information-gathering techniques has
become a necessary evil. It’s not feasible that we would ever have the time
required to manually collect, store, parse, and analyze data from sources as large as
Google. Throughout this chapter, we have provided an overview of the Google
Development API with its benefits and downfalls. We have also given you the
code and knowledge to be able to directly access the Google Web application
database with our Google attack libraries that contain query transmission and
page-scraping functions. These libraries can be quickly extended to create addi-
tional tools, applications, or even Web-based CGI forms. Although beneficial, it is
important to note that these libraries do not adhere to the Google terms of ser-
vice and were meant to be for educational purposes only.

Solutions Fast Track

Understanding Google Search Criteria

M In a relatively short amount of time, Google has become synonymous
with Internet searching. Learning to search Google’s online database
with its advanced flags is the key to successtul Web surfing.

M Advanced searching permits users—and more specifically, automated
programs—to filter and limit the results to a much narrower set of Web
pages.

M A Google Advanced Search Page documents most of the detailed
searching capabilities of Google’s database to include country, language,
and image searching.

Understanding the Google API

M The Google API is designed for application developers looking to
automate the collection of Google information in a sanctioned manner.

M A complete manual on the Google development API can be found at
www.google.com/apis/.

M The Google API requires a Google API key that limits an automated
engine to sending fewer than 1000 queries per day.

www.syngress.com

Automating Google Searches * Chapter 12

Understanding Google Attack Libraries

M Google attack libraries are broken into three main components: socket

initialization and establishment, Google query requesting, and retrieving
a Google query response.

The Python language proved the most useful and efficient for creating
Automated Google Query code. Its OOP style, easily accessible regular
expression engine, and indexing methods made it easy to create, send,
retrieve, and scrape Google information.

The C# for Microsoft .NET library is the most extendable language
implementation of our Google libraries because it can be merged into
any program that’s compatible with Microsoft’s Visual Studio .NET.

Scanning the Web with Google Attack Libraries

M Conducting Google vulnerability scans is one of the easiest tasks that’s

hit the information security industry in the past few years. The key to
automating such a task is the looping constructs that wrap around the
library implementations presented in this chapter.

You can implement looping constructs to automate searching and
information retrieval for numerous purposes.

Nearly all vulnerability scans utilize the allinurl: advanced searching flag
to search for strings stored within the Google cache.

Links to Sites

ApplicationDefense.com An excellent source of information on
application hacking and defense mechanisms. This site also contains the
Google Attack Libraries discussed in this chapter.

Foundstone.com Home of the Google SiteDigger.
www.sensepost.com Home of the Wikto tool.

www.cirt.net Home of Sullo and the NIKTO Web Vulnerability
database and NIKTO Web Scanning Tools.

www.blakewatts.com

413

www.syngress.com

414

Chapter 12 « Automating Google Searches

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q:

A:

Can you automate Google analysis in languages that do not contain socket-
class functionality?

No. Unfortunately, the initial part of any Google-based data analysis is
retrieving such data. The socket, or network, functionality is required to con-
nect to Google’s databases to send queries and receive responses. That said, it
should be understood that an external program could pass Google data to
another program for analysis.

: Does the Google API interfere with our page-scraping mechanisms?

: No.The Google API was created to assist developers looking to access infor-

mation ascertained from Google’s search engine. Though Google does not
condone automation outside the use of the API, page scraping is completely
acceptable, as long as the page was retrieved using a browser. Scraping and
API-based techniques can certainly coexist, depending on the requirements
of your project.

: What language is best to use for Google page scraping?

. It completely depends on the nature of the program you’re creating. If you

are looking to create an application that sends numerous Google queries and
conduct some sort of algorithmic computation on the back end, you'd ben-
efit from a faster language such as C/C++ or CH#—C# being our new
tavorite. However, if you're looking for a quick alternative that integrates in
Web scripts, Perl 1s the obvious choice for ease of development and time to
integration. Java is the de facto cross-platform language of choice, but some-
thing prevents us from saying that VBA is a good choice for anything.

www.syngress.com

Automating Google Searches * Chapter 12

: Do any of the available freeware tools currently use these libraries?

: Not in their entirety. However, some of the Perl code has been utilized to
update GooScan. All the code provided in this book, on ApplicationDefense,
and at Thackstuff is freely available to use and distribute as long as proper
attribution is provided.

: Is HTTP 1.0 versus HTTP1.1 a major decision when considering what pro-
tocol to use to transmit the queries?

* Yes. HTTP 1.1 is much more efficient for transmitting multiple sequences of
packets to a Web server. In this case, the libraries are not taking advantage of
the HTTP 1.1 protocol, thereby making the decision trivial.

: Can any of this code be leveraged to proxy anonymous attacks through
Google?

: Outside of the socket code, nothing could be utilized to proxy attacks. A
paper was released in 2001 on making Web attacks anonymous through open
Web proxies. We encourage you to search for the paper via Google if you're
seeking to gain experience.

415

www.syngress.com

Appendix A

Professional

Security Testing

by Pete Herzog

Solutions in this Chapter:

m Professional Security Testing

m The Open Source Security Testing
Methodology Manual (OSSTMM)

M Summary
M Solutions Fast Track
M Frequently Asked Questions

417

418

Appendix A ¢ Professional Security Testing

Introduction

Sometimes you win. Sometimes you lose. Sometimes it’s all about the game.
Security testing is all about the game. Without trying to borrow too much from
sports, it’s really about being in the zone. It’s when the data reveals itself to you
smoother than silk on silk—all systems roll out in front of you like that all-
inviting red carpet and while you stroll down the line, doors pop open every-
where you look. As you glide into the final stretch, you look back and all the
weaknesses of the entire security presence are lit before you, perfectly structured
in a pattern like the lights of an oftice tower after dark.

Sometimes though, it’s like being stuck in a Dr. Seuss book with all sorts of
bizarre characters, roads that fold back on themselves, and doors floating in the
sky that go underground. The path becomes a labyrinth, and your way is easily
lost as all your tools begin to fail. You follow the westward descent of the sun
only to find that upon turning around, all that was visible is now blocked by
your own shadow.

It’s all about the game. Hide and go seek is one of those games we play
because it’s fun with its elements of surprise and stealth. As you get older, the
game becomes a balance of speed and escape for most players and much less
about actually hiding. Can I hide well enough that someone else will get caught
before I am found? Who else has seen me use this hiding space so it’s no longer
good when it’s that kid’s turn? Can I hide close enough to the base that I can get
safe before I get tagged? Can I position myself in a lesser hiding place but where
I have more than one escape route?

Of course, little of that is consciously decided. The kid picks the position that
most reflects his or her ability compared to the person who is seeking. Those
who choose wrong are caught. Those who choose right go free. Then everyone
re-evaluates possible hiding places after each round. Meanwhile, the seeker has to
analyze all the possible strategy changes simultaneously. Each time a kid seeks, he
or she realizes that experience for that game counts very little. Each hider will
most likely take new strategies and the ones who don’t, won’t, because they
cannot be caught anyway. The game continues.

Security testing is that game where the tester is the seeker. Each round brings
more data, even if the data is false or empty from no response. The tester must
make a decision each round whether to keep going with that direction or pick a
new strategy. Each hider that can be caught must be caught. Those who have
excellent strategies are noted in case later we realize that the elapsing of time has

WWww.syngress.com

Professional Security Testing * Appendix A

eroded that particular strategy. The strategies are based on the operating systems,
the network architecture, the available services, the business processes, and even
the people. The game is played out until everyone is caught or until time runs
out. Just like in real-life hide and go seek, there is no quitting while you are still
the seeker. But unlike the real hide and go seek, being a bad seeker can have
drastic consequences. If a security tester does a poor job, it could mean the client
loses money and the tester has the liability. It can also mean—as in the case of
security testing high-frequency microcontrollers in motor vehicles—that people
die and the tester is then held liable.

So it’s no wonder that security testers have a love for search engines like
Google. To us, the security testers, Google can be the source of facts that have
spilled onto its ever-growing cache in the moment it takes us to blink. Facts do
not require that the information be true, only that the fact is there and that it
came from a particular place at a particular time. Google is also comprised of
knowledge, experience, and the stupid mistakes of thousands of other security
professionals that we can compare our own work to. It’s an up-to-the-minute
reference library that doesn’t exist yet in any other form. Unlike a mailing list or
forum, it answers our questions because of how and when we ask them. It
doesn’t judge us as to why we asked them. Therefore, our fragile egos won’t be
bruised or shattered.

Professional Security Testing

It is true that hacking, in the security sense, is an art. The current services in pen-
etration testing and ethical hacking require skills of intuition and creativity. Most
often, the decisions made and avenues followed in hacking are instinctual and
follow a simple methodology that provides great freedom. Like any art form,
whether a thing of beauty or a message, the creation is a combination of the
hacker and the effort. But this is not professional security testing.

Performing security testing in a professional manner is to be a researcher and
a detective. While there may be some art to it, the amount of intuition or expe-
rience you have is indirectly proportional to the valid results you achieve. While
a great hacker may also be a great security tester, the primary skill set of the
security tester is the same of any researcher, knowledge and persistence. Valid
results, which must be verified and understood, are the holy grail of a security
test. Hacking, just as in any art, is about the final creation. In the end, it doesn’t
matter what you did to create that art, just that you did it and it’s impressive.

419

WWww.syngress.com

420

Appendix A ¢ Professional Security Testing

Security testing is about being sure of everything you did to reach the end result
and understanding why you did it. You need to understand the conclusions you
have reached and find as much evidence as necessary to support those conclu-
sions. The final results may or may not be impressive, but either way they don’t
require an artist to create them. They require a methodology.

The Open Methodology

In December of 2001, a Google search for either a security testing methodology,
a penetration testing methodology, or an ethical hacking methodology all
brought back the same phrase. Regardless of the Web site, the phrase looked
something like this:

"“...The best possible test using our in-house, proprietary method-
ology for security testing...”

This phrase, while deceptively boilerplate, indicated a devastating flaw in the
art of the security test. In-house proprietary methodology loosely translates to
“we did it our way, and we can’t tell you what that way is; it’s proprietary.” For
this reason, the Open Source Security Testing Methodology Manual (OSSTMM)
concept took off. Hundreds of people contributed to the project, injecting both
criticism and encouragement. Every piece of feedback made it better. Eventually,
as the only publicly available methodology that tested security from the bottom
up (as opposed to the policy down), it received the attention of government
agencies and militaries around the world. It also scored success with little security
start-ups who wanted a public source for client assurance of their security testing
services. Now, the OSSTMM seal, as seen in Figure A.1, is the standard for secu-
rity testing reports, accepted internationally by most all government auditing
organizations.

WWww.syngress.com

Professional Security Testing * Appendix A

Figure A.1 The Generic OSSTMM Seal

The OSSTMM had been housed under the domain ideahamster.org, where
it received a steady amount of traffic from contributors dubbed as ideahamsters, a
nickname for people who were currently churning out new ideas like a hamster
on a wheel. However, as the OSSTMM grew in popularity, the organization and
its name were pressured to grow up as well. In November of 2002, ideahamster
announced the name change to ISECOM, which actually stood for the Institute
for Security and Open Methodologies. By January 2003, ISECOM had been
registered as a non-profit organization in Spain and the United States. Now it
officially belonged to the people. And the users of the OSSTMM had a responsi-
bility to give back to it or else it would cease to exist.

As the OSSTMM continues to grow, it has never lost its vendor-free,
industry-agnostic, politically clean values. The methodology has continued to
provide straight, factual tests for factual answers. It includes information for pro-
ject planning, quantifying results, and the rules of engagement for those who will
perform the security tests. As an academic document, it’s a flop. It is full of gram-
matical errors, the English language shifts between British and American spelling
styles, and the format is unacceptable for most every university graduate pro-
gram. However, the goal of the document is not academic. It is simply there to
be used. The OSSTMM has no intentions of being a textbook. As a method-
ology, you cannot learn from it how or why something should be tested. What

421

WWww.syngress.com

422 Appendix A ¢ Professional Security Testing

you can do is incorporate it into your testing needs, harmonize it with existing
laws and policies, and use it as the framework it is to assure a thorough security
test through all channels to information or physical property, as seen in Figure
A.2,a map of the security presence.

Figure A.2 Map of the Security Presence with All Channels for Access to
Information and Physical Property

The security presence is the area for which security can influence your property
regardless of your ability to influence or practice security therein. For example,
consider protecting your ice cream shop from theft. There are many ways an
attacker can cut the electricity going to your store. While that isn’t stealing your
merchandise, it adversely affects your product line (your ice cream melts) and
therefore reduces your income. Is the electrical grid within your security pres-
ence? Yes. Can you directly control it? No.You have to rely on service-level
agreements from the power company and buy your own generator to handle
brownouts and blackouts. Electricity is considered part of physical security, which
is just one channel of five that make up your security presence. It gets even more

WwWw.syngress.com

Professional Security Testing * Appendix A

complicated as technology promotes channels to cross. The five channels are
described in Table A.1.

Table A.1 The Security Presence Channel Descriptions

Channel Description

Personnel Comprises the human element of interaction where
people are the gatekeepers of information and phys-
ical property.

Physical Comprises the non-human tangible element of secu-
rity where interaction requires a physical effort to
manipulate it.

Telecommunications Comprises telecommunication networks, digital or
analog, where interaction takes place over estab-
lished network lines without human assistance.

Wireless Comprises all non-human interaction that takes

Communications place over the known communication spectrum,
from the lowest frequencies to the highest.

Data Networks Comprises all data networks where interaction takes
place over established network lines without human
assistance.

Understanding the extent of a security presence and the concept of security
channels requires a certain amount of research. Often times, the depth of this
research is dictated by the amount of time allocated, which reflects on cost or
price. Even the smallest amount of time wasted, whether through inefficiency or
inability, can have drastic consequences like in the case of securing a Red Cross
barracks on battle-heavy soil, where wasted time means people die. While today’s
standard penetration tester doesn’t have that worry, don’t doubt that the future
needs for security testing don’t have that vision. This all points to the need for a
standardized methodology for security testing.

The Standardized Methodology

In the plainest terms, a methodology is a structure. Think recipes from a cook-
book. The methodology is the difference between a cake and just a big mess of
ingredients. While there are many different types of security methodologies, there
is only one that’s universally accepted for security testing and the quantification
of metrics.

423

WWww.syngress.com

424

Appendix A ¢ Professional Security Testing

The OSSTMM is a standardized methodology for a thorough verification
and measurement of the current operational, security state. That’s actually a lot of
academic-type talk for saying that the OSSTMM will aide you in performing a
security test according to a recipe that allows you to not only run the best pos-
sible test you can generate in the most efficient way (saving time saves money),
but that also gives you numbers that realistically represent your current level of
security.

Actually, the OSSTMM will define and quantify three types of security
within the chosen scope. This is an important concept because the scope may not
be the same as the security presence.You can think of the scope as the working
space for a project from the vantage point of where you will do the work. If
your project is to test a company network, then the scope may be all systems
from the vantage point of the internal network. Or it may be the scope of all the
systems which are Web servers. However, both scopes are subsets of the security
presence that make up the entire environment in which those two chosen scopes
reside. Once you have defined a scope, the security tests and metrics are con-
strained to that scope and the assets within that scope. Obviously, this, like statis-
tics, can help you see only what you want to see. Like the old joke where a lady
sees a2 man looking for his car keys at night under the street lamp. When she asks
him what he’s doing, he tells her he’s looking for the keys he lost on the way to
his car. She asks if this is where he thinks he most likely lost them, he answers,
“No, but this is where the light is.”

Of the three types of security quantifiable through the OSSTMM, the first
type, which we define as Operational Security, is actually the lack of security you
must have to be interactive, useful, public, and open. Think of any store. It has
doors, sometimes windows, a lack of clocks on the walls, conveniently spaced
aisles that encourage you to walk down them, and a door with a sign telling you
that the store happens to be open. Why? Because it generates business having
you there. The store needs to be insecure enough for you to walk in the front
door so you can pick up items and put them in your basket. For that store to
even exist it needs to have people come in and leave money. Before any other
security requirements are considered, the store needs to be in operation.
Operational Security is measured by calculating the following parameters during
a security test:

® Visibility For the scope you have defined, how many of those gate-
ways to the assets (in fact, the gateways themselves may be assets),
whether they are computers, people, windows, or telephones, can be

WwWw.syngress.com

Professional Security Testing * Appendix A 425

determined to exist from the perspective of the test? In the example of
the store, from outside the store how many employees can I determine
to be inside the store with certainty? I want to know this because what-
ever is inside I may try to interact with (or attack or manipulate or cir-
cumvent...). Perhaps I can even determine through interaction which
employee is carrying the keys to the registers.

m Trust For the same scope, how many of the gateways to the assets
allow for non-authenticated interaction either between each other or
with the outside? In a small store, the employees will authenticate each
other continuously just because they recognize each other according to
their faces. In a large company, how do you know who 1is a fellow
employee? By their badge? It’s the same with computers. Does the Web
server move data to the database server without ever having to authenti-
cate itself?

m Access For that same scope, how many actual areas are there where I
can get interaction through a gateway? This is different from visibility
where we are determining the number of gateways that are there. In vis-
ibility, you only count each gateway once regardless of how many dif-
terent ways we can know it’s there and regardless of whether it interacts.
Where in visibility I may count that big, iron back door because it is a
door that could lead into the store, I would only count it under access if
[could get someone or something to interact with me when I knock
on it. Additionally, I count all the difterent action/interaction scenarios
with that door. If I knock and someone tells me to go away. That counts
as one interaction. If I pick the lock and the door interacts with me by
swinging open, then I count that as a second type of interaction, with
the easily picked lock also classified and counted again in the second

type of security.

