
�
Preface,
Contents

Product Overview and
Installation 1

Designing an SCL Program 2

Using SCL 3

Basic SCL Terms 4

SCL Program Structure 5

Data Types 6
Declaring Local Variables and
Parameters 7
Declaring Constants and Jump
Labels 8

Shared Data 9
Expressions, Operations and
Addresses 10

Statements 11

Counters and Timers 12

SCL Standard Functions 13

Language Definition 14

Tips and Tricks 15
Glossary, Index

SIMATIC

S7-SCL V5.1 for
S7-300/S7-400

Manual

This manual has the order number:
6ES7811-1CC04-8BA0

Edition 09/2000
A5E00059543-01

06.09.2000

Copyright © Siemens AG 2000 All rights reserved

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or design,
are reserved.

Siemens AG
Bereich Automatisierungs- und Antriebstechnik
Geschaeftsgebiet Industrie-Automatisierungssysteme
Postfach 4848, D- 90327 Nuernberg

Disclaimer of Liability

We have checked the contents of this manual for agreement with
the hardware and software described. Since deviations cannot be
precluded entirely, we cannot guarantee full agreement. However,
the data in this manual are reviewed regularly and any necessary
corrections included in subsequent editions. Suggestions for
improvement are welcomed.

©Siemens AG 2000
Technical data subject to change.

Siemens Aktiengesellschaft 6ES7811-1CC04-8BA0

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as to

protect the product and connected equipment. These notices are highlighted in the manual by a warning

triangle and are marked as follows according to the level of danger:

!
Danger
indicates that death, severe personal injury or substantial property damage will result if proper
precautions are not taken.

! Warning
indicates that death, severe personal injury or substantial property damage can result if proper
precautions are not taken.

! Caution
indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note
draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are

defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and

systems in accordance with established safety practices and standards.

Correct Usage

Note the following:

!
Warning
This device and its components may only be used for the applications described in the catalog or the

technical descriptions, and only in connection with devices or components from other manufacturers

which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed
correctly, and operated and maintained as recommended.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner’s rights may

be violated if they are used by third parties for their own purposes.

06.09.2000

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 iii

Preface

Purpose of the Manual
This manual provides you with a complete overview of programming with S7-SCL.
It supports you during the installation and setting up of the software. It includes
explanations of how to create a program, the structure of user programs, and the
individual language elements.

The manual is intended for programmers writing SCL programs and people
involved in configuration, installation and service of programmable logic controllers.

We recommend that you familiarize yourself with the example described in
Chapter 2 "Designing an SCL Program". This will help you to get to know SCL
quickly.

Required Experience

To understand the manual, you should have general experience of automation
engineering.

You should also be familiar with working on computers or PC-type machines (for
example programming devices with the Windows 95/98/2000 or NT operating
systems. Since SCL uses the STEP 7 platform, you should also be familiar with
working with the standard software described in the "Programming with
STEP 7 V5.1" manual.

Scope of the Manual

The manual is valid for the S7-SCL V5.1 software package.

30.08.200006.09.2000

Preface

S7-SCL V5.1 for S7-300/S7-400
iv A5E00059543-01

Documentation Packages for S7-SCL and the STEP 7 Standard Software

The following table provides you with an overview of the STEP 7 and SCL
documentation:

 Manuals Purpose Order Number

Basics of SCL and reference:

• S7-SCL for S7-300/400, Programming
Blocks

Basic and reference information
explaining how to create a
program, the structure of user
programs and the individual
language elements.

6ES7811-1CC04-8XA0

Basics of STEP 7:

• Getting Started and Exercises with
STEP 7 V5.1

• Programming with STEP 7 V5.1

• Configuring Hardware and
Connections with
STEP 7 V5.1

• Converting from S5 to S7

The basics for technical
personnel describing how to
implement control tasks with
STEP 7 and S7-300/400.

6ES7810-4CA05-8AA0

STEP 7 reference:

• LAD/FBD/STL manuals
for S7-300/400

• Standard and System Functions
for S7-300/400

Reference work describing the
LAD, FBD and STL programming
languages as well as standard
and system functions as a
supplement to the STEP 7 basics.