The second type 1s defined as Actual Security. This type is when we take into
consideration that operations require a lack of security, and that anything which is
open, trusted, or interactive beyond what is necessary is a problem. Consider a
movie theater. While doors must be open to have customers come in, a back door
with a badly designed lock where people can easily pick it to sneak in is not nec-
essary for business. It’s actually anti-operations since too much sneaking-in will
inevitably lead to the end of operations. So, beyond what must be open, a security
test has to tell us what is just not working in the current state of security. There
tollowing five classifications of Actual Security are called security limitations:

WWww.syngress.com

426

Appendix A ¢ Professional Security Testing

Vulnerability This is defined as a perceived flaw within a mechanism
that allows for privileged access to assets. By “privileged” we mean that
you can do something with them or to them. A vulnerability may be a
metal in a gate which becomes brittle below 0° C, a thumb-print reader
which will grant access without a real thumb, a mail server that lets you
send SPAM to anyone you want, or even that employee who wedges
the back door open all day to conveniently slip out for smoking breaks.

Weakness A weakness is any misconfiguration, survivability fault,
usability fault, or failure to meet stated security requirements whether
they are law or just policy. A weakness may be a process which does not
save transaction data for the legal time limit as established by regional
laws—for instance, a fire door alarm which does not sound if the door is
left open for a given amount of time, or a firewall which allows enu-
meration of internal systems using specially crafted TCP packets.

Exposure This is defined as a perceived flaw within a mechanism that
allows for unprivileged access to sensitive information concerning data,
business processes, people, or infrastructure. It’s generally used to gain
privileged access or even just further knowledge on the operational
security state. An exposure may be a lock with the combination available
through audible signs of change within the lock’s mechanisms, a router
providing SNMP information about the target network, a spreadsheet of
executive salaries for a private company, or a Web site with the next
review date of an organization’s elevators. Exposures are often called
“information leaks.”

Concern This is any security uncertainty for which a visible gateway or
interactive access point provides neither privileged nor unprivileged
access and has no clear business justification. This can include everything
from a secretary who gives out the direct phone number of certain exec-
utives who never answer their own phone anyways to the system admin-
istrator who has their resume online disclosing the skills learned during
their current job, but that contains no specific system, network, or per-
sonnel information. Just the ability to see the papers on an employee’s
desk through the window will be a concern, even if the papers do not
currently disclose information or increase access capabilities.

Anomaly Any unidentifiable or unknown element that is a response to
the tester’s stimulus but that has no known impact on security. This is

WWww.syngress.com

Professional Security Testing * Appendix A

data that tends to make no sense and serves no purpose as far as the
tester can tell. It is reported solely for the reason that it is a response
which can be triggered and may be a sign of deeper problems that may
be inaccessible to the tester. An anomaly might be an unexpected
response, possibly from a router in a network, that may indicate network
problems. An unnatural radio frequency emanating from an area within
the secure perimeter, however, offers no identification or information;
the same is true for a phone which rings three times and then whistles.
Additionally, it is up to the tester to be certain the anomalies come from
the source in question and not from misuse of the tester’s own tools.

Furthermore, these classifications are divided between verified and identified
security limitations. It is the responsibility of the security analyst to verity all
security claims reported. However, not all claims can be, or should be, directly
verified. For example, an analyst who determines that the company has a single
ISP and a single router is vulnerable to drastic Denial of Service if that router is
taken offline. This is categorized as an identified weakness. To escalate it to a verified
weakness, the tester would have to actually attack the router in a way that would
prevent service for the rest of the network. The difference between verified and
identified in the security test is about a level of factual certainty. However, the
loss of business that this Denial of Service would cause the company is a value
far greater than the liability the security tester can afford for reporting this falsely.
Therefore, the security analyst can be confident in the decision that having more
certainty a Denial of Service will be the result of this single point of failure is
acceptable and preferable to the alternative.

The final type of security the OSSTMM defines is loss controls. This is actu-
ally defined as ten practices that prevent loss as opposed to performing security.
While some of these may appear to be security to most of you, keep in mind
that they don’t actually prevent interaction with, or visibility of, access gateways.
The purpose of loss controls is to assure that assets, such as data or even the
access gateways themselves, are protected in the case of theft, failure, or any other
type of loss. While you may recognize all of these loss controls and consider
some of them weak or worthless on their own, few perfectly controlled systems
apply all of them. The main reason for loss controls at all is to protect your
investment in your business and the interests of those you want to do business
with. Consider setting up shop to take credit cards. Neither Visa nor MasterCard
are interested in how many robbers break in through your flimsy doors or poorly
constructed Web site and steal your assets. They just better not be able to steal

427

WWww.syngress.com

428

Appendix A ¢ Professional Security Testing

theirs. So Visa, for example, applies a security audit to assure that even if your

production server walks out the door, that list of customer credit card numbers

on it defies loss. It should take the attacker more resources and time to get those
assets from Visa than they are worth. We’ve all seen the movie where the bank

robbers have a really hard time breaking into the main vault only to find that
their techniques burned up all the cash inside. Those are loss controls. And they’re
classified in the following manner:

Authentication What are the requirements (or barriers, to those
without authentication) to enter through the gateway? If I ask you for
your passport before allowing you to enter to your gate, I am authenti-
cating you.

Non-repudiation What exists to prevent the assumed source from
denying its role in any interactivity regardless of whether entry was
obtained? If I can back up an e-mail sent from your computer with
time-locked videotape of you sitting at that computer composing the
mail, then I am producing non-repudiation of you and your actions.

Confidentiality Is the information or physical property displayed or
exchanged between two parties known only to those two parties? If I
see you exchange a closed, plain-paper package with a colleague, who
views the contents of the package without revealing them to you, that
interaction occurred with a high degree of confidentiality.

Privacy Is the way that information or physical property is displayed or
exchanged known only between two parties? If I know that you’re
going to present your friend with birthday balloons and you enter into
your friend’s home with the balloons and I can’t see or follow the inter-
action process to know if your friend is happy with the balloons or
indifferent, then you interacted privately.

Indemnification Is the gateway as an asset or the information or
physical property protected publicly by law or privately by insurance? If
you hit my car, I may be able to legally demand money for repairs from
you. If I can’t find you or make you pay, then my insurance will cover
the damage and perhaps pay for a rental car so I don’t lose productivity
while waiting for repairs.

Integrity Can the information or physical property be changed or
exchanged without all parties involved with the assets being aware of

WWww.syngress.com

Professional Security Testing * Appendix A 429

the change? If you swap out my regular, brewed coftee with an instant
one made of freeze-dried flakes, both of us would need to be aware of
the exchange for me to say that I have strong integrity with my coffee.

m Safety Will the security processes or mechanisms fail, but the protec-
tion provided does not fail? If you cut power to a bank in order to
break the electromagnetic conduction holding the lock in place on the
vault, which in turn forces the lock to drop a wedge making the door

impossible to open until power is returned, then we can say the lock
failed safely.

m Usability Where protection is interactive with the accessing party, do
decisions of the protection process require the action of the accessing
party? In order to have you to send a confidential e-mail to me, you
need to use encryption. By default, the mail is not confidential and con-
stantly requires you to remember to encrypt the e-mail. For this reason,
we can say that your e-mail fails the usability test for security.

m Continuity Can interaction with, or through, the gateway halt interac-
tions or deny intended interaction upon failure of the gateway? As a
store manager on the day before Christmas, if you fail to open up a few
extra registers with experienced employees, your checkout service may
be quickly overrun to the point where people will decide not to wait in
line. You will lose business and therefore we would say that you had no
business continuity.

m Alarm If any of your operational security measures or loss controls fail
or are circumvented, will you be informed? During a routine check of
your web server log files, you notice a lot of traffic going to a particular
internet-based client. It appears malware has somehow infiltrated this
web server and has been able to open up a connection to another com-
puter through your firewall. This routine log check has been a successful
alarm.

Connecting the Dots

The OSSTMM methodology has a solid base which may seem quite involved
but that’s actually easy in practice. As you can see in Figure A.3, it’s just like a
flowchart. But it’s not. The flow is more integrated and while the beginning and
the end are clear, the path is defined by the tester, and the time is allotted to the
test. This is because no methodology can accurately assume the business justifica-

WWww.syngress.com

430 Appendix A ¢ Professional Security Testing

tion for channels that have been provided. More directly, the OSSTMM doesn’t
assume best practice. Best practice, or common criteria, or whatever it’s being
called these days, is only best for some. Business dictates how services should be
offered and those services dictate the requirements for operational security, not
the other way around. Therefore, a methodology that 1s different for each test and
each tester is exactly what is required for thorough testing.

Figure A.3 Security Testing Methodology 3.0 from the OSSTMM

Www.syngress.com

Professional Security Testing * Appendix A

The OSSTMM begins with a posture review and ends with log verification.

This is a full-circle concept where the first step is to be aware of the legalities

and operational requirements of those that operate and interact with the scope,

which then ends with reviewing the records our tests have left behind. In simpler

terms: you know what you need to do, you do it, and then you check what you

have done. The “doing” part itself, however, gets fairly involved, as can be seen in

Table A.2.

Table A.2 The Security Presence Channel Descriptions

OSSTMM Modules

Description

Role of the Search Engine

Posture Review

Logistics

Intrusion Detection
Verification

Visibility Audit

Controls Verification

Access Verification

A thorough review of the
legalities and operation
requirements of operations
interacting with the scope.

Reviewing distance, speed,
and fallibility (yours and
theirs) to recognize failure
possibilities in the results.

Verifying the practice and
breadth of intrusion
detection.

Determining the applicable
gateways within the scope.

Measuring the use and
effectiveness of loss
controls.

Measuring the breadth
and depth of interactive
access points within the
scope.

Determining applicable laws
and legal jurisdictions, loca-
tions of primary clientele,
business requirements by
industry regulation, financial
obligations, or ethical
requirements.

Researching the location,
environment, and culture.

Researching the organiza-
tion and their known
customers through success
stories and marketing, or
through partnerships of
firms supplying monitoring
or intrusion detection mech-
anisms.

Investigating references to
the scope or parts of the
security presence.

Researching discovered
security mechanisms for the
maximum depth and cov-
erage possible.

Investigating references to
the scope or parts of the
security presence.

Continued

431

WWww.syngress.com

432

Appendix A ¢ Professional Security Testing

Table A.2 The Security Presence Channel Descriptions

OSSTMM Modules Description

Role of the Search Engine

Process Verification Determining the existence
of security processes and
measuring these processes
for effectiveness.

Configuration

Property Validation Measuring the breadth
and depth of the use of
illegal and unlicensed
intellectual property or
applications within the

scope.

Segregation Review A gap analysis between
privacy requirements by
law, by right, and by
actual practice.

Exposure Verification Uncovering information
that provides for, or leads
to, authenticated access
or that allows for access
to multiple locations
with the same
authentication.

Competitive Uncovering intelligence

Intelligence Scouting that could harm or
adversely affect the scope
through external,
competitive means.

Determining and
Measures Testing measuring the effective
use of quarantine for all
access to the scope.

Containment

Determining the proper
Verification configuration of access
controls and applications.

Researching discovered
security mechanisms for
related security processes,
management requirements,
or service-level agreements.

Researching discovered
security mechanisms for the
depth and coverage possible
through suggested configu-
ration.

Investigating to find the real
or true information and
information owners.

Investigating regional
privacy laws and
requirements.

Discovering exposed
information leaked publicly.

Investigating known
competitors, similarities to
current practices, and leads
for exposed information
leaked publicly.

Investigating quarantine
methods as well as potential
hazards that can be tested
in the existing quarantine.

WWww.syngress.com

Continued

Professional Security Testing * Appendix A

Table A.2 The Security Presence Channel Descriptions

OSSTMM Modules Description

Role of the Search Engine

Privileges Audit Mapping and measuring
the impact of misuse of
privileges or unauthorized
privilege escalation.

Survivability Determining and

Validation measuring the resistance
of the scope to excessive
or adverse changes.

Alert and Log Review A gap analysis between
activities performed with
the test and the true
depth of those activities
as recorded, or from
third-party perceptions.

Translating scope
information into ideas for
creating false identification,
false authentication, and
privilege escalation.

Investigating known
environmental instabilities
and common threats of
Denial of Service to and
from the scope.

Investigating outside perfor-
mance and increasing the
comparison scope of the
gap analysis to other
industries or countries.

A proper security test may be a methodical flow, but it’s far from being a sin-
gular flow from start to finish. As testing continues, the tester will often have new

information requiring verification in other test modules and this will continue to
occur until the test expires. As stated in the OSSTMM’s Rules of Thumb, the
permission to perform verification tests should never be scheduled to end prior

to the delivery of the report. And it is the delivery of the report, a written, verifi-
able document, which marks the difterence between professional security testing

and just playing around.

433

WWww.syngress.com

434

Appendix A ¢ Professional Security Testing

Summary

Professional security testing requires a methodology. The methodology most
often used is the Open Source Security Testing Methodology Manual from
ISECOM, which applies the volunteer efforts of thousands of people interna-
tionally. This manual provides results in three aspects: as operational security, a
metric which determines the amount of security required for operations; loss con-
trols, a metric for determining the amount of loss prevention in security mecha-
nisms; and actual security, the current state of operational security and loss control
effectiveness. These three aspects are the result of practicing the methodology
itself, a combination of five possible channels as gateways to intellectual or phys-
ical property within the security presence, categorized as the telecommunications, wire-
less communications, data networks, personnel, and physical channels.

Links to Sites

M www.isecom.org is the main site for the non-profit organization,
ISECOM, maintaining the OSSTMM and many other projects.

M www.osstmm.org is the primary link to the OSSTMM itself and all
translations.

Mailing Lists
M ISECOM Discussion is the primary list available for OSSTMM help,

teedback, and volunteering efforts.

M ISECOM News is a low-traffic list for providing project release and
update information as well as information about ISECOM events.

www.syngress.com

Professional Security Testing * Appendix A

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q:
A:

Q:

Who uses the OSSTMM?

Since the OSSTMM is freely available to all for download, ISECOM has no
way to know all those who do apply it or require tests based on it. By the
time of this printing, however, it will have been downloaded approximately
two million times.

: How does the OSSTMM compare with other security methodologies such

as BS 7799 or OCTAVE?

: OSSTMM is a low-level, bottom-up verification of the policy information

audited by higher-level methodologies like those mentioned. OSSTMM is
completely compatible with them and will enhance any risk assessment or
management methodology by providing a basis of fact on security eftective-
ness.

. Are there other penetration testing methodologies besides the OSSTMM?

. First, OSSTMM is not a penetration testing methodology. Pen testing, as it’s

known, 1s a subset of a security test that often just pits an “ethical hacker” or
“pen tester” against a challenge within a particular time frame. Relatively
little is actually achieved other than attempts to reach the stated goal, and it is
most often a test of the tester than one of the scope. OSSTMM goes far
beyond data networks alone to provide a thorough security test that includes
valid metrics and a complete report of the effectiveness of all security mecha-
nisms in operation. This also leads to the answer that there is nothing else out
there like the OSSTMM. At least not yet.

Is it required to test all channels to do an OSSTMM certified security test?

A: No, only one channel needs to be thoroughly tested.

435

www.syngress.com

436 Appendix A ¢ Professional Security Testing

Q: I have ideas to improve the OSSTMM. How can I help?

A: The best place to share ideas is the ISECOM Discuss list. Most OSSTMM
developers are on that list. You can also write the author directly.

Q: The OSSTMM is fairly involved. Where else can I find help with it?

A: Check the ISECOM Web site for seminars, help guides, core team members
from your region, and the official OSSTMM certification classes.

www.syngress.com

Appendix B

An Introduction
to Web Application

Security
by Matt Fisher

Solutions in this Chapter:

Defining Web Application Security

The Uniqueness of Web Application Security
Web Application Vulnerabilities

Constraints of Search Engine Hacking
Information and Vulnerabilities in Content
Playing with Packets

Code Vulnerabilities in Web Applications

References

M Summary

M Solutions Fast Track

M Frequently Asked Questions

437

438

Appendix B * An Introduction to Web Application Security

Introduction

There 1s no doubt that the advent of the Internet (more specifically, the World
Wide Web) has sparked a revolution in how we share information as families,
businesses, and world citizens. Perhaps the most important technological inven-
tion since the printing press, this one single communication medium holds tomes
of information on practically any subject, although that itself is its largest weak-
ness. There are now over 54 million sites on the Web', and search engines are
critical to users for finding valuable information on these sites.

Simple Nomad first documented search engine hacking in late 1997 and
published a series of papers on how to use his favorite search engine of the time
(AltaVista). Although the search engines used have changed, using them to find
vulnerabilities in Web sites is still a novel approach, for “Google crawls all”—both
the good and the bad. If you can form a query for a particular vulnerability, the
chances are that Google can find it. With a little understanding of Web applica-
tion security, however, you will realize that vulnerabilities in sites go beyond even
what can be discovered with a search engine. In this appendix we discuss the
basics of these vulnerabilities.

Defining Web Application Security

Web application security (a term often abbreviated to Web app sec) deals with the
overall Web application architecture, logic, coding, and content of the Web appli-
cation. In other words, Web application security isn’t about operating system vul-
nerabilities or the security defects in your commercial products; it’s about the
vulnerabilities in your own software. As such, it isn’t a replacement for existing
security practices but rather complements them. Hopefully after reading this
chapter you’ll have a clear understanding of some Web application vulnerabilities
and how the discipline of Web application security is clearly differentiated from
what most people typically consider as Web site security. It can help to under-
stand Web app sec by first understanding what it isn’t, since the terms Web and
application are used broadly in various areas of Internet security. Web application
security is not about the following:

m Trojans or viruses Although firewall manufacturers that have learned
how to deal with these often describe their products as providing “appli-
cation security”” Although these products do indeed deal with issues at
an application level, they’re simply talking about the application level of

WWww.syngress.com

An Introduction to Web Application Security * Appendix B

the OSI stack, not your Web application. The difference is quite distinct
in reality, although it has been heavily blurred in the marketing. There
are very few actual Web application firewalls on the market, and they are
all quite specialized devices; if the same firewall vendor you’ve been
using for years claims to have an application firewall, dig into the details
and ensure that the vendor is actually talking about Web application
security and not malware and other application-level attacks.

Dealing with Spam That’s a whole different can of worms (the
worms, of course, being the spammers). It’s true that spam occurs at the
application layer, but again we'’re talking about something completely
different. The focus of Web application security is not protecting your
end users from something traveling over the network; it’s about pro-
tecting your Web site from being hacked.

Web filtering This area is really more concerned with watching out-
bound Web traffic to make sure an employee isn’t surfing using his fan-
tasy football league at work.

Known vulnerabilities in the operating system or Web server
Although these vulnerabilities certainly are extremely important and
must be addressed, it’s a fairly mature space that is well understood. In
fact, it 1s so well understood that one could argue that it put “blinders”
on the industry, allowing Web application vulnerabilities to grow and
grow with little mitigation until only recently.

The Uniqueness
of Web Application Security

The differences between Web application vulnerabilities and known/server vul-
nerabilities deserve further discussion. When people talk about vulnerabilities
(and vulnerability assessments in particular), the majority of the industry deals
with “known vulnerabilities” that homogenously affect every install of the partic-
ular version of the aftected software. This allows for several luxuries in dealing
with these types of vulnerabilities:

When a vulnerability is announced, everyone becomes aware of the vul-
nerability at the same time. Not all vulnerabilities that are discovered are
announced, however.

439

WWww.syngress.com

440

Appendix B * An Introduction to Web Application Security

Everyone is affected by the vulerability in the same manner, allowing for
a single solution to be applied—usually a software patch from the soft-
ware manufacturer.

Since the vulnerability is identical across the board, a single “signature”
of it can be created and applied to any number of scanners, firewalls, or
intrusion detection devices.

In contrast to these network or OS vulnerabilities, most Web application vul-
nerabilities aren’t “known” vulnerabilities. Since they exist in the Web applica-

tion, which is almost always custom written, they are unique to that application.
Of course, the technique or methodology might be well known (as SQL injec-
tion 1s well known), but not every Web application will be vulnerable to a cer-

tain technique, and even the ones that are will be vulnerable in unique areas in

different ways.
This has a real impact on how you deal with Web app vulnerabilities; since

they’re your own custom-built vulnerabilities, you have to deal with them your-

self. This means:

You won'’t receive a vulnerability announcement about them.

You won'’t find them indexed in tomes such as Mitre’s CVE database or
the SANS Top 20 list.

These vulnerabilities can exist on any platform (combination of OS and
Web server) and can exist regardless of the security of the platform
itself.

You won't be able to rely on a vendor patch. Again, this is your soft-
ware, not COTS, so there 1s absolutely no leveraging the homogenous
environment. The exception to these rules are “oft-the-shelf” Web
applications such as PHPNuke, DotNetNuke, or any number of COTS
Web software. When you're using a “canned” Web application, the ben-
efit of a homogenous environment does exist. Of course, the second
these applications are modified in the least, they become custom soft-
ware; and they’re almost always modified to some extent.

Web Application Vulnerabilities

Remedying Web application vulnerabilities is not particularly difficult. The chal-
lenge instead is that of awareness and testing. The channels that developers are

WWww.syngress.com

An Introduction to Web Application Security * Appendix B 441

taught and trained conspicuously lack security awareness, and developers are
often taught standard techniques that yield insecure code. It is important to point
out as well that the majority of Web applications have not been adequately tested
for security, if tested at all. The majority of testing on applications is geared
toward functionality and performance, which also means that most developers
tend to code to those two standards. Only in the last few years have comprehen-
sive scanning solutions been available for testing Web application security. Aside
from those few scanners, most of the tools available are either for manual testing
or automated for only a tiny portion of what must be tested. This means that
most security testing has relied on either penetration testing or code reviews—
both of which require significant expertise and are rarely conducted as frequently
as necessary to ensure the ongoing security of the application.

Regardless of the reasons, Web application vulnerabilities abound, and this
risk 1s just now being realized. Compared to many forms of hacking, Web appli-
cation hacking is an extraordinarily easy discipline. Many people who have no
clue how to exploit the numerous buffer overflows that are being constantly dis-
covered can skillfully identify and exploit Web app vulnerabilities. Obviously, as
this security space matures, the hacking will become less fruitful, but the fact of
the matter is that Web hackers have a number of advantages:

m Web app vulnerabilities get their own rule on the firewall: “Allow
HTTP and from any source.” In fact, in most firewalls, it’s probably the
very first rule.?

m This is a difficult area to eftectively and properly monitor with an intru-
sion detection system. As such, it is rarely monitored properly, if at all.

®m Few tools are required. Many vulnerabilities can be discovered and
exploited right from a browser. Those that can’t simply require a min-
imal tool set—typically just a proxy that exposes the raw HTTP packet.

m Web application vulnerabilities are so easy to discover that people can
actually find “opportunity hacks” with a search engine, although we’ll
discuss the limitations of this approach as it pertains to actual Web appli-
cation assessments.

As a result, Web applications can be exploited left and right. When you really
think about it, this shouldn’t come as a surprise. After all, if multibillion-dollar
software companies have trouble securing their software, why wouldn’t smaller,
lesser trained shops with significantly less access to resources have the same prob-

WWww.syngress.com

442

Appendix B * An Introduction to Web Application Security

lems? The answer, of course, is that their software—the Web applications—are just
as insecure; these companies just don’t realize it.

Web application vulnerabilities exist in many areas, and understanding those
areas 1s critical to understanding Web app sec. The Top 10 Web Application
Vulnerabilities list by the Open Web Application Security Project
(www.owasp.org) is perhaps the oldest and most established list of Web applica-
tion vulnerabilities. It’s often cited in papers and Web sites and is a great place to
start learning the various types of Web application threats. However, it’s not an
attempt to enumerate and classify all possible vulnerabilities; it’s a running list of
what the project members perceive to be the most important Web application
threats at the time of writing, much as is the SANS Top 20 list.

There are documents that attempt to classify the full realm of Web applica-
tion threats. The OASIS WAS Vulnerability Types and Vulnerability Ranking
Model does an excellent job of organizing vulnerability types into a model that
is particularly useful for referencing very specific issues. Likewise, the Web
Application Security Consortium (http://www.webappsec.org) published its
Threat Classification paper as an organizational model as well. Read both papers,
as well as other sources, to learn the sum total of Web application threats out
there. (Some resources are listed at the end of this chapter.) Here is a sample of
some general types of Web application vulnerabilities:

m Authentication issues These refer to things such as login mechanisms,
preventing password theft through mechanisms such as “Lost Password”
features, and ensuring that all “secure” content actually requires authen-
tication. This area has received a lot of attention over the years, and
some fairly standard practices have evolved, though they are often

debated.

®m Session management This is a very important area, dealing with
problems such as preventing session spoofing by predicting credentials
(i.e., sessions IDs) and ensuring that application features that require
higher access properly check the authorization level of the user. Several
recent publicized hacks were the result of weak session management.

® Command injection These are the result of the application accepting
input from the browser (whether it’s input that the user typed in or
input that the programmer passed from a previous page) that allows the
attacker to insert commands and execute them. These commands can
range from database queries (such as in the case of SQL injection) to

WWww.syngress.com

An Introduction to Web Application Security * Appendix B

JavaScript (as in cross-site scripting) or even actual system commands.
The impact of these is often devastating. Note that command execution
is not limited to system commands; even just the ability to insert HTML
into a page could be used to hack successtully.

® Information disclosure There are lots of clues in Web sites that help
a hacker, from HTML comments to finding complete software manuals
on the system (yes, this happens all the time). Although any single inci-
dent of information disclosure by itself 1s rarely useful for a complete
hack; these incidents often have a damaging cumulative effect.

Note that this is by no means a complete list of all possible Web application
vulnerabilities; it 1s merely a start. Web applications have the potential to be
infinitely complex, and thus do their vulnerabilities; be sure to read the papers
mentioned in this chapter to learn more about the full scope of vulnerabilities
and threats.

For the purposes of this appendix, we’ll abstract the issues even higher,
relating them to the content and code of the site. What we’re labeling as “con-
tent issues” are those vulnerabilities that appear in the actual page itself; they are
“standalone” vulnerabilities that don’t require any real understanding of how the
application works. In contrast, “code” issues exist in the server-side code for the
page and require actually exercising the logic for that page to see what you can
get away with in it. You can use search engines to find symptoms of code-related
errors: for instance, certain ODBC errors can be indicative of SQL injection, but
to truly determine if the vulnerability does indeed exist (and the extent of it),
you have to make follow-on requests with specially formed packets to test it.

Even with strictly content issues, a search engine will not expose the full
gamut of issues. Search engines crawl and index by very specific rules to ensure
that they “play nicely” with Web sites, and this limits the amount of content you
can find through them.

Constraints of Search-Engine Hacking

This book has already given a very good picture of exactly what can be found
just in the content. But it’s important to also understand the constraints of search
engine hacking. Certainly using a search engine will find targets of opportunity,
but when you're talking about actually doing a concerted test on a target system,
you need to understand that anything you turn up using a search engine is just

443

WWww.syngress.com

444

Appendix B * An Introduction to Web Application Security

the tip of the iceberg. To put this in graphical terms, Figure B.1 displays the
subset of vulnerabilities that are exposed to Google.

Figure B.1 Only a Subset of Vulnerabilities Is Exposed to Google

First, not all sites are crawled by Google. That’s hard to believe, but remember
that for every public Web application any sizable company has (and has sub-
mitted to Google to crawl), many others are either not on the Web at all or are
not public Web sites. These could include the strictly internal Web applications
within a company or extranets that are external facing but meant for an
extremely limited audience.

Even of the sites Google does crawl, not all of each site will be crawled.
Google can only follow linked pages, and it doesn’t do any guessing at filenames
or follow clues to other files. Not even all linked files are followed; certainly
those linked with HTML links are, but JavaScript links might not necessarily be
followed, and pages that can only be found via a form submission won'’t be
found at all. Additionally, Google politely respects requests not to crawl certain
areas, as indicated in the robots.txt file.

All this means that although lots of serious information can be garnered
using search engines, this form of hacking is by no means the complete picture
of Web application security. In fact, even just in the realm of content there’s a lot

WwWw.syngress.com

An Introduction to Web Application Security * Appendix B 445

of information (and vulnerabilities) that a human can find but a search engine
would probably miss.

Information and
Vulnerabilities in Content

The first thing to realize about content is that it takes many forms. A typical Web
page will obviously contain HTML that is rendered in the browser, but addi-
tional information in the page source can be valuable to a hacker or penetration
tester. JavaScript, comments, and hidden form fields all yield clues and can even
be manipulated to actively test the application. Page-scraping techniques, such as
those covered throughout this book, can be used to extend the results of a search
to get to this type of data.

However, beyond the page source, a great deal of information is available in
the raw HTTP itself—status codes, headers, and post data are all valuable areas
that are not exposed in the browser. Typically, a crawl is the starting point to dis-
cover as much of the site as possible. Additional work will almost always yield
more content to scrutinize; this could be a dictionary attack that simply requests
a list of files, or it could involve manually poking around and requesting files.
More often than not, it’s a combination of the two. Although actual vulnerabili-
ties can be discovered in content, for the most part the biggest value comes in
information disclosures.

The Fast Road to Directory Enumerations

Some files save a hacker a lot of reconnaissance work by giving him or her a
complete list of additional content to analyze. Some of the most obvious files
that yield lots of good directory and/or filenames are the robots.txt file, FTP
logs, and Web traffic reports, although obviously others can exist as well. These
techniques are all covered in detail throughout this book, but we present them in
brief here, firmly placed within the context of a Web application assessment.

Robots.txt

Robots.txt is a plaintext file. Of course, even more can be unearthed by exam-
ining the raw packets that tell search engines where they can and can’t crawl.
This file is always plaintext and is always stored in the root of the Web site—that
1s, at www.website.com/roots.txt. For this reason, it’s a great way to start oft your

WWww.syngress.com

searching.

446

Appendix B * An Introduction to Web Application Security

Robots.txt is a simple file: It specifies a user agent and directories that are
either explicitly allowed or disallowed. It is very useful for quickly identifying
interesting areas of the application because if a search engine is explicitly told not
to search a certain directory, a hacker would certainly want to know why. Take,
for example, Figure B.2, in which we see the robots.txt file from Google.com.
There are several interesting directory names that search engines have been told
not to crawl, one of which is the /catalogs directory. By manually browsing
google.com/catalogs, you’ll see that this is a beta application that might not have
been otherwise detected.

Figure B.2 Google.com/robots.txt

Of course, the robots.txt file has to be manually created, meaning that the
system designers should be well aware of the fact that they’re advertising those
directory names. However, the search results are far more interesting to the
hacker when the designers and administrators are not aware of certain directories
he or she has located.

FTP Log Files

Log files are also an incredible source of additional directories and filenames to
check, as we’ve seen throughout this book, especially in Chapter 10. Frequently
these are FTP log files, although any type of logging or trace file that’s viewable

WWww.syngress.com

An Introduction to Web Application Security * Appendix B

to the public is a liability. FTP logs in particular give the hacker that many more
files to look for and can also reveal such things as the system name, client IP
address, or even the internal IP address of the system. Think about who FTPs to
a Web server—most likely someone with privileges, and if that IP traces back to
a residential line, an alternative target comes to light: a system that will probably
be considerably less defended but has plenty of access to the Web site.

Never allow log files of any type to gather on a server in the Webroot,
because they won't attract dust. Figure B.3 shows a quick Google search for a
very common FTP log filename. Some of these files were intentionally placed by
the administrators, but surely most were not.

Figure B.3 Google Search Results for a Common FTP Log File

Web Traftic Reports

Web traffic reports, explored in Chapter 10, are also a highly valuable source of
information to the hacker. These are reports generated by specialized software
that analyzes the Web traffic logs to generate easily digestible information about
the Web traffic. In particular, most reports show not only the most popular pages
but the least popular as well. This almost always presents some interesting areas to
be explored. Think contrarian here; if you have a public Web site that takes hun-
dreds of thousands of hits a day, but some pages only take several hundred hits a
day, what function do you think those pages play within the Web application?
They could be a remote Web-based admin section or perhaps a separate section
for customer service representatives to log into and access higher functionality.
Either way, chances are they’ll be a good source of information, and in some
cases, extreme vulnerabilities can be found in these stats.

HTML Comments

HTML comments are also a great source of information, not just for finding
more content but about the system itself and more. Many developers are still
leaving “TMI”—too much information—in their client-side comments. For
example, some commonly seen ones include:

® Directory names or filenames

B References to server-side code

447

WWww.syngress.com

448 Appendix B * An Introduction to Web Application Security

m Documenting template pages
m References to installed applications or systems
m Revision history

®m Internal names or contact information (many companies use the same
naming conventions for their logins as they do their e-mail)

m Revision history

Error Messages

Error messages are another phenomenal source of information, as we’ve seen
throughout this book, highlighted in Chapters 8 and 10. They're all over the Web
and often overlooked by untrained eyes. Every error message tells a story, and
they’re flashing neon signs that say “my site 1s broken.” Hackers will almost
always stop to see exactly how broken. These messages can also reveal large
amounts of sensitive information such as file system paths, additional content,
internal code, and more. Most extremely useful error messages are generated with
active testing (tampering with the application), but many can be found with a
crawl as well. In Figure B.4, an error message reveals the file system path, along
with information about the server-side code.