6ES7810-4CA05-8AR0

 Online Help Purpose Order Number

Help on S7-SCL Basics and reference for S7-SCL
as online help

Part of the S7-SCL
software package

Help on STEP 7 Basics on programming and
configuring hardware with
STEP 7 as online help

Part of the STEP 7
software package

Reference help on STL/LAD/FBD
Reference help on SFBs/SFCs
Reference help on organization blocks
Reference help on IEC functions
Reference help on system attributes

Context-sensitive reference Part of the STEP 7
software package

30.08.200006.09.2000

Preface

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 v

Online Help

In addition to the manual, the online help integrated in the software provides you
with detailed support when working with the software.

help system is integrated in the software with several interfaces:

• The Help menu provides numerous menu commands: Contents opens the
contents of the SCL help system. Introduction provides an overview of
programming with SCL. Using Help provides detailed instructions on working
with the online help system.

• The context-sensitive help system provides information about the current
context, for example help on an open dialog box or active window. This can be
displayed by clicking the "Help" button or pressing the F1 key.

• The status bar is another form of context-sensitive help. A brief explanation of
each menu command is displayed here when you position the mouse pointer
on a menu command.

• A brief explanation of the buttons in the toolbar is also displayed if you position
the mouse pointer briefly over a button.

If you prefer to have a printout of the information in the online help system, you can
print individual topics, books or the entire help system.

This manual has the same content as the HTML help system of SCL. Since the
manual and online help have the same structure, you can change easily between
manual and online help.

SIMATIC Documentation on the Internet/Intranet

You will also find further information on the SIMATIC documentation on the Internet
or SIEMENS Intranet.

• You will find up-to-date downloads of the documentation

- on the Internet at http://www.ad.siemens.de/meta/html_00/support.shtml.
Use the Knowledge Manager to find the documentation you require.

• You can send questions on the SIMATIC documentation to the following
address. You will receive answers to your problems quickly.

- On the Internet at http://www4a.ad.siemens.de:8090/~SIMATIC/login

• Or visit the home page of the SIMATIC documentation. Here you can find out
about new products and innovations, send questions about the documentation
and let us know if you have requests, suggestions, criticism or praise.

- On the Siemens Intranet at
http://intra1.khe.siemens.de/e8_doku/index.htm

SIMATIC Training Center

To help you get to know the SIMATIC S7 automation system quickly, we offer
various courses. Please contact your regional training center or the central training
center in D 90327 Nuremberg, Germany.
Phone: +49 (911) 895-3200.

30.08.200006.09.2000

Preface

S7-SCL V5.1 for S7-300/S7-400
vi A5E00059543-01

SIMATIC Customer Support Hotline

Available round the clock worldwide:

Johnson City

Nuremberg

Singapore

SIMATIC Basic Hotline

Worldwide (Nuremberg)
Technical Support

Worldwide (Nuremberg)
Technical Support

(Free Contact)

Local time: Mo.-Fr. 7:00 to 17:00

Phone: +49 (180) 5050 222

Fax: +49 (180) 5050 223

E-mail: techsupport@
ad.siemens.de

GMT: +1:00

(charged, only with
SIMATIC Card)
Local time: Mo.-Fr. 0:00 to 24:00

Phone: +49 (911) 895-7777

Fax: +49 (911) 895-7001
GMT: +01:00

Europe / Africa (Nuremberg)
Authorization

America (Johnson City)
Technical Support and
Authorization

Asia / Australia (Singapore)

Technical Support and
Authorization

Local time: Mo.-Fr. 7:00 to 17:00

Phone: +49 (911) 895-7200

Fax: +49 (911) 895-7201

E-mail: authorization@
nbgm.siemens.de

GMT: +1:00

Local time: Mo.-Fr. 8:00 to 19:00

Phone: +1 423 461-2522

Fax: +1 423 461-2289

E-mail: simatic.hotline@
sea.siemens.com

GMT: -5:00

Local time: Mo.-Fr. 8:30 to 17:30

Phone: +65 740-7000

Fax: +65 740-7001

E-mail: simatic.hotline@
sae.siemens.com.sg

GMT: +8:00

German and English are spoken on all the SIMATIC hotlines, French, Italian and Spanish are also spoken on the

authorization hotline.

30.08.200006.09.2000

Preface

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 vii

SIMATIC Customer Support Online Services

In its online services, SIMATIC Customer Support provides you with a wide range
of additional information on SIMATIC products:

• You can obtain general up-to-the-minute information

- on the Internet at http://www.ad.siemens.de/simatic

• Current product information bulletins and useful downloads:

- on the Internet at http://www.ad.siemens.de/simatic-cs

- From the Bulletin Board System (BBS) in Nuremberg (SIMATIC
Customer Support Mailbox) at +49 (911) 895-7100.

To contact the mailbox, use a modem with up to V.34
(28.8 Kbauds) with the following parameter settings: 8, N, 1, ANSI, or dial via
ISDN (x.75, 64 Kbps).

• You will find your local contact for Automation & Drives in our contacts
database:

- on the Internet at http://www3.ad.siemens.de/partner/search.asp

30.08.200006.09.2000

Preface

S7-SCL V5.1 for S7-300/S7-400
viii A5E00059543-01

30.08.200006.09.2000

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 ix

Contents

1 Product Overview and Installation

1.1 Overview of S7-SCL.. 1-1
1.2 What are the Advantages of S7-SCL?... 1-3
1.3 Characteristics of the Development Environment... 1-4
1.4 What’s New in Version V5.1? .. 1-7
1.5 Installation and Authorization... 1-9
1.6 Notes on Compatibility with DIN EN 61131-3... 1-11

2 Designing an SCL Program

2.1 Welcome to "Measured Value Acquisition" -
 A Sample Program for First-Time Users ... 2-1

2.2 Task.. 2-2
2.3 Design of a Structured SCL Program... 2-4
2.4 Defining the Subtasks ... 2-6
2.5 Defining the Interfaces Between Blocks... 2-7
2.6 Defining the Input/Output Interface .. 2-10
2.7 Defining the Order of the Blocks in the Source File 2-11
2.8 Defining Symbols .. 2-12
2.9 Creating the SQUARE Function .. 2-13
2.9.1 Statement Section of the SQUARE Function ...2-13
2.10 Creating the EVALUATE Function Block ... 2-14
2.10.1 Flow Chart for EVALUATE ..2-14
2.10.2 Declaration Section of FB EVALUATE...2-15
2.10.3 Statement Section of FB EVALUATE ..2-16
2.11 Creating the ACQUIRE Function Block.. 2-18
2.11.1 Flow Chart for ACQUIRE...2-18
2.11.2 Declaration Section of FB ACQUIRE...2-19
2.11.3 Statement Section of FB ACQUIRE...2-21
2.12 Creating the CYCLE Organization Block.. 2-24
2.13 Test Data .. 2-26

3 Using SCL

3.1 Starting the SCL Program ... 3-1
3.2 User Interface ... 3-2
3.3 Customizing the User Interface ... 3-3
3.4 Creating and Handling an SCL Source File.. 3-4
3.4.1 Creating a New SCL Source File ...3-4
3.4.2 Opening an SCL Source File...3-5
3.4.3 Opening Blocks...3-6
3.4.4 Closing an SCL Source File ..3-6
3.4.5 Specifying Object Properties ...3-6
3.4.6 Creating Source Files with a Standard Editor...3-7
3.4.7 Block Protection ..3-7