Figure B.4 Error Message Revealing the Web Root and Other Details

WWww.syngress.com

An Introduction to Web Application Security * Appendix B

Sample Files

Sample files or other commonly used applications such as those revealed in
Chapter 8 typically have well-documented vulnerabilities in them. Many sample
files are actually remote tools for the developers, and others might simply
demonstrate the system’s features.

Bad Extensions

Another common mistake that can have devastating consequences is simply mis-
naming a file extension, as we explored in Chapter 3. Extensions are mapped in
the Web server, and this is how they know a page is supposed to be executed on
the server as opposed to simply sent to the browser. Any page that contains
server-side code requires an extension that the server will recognize and will
execute.

Figure B.5 shows the application mappings for Internet Information Server;
here it is clear that the Web server relies on proper extensions to understand how
to process a file.

Figure B.5 1IS Application Mappings

With the wrong extension, the server will simply send the text file to the
browser, completely revealing the server-side source code. Unfortunately, many

449

WWww.syngress.com

450

Appendix B * An Introduction to Web Application Security

developers have actually been trained to give their files nonexecutable extensions,
particularly server-side include files (.inc files). Figure B.6 shows the results of a
query asking for a very common filename given to the files that define database
connectivity in certain PHP applications. Although the number of hits might
sound low, remember that this is only one specific filename, and these all had to
be exposed to Google via directory browsing to be indexed. In reality, a huge
number of include files with the .inc extension are running in Web applications
right now.

Figure B.6 Include Files Are a Common Source of Server-Side Code

Most dictionary attacks ask for commonly used include files, but this attack
isn’t limited to include files by any means; any page that contains server-side
code that has the wrong extension on it will leak that source code. Likewise, any
archive files left on the server (such as tarballs or ZIP files) are subject to down-
load along with their contents, whether HTML or code. Figures B.7 and B.8
show how a copy of a file with an improper extension reveals its source code.
Since the extension .bak doesn’t correlate with any application mappings, the
server doesn’t realize that the page is supposed to be executed and performs a
“read” operation on it instead—ryielding its source code to the lucky viewer.
Note that although the examples here show Active Server Pages running on
Internet Information Server, this issue i1s by no means limited to that platform;
this page 1s chosen merely for the sake of demonstration. These issues exist on all
platforms, including Java and PHP applications.

WWww.syngress.com

An Introduction to Web Application Security « Appendix B 451

Figure B.7 Revealing Source Code with an Improper Extension

Figure B.8 Active Server Page with the Correct Extension

WWww.syngress.com

452

Appendix B * An Introduction to Web Application Security

System Documentation

System documentation of one form or another can also often be found on sites,
as we discussed in Chapter 8. This documentation is usually in the form of
Readme files but can also be complete online manuals. Although these might be
helpful while developing a system, they must not be on anything in production.
The same can be said for test files: Remember that these are pages where a
developer was testing something, and these pages are usually broken. The error
messages gleaned from these pages can be amazingly helpful because they tend to
slip under the radar of any administrative housekeeping.

These were just some choice examples of frequently occurring issues.
Obviously there’s no limit to the amount of junk that collects on a Web server
over time; chalk it up to poor housekeeping or just “Internet entropy.” When
you're fishing for files, use your imagination, but naturally, prioritize items that
will help you further the testing.

Defending your site from these content issues is easy once you understand
the impact even relatively benign items can have. In general, a few basic practices
can help mitigate content-related issues:

m Ensure that all files have a script extension, even if the page only con-
tains HTML. For example, ASP code in an HTML file will not be exe-
cuted, it will be displayed to the browser, but an .asp file that only
contains HTML will still serve the HTML fine.

m Clean up your Web directories. Ensure that only intended pages are pre-
sent, and delete anything that doesn’t belong, especially sample applica-
tions. On most systems it’s pretty easy to pick out the files that don’t
belong. When in doubt, ask the developers.

®m Disallow HTML comments in code. Allow only server-side comments.
If the page is only HTML and requires a comment, insert a server-side
comment within script delimiters, such as:

<HTML> Text and stuff </br>

More text and stuff and a <% 'server side comment % that won't
make it to the browser.

Of course, this works only if you run everything with a script
extension.

WWww.syngress.com

An Introduction to Web Application Security * Appendix B 453

®m Be aware of what is transmitted in your cookies and post data. Even
though these aren’t readily viewable in a browser, they are immediately
apparent to a hacker, as we’ll see later.

Hidden Form Fields,
JavaScript, and Other Client-Side Issues

A large number of mechanisms are available to the developer in the client-side
code, such as hidden form fields and JavaScript; there are well-known issues with
these as well. For example, many developers use hidden form fields for every-
thing from session identifiers to view state controls. None of these are issues if
done properly; the fact that a session ID is in a hidden form, for example, doesn’t
make the identifier itself any more or less secure than if it appeared in the URL.

However, many developers actually still believe that hidden form fields are
actually hidden from the user. Unfortunately, this couldn’ be further from the
truth. They are called “hidden” because they don’t render in the browser view,
but they are quite plainly accessible in the HTML source and raw packets. In the
late 1990s “client-side pricing”—hidden form fields that actually passed the price
of an item from page to page in the shopping cart—was common. By simply
saving the HTML to disk and modifying it, a hacker could actually change the
price of a product when checking out. Sadly, this exact issue still exists today, but
in extremely limited numbers of occurrences compared to the past.

The old-fashioned way of manipulating content was to save the Web page to
disk, modify the local file, and use it to submit a modified request to the server.
This, however, is a terribly mundane way of going about it. It all gets so much
easier when you drill down to the packet level. Additionally, a great deal of infor-
mation 1s exposed in the packet that simply isn’t available without viewing the
raw packet. Before getting into any real code attacks, you have to understand
how HTTP packets work and how to manipulate them to directly submit tam-
pered data to the Web application.

Playing with Packets

All communication between the browser and server is done via HTTP requests
and responses. As an application-level protocol, HTTP is wrapped into lower-
level protocols, so you don’t need to worry about them. Every time you load a
Web page into your browser, the browser makes multiple requests to the server as

WWww.syngress.com

454

Appendix B * An Introduction to Web Application Security

it downloads images, scripts, and other elements. When you submit a form, the
browser submits the data you’ve entered, along with any hidden form values and
any possible effects of JavaScript, to the server in a request, almost always via
either a GET or a POST.

An HTTP GET passes information to the server by appending the informa-
tion to the end of the page name as show in Figure B.9.In a POST request,
however, the information is not appended to the URL but is rather submitted in
the body of the request packet, as shown in Figure B.10. Many developers
believe that POST requests are actually more secure than GETs because the
information is not exposed in the address bar of the browser. In reality, a POST
1s just as exposed as a GET in the packet and equally subject to tampering. There
is, however, one distinct difference between a GET and a POST: data persistency.
Anything in a URL (such as querystring information from a GET) can persist in
many areas far beyond the Web developer’s control. These include:

m The browser’s history cache

®m The browser’s bookmarks

® Any outbound proxy logs

® Any inbound proxy logs

® Any firewall logs

m Web server logs

m Web server traffic reports (which read the server logs)

m Referrer strings, which could actually send the information to a
different site

Therefore, it is always a good idea for any Web forms to submit via a POST
instead of a GET This is merely to avoid this issue of the data living everywhere,
however, and does absolutely nothing to secure the data.

WWww.syngress.com

An Introduction to Web Application Security * Appendix B 455

Figure B.9 An HTTP GET Packet

Figure B.10 An HTTP POST Packet

In both a GET and a POST, the information is a concatenated string com-
posed of a parameter name and the value of that parameter. Some fairly standard
delimiters are used to help the server interpret the data, as shown in Figure B.11.

Figure B.11 Components of the URL

By intercepting packets from the browser, you can see all form data sub-
mitted, including hidden form field values and the effects of any JavaScript that
executed.

WWww.syngress.com

456

Appendix B * An Introduction to Web Application Security

Not all information is transmitted via queries and post data, however. A Web
application developer has full access to all areas of the packet and will often store
information in the cookie or even go so far as to create custom headers to store
data. All areas of the packet are subject to viewing and tampering, and per-
forming it at packet level is easy and efficient. Figure B.12 shows a raw request
with an interesting cookie being sent to the server.

Figure B.12 An HTTP Request Showing a Cookie Transmitted to the Server

Viewing and Manipulating Packets

Before you can begin modifying packets, you have to actually get access to them.
As we know, the browser will only display the URL (and any accompanying
querystring) and the body (the HTML) or the HTTP response. The only portion
of an HTTP request that is displayed is the URL and querystring itselt; POST
statements are not viewable in a browser.

There are several ways of viewing the actual raw packets themselves. The first
method that comes to mind for most people is packet sniffing, which will indeed
show you the full conversation between browser and server. A favored packet
sniffer is Ethereal, pictured in Figure B.13, which displays the packets in an easily
read format.

WWww.syngress.com

An Introduction to Web Application Security * Appendix B

Figure B.13 Ethereal Makes Easy Work of Network Analysis

Be prepared, however, to sift through a large number of packets because the
server response can actually take place over multiple packets. If you’re using
Ethereal, be sure to take advantage of its filtering and coloring rules to sort the
chaft from the wheat.

At some point, you'll need to actually modify the packets, not just view them,
and this takes more than a sniffer. There are several different ways of modifying
packets, and both are used extensively. For a “one-oft” request, simple Telnet will
do the trick; simply Telnet to the server on port 80 (or the appropriate port), type
in your packet, and terminate the packet with two carriage returns; the server will
respond accordingly. Typing in packets by hand gets old quickly, however, and to
perform repetitive tasks you’ll want to script out the work.

When nothing but manual tampering will do, nothing beats using a local
proxy. Local proxies can be garnered from many sources, but they all basically do
the same thing: let you view and modify raw HTTP packets. The real differentia-
tors are in details such as the ability to chain through a network proxy, the ability
to use SSL, and the ability to modify response packets in addition to request
packets. Most have extremely functional interfaces as well, combining all packets
and matching responses to their requests. They work by simply accepting the
packet from your browser, displaying the packet to you for modification, then
forwarding it to the server and displaying the server response.

457

WWww.syngress.com

458

Appendix B * An Introduction to Web Application Security

By letting the browser make the request for you, all you have to do is modify
the area you're interested in. This is extremely efficient in complex applications
that can change key areas with each request—now your browser does all the
heavy lifting, leaving you free to tweak where desired. Some proxies will even
allow you to search and replace packet contents automatically.

Figure B.14 shows SPI Proxy configured to automatically remove all Cookie
and Referer headers and to modify the User-Agent header. Being able to modity
the raw packet automatically is a great benefit—one application we played with
had a “maximum login attempts” counter in its cookies; by configuring the filters
in the proxy, we automatically reset the counter to the maximum with each
request and was able to pound the login fields all we wanted. Of course, just
maintaining that count in the client is an issue unto itself.

Figure B.14 Using SPI Proxy to Perform Automated Search and Replace of
HTTP Elements

Once you have the ability to actually modity packets, you're on your way to
actively testing for logical vulnerabilities. Unfortunately, there’s simply no way to
give a full education on all the myriad possibilities that exist in exploiting appli-
cation logic, for they are as diverse as the applications themselves. In the next

WWww.syngress.com

An Introduction to Web Application Security * Appendix B

section, however, we look at some basic examples of well-known vulnerabilities
and exploits.

Code Vulnerabilities
in Web Applications

The majority of really serious vulnerabilities in Web application don’t occur in

the “content” level per se; theyre based on exploiting failures in the logic of the
server-side code. These are more difticult to discover because they require actu-
ally exercising the application in various ways to determine the behavior of the

back-end code.
Client-Side Attacks

When you visit a Web page, the main HTML file comes from that server but can
reference elements that are spread across the Internet. Advertisements, streaming
media, images, and other objects are often hosted aside via caching services that
reduce the total bandwidth consumed by the main site. Browsers know to load
these within the main page, even though their source is offsite. This behavior,
although required for the Web to work properly, can expose the browser to many
different attacks known as client-side attacks.

Client-side attacks can occur in many forms; drive-by ActiveX downloads is
one example, as is a malicious Java applet on a Web site. These are all attacks from
the Web site itself; the owner of the site is attacking the hapless users of it. Rarely
will the owners of these systems engage a penetration tester or auditor! There
are, however, plenty of legitimate Web sites that have vulnerabilities that allow a
malicious third party to use the sites to attack browsers. Instead of trying to break
into an application head-on to get inside and steal sensitive information, the
attacks target the users of that application to gain access to information.

Client-side attacks are often carried out through some sort of phishing scam:
sending out extremely convincing-looking e-mails that try to attract people to a
mock Web site that mimics a well-known real site and then get them to enter
their private information into the mock Web site. These scammers typically
employ a variety of URL obfuscation techniques to hide their true identity. This
type of attack requires no vulnerability on the actual Web application; rather, it is
sheer deception. The weakness in this type of attack is that a sharp consumer
might take notice of the suspicious URL, recognizing that it doesn’t belong to
the real organization.

459

WWww.syngress.com

460

Appendix B * An Introduction to Web Application Security

Recently, a bank’s customers were being phished with a difterent type of
attack that took advantage of a vulnerability in the real bank’s Web application—
one called cross-site framing. In this case, the phishing attack didn’t need to
employ a mock Web site; instead it sent the victims to the real bank Web site, a
trusted domain. The phishers exploited a page that intentionally displayed third-
party content. The location of the content to be displayed in the frame was spec-
ified in the URL, as demonstrated in Figure B.15. There are ways to do this
safely by examining the location specified within the server-side code to ensure
that the URL passed to the page is legitimate, but in this case the needed valida-
tion wasn’t performed and the page would load into the frame any content that
was specified in the URL. The phishers then created a mock login form on
another site and specified the location of that form in the URL, as demonstrated
in Figure B.16. Now the phishers’ Web site was framed within the original site.

Figure B.15 The Frame Source in This URL Is a Dead Giveaway

Figure B.16 The Cross-Site Framing Bait

By phishing that URL around through legitimate-looking e-mails, the scam-
mers then attempted to dupe the bank’s actual victims into logging into their
form. Figure B.17 shows the modified URL that can now be used in the phish
bait. Note that the host and domain is the original site, so even a consumer who
scrutinizes those still stands a chance at being fooled.

WWww.syngress.com

An Introduction to Web Application Security * Appendix B 461

Figure B.17 HTTP Response That Suggests Susceptibility to Cross-Site
Scripting

This classic example of a client-side attack demonstrates some key character-
istics of such attacks:

m They don'’t attack the site directly but rather indirectly through the users
of the site.

m They typically trick the main site into interacting with a third party by
injecting some form of content.

m They get to levy the trust between the users and the main site, since the
third-party interaction is done by the actual, real site and not a fake one.

This particular vulnerability is relatively rare, since few sites frame third-party
sites and actually embed the full URLs into their queries. A much more com-
monly found vulnerability is cross-site scripting (abbreviated XSS). Cross-site
scripting exists when the Web site accepts input that it shouldn’t (as in the pre-
vious example) but then sends that input back to the browser. This could be in a
login page, where the username is displayed back to the browser, or a search
field, where the search terms are displayed but can actually exist anywhere.

For example, look at the request and response in Figure B.17. We see that the
page cklogin.asp takes the value supplied for the Userid parameter and displays
that value back in the page.This is the first test necessary to identify XSS; finding
the replay where input is echoed back as output. For this to be an actual XSS
vulnerability, however, it must accept and replay the JavaScript without per-

WWww.syngress.com

forming any validation on it.

462 Appendix B ¢ An Introduction to Web Application Security

The simplest way to test for this is to simply enter script into the parameter
and see if it is echoed back to the browser. Figure B.18 shows a request packet
being modified; the legitimate value for the parameter named wuserid is replaced
with a simple Java script.

Figure B.18 HTTP Request Being Modified to Insert a Script

Figure B.18 also demonstrates encoding the parameters. When manipulating
packets directly, you must remember that the content-length header has to be
updated to reflect the new length of the post data string. It might also be neces-
sary to encode the input. Web browsers do this for you automatically, and any
packet editor you use should allow you to do this as well.

After you've injected the script into the request, simply analyze the response.
If the script comes back in the response unmodified, that parameter is vulnerable
to cross-site scripting. Figure B.19 shows the script returned in our example
response. The application intends to write “Welcome Back [username[” but instead
writes “Welcome Back [Java Script]” since it believes the actual username is the
JavaScript expression.

Figure B.19 Cross-Site Scripting Vulnerability in the HTTP Response

Www.syngress.com

An Introduction to Web Application Security * Appendix B

Escaping from Literal Expressions

If you can get a complete script returned in an HTTP response, the request
parameter that was tested is vulnerable. Often, however, the script itself won’t
execute in the browser, because it was returned inside a literal statement. The
server-side code returns the script, but it’s in some element the browser only rec-
ognizes as HTML and not as script. For instance, in Figure B.20, we see our test
script returned, but this time inside an image tag. To get this script to properly
execute, we need to escape the tag.

Figure B.20 The Test Script Is Returned Within an Image Tag and Is Not
Executed

Figure B.21 illustrates prefacing the injected script with the characters neces-
sary to close the existing tag. This then separates the script from the tag, but the
remainder of the tag is now “stranded” and will print on the screen as illustrated
in Figure B.22.This, along with the “broken image” icon, certainly won’t suftice
in a proper hack—they must be cleaned up.

463

WWww.syngress.com

464 Appendix B ¢ An Introduction to Web Application Security

Figure B.21 Closing Existing Tag by Prefacing the Injected Script

Figure B.22 Tag with Separated Script

The first task is removing the “giant red X (which indicates the existence of a
broken image link) from the screen. Figure B.23 shows prefacing the injection not
just with the “> combination necessary to escape the tag but now with a height
and width specification that ensures the icon isn’t shown at all. At the end of the
injection, a metatag is opened. In the response we can see that we have successfully
shrunk and closed the image, creating a nicely formed invisible tag. Figure B.24
shows the rendered results—which are, of course, completely blank now.

Figure B.23 Prefacing the Injection with a Height and Width Specification

Www.syngress.com

An Introduction to Web Application Security * Appendix B

Figure B.24 Invisible Tag Results

There are other ways of executing script as well. For instance, you can specity
a remote script, as shown in Figure B.25, or instead embed the script into the
image tag as shown in Figure B.26.

Figure B.25 Loading a Remote Script

Figure B.26 Using an Event to Trigger the Script

Once the injection is tested and confirmed, the actual attack needs to be
tormed. The JavaScript Document Object Model (DOM) provides several
extremely useful capabilities to the developer and hacker alike. For instance,
JavaScript provides access to field values and is often used by developers to

465

WWww.syngress.com

466

Appendix B * An Introduction to Web Application Security

ensure that required information has been entered into forms. This same func-
tionality also lets the hacker access information entered into the form via a cross-
site scripting attack, as demonstrated in Figures B.27 and B.28.

Figure B.27 The Injected Script

Figure B.28 Accessing Form Values Via Script

The next step is to get the information where it can be read. This is usually
done by appending it to an image tag whose source is a remote Web server that
the hacker has access to, as shown in Figure B.29. When the script is activated,
the browser will attempt to load the image, making a call to the remote server
with the stolen information in it. From there, the hacker simply has to read the
Web logs for the stolen information. You can also use JavaScript to redirect win-
dows and open new windows and create framesets, all of which could display
tforged login pages. Figures B.30 and B.31 show an example of appending the
form values to a window.open command,; this is an elaborate example of the var-
ious fun to be had with cross-site scripting.

WWww.syngress.com

An Introduction to Web Application Security « Appendix B 467

Figure B.29 Passing Credentials to the Third-Party Site Via an Image Tag

Figure B.30 Appending Form Values to a window.open Command

Figure B.31 And the Resulting Effect

Cross-site scripting made big waves a few years ago when it was discovered
in several popular Web-based e-mail providers. XSS 1is still unfortunately a very
common vulnerability in Web applications. Defensive coding techniques require

WWww.syngress.com

468

Appendix B * An Introduction to Web Application Security

strong validation of all input for script tags and certain terms, as well as HTML
encoding any printed output that is directly received from the browser.

Remember that anything that occurs on that page and is accessible via
JavaScript is subject to theft via cross-site scripting. If the vulnerability occurs on
a page that requests a username and password, those credentials are subject to
theft. However, even if the page doesn’t have any actual sensitive forms on it, the
cookie itself can often be a big help to the hacker, since most cookies contain
session identifiers that can be used to impersonate another user.

Session Hijacking

HTTP is a stateless protocol, and Web applications have no automatic way of
knowing what has happened from one page to the next. This functionality must
be built into the application by the developer and is typically done through the
use of a session identifier. A session ID is essentially a serial number that identifies
an individual to the site; it is given by the system at a user’s an initial visit and is
offered up to the server by the browser on each subsequent request. The system
looks up all pertinent information related to that session ID, then makes appro-
priate decisions based on it, such as to allow access to a certain page or to display
certain items in the online shopping cart.

Session IDs must be protected because they are essentially a form of identifi-
cation. Just as someone who steals an employee badge could gain unauthorized
access to a building, someone who steals a session ID can gain unauthorized
access to a system. For this reason, we follow some basic rules on handling ses-
sion identifiers:

m They must be uniquely generated so that no two users are ever assigned
the same ID.

®m They must be random enough that that nobody can predict a future ID
or determine someone else’s ID.

m They must be long enough to prevent the brute-force guessing of an ID
in use.

Session IDs are typically transmitted by cookies, though theyre also com-
monly seen in post data (through hidden form fields) and queries. It really
doesn’t matter how or where they'’re stored, since they’re all equally exposed in
the packet. Usually a site will just use the session ID created by the server, but
every once in a while developers create their own; these are most subject to

WWww.syngress.com

An Introduction to Web Application Security * Appendix B

abuse. Several large commercial Web sites have made headlines for failing to
create unique and random session IDs. In some extreme cases, they actually just
incremented the number up for each user, so that guessing someone else’s ID was
as simple as adding 1 to your own.

When session IDs aren’t protected, they’re subject to theft and reuse. Figure
B.32 shows the result of logging into a popular free portal application. You can
see that the server sets a new cookie reflecting the authenticated state.

Figure B.32 The Cookie Changes to Reflect the Authenticated State

If the user then logged off the application, the application would replace the
cookie with something that reflected the unauthenticated state. However, many
people simply close their browsers without actually logging oft the application.
This keeps the session open on the server and in the application until it times
out.

The browser is closed and cookies are cleared. A new request is made for a
restricted page, and as shown in Figure B.33, the server responds accordingly,
since there is now nothing identifying the person as a valid user.

469

WWww.syngress.com

470 Appendix B ¢ An Introduction to Web Application Security

Figure B.33 Without the Cookie, No Valid Session Exists

However, by simply substituting the cookie that was set by the server during
the authenticated state, we now get the authenticated page shown in Figure
B.34.The server doesn’t really know who is viewing the page; the hacker pre-
sented the correct credentials and is allowed through. By adding the session 1D
to the request, the hacker now has access to everything the legitimate user has
access to on this application.

Figure B.34 The Cookie Contains All the Authentication Necessary

Www.syngress.com

An Introduction to Web Application Security * Appendix B 471

Cookies are also excellent sources of other information, and some developers
have actually stored the user’s ID and password in the cookie in plaintext!
Cookies sent to a non-SSL site are easily stolen by snifting, but even on an SSL
site, cookies are easily stolen using a cross-site scripting attack. Session Ids that are
predictable do not even require a stolen identifier; with enough analysis, the
hacker can simply learn the algorithms used to create the identifiers and create
their own identifiers.

Command Execution: SQL Injection

Input validation is a central concept to Web application security. Developers must
scrutinize everything sent in the HTTP request to ensure that it is valid,
expectable input before using it. Entire papers, projects, and products exist to
help with input validation. When developers don’t validate the request, their
applications can become extremely susceptible to tampering. The cross-site
scripting vulnerability we explored earlier relies on an input validation fault: he
fact that the JavaScript was accepted by the application in the first place.

There were other factors involved with the XSS attack as well—not only
must the application accept the JavaScript, but it must also replay it back properly
so that it executes. Finally, there’s the social engineering aspect—phishing for the
hapless client. Phishing scams are highly visible and have been going on for ages
(think 419ers), but SQL injection is even more prevalent, though less publicized.

Command injection refers to being able to inject some sort of code into the
Web application that executes. Just as cross-site scripting inserts scripts, a hacker
can also try inserting shell commands, Web code, or even full database queries
into a Web application.

Of all the possible command injections, the most common one by far is SQL
injection. By inserting carefully crafted SQL queries into a vulnerable Web appli-
cation, a hacker can actually get his or her own commands to run on the
database. Some testing is required to find the vulnerable parameter and to deter-
mine the exact maneuvering required to get a query into a vulnerable Web
application. Once that position is found, however, the hacker can immediately go
about enumerating the database and then finally extracting data from it.

SQL injection exploits common methods of performing database queries that
concatenate input into a text string. Look at the code snippet in Figure B.35 for
selecting patient information based on a supplied search term.

WWww.syngress.com

472 Appendix B * An Introduction to Web Application Security

Figure B.35 A Typical SQL Query

This is a common way of building queries—by concatenating the variable
portions of the query with the static portions. With this example, the query is
expecting a string from the browser, so it first builds the select statement with the
initial leading single quote necessary. It then reads the post data from the request
and appends the value specified in the “Search” parameter to the query. It finally
appends the final trailing single quote it needs.

Let’s look at the way various inputs aftect this statement. Remember that the
base query is:

Sel ect patient_records fromthbl Pati ents where user_search="input'

So if the data entered into the “Search” post data parameter in the request is:

123-22-4321

the query becomes:

Sel ect patient _records fromthbl Patients where user_search=" 123-22-4321 "'

Likewise, if the data entered is:

M chael Bal zary

the query becomes:

Sel ect patient_records fromthbl Pati ents where user_search=" M chael
Bal zary'

However, a problem is encountered if the data entered is:

McSorl ey's

The single quote in the query will disrupt the quotes used in the query,
changing the final statement to:

Sel ect patient_records fromthbl Patients where user_search=" MSorley's '

WWww.syngress.com

An Introduction to Web Application Security * Appendix B 473

This will cause errors, since there is now a complete query and extra “junk”
at the end. This in effect allows the input to “escape out” of the query. If the data
entered were:

Light' or user_search="Dark

the query would now look like this:

Sel ect patient_records fromthbl Patients where user_search=" Light' or
user _sear ch=" Dark'

The input here takes advantage of the fact that the single quote in the input
is used to terminate the first string, meaning that everything following the first
single quote becomes part of the query itself. The input is intentionally missing
the final quote needed in ‘Dark’ because the original query statement will
append that.

The Web application fails to validate the input for these reserved characters
and keywords that were in the input, and by simply concatenating it to the
query, the application changes the nature of the query itself.

It is this ability to modify the query that defines SQL injection. By modi-
tying the query in careful, intentional ways, a hacker can access the complete
back-end database and even bypass mechanisms in the application.

Examine this new query, designed to look up a username in a login
mechanism:

Sel ect usernane from Users where usernane=
& equest.forn("userid") & " ' "

If the input for “userid” is:

the query 1s modified as in our previous example, but in a particularly crafty
manner:

Sel ect usernane from Users where username=' ' or 'a'='a'

Now the query searches the database for a username where the username is
either blank or where the letter a is equal to the letter a. This statement is always
true; the letter a is equal to the letter a, and the database will return the first row
of the table specified. In this case, it will return the first username to the applica-
tion. If that input is pasted into the password field as well, the database will
simply return the first username and password to the application, simply logging
the user into the application, completely bypassing the authentication altogether.

WWww.syngress.com

474

Appendix B * An Introduction to Web Application Security

In the case of integers, the injection is even easier. SQL only requires quotes
around strings or characters, not numbers, so a back-end query that expects only
numbers wouldn’t have the single quotes wrapping the input. This means that no
“escaping out” of the query with single quotes is necessary.

For example, the query:

SQL_Lookup = " select stores from tabl eLocations where
tabl eLocati ons. zi pcode=" & request. querystring("zip")

can be injected into by simply entering:

12345 or 1=1

to form the new query:

sel ect stores from tabl eLocations where tabl eLocations. zi pcode=12345 or 1=1

Simply modifying the WHERE clause with “and” and “or” isn’t even half of
what you can do with SQL injection. Unless your database security is particu-
larly sectioned oft, most of the time having SQL injection on even one param-
eter on one page is essentially the same as allowing anyone to open a query tool
directly against your database.

The extent of possible damage is limited only by the attacker’s knowledge of
structured query language and the attacker’ intent. For instance, using the pre-
vious query as an example, a hacker could simply enter:

12345; shut down

The semicolon is a command separator, allowing multiple commands on line.
In this case, two separate commands execute, the first of which is a SELECT
query and the second of which very nicely and cleanly shuts down the database.
This is being nice, however. To play for keeps, a hacker could start using data def-
inition language to tamper with the database stores themselves. For instance, this:

12345; use nmster; drop database critical _db

would completely remove the specified database. Gone, over a single HTTP
request over port 80, through your firewall, due to one small parameter hidden
somewhere in the Web application. Even the physical files would be deleted.

Of course, destroying a database is usually far beyond the acceptable limits for
any penetration test; even shutting it down typically is unacceptable. The real goal
with SQL injection is to get to the data, and that’s a piece of cake.

WWww.syngress.com

An Introduction to Web Application Security * Appendix B 475

Enumerating Databases

Once the injection is discovered, the first step toward getting data is to enu-
merate the database schema, so as to know what table and column names to
specify in the attack query. The techniques used for this vary from database to
database. For instance, with Microsoft Access, a complete brute-force approach is
necessary. Some portions of the schema could be leaked via error messages, but
for the most part you can only rely on the error messages to tell you that you
have specified an incorrect table or column name and thus must perform some
form of a dictionary or brute-force attack to guess the correct names. This prim-
itive approach is necessary due to Access’s limited functionality. High-end
databases such as MS SQL Server and Oracle are extremely more robust and
provide the DBA with system tables, functions, stored procedures, extended
stored procedures, and more. Of course, this functionality is a two-edged sword
and greatly facilities SQL injection attacks.

For instance, against a Microsoft SQL Server, querying the sysusers table of a
database will reveal usernames for that database:

show_news. asp?story_i d=0 uni on sel ect name from sysusers

db_accessadnmi n
db_backupoper at or
db_dat ar eader
db_datawriter

db_ddl admi n
db_denydat ar eader
db_denydatawiter
db_owner

db_securityadm n
dbo
guest
public

The work goes very quickly when the page returns all records in the set.
Many times the page will only return one record, in which case you’ll need to
manually iterate through the rows to get them all. This can be easily accom-
plished using Boolean operators.

Look at this example, where we retrieve all the user tables from the database.
The Sysobjects table stores lists of all objects in the database, and we’ll ask for all
tables where the user type is U. This means it’s a user table, or created by the
DBA (presumably for the application), and not a system table automatically cre-
ated by the server.

The query:

storyi d=0 union select nane from sysobjects where xtype='U

returns:

card_aut hs

WWww.syngress.com

476

Appendix B * An Introduction to Web Application Security

The next step is to get another single record, but a different record. We’ll simply
tell the database that we want the next higher one in the list. The query:

Storyi d=0 uni on select name from sysobjects where xtype='U and nanme>
' card_aut hs'

returns:

cust oner _nanes

The query:

Storyi d=0 uni on select name from sysobjects where xtype='U and nanme>
' cust ormer _nanes'

returns:

News_articl es
Continuing with this technique, we arrive at the following table names:

B Card_auths
m Customer_names

B News_articles

m Web_users

Getting the column names for a particular table is just as easy. We query the
Syscolumns table for the column name. Here, however, we need to specify the
particular ID number that relates that table back to sysobjects. We could query for
each ID number manually and write it down, or we could simply inject a slightly
more complex query:

Storyi d=0 uni on select name from syscolums where id=(select id from
sysobj ects where nane='card_auths')

This politely returns our first column in the card_auths table: card_auth_no.
Next we iterate through, using the same technique as before.

storyi d=0 union select nane from syscolums where id=(select id from
sysobj ects where nane='card_auths') and name>'card_auth_no'

Actually grabbing data from the column follows the same methodology: get a
row and use it to fetch the next, iterating through the records until you’ve satis-
factorily scared your client:

storyi d=0 union select card_no from card_auths

WWww.syngress.com

returns:

An Introduction to Web Application Security * Appendix B 477

1234666633337890

storyi d=0 union select card_no from card_auths where card_no
>1234666633337890

returns:

1234678911114567

There are more techniques available for SQL injection, but they go beyond
the scope of this book. New techniques include:

Evading single quote filters This is when the programmer knows to
remove or replace single quotes. It was formerly thought that this step
would remove the possibility of SQL injection against strings, although
typing input would prevent it against integer values. There is a technique
using a SQL function that will still allow the insertion of string values
into the database.

Blind SQL injection This is an advanced technique for performing
injections against pages that have completely handled and suppressed all
error messages. With no error messages available, the hacker is essentially
“groping around in the dark.”” With the right technique, however, the
attacker can actually go about it in a methodological manner. It’s defi-
nitely a time-consuming effort, but it works when it’s done correctly.

At least two completely automated tools for performing SQL
injection One is commercial and the other is freeware/loosely
licensed.

WWww.syngress.com

478

Appendix B * An Introduction to Web Application Security

Summary

The full spectrum of Web application vulnerabilities is very broad indeed and is
really just recently getting the attention it deserves. Although the security issues
of operating systems and other commercial software are well known, just as many
(if not more) issues are prevalent through Web applications in use on the Internet
and internally to organizations. Without properly secured Web applications, the
security of the Web server or network is irrelevant to the Web site security as the
application itself becomes an extension of the perimeter.

The material covered in this appendix represents the basics. Any penetration
tester, application developer, or security engineer is encouraged to further his or
her education and skills in Web application security through the various papers,
sites, and products available to them.