30.08.200006.09.2000

Contents

S7-SCL V5.1 for S7-300/S7-400
x A5E00059543-01

3.5 Guidelines for SCL Source Files.. 3-8
3.5.1 General Rules for SCL Source Files.. 3-8
3.5.2 Order of the Blocks ... 3-8
3.5.3 Using Symbolic Addresses.. 3-9
3.6 Editing in SCL Source Files... 3-9
3.6.1 Undoing the Last Editing Action... 3-9
3.6.2 Redoing an Editing Action ... 3-9
3.6.3 Finding and Replacing Text Objects .. 3-10
3.6.4 Selecting Text Objects .. 3-10
3.6.5 Copying Text Objects.. 3-10
3.6.6 Cutting Text Objects.. 3-11
3.6.7 Deleting Text Objects.. 3-11
3.6.8 Positioning the Cursor in a Specific Line.. 3-11
3.6.9 Syntactically Correct Indenting of Lines... 3-12
3.6.10 Setting the Font Style and Color.. 3-12
3.6.11 Inserting Templates... 3-13
3.7 Compiling an SCL Program... 3-15
3.7.1 What You Should Know About Compiling.. 3-15
3.7.2 Customizing the Compiler ... 3-15
3.7.3 Compiling the Program ... 3-17
3.7.4 Creating a Compilation Control File ... 3-17
3.7.5 Debugging the Program After Compilation... 3-18
3.8 Saving and Printing an SCL Source File.. 3-19
3.8.1 Saving an SCL Source File ... 3-19
3.8.2 Customizing the Page Format ... 3-19
3.8.3 Printing an SCL Source File .. 3-19
3.8.4 Setting the Print Options ... 3-20
3.9 Downloading the Created Programs.. 3-21
3.9.1 CPU Memory Reset .. 3-21
3.9.2 Downloading User Programs to the CPU... 3-21
3.10 Debugging the Created Programs ... 3-23
3.10.1 The SCL Debugging Functions.. 3-23
3.10.2 The "Monitor" Debugging Function.. 3-24
3.10.3 Debugging with Breakpoints/Single Step Mode" .. 3-25
3.10.4 Steps in Monitoring ... 3-26
3.10.5 Steps for Debugging with Breakpoints... 3-27
3.10.6 Using the STEP 7 Debugging Functions.. 3-29
3.11 Displaying and Modifying CPU Properties ... 3-31
3.11.1 Displaying and Modifying the CPU Operating Mode 3-31
3.11.2 Displaying and Setting the Date and Time on the CPU................................ 3-31
3.11.3 Reading Out CPU Data... 3-32
3.11.4 Reading Out the Diagnostic Buffer of the CPU .. 3-32
3.11.5 Displaying/Compressing the User Memory of the CPU................................ 3-32
3.11.6 Displaying the Cycle Time of the CPU... 3-33
3.11.7 Displaying the Time System of the CPU.. 3-33
3.11.8 Displaying the Blocks on the CPU... 3-33
3.11.9 Displaying Information about Communication with the CPU......................... 3-34
3.11.10 Displaying the Stacks of the CPU.. 3-34

30.08.200006.09.2000

Contents

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 xi

4 Basic SCL Terms

4.1 Interpreting the Syntax Diagrams .. 4-1
4.2 Character Set.. 4-3
4.3 Reserved Words ... 4-4
4.4 Identifiers .. 4-5
4.5 Standard Identifiers ... 4-6
4.6 Block Identifier .. 4-6
4.7 Address Identifier .. 4-7
4.8 Timer Identifier .. 4-9
4.9 Counter Identifier .. 4-9
4.10 Numbers ... 4-10
4.11 Character Strings .. 4-12
4.12 Symbol.. 4-13
4.13 Comment Section.. 4-13
4.14 Line Comment... 4-14
4.15 Variables... 4-15

5 SCL Program Structure

5.1 Blocks in SCL Source Files ... 5-1
5.2 Order of the Blocks ... 5-2
5.3 General Structure of a Block.. 5-3
5.4 Block Start and End .. 5-3
5.5 Attributes for Blocks .. 5-5
5.6 Block Comment... 5-7
5.7 System Attributes for Blocks.. 5-8
5.8 Declaration Section ... 5-9
5.9 System Attributes for Parameters .. 5-10
5.10 Statement Section... 5-11
5.11 Statements.. 5-12
5.12 Structure of a Function Block (FB)... 5-13
5.13 Structure of a Function (FC) .. 5-15
5.14 Structure of an Organization Block (OB).. 5-17
5.15 Structure of a Data Block (DB) .. 5-18
5.16 Structure of a User-Defined Data Type.. 5-21