References
White papers:
m Cross-site scripting:

m Cross-Site Scripting, by Kevin Spett, www.spidynamics.com/whitepa-
pers/SPIcross-sitescripting.pdf

m The Cross-Site-Scripting FAQ on CGI Security,
www.cgisecurity.com/articles/

m SQL injection—all three of these are excellent papers written by some
of the sharpest minds in computer security:

m eb Application Disassembly with ODBC Error Messages, by David
Litchfield, www.nextgenss.com/papers/webappdis.doc

m Advanced SQL Injection in SQL Server Applications, by Chris Anly,
http://www.nextgenss.com/papers/advanced_sql_injection.pdf

m Blind SQL Injection, by Kevin Spett, www.spidynamics.com/
support/whitepapers/Blind_SQLInjection.pdf
m Web sites:

m The Open Web Application Security Project (OWASP),
www.owasp.org, hosts an annual conference and local chapters on

www.syngress.com

An Introduction to Web Application Security « Appendix B 479

Web application security. The site ofters many excellent papers as
well as some tools.

m CGI Security, www.cgisecurity.com, ofters papers, articles, links, and
more by Bob Auger

m Security Focus, www.securityfocus.com, the CNN of the InfoSec
world.

E-mail:

m Web Application Security on Security Focus, webappsec@security-
focus.com, moderated, moderate traffic. This is the de facto OWASP
list and deals only with Web application security.

Solutions Fast Track

Defining Web Application Security

M Web application security deals with securing the actual application being

served on a Web site, not the Web server, network, or operating system.

M Web application security deals with your own software. It doesn’t mean

]

Trojans, viruses, spam, or Web filtering. These are all application-level
issues that are important to life on the Net but have nothing to do with
Web application security.

Web application security is a necessary complement to your efforts to
secure your servers and networks. Without a secure application, the
security in these other areas is undermined.

The Uniqueness of Web Application Security

]

]

Network and operating systems security typically deals with “known”
vulnerabilities.

Known vulnerabilities can benefit from a homogenous environment.

Most Web applications are custom developed so their vulnerabilities are
unique to that application; they are not public, not “known.”

www.syngress.com

480

Appendix B * An Introduction to Web Application Security

4]

The lack of security in Web applications can be generally contributed to
the lack of security awareness in the Web development industry and lack
of appropriate security testing.

Web Application Vulnerabilities

|
|

4]

Web hacking is an easy discipline and generally requires few tools.

Traditional perimeter security is generally ineftective against Web
application exploits.

Web application vulnerabilities can exist in almost any facet of the
application, from the logical construction of authentication mechanisms
and session management down to individual function calls.

Constraints of Search Engine Hacking

|
4]

4]

Search engines crawl only a portion of what’s available to a hacker

Search engine hacking finds targets of opportunity, but don’t rely on it
as a security assessment of your application.

You would be able to find anything exposed to Google just by crawling;
however, the majority of Web application vulnerabilities require actively
exercising the application.

Information and Vulnerabilities in Content

M Just by crawling or looking for common files, you can find a significant

amount of information in a Web application. Some of this information
could reveal vulnerabilities, but a great deal more information found via
crawling will assist you in testing the logic of the code.

Files such as robots.txt, FTP logs, and Web traffic reports will guide you
to undisclosed portions of the site.

Comments, error messages, system documentation, and other such forms
of content are all sources of significant information for Web application

testing. We’ve seen throughout this book how this data can be retrieved

with search engines.

Examine the client-side “programming” that many developers lean on.
Hidden form fields, JavaScript, and cookies in particular are misused.

www.syngress.com

An Introduction to Web Application Security « Appendix B

This is old school, but many developers still don’t realize that anything
client-sided can be abused.

Solution Playing with Packets

]

]

Serious Web application testing requires the ability to work at the
packet level.

Sniffers will expose the raw packet for viewing, but they don’t allow
modification.

Local proxies intercept the traftic from your browser to the Web
application and let you see the raw traffic as well as modify raw requests.
More sophisticated proxies allow modification of the server response for
testing browser behavior as well.

Solution Code Vulnerabilities in Web Applications

o}

]

Vulnerabilities related to the code are by far the most serious Web
application vulnerabilities.

Client-side attacks such as cross-site scripting attack the users of a Web
application to gain their access privileges. They usually require some sort
of phishing scheme.

Session management issues can allow a hacker to impersonate another
user.

SQL injection is an extremely serious vulnerability that essentially
provides a hacker with direct access to your database by “fooling” the
Web application into running a different database query than expected.

Web application security is a major threat. The industry hasn’t addressed
it until recently, but millions of Web applications exist.

The Web application is an extension of your perimeter. If it isn’t secure,
neither is your perimeter.

Web application security has been receiving a great deal of attention
lately. Learn as much about it as you can, and start practicing what you
learn in your own organization.

481

www.syngress.com

482

Appendix B * An Introduction to Web Application Security

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: What level of security does Secure Sockets Layer (SSL) provide against Web

application attacks?

A: Almost none. SSL provides two functions, the first of which is that it authen-

Q:

ticates a domain name to an entity. That is, it certifies that www.bigbank.com
actually belongs to Big Bank. Second, SSL creates a “secure” encrypted
tunnel to the server so that all communication back and forth is highly
encrypted and not subject to “eavesdropping.” When properly implemented,
SSL is very eftective at that. However, SSL provides absolutely no assurances
regarding the messages sent across that tunnel; it merely ensures that they
cannot be read by a third party. In the context of Web hacking, it simply
means that the attack packets are protected from snifting as they travel to and
from the server. Since many intrusion detection systems do not have the
ability to read SSL-encrypted packets, this also means that your hacks get
tunneled through any monitoring before executing against the server (a nice
side benefit). All the high-end Web application security products available
will function just as easily over HTTPS as HTTP. If yours doesn’t, trade it in
for something newer. Note that SSL isn’t infallible, particularly if an attacker
can arrange him- or herself as a man in the middle (MITM). One large
sector we work with frequently has a terrible habit of using self-issued cer-
tificates, but they never push their root certificates down to their browsers.
This means that their users are in the habit of “clicking through” SSL error
messages; creating a ripe situation for a MITM to issue a fake cert instead.

What is the most secure language to develop in?

A: We are asked this all the time, and it’s a controversial question. We don’t

believe that any particular language is intrinsically more secure than another,
though it is undeniable that certain platforms provide more mechanisms and

www.syngress.com

Q:

An Introduction to Web Application Security « Appendix B

capabilities for security than others do. Syngress publishes a great reference:
The Programmer’s Ultimate Security Desk Reference, by James Foster.

What are some of the worst Web hacks you’ve ever seen or heard of?

A: We've gotten databases, source code, and admin access in under 5 minutes

Q:

before, but this was all low-hanging fruit—no great hacking on our behalf
required. The worst hack we can think of in the news is one we read about
in a Security Focus article written in September 2003 by Kevin Poulsen. It was
a Web application that had lots of complete credit applications in cleartext
that were in an unauthenticated portion of the Web site. As though that
weren’t bad enough, according to the article they were discovered because
the filename was in an HTML comment. The ofticial from the company that
Poulsen interviewed really responded to it poorly and as a result was quoted
in Business 2.0 magazine in a very unflattering manner. More recently, an
online banking application in the United Kingdom “upgraded” its authenti-
cation mechanism to be more secure, until it was discovered that it allowed
access with just a userid—no password necessary.

What’s the best way to learn more about Web application security?

A: Learn more about Web applications. You have to understand how Web appli-

Q:

cations work to develop any measure of expertise in Web app sec. In fact, the
best minds in any realm of IT sec are all strong coders. Also, make sure that
you learn the full spectrum of threats. Don’t get tunnel vision on something
like SQL injection just because it’s cool—start from the top and drill down
into details from there.

Will my existing scanner find Web vulnerabilities?

A: Probably not. There are very few actual Web assessment scanners out there,

and they are extremely specialized tools. If you have one, you’ll know. The
majority of scanners on the market today are general “network” scanners that
are very focused on known vulnerabilities and the basics, such as open ports
or risky services. For working entirely manually, a number of tools are avail-
able either freely or very inexpensively. The only automated tools worth
looking at are the commercial scanners; these are extremely mature products
and were all started a long time ago.

483

www.syngress.com

484 Appendix B * An Introduction to Web Application Security

Q:

A:

Q:

Are Web application hacks really invisible to IDS and firewalls?

For the most part, yes. There are certain hacks that are sure to set oft a net-
work IDS, such as a directory traversal attack. This existed as a daemon issue
for so long—and has such as unique signature—that almost all NIDS will
detect it. That said, however, we’ve done complete assessments through a
variety of network IDS before and rarely get detected. The few times we’ve
been detected, our customer saw a mere fraction of the actual attacks per-
formed. Likewise, we’ve done assessments on Web applications actually run-
ning on servers with host IDS on them, with equal results: lots of
vulnerabilities, no alerts, since they tend to be more process and memory ori-
ented. Web hacks execute within existing processes—the Web daemon and
the database daemon—so no new processes should be launched unless the
Web hacker attempts a full root kit.

Is Web application security more important than network security?

A: That’s your call. We'd call a buffer overflow on a service exposed to the DMZ

Q:
A:

Q:

pretty serious, but at the same time, if we can get to your database from our
wireless PDAs while sitting on a train, that’s pretty bad, too. So far there hasn’t
been a Web application-based worm, but such a thing is undoubtedly coming.

Will securing my database help prevent SQL injection?

Securing your database will greatly mitigate SQL injection hacks. By parti-
tioning access and restricting capabilities via standard hardening techniques
(such as removing unnecessary procedures), you will greatly reduce (or com-
pletely negate) what can be done with SQL injection. Beware, though—
don’t forget to harden the Web application code as well or you could find
other vulnerabilities slipping through.

Is it true that Web services are more secure than Web applications?

A: Absolutely not. Remember that although the presentation protocol has

changed (there is now a SOAP envelope,) it’s essentially the exact same back-
end code that would be used in a Web application, and thus it’s susceptible to
the exact same mistakes. The best Web application scanners will audit Web
services in addition to Web applications.

' As reported by Netcraft.com in the September 2004 Web Server Survey,
http://news.netcraft.com/archives/web_server_survey.html.

> The heaviest used rules are usually placed highest in the rule set to optimize performance.

www.syngress.com

Symbols and
Numerals

— (minus) operator, 19-20

| (pipe symbol), 20, 374

+ (plus) operator, 19

? (question mark), 25

“ (quotation mark), 16, 18

sign (crosshatch), 325
Oday (zero-day) exploits, 182
10-word limit, 16—17

80/20 rule, 157-158

A

Access badges, 143
Access database, 475
Account, creating, 369-371
Active Server Page (ASP)
dumps, 239
error messages, 238—239
Actual security, 425—427
Address, masking, 167
Address books, 280
Addresses, e-mail, locating, 312-315

admin | administrator searches,
210-212

Advanced Groups Search link, 8
Advanced Search link, 4
Advertisements, pop-up, 12
Advisories, 186—187, 190

AIM (AOL Instant Messenger) buddy
lists, 283

Alarm, 429
allintext operator, 43, 49-50, 77
allintitle operator, 43, 48—49

Index

allinurl operator, 43, 51-52, 78
Alt. group links, 8

AltaVista, operators in, 85-86
Amazon “wish lists,” 142
AND operator, 18-19, 374
Anomaly, 426—427
Anonymity via caches, 88-95

AOL Instant Messenger (AIM) buddy
lists, 283

Apache Web servers
default settings, 330
default Web pages, 242244
documentation, default, 247
error messages, 229-238
error-page titles, 236237
securing, 360
server tag, disabling, 261-262
versions, 105—108

API. see Application Programming
Interface (API)

Apple Gooscan, 333
Appliance, Google, 334
Application Programming Interface
(API)
account, creating, 369-371
C implementation, 397—405
C# implementation, 393-397
filter parameter, 372
license keys, 128, 348, 369
limitations, 376-377

Perl implementation, 386-390,
406—411

Python implementation, 390-393
sample code, 377-383

search parameters, 371-372
search requests, 375-376

search responses, 376377

485

486 Index

using, 158-159
Application security. see Web

application security (Web app
sec)

as_... variables, 28—29
ASP. see Active Server Page (ASP)
Assessments
external blind, 152
physical, 143
preassessment information-
gathering techniques, 122
tools, 238
Asterisks (*), 15, 17
Athena tool
checking exposure, 361
configuration files, 345-348
description, 343-345
Web site, 359
Attack libraries, 384—386
Attacks, client-side, 459—462

Auditing organizations, government,
420

Authentication, 264, 428, 442
Authentication forms, 328
author operator, 66—69
Authors, searching, 66—69, 164—166
Auto-googling

black-hat, 368

C implementation, 397-405

C# implementation, 393-397

Perl implementation, 386—390,
406411

Python implementation, 390-393
white-hat, 375-377
Automated grinding, 312-315

Automated trolling for e-mail,
128-134

Automatic URL removal, 355-356

Automation libraries, 384—386
Axis StorPoint servers, locating, 172

B

Backup files, 111-114, 119
Badges, access, 143
Bars, 145

Base searches, 22

Belkin Cable/DSL routers, locating,
172

Bi-directional link extractor (BiLE)
program, 161-164

“Big iron” targets, 159

BiLE (Bi-directional link extractor)
program, 161-164

Biz. group links, 8

Black-hat auto-googling, 368

BlackHat, 2003, 154, 160

Blind security assessment, 152

Blogs, 140

Boolean operators, 18, 43, 58

Bots. see Crawlers

bphonebook operator, 73

Buddy lists, AOL Instant Messenger
(AIM), 283

Built-in cameras, 145

Business phone numbers, searching
for, 72-73

C

C code file extension (.c), 182—183
C implementation of API, 397405
C# implementation of API, 393-397
Cache

anonymity via, 8895

banners, 89

headers, 94-95

preventing, 325-327

viewing via cut and paste, 93-94
cache operator, 62—63
Cached sites, searching, 62—63
Cameras, built-in, 145
Case sensitivity, 14—15

CGI scanning, 197-199, 201,
406—411

Characters
hexadecimal codes, 26
special, 26, 43
Chat log files, 280
Cisco products, locating, 172
Client-side attacks, 459—462
Code sample, 377-383
Code strings, common, 184—186
Coftee shops, 144
Colliding operators, 75
Colons ignored, 191
Combining advanced operators, 43,
75-76
Command injection, 301, 308,
442443, 471-474, 484
Command-line browsers, 156—157
Comments, HTML, 447—448
Common code strings, 184—186
Comp. group links, 8
Company intranets, 124
Concern, 426
Confidentiality, 428
Configuration files
description, 291
finding, 292295
httpd.conf, 231, 261-262, 325
search examples, 295-297
support files, 304

Index 487

Connections, logging, 88—89

Constraints of search-engine hacking,
443-445

Contact, nonconfrontational, 143
Contact list files, 283
Continuity, 429
Conversion to HTML or text, 56—58
Cook, Norman, 326
Cookies, 4, 456, 458, 468—471
count parameter for Gooscan, 337
Crackers, password, 273
Crawlers
guarding against, 323
instructions for, 325
META line, 327-328

robots.txt files, 325-326, 360,
445—446

user-agent field, 325
Crawling, 155-156
Crawling, disabling, 119

Credit-card numbers, searching for,
276-278

Criteria for searches, 365—1305
Cross-site framing, 460

Cross-site scripting (XSS), 461-462,
466—468

Crosshatch (# sign), 325
CubeCart, 189

Cut-and-paste viewing of cache,
93-94
CuteNews, 190-193

D

Data networks channel, 423
Databases
database files, 310-311

488 Index

dumps, 309-310
enumerating, 471, 475477
error messages, 306—308
information leaks, 319
login portals, 302-304
support files, 304-306
daterange operator, 64—65
Dates, Julian, 64
Dates within a range, searching,
64-65
Debugging scripts, 304
Default documentation, 246—248
Detault programs, 249-250
Default settings, 330
Detault Web pages
Apache Web servers, 242-244

Internet Information Server (IIS),
244-245

Netscape servers, 245
use of, 241
define operator, 72
Definitions of terms, 72
DejaNews. see Newsgroups
DejaNews (deja.com), 67
Delis, 144-145
Demonstration pages, 187-189
Diners, 144—145
Directory listings
description, 99-100
disabling, 324-325
files, finding, 102—103
FTP log files, 446—447
“Index of,” 100—-102
locating, 100-102
missing index files, 324-325
preventing caching, 325-327

robots.txt files, 325-327, 360,
445446

server tag, 223-225
Disabling directory listings, 324325
Disclosure of information, 443
dns-mine.pl script, 158-159, 377-383
Document Object Model (DOM),
465-466

Documentation, default, 246248

DOM (JavaScript Document Object
Model), 465-466

Domains
determination, 154—155
finding, 155-156
name formation, 152
searching, 52-54
Dumps
Active Server Page (ASP), 239
databases, 309-310
see also tepdump command
Dumps of databases, 309-310

E

E-mail
addresses, locating, 137—-138,
312-315

folders, personal, 135

lists, Web-based, 141

relationships, 139140

trolling, automated, 128—134
eBay phishing, 278
employee. ID | “your username is”

searches, 209

Employment postings, 126
Enumerating databases, 471, 475-477
error | warning searches, 206207
Error messages

Active Server Page (ASP), 238-239

Apache Web server, 229-238
applications’, 238-241
databases, 306—308

finding, 225229

Google, 44-45

Internet Information Server (IIS),
225-229

page titles, Apache, 236237
page titles, IIS, 227-228

Web application security (Web app
sec), 448

Escaping from literal expressions,
463-468

Ethereal packet sniffer, 456457
Ethical hacking methodology, 420
Eudora, 134
Excessive metadata, 319
Expanding (stemming), 15, 23
Explicit sexual content, 11
Exploit code, locating
common code strings, 184—186
public sites, 182—183
Exploits
description, 182
Exposure, 426
Exposure, checking, 360-361
Extensions. see File extensions

External blind security assessment,
152

—ext:html —ext:htm —ext:shtml —ext:asp
—ext:php searches, 212-216

F

File extensions
C code (.c), 182-183
erroneous, 449-451

Index 489

financial programs, 280
list of, 54-55

scripts, 330

searching, 54-58

Structured Query Language (SQL),
310

top 20, 213

top 25, 55-56

walking, 111-114

Web source for, 318
File names

finding in directory listings,

102-103

searching for, 267

variations of, 119
File types. see File extensions
filetype arguments, ORing, 295
filetype operator, 54-58, 111
filetype search type for Gooscan, 336
filetype.gs file for Gooscan, 337-338
FILExt database, 56
Filling stations, 145
Filter parameter for API, 372
filter variable, 28
Finance programs, personal, 279-280
Financial data, personal, 279-284
Footer text, finding, 191-192

Forgotten password recovery
mechanisms, 275

Forms, user authentication, 328
Forum, Search Engine Hacking, 262
Foundstone, 383

FQDN (fully qualified domain
names), 152

Framing, cross-site, 460
FTP log files, 446—447

Fully qualified domain names
(FQDN), 152

490 Index

G

Gas stations, 145

gdork.gs file for Gooscan, 337

Geographic regions, 33—34

GHDB (Google Hacking Database),
174-175, 194, 262, 359

GNU Zebra, 21

Google, getting help from, 354-357

Google API. see Application
Programming Interface (API)

Google appliance, 334
Google Desktop Search, 316, 318
Google Groups. see Newsgroups

Google Groups Advanced Search
feature, 127

Google Hacking Database (GHDB),
174-175, 194, 262, 359

Google Image search feature, 8-9
Google Local, 143—145
Googlebot, 325
Googleturds, 54
Gooscan tool
data files, 335-338
description, 199, 332-333
installation, 333
options, 334-335
use of, 338342

Government auditing organizations,
420

grep command, 235

Grinding, automated, 312-315
group operator, 69

Groups. see Newsgroups

H

Hackers, 59, 63—64, 78
Hacking, constraints of, 443—445

Hardware, Web-enabled, 171-172,
178-179, 255-258

H.E.A.T. tool, 223

Help-desk references, 124

Help from Google, 354-357

“Helper” programs, 14

Hexadecimal codes, 26

Hidden form fields, 453

Hidden JavaScript, 453

Highlighting, 49, 95

hl (home language) codes, 6, 28,
30-32

host command, 90

“How-to” guides, 124—-125

HP Insight Management Agents,
locating, 172

.htaccess files, 324, 329-330
HTML comments, 447—448
HTML or text, conversion to, 56—58

HTTP requests and responses,
453456

httpd.conf configuration files, 231,
261-262, 325

Human-friendly queries, 23
Human Resources departments, 123

Ideahamsters, 421
Identified weaknesses, 427
IDS (intrustion detection systems),

484

ie (input encoding) codes, 28
Ignored words, 15-16
Thackstuff, 415
I1S. see Internet Information Server
(I1S)
I’'m Feeling Lucky button, 4
Image search feature, 8-9
image tags, 463, 465—467
inanchor operator, 62, 78
inauthor operator, 3
INC files, 320
Include files
C code, 184
protecting, 320
server-side, 113
Incremental substitution, 110-111
Indemnification, 428
“Index of” directory listings, 100102
Index Server, 248-249
Indexes, Apache. see Directory listings
indexof search type for Gooscan, 336
indexof.gs file for Gooscan, 338
info operator, 65
Information disclosure, 443
Information leaks, 319, 354
Instant messaging, 140-141

Instant Messenger (AIM) buddy lists,
283

Institute for Security and Open
Methodologies (ISECOM), 421

insubject operator, 69-70
Integrity, 428429
Interface
language tools, 12-14
newsgroups, 58
preferences, 912
Web results page, 5-6
Web search page, 2—4

Index 491

Internet Information Server (IIS)
bad file extensions, 449451
default documentation, 247
default Web pages, 244245
error messages, customized, 261
error messages, finding, 225-229
error-page titles, 227-228
locking down, 330
securing, 360
Security Checklist, 330

Internet Protocol (IP) addresses,
152-153

intitle operator

description, 46—48

examples, 43—44, 101-109
intitle search type for Gooscan, 336
intitle:index.of searches, 206
intranet | help.desk searches, 216217
Intranets, 124

Intrustion detection systems (IDS),
484

inurl operator, 50-51, 77, 92
inurl search type for Gooscan, 336
inurl.gs file for Gooscan, 338

inurl:temp | inurl:tmp | inurl:backup |
inurl:bak searches, 216

[P (Internet Protocol) addresses,
152-153

ISECOM (Institute for Security and
Open Methodologies), 421

ITFAQnet.com, 85

J

Java, 371

JavaScript Document Object Model
(DOM), 465466

Job postings, 126

492 Index

John the Ripper password cracker,
273

Julian dates, 64

K

Keys. see License keys for API

L

langpair parameter, 96

Language, translation of, 5-6, 1213
Language rescrict (Ir) codes, 28-31
Language settings for proxy servers,

Language tools, 4, 12—14
Language use codes. see Home
language (hl) codes

Languages for API, 373

Lantronix web-managers, locating,

172

Laptops with built-in cameras, 145
Leaks of information, 319, 354
Libraries, automation, 384—386
Libwhisker Perl library, 110
License keys for API, 128, 327, 348
Limit of 10 words, 16—17
Limitations, security, 425—427
link operator, 59-62, 79, 160
Links

from and to targets, 160-161

mapping, 159-164

pages without, 118

removing, 356

to specified URLs, searching, 59-62

Literal expressions, escaping from,
463—468

Local proxies, 457—458

Lockouts, 368

Log files, 296, 298-299

Logging Web connections, 88-89
login | logon searches, 208209
Login portals, 250-255, 302-304
Login prompts, 191

Long, Johnny, 332

Looking Glass servers, locating, 173
Lord, Steve, 343

Loss controls, 427

Ir (language restrict) codes, 28-31
Lucky button, 4

lynx command-line browser, 156—157

M

Macintosh Gooscan, 333
Mail. see E-mail
Mapping
domain determination, 154—155
link mapping, 159-164
methodology, 152—-153
page scraping, 156—-158
scripting, 158-159
site crawling, 155-156
Masking query host address, 167
maxResults variable, 28
Message identifiers, searching for,
70-71
Messages, error. see Error messages
Messaging, instant, 140-141
META tags, 327-328
Metadata, excessive, 319

Microsoft. see Access database; Index
Server; Internet Information
Server (IIS); .NET framework;

Outlook; Outlook Web Access;
SQL Server; Web Data
Administrator software package

Microsoft C#, 371

Microsoft Money, 279-280

Minus (—) operator, 19-20

Mixing advanced operators, 43,
75-76

Money, Microsoft, 279-280

msgid operator, 70—71

MSN Messenger contact list files, 283

Multilingual password searches,
275-276

Multiple-query mode for Gooscan,
340

mysql_connect function, 305

N

Name formation for domains, 152
Narrowing searches, 14

Native language, 9

Negative queries, 156

Nessus security scanner, 284
Nessus tool, 223

Netcraft, 171

Netscape servers, 245

Network devices, Web-enabled,
171-172,178-179, 255258

Network printers, 257

Network Query Tool (NQT),
166—171

Network reports, locating, 173—-175
Network vulnerability reports, 280
Newsgroups

authors, searching, 66—69

Google Groups Advanced Search
feature, 127

Index 493

interface, 5—8

post titles, searching, 46—49, 66—69

posts, removing, 357

tracing, 164-166

USENET, 6-7
Nightclubs, 145
NIKTO security database, 406
Nikto tool, 110, 201, 332
Nmap tool, 223
NNTP-Posting-Host, 165
No-cache pragma, 360
NOARCHIVE in META tag, 327
Nomad, Simple, 438
Non-Google Web utilities, 166—171
Non-repudiation, 428
Nonconfrontational contact, 143

NOSNIPPET in META tag,
327-328

NOT operator, 374
Novell Management Portal, 252

NQT (Network Query Tool),
166—171

nslookup command, 90

ntop programs, 173

Number of Results setting, 12
Numbers within a range, searching,

63

numrange operator, 63

0)

OASIS WAS Vulnerability Types and
Vulnerability Ranking Model,
442

oe (output encoding) codes, 28

Office documents, 299-301

494 Index

Open Source Security Testing AND, 18-19
Methodology Manual author, 66—69
(OSSTMM) bphonebook, 73

improving, 436

cache operator, 62—63
methodology chart, 430

daterange operator, 64—65

origins, 420-421 define, 72
other security methodologies, 435 filetype, 54-58, 111
security presence, 422423, group, 69
431_.433 inanchor, 62,78
standardized methodology, 424—429 inauthor 3
Opera Web browser info, 65)

disabling Google crawling, 119

finding pages without links, 118
Operating systems of servers, 108
Operational security, 424—425
Operators

insubject, 69—70

intitle, 43—44, 46-48, 101-109
inurl, 50-51, 77,92

link, 5962, 79

id, 70-71
advanced, combining, 43, 75-76 NOT
_ : NOT, 374
in AltaVista, 85-86 numrange, 63
Boolean, 18, 43, 58 o
s o OR, 374

ZO iding, Py phonebook, 72-75

escription, related, 66

examples, 43—44
list of, 42, 75-76, 80—84
mixing, 43, 7576

rphonebook, 73
site, 5254, 77-79, 204-205, 332
stocks, 71=72

?tfiriiirch engines, 85-86 OS;E gzs;)rgt)grer;;zrs

syntax., 43 Oracle database, 475

Web site, 86 ORing filetype arguments, 295

in Yahoo, 85) OSSTMM. see Open Source Security

see also Operators, specific Testing Methodology Manual
Operators, specific (OSSTMM)

— (minus), 19-20 Outdated links, removing, 356

+ (plus), 19 Outlook, 134-135

allintext, 43, 49-50, 77 Outlook Web Access portal, 251,

allintitle, 43, 48—49 268-269

allinurl, 43,51-52,78

P

Packet sniffer, Ethereal, 456—457
Packets, 453—459
Page scraping, 156—-158, 414
Page text, searching, 49-50
Page titles
Apache error messages, 236237
IIS error messages, 227228
searching, 46—49
Palookaville, 326
Parameters for searches, 27-28
Parentheses
ignored, 20
use of, 375

password | passcode | “your password is’
searches, 210

Password crackers, 273

)

Password file, system, 110
Password prompts, 191

Password-protection mechanisms,
328-330

Passwords
authentication, 329
clear text, 274
encrypted or encoded, 273274
encryption, 288

forgotten password recovery
mechanisms, 275

searching for, 270-275

shared, 287-288
Patches, security, 331
Penetration testers, 92, 222, 420
Perl

CPAN modules, 162

implementation of API, 386-390,
406—411

scripting, 158-159, 312-315

Index 495

Personal e-mail folders, 135
Personal finance programs, 279-280
Personal financial data, 279-284
Personal information, 142
Personal Web pages and blogs, 140
Personnel channel, 423
Personnel departments, 123
Phishing
to catch scammers, 278279
cross-site framing, 460
scams, 277279, 287
Phone numbers
removing from Google list, 74
searching for, 72—75
phonebook operator, 72—75
PHP files, 113
Phrack, 164
Phrase searches, 18
Physical assessment, 143
Physical channel, 423
Pipe symbol (|), 20, 374
Plus (+) operator, 19
Policies, security, 322—-323
Polling, public, 126
Pop-up advertisements, 12
Portals, login, 250-255, 302-304
Ports, multiple, 178
Portscans, 223
Post titles, searching, 46—49, 66—69
Posts, removing, 357
“Powered by’ tags, 188, 192—193
Pragma, no-cache, 360
Preassessment
checklist, 146

information-gathering techniques,
122

Preferences, 4, 9—12
Printers, network, 257

496 Index

Privacy, 428

Process of searching, 17-20
Professional security testing, 419-420
Profiling servers, 223-225

The Programmer’s Ultimate Security
Desk Reference, 482

Proxies, local, 457—458
Proxy checkers, 99, 117
Proxy servers
anonymity, 91-92
Google translation as, 95-99
language settings, 11
locating, 92
translation service, 6
Pseudoanonymity, 67
Pseudocoding, 385

Putting the Tea Back into
CyberTerrorism, 131

Python implementation of API,
390-393

Q

q variable, 28
Queries
automated, 157
locating Apache versions, 105107

locating database error messages,
306-308

locating database files, 311
locating database interfaces, 303

locating database support files,
304-305

locating default Apache installations,
243-244

locating default documentation, 248
locating default programs, 250
locating e-mail addresses, 137-138

locating login portals, 253-255
locating more esoteric servers, 246
locating Netscape servers, 245
locating passwords, 270-273

locating potentially sensitive office
documents, 301

locating specific and esoteric server
versions, 107—108

locating specific IIS server versions,
244

locating SQL database dumps, 310
locating user names, 265—266
locating various network devices,

258

locating various sensitive

information, 281-283
negative, 156
Querystrings, 456
Question mark (?), 25
Quicken, 279-280
Quotation marks (), 16, 18

R

Rain Forest Puppy (RFP), 110

Range of dates, searching, 64—65

Range of numbers, searching, 63

Ranta, Don, 313

raw search type for Gooscan, 337

Recovery mechanisms, password, 275

Reduction (narrowing) of searches,
2124

Regions, geographic, 33-34

Registration screens, 328

Registry files, Windows, 136, 268

related operator, 66

Related sites, searching, 66

R eloading, shift-, 90

Remote scripts, 465

Rendered view, 290

Reports, locating, 173—-175

Residential phone numbers, searching
for, 72-73

Responses, API, 376-377

restrict codes, 32—36

restrict variable, 28, 32-33

Restriction rules, 373-374

Results, number of, 12

Results page, 5

Résumés, 142

Retina tool, 223

Robots. see Crawlers

Robots.txt files, 325327, 360,
445—-446

Rotator programs, 167-170
rphonebook operator, 73

S

safe variable, 29
SafeSearch Filtering, 11
Safety, 429
Sample API code, 377-383
Sample files, 449
Sample programs, 248-250
SANS Top 20 list, 220
Scanner, Nessus, 284
Scanner programs, 198
Scanning, CGI, 197-199, 201
Scraping pages, 156158, 414
Scripts

automated grinding, 312-315

cross-site scripting (XSS), 461-462,
466468

for debugging, 304

Index 497

dns-mine.pl, 158-159, 377-383
file extensions, 330
remote, 465
Search Engine Hacking forum, 262
Search fields, 3
Search rules
case sensitivity, 14—15
ignored words, 15-16
limit of 10 words, 16—17
stemming (expanding), 15, 23
wildcards, 15-16
Search string for Gooscan, 337
Search-term input field, 4
Searches
admin | administrator, 210-212
Advanced Search link, 4
authors, 66—69, 164—166
automating, 331
base searches, 22
cache, Google, 62-63
criteria, 365-1305
dates within a range, 64—65
definitions of terms, 72
error | warning, 206—207
—ext:html —ext:htm —ext:shtml
—ext:asp —ext:php, 212-216
Google Desktop Search, 316
intitle:index.of, 206
intranet | help.desk, 216-217

inurl:temp | inurl:tmp | inurl:backup
| inurl:bak, 216

links to specified URLs, 59-62
login | logon, 208—209

message identifiers, 70-71

in newgroup post titles, 46—49
newsgroup authors, 66—69
newsgroup post titles, 66—69
numbers within a range, 63