6 Data Types

6.1 Overview of the Data Types in SCL... 6-1
6.2 Elementary Data Types... 6-3
6.2.1 Bit Data Types ..6-3
6.2.2 Character Types..6-3
6.2.3 Numeric Data Types..6-3
6.2.4 Time Types ...6-4
6.3 Complex Data Types... 6-5
6.3.1 DATE_AND_TIME Data Type ...6-5
6.3.2 STRING Data Type ...6-7
6.3.3 ARRAY Data Type ..6-9
6.3.4 STRUCT Data Type ..6-11
6.4 User-Defined Data Types.. 6-13
6.4.1 User-Defined Data Types (UDT)..6-13
6.5 Data Types for Parameters.. 6-15
6.5.1 Data Types for Parameters..6-15
6.5.2 TIMER and COUNTER Data Types...6-15
6.5.3 BLOCK Data Types...6-16
6.5.4 POINTER Data Type...6-16

30.08.200006.09.2000

Contents

S7-SCL V5.1 for S7-300/S7-400
xii A5E00059543-01

6.6 ANY Data Type... 6-18
6.6.1 Example of the ANY Data Type... 6-19

7 Declaring Local Variables and Parameters

7.1 Local Variables and Block Parameters .. 7-1
7.2 General Syntax of a Variable or Parameter Declaration................................. 7-3
7.3 Initialization... 7-4
7.4 Declaring Views of Variable Ranges.. 7-6
7.5 Using Multiple Instances ... 7-8
7.6 Instance Declaration ... 7-8
7.7 Flags (OK Flag) .. 7-9
7.8 Declaration Subsections.. 7-10
7.8.1 Overview of the Declaration Subsections... 7-10
7.8.2 Static Variables... 7-11
7.8.3 Temporary Variables... 7-12
7.8.4 Block Parameters.. 7-13

8 Declaring Constants and Jump Labels

8.1 Constants ... 8-1
8.1.1 Declaring Symbolic Names for Constants.. 8-2
8.1.2 Data Types for Constants.. 8-3
8.1.3 Notation for Constants... 8-4
8.2 Declaring Labels ... 8-17
8.2.1 Declaring Labels ... 8-17

9 Shared Data

9.1 Overview of Shared Data .. 9-1
9.2 Memory Areas of the CPU .. 9-2
9.2.1 Overview of the Memory Areas of the CPU ... 9-2
9.2.2 Absolute Access to Memory Areas of the CPU.. 9-3
9.2.3 Symbolic Access to Memory Areas of the CPU ... 9-5
9.2.4 Indexed Access to Memory Areas of the CPU ... 9-6
9.3 Data Blocks... 9-7
9.3.1 Overview of Data Blocks ... 9-7
9.3.2 Absolute Access to Data Blocks .. 9-8
9.3.3 Indexed Access to Data Blocks ... 9-10
9.3.4 Structured Access to Data Blocks.. 9-11

10 Expressions, Operations and Addresses

10.1 Overview of Expressions, Operations and Addresses.................................. 10-1
10.2 Operations .. 10-2
10.3 Addresses... 10-3
10.4 Syntax of an Expression.. 10-5
10.5 Simple Expression .. 10-7
10.6 Arithmetic Expressions.. 10-8
10.7 Logical Expressions .. 10-10
10.8 Comparison Expressions... 10-12

11 Statements

11.1 Value Assignments ... 11-1
11.1.1 Value Assignments with Variables of an Elementary Data Type 11-2
11.1.2 Value Assignments with Variables of the Type STRUCT and UDT 11-3
11.1.3 Value Assignments with Variables of the Type ARRAY 11-5
11.1.4 Value Assignments with Variables of the Data Type STRING...................... 11-7
11.1.5 Value Assignments with Variables of the Type DATE_AND_TIME............... 11-8