498 Index

in page text, 49-50

in page titles, 46—49

parameters, 2728

parameters for API, 371-372

password | passcode | “your password
is,” 210

phrases, 18

process, 17-20

reduction (narrowing), 21-24

requests, API, 375-376

responses, API, 376377

results page, 5

site summaries, 65

sites related to a site, 66

space between elements, 43

specific file types, 52-54

specific servers or domains, 52-54

stock symbols, 71-72

telephone numbers, 72-75

username | userid | employee. 1D |
« ‘L))
your username is,” 209

see also Search rules

Secure Sockets Layer (SSL), 482
Security

access, 425

actual, 425-427

alarm, 429

anomaly, 426—427

assessment, blind, 152
authentication, 428

concern, 426

confidentiality, 428

continuity, 429

data networks channel, 423
ethical hacking methodology, 420
exposure, 426

government auditing organizations,
420

ideahamsters, 421
indemnification, 428

Institute for Security and Open
Methodologies (ISECOM), 421

integrity, 428429

limitations, 425—427

loss controls, 427
non-repudiation, 428
operational, 424—425

patches, 331

penetration testers, 92, 222, 420
personnel channel, 423
physical channel, 423

policies, 322-323

privacy, 428

safety, 429

scanner, Nessus, 284
standardized methodology, 423
telecommunications channel, 423
testing, professional, 419—420
trust, 425

usability, 429

visibility, 424—425
vulnerability, 426, 444
weakness, 426—427

wireless communications channel,
423

see also Open Source Security
Testing Methodology Manual
(OSSTMM); Web application
security (Web app sec)

Security presence channels, 422—423,
431-433

SensePost, 154, 158, 278, 351
Server-side includes, 113

server tag in directory listings,
223-225, 261

Server versions

Apache, 105-108
finding, 103
operating systems, 108
uses of, 104
Servers, Web
error messages, Apache, 229-238

error messages, applications’,
238-241

error messages, MS-IIS, 225-229
esoteric, 246
locating and profiling, 223-225
public, 323
safeguards, 323
searching, 52-54
see also Server versions
Session hijacking, 468—471
Session management, 442
Settings, default, 330
Sexual content, 11
Shift-reloading, 90
Simple Nomad, 438

Single-query mode for Gooscan,
338-339

Site crawling, 155-156

site operator, 52-54, 77-79, 204205,
332

Site summaries, searching, 65

SiteDigger tool, 346, 348-351, 359,
383

Snippets, 327-328

SOAP::Lite, 128

Social Security numbers (SSNs), 279
Socket-class functionality, 414
Socket initialization, 386

Software default settings, 330

Sony VAIO laptops, 145

Source code, uses for, 112—113,
189-197

Index 499

Space between search elements, 43
Spam, 439

Special characters, 26, 43

Specific file types, searching, 52-54

Specific servers or domains,
searching, 52-54

SPI Dynamic, 238
SQL. see Structured Query Language
(SQL)

SQL Server database, 475

SSL (Secure Sockets Layer), 482

SSNs (Social Security numbers)
searching for, 279

Standardized methodology, 423

start variable, 28

Stock quotations, 71-72

stocks operator, 71-72

Stop words, 15

Structured Query Language (SQL)
dumps, 309-310
file extension, 310

injection attacks, 301, 308, 442—443,
471-474, 484

mysql_connect function, 305
Student IDs, 279
Subdomains, 153
Submit Search button, 4
Substitution, incremental, 110-111
sullo, 332
Support files of databases, 304-306
Symbols, stock ticker, 71-72
Syntax

search terms, 43

universal resource locators (URLs),

25-26

wrongness ignored, 20

System password file, 110

500 Index

T

Tabs, 4

Targets, vulnerable. see Vulnerable
targets, locating

tepdump
command, 89-90, 97
output, 90, 92-93, 97-98
Tea, Putting Back into CyberTerrorism,
131
Telecommunications channel, 423
Telephone numbers
removing from Google list, 74
searching for, 72-75

Temmingh, Roelof, 128, 154, 158,
351

10-word limit, 16—17
Term input field, 4
Terms, getting definitions of, 72
Terms of Service
Athena, 343
automated queries, 157, 314
Gooscan, 331-332, 334, 340
Web sites for, 368—369
Testers, penetration, 92, 222
Text of pages, searching, 49-50
Text or HTML, conversion to, 56—58
Ticker symbols, 71-72
Titles of pages , searching, 46—49
TLD (top-level domain), 154
Toolbars, 3, 14, 39
Top-level domain (TLD), 154
Topic restriction rules, 373-374
Tracing groups, 164—166
Traftic reports, 447
Translation, 5-6, 12—-13
Translation proxies, 5
Translation service, 95-98

Traversal, 108—110

Trojans, 438-439
Troubleshooting, 44-45

Trust, 425

Types of files, searching, 52-54

U

Unified Modeling Language (UML)
diagram, 385
Universal resource locators (URLs)
construction, 27-36
description, 24-25

links to specified URLs, searching
for, 59—62
removal, automatic, 355-356
searching in, 50-52
special characters, 26
structure, 50
syntax, 2526
Usability, 429
USENET newsgroups, 67
User authentication forms, 328
User names
creation process, 265
searching for, 264-270
sources for, 265—266

username | userid | employee. ID |
“your username is” searches, 209

Utilities, non-Google, 166—171

\Y

VAIO laptops, 145
Versions of servers. see Server versions
view source, 113

Viruses, 438—439
Visibility, 424-425
Vulnerability, 426, 444
Vulnerability reports, 283
Vulnerable targets, locating
in advisories, 186, 190
applications, vulnerable, 194—197
via CGI scanning, 197-199, 201

via demonstration pages, 187—189

via source code, 189—-197
techniques, 202

W

Watts, Blake, 397
Weakness, 426—427

Web Application Security
Consortium, 442

Web application security (Web app
sec)

authentication, 442
bad file extensions, 449—451
client-side attacks, 459—462

command injection, 442—443,
471-474

cookies, 456, 458, 468—471
description, 438—439

error messages, 448

FTP log files, 446—447

hidden form fields and JavaScript,
453

HTML comments, 447—448
information disclosure, 443
sample files, 449

session management, 442
system documentation, 452
uniqueness, 439—440

Index 501

vulnerabilities, 440—443

vulnerability, 444

Web traftic reports, 447
Web assessment tools, 238
Web-based mailing lists, 141
Web connections, logging, 88—-89

Web Data Administrator software
package, 302

Web-enabled network devices,
171-172,178-179, 255-258

Web filtering, 439
Web pages, personal, 140
Web results page, 5-6
Web search page, 2—4
Web servers. see Servers, Web
Web sites
advanced operators, 86
Athena, 359
Athena configuration files, 348
basic searching, 38
default pages, 241-246
excessive metadata, 319
file extensions, 318
FILExt database, 56

frequently asked questions (FAQ),
85

Google Desktop Search, 318
Google details, 86

Google Groups Advanced Search
feature, 127

Google Hacking Database
(GHDB), 359

Google Local, 143—-145

Gooscan tool, 199, 333

.htaccess files, 330

John the Ripper password cracker,
2

language-specific interfaces, 10

502 Index

Libwhisker Perl library, 110
lockouts, 368

Netcraft, 171

NIKTO security database, 406
phishing, 287

proxy checkers, 99, 117
robots.txt files, 325, 360, 445—446
SANS Top 20 list, 220
SiteDigger tool, 348, 359
Terms of Service, 368—369
USENET, 6

Web Application Security
Consortium, 442

Weblnspect tool, 119
Wikto tool, 199
XCode package for Macintosh, 333
Web traftic reports, 447
Web utilities, non-Google, 166—-171
Webalizer program, 267
Webcams, 256
Weblnspect tool, 119, 238
Weighting, 161-163
Whisker tool, 110
Wikto tool, 199, 351-354
Wildcards, 15-16
Windows registry files, 136, 268
Windows tools
Athena, description of, 343-345
Athena configuration files, 345-348
Google API license keys, 348
NET framework, 342

requirements, 342

SiteDigger, 346, 348351

Wikto, 199, 351-354
Windows Update, 342

Wireless communications channel,
423

“Wish lists,” Amazon, 142
Word order, 86
Words in searches
ignored, 15-16
limit of 10, 16-17
Worms, 164
WS_FTP program, 291

X

XCode package for Macintosh, 333

XSS (cross-site scripting), 461-462,
466—468

Y

“Your password is” searches, 210
“Your username is” searches, 209

V4

Zebra, 21
Zero day exploits, 182

Syn-gress (sin-gres): noun, sing. Freedom
from risk or danger; safety. See security.

AVAILABLE NOW Inside the SPAM Cartel
el For most people, the term “SPAM” conjures up the image
WWW.syngress.com

of hundreds of annoying, and at times offensive, e-mails
flooding your inbox every week. But for a few, SPAM is a way of life that delivers
an adrenaline rush fueled by cash, danger, retribution, porn and the avoidance of
local, federal, and international law enforcement agencies. Inside the SPAM Cartel
offer readers a never-before view inside this dark sub-economy. You'll meet the
characters that control the flow of money as well as the hackers and programmers
committed to keeping the enterprise up and running.
ISBN: 1-932266-86-0
Price: $49.95U.S. $72.95 CAN

Nessus Network Auditing Qm:LgBLE Now
Crackers constantly probe machines looking for G L)

both old and new vulnerabilities. In order to avoid
becoming a casualty of a casual cracker, savvy sys admins audit their own
machines before they're probed by hostile outsiders (or even hostile
insiders). Nessus is the premier Open Source vulnerability assessment tool,
and was recently voted the “most popular” open source security tool of any
kind. This is the first book available on Nessus and it is written by the
world's premier Nessus developers led by the creator of Nessus, Renaud
Deraison.

ISBN: 1-931836-08-6

Price: $49.95U.S. $69.95 CAN

AVAILABLE NOW
order @
WWW.Syngress.com

Stealing the Network: How to Own a Continent

Last year, Stealing the Network: How to Own the Box became a blockbuster best-
seller and garnered universal acclaim as a techno-thriller firmly rooted in reality
and technical accuracy. Now, the sequel is available and it's even more contro-
versial than the original. Stealing the Network: How to Own a Continent does for
cyber-terrorism buffs what “Hunt for Red October” did for cold-war era military
buffs, it develops a chillingly realistic plot that taps into our sense of dread and
fascination with the ferrible possibilities of man's inventions run amuck.

ISBN: 1-931836-05-1

Price: $49.95U.S. $69.95 CAN

SYNGRESS®

	Google Hacking for Penetration Testers
	Cover

	Contents
	Foreword
	Chapter 1 Google Searching Basics
	Introduction
	Exploring Google's Web-Based Interface
	Google's Web Search Page
	Google Web Results Page
	Google Groups
	Google Image Search
	Google Preferences
	Language Tools

	Building Google Queries
	The Golden Rules of Google Searching
	Basic Searching
	Using Boolean Operators and Special Characters
	Search Reduction

	Working With Google URLs
	URL Syntax
	Special Characters
	Putting the Pieces Together

	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Chapter 2 Advanced Operators
	Introduction
	Operator Syntax
	Troubleshooting Your Syntax

	Introducing Google's Advanced Operators
	Intitle and Allintitle: Search Within the Title of a Page
	Allintext: Locate a String Within the Text of a Page
	Inurl and Allinurl: Finding Text in a URL
	Site: Narrow Search to Specific Sites
	Filetype: Search for Files of a Specific Type
	Link: Search for Links to a Page
	Inanchor: Locate Text Within Link Text
	Cache: Show the Cached Version of a Page
	Numrange: Search for a Number
	Daterange: Search for Pages Published Within a Certain Date Range
	Info: Show Google's Summary Information
	Related: Show Related Sites
	Author: Search Groups for an Author of a Newsgroup Post
	Group: Search Group Titles
	Insubject: Search Google Groups Subject Lines
	Msgid: Locate a Group Post by Message ID
	Stocks: Search for Stock Information
	Define: Show the Definition of a term
	Phonebook: Search Phone Listings

	Colliding Operators and Bad Search-Fu
	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Chapter 3 Google Hacking Basics
	Introduction
	Anonymity with Caches
	Using Google as a Proxy Server

	Directory Listings
	Locating Directory Listings
	Finding Specific Directories
	Finding Specific Files
	Server Versioning

	Going Out on a Limb:Traversal Techniques
	Directory Traversal
	Incremental Substitution
	Extension Walking

	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Chapter 4 Preassessment
	Introduction
	The Birds and the Bees
	Intranets and Human Resources
	Help Desks
	Self-Help and "How-To" Guides
	Job Listings

	Long Walks on the Beach
	Names, Names, Names
	Automated E-Mail Trolling

	Addresses, Addresses, and More Addresses!
	Nonobvious E-Mail Relationships
	Personal Web Pages and Blogs
	Instant Messaging
	Web-Based Mailing Lists
	Résumés and Other Personal Information

	Romantic Candlelit Dinners
	Badges? We Don't Need No Steenkin' Badges!
	What's Nearby?
	Coffee Shops
	Diners and Delis
	Gas Stations
	Bars and Nightclubs

	Preassessment Checklist
	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Chapter 5 Network Mapping
	Introduction
	Mapping Methodology
	Mapping Techniques
	Domain Determination
	Site Crawling
	Page Scraping Domain Names
	API Approach

	Link Mapping
	Group Tracing
	Non-Google Web Utilities

	Targeting Web-Enabled Network Devices
	Locating Various Network Reports
	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Chapter 6 Locating Exploits and Finding Targets
	Introduction
	Locating Exploit Code
	Locating Public Exploit Sites

	Locating Exploits Via Common Code Strings
	Locating Vulnerable Targets
	Locating Targets Via Demonstration Pages
	Locating Targets Via Source Code
	Locating Targets Via CGI Scanning

	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Chapter 7 Ten Simple Security Searches That Work
	Introduction
	site
	intitle:index.of
	error | warning
	login | logon
	username | userid | employee.ID | "your username is"
	password | passcode | "your password is"
	admin | administrator
	–ext:html –ext:htm –ext:shtml –ext:asp –ext:php
	inurl:temp | inurl:tmp | inurl:backup | inurl:bak
	intranet | help.desk

	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 8 Tracking Down Web Servers, Login Portals, and Network Hardware
	Introduction
	Locating and Profiling Web Servers
	Directory Listings
	Web Server Software Error Messages
	Microsoft Internet Information Server (IIS)
	Apache Web Server

	Application Software Error Messages
	Default Pages
	Default Documentation
	Sample Programs

	Locating Login Portals
	Locating Network Hardware
	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 9 Usernames, Passwords, and Secret Stuff, Oh My!
	Introduction
	Searching for Usernames
	Searching for Passwords
	Searching for Credit Card Numbers, Social Security Numbers, and More
	Social Security Numbers
	Personal Financial Data

	Searching for Other Juicy Info
	Summary
	Solutions Fast Track
	Frequently Asked Questions

	Chapter 10 Document Grinding and Database Digging
	Introduction
	Configuration Files
	Log Files
	Office Documents

	Database Digging
	Login Portals
	Support Files
	Error Messages
	Database Dumps
	Actual Database Files

	Automated Grinding
	Google Desktop Search
	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Chapter 11 Protecting Yourself from Google Hackers
	Introduction
	A Good, Solid Security Policy
	Web Server Safeguards
	Directory Listings and Missing Index Files
	Blocking Crawlers with Robots.txt
	NOARCHIVE:The Cache "Killer"
	NOSNIPPET: Getting Rid of Snippets
	Password-Protection Mechanisms
	Software Default Settings and Programs

	Hacking Your Own Site
	Site Yourself
	Gooscan
	Installing Gooscan
	Gooscan's Options
	Gooscan's Data Files
	Using Gooscan

	Windows Tools and the .NET Framework
	Athena
	Using Athena's Config Files
	Constructing Athena Config Files

	The Google API and License Keys
	SiteDigger
	Wikto

	Getting Help from Google
	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Chapter 12 Automating Google Searches
	Introduction
	Understanding Google Search Criteria
	Analyzing the Business Requirements for Black Hat Auto-Googling
	Google Terms and Conditions

	Understanding the Google API
	Understanding a Google Search Request
	Auto-Googling the Google Way
	Google API Search Requests
	Reading Google API Results Responses

	Sample API Code
	Source Documentation

	Understanding Google Attack Libraries
	Pseudocoding
	Perl Implementation
	Source Documentation

	Python Implementation
	Source
	Output
	Source Documentation

	C# Implementation (.NET)
	Source Documentation

	C Implementation
	Source Documentation

	Scanning the Web with Google Attack Libraries
	CGI Vulnerability Scanning
	Output

	Summary
	Solutions Fast Track
	Links to Sites
	Frequently Asked Questions

	Appendix A Professional Security Testing
	Introduction
	Professional Security Testing
	The Open Methodology
	The Standardized Methodology

	Connecting the Dots
	Summary
	Links to Sites
	Mailing Lists
	Frequently Asked Questions

	Appendix B An Introduction to Web Application Security
	Introduction
	Defining Web Application Security
	The Uniqueness of Web Application Security
	Web Application Vulnerabilities
	Constraints of Search-Engine Hacking
	Information and Vulnerabilities in Content
	The Fast Road to Directory Enumerations
	Robots.txt
	FTP Log Files
	Web Traffic Reports

	HTML Comments
	Error Messages
	Sample Files
	Bad Extensions
	System Documentation
	Hidden Form Fields, JavaScript, and Other Client-Side Issues

	Playing with Packets
	Viewing and Manipulating Packets

	Code Vulnerabilities in Web Applications
	Client-Side Attacks
	Escaping from Literal Expressions

	Session Hijacking
	Command Execution: SQL Injection
	Enumerating Databases

	Summary
	References
	Solutions Fast Track
	Frequently Asked Questions

	Appendix C Google Hacking Database
	Index