30.08.200006.09.2000

Contents

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 xiii

11.1.6 Value Assignments with Absolute Variables for Memory Areas....................11-9
11.1.7 Value Assignments with Shared Variables... 11-10
11.2 Control Statements ... 11-12
11.2.1 Overview of Control Statements .. 11-12
11.2.2 Conditions... 11-13
11.2.3 IF Statements.. 11-14
11.2.4 CASE Statement... 11-16
11.2.5 FOR Statement ... 11-18
11.2.6 WHILE Statement ... 11-21
11.2.7 REPEAT Statement .. 11-22
11.2.8 CONTINUE Statement .. 11-23
11.2.9 EXIT Statement... 11-24
11.2.10 GOTO Statement .. 11-25
11.2.11 RETURN Statement.. 11-26
11.3 Calling Functions and Function Blocks .. 11-27
11.3.1 Call and Parameter Transfer ... 11-27
11.3.2 Calling Function Blocks ... 11-28
11.3.3 Calling Functions... 11-36
11.3.4 Implicitly Defined Parameters .. 11-42

12 Counters and Timers

12.1 Counters ... 12-1
12.1.1 Counter Functions...12-1
12.1.2 Calling Counter Functions ...12-1
12.1.3 Supplying Parameters for Counter Functions...12-3
12.1.4 Input and Evaluation of the Counter Value...12-4
12.1.5 Count Up (S_CU)..12-5
12.1.6 Count Down (S_CD)..12-5
12.1.7 Count Up/Down (S_CUD)..12-6
12.1.8 Example of Counter Functions...12-7
12.2 Timers... 12-8
12.2.1 Timer Functions ..12-8
12.2.2 Calling Timer Functions...12-8
12.2.3 Supplying Parameters for Timer Functions .. 12-10
12.2.4 Input and Evaluation of a Time Value .. 12-12
12.2.5 Start Timer as Pulse Timer (S_PULSE) ... 12-14
12.2.6 Start Timer as Extended Pulse Timer (S_PEXT).. 12-15
12.2.7 Start Timer as On-Delay Timer (S_ODT) ... 12-16
12.2.8 Start Timer as Retentive On-Delay Timer (S_ODTS) 12-17
12.2.9 Start Timer as Off-Delay Timer (S_OFFDT)... 12-18
12.2.10 Example of Timer Functions .. 12-19
12.2.11 Selecting the Right Timer .. 12-20

13 SCL Standard Functions

13.1 Data Type Conversion Functions... 13-1
13.1.1 Converting Data Types..13-1
13.1.2 Implicit Data Type Conversion...13-2
13.1.3 Standard Functions for Explicit Data Type Conversion.................................13-4
13.2 Numeric Standard Functions ... 13-9
13.2.1 General Arithmetic Standard Functions ...13-9
13.2.2 Logarithmic Functions ...13-9
13.2.3 Trigonometric Functions.. 13-10
13.2.4 Examples of Numeric Standard Functions ... 13-10
13.3 Bit String Standard Functions.. 13-11
13.3.1 Examples of Bit String Standard Functions.. 13-12

30.08.200006.09.2000

Contents

S7-SCL V5.1 for S7-300/S7-400
xiv A5E00059543-01

13.4 Functions for Processing Character Strings... 13-13
13.4.1 Functions for String Manipulation .. 13-13
13.4.2 Functions for Comparing Strings ... 13-17
13.4.3 Functions for Converting the Data Format ... 13-18
13.4.4 Example of Processing Character Strings.. 13-20
13.5 SFCs, SFBs and Standard Library .. 13-22
13.5.1 Transfer Interface to OBs.. 13-24

14 Language Definition

14.1 Formal Language Definition .. 14-1
14.1.1 Overview of Syntax Diagrams ... 14-1
14.1.2 Rules .. 14-2
14.1.3 Terms Used in the Lexical Rules ... 14-4
14.1.4 Formatting Characters, Separators and Operations..................................... 14-6
14.1.5 Keywords and Predefined Identifiers ... 14-9
14.1.6 Address Identifiers and Block Keywords.. 14-12
14.1.7 Overview of Non Terms... 14-13
14.1.8 Overview of Tokens .. 14-14
14.1.9 Identifiers.. 14-14
14.1.10 Assigning Names in SCL... 14-16
14.1.11 Predefined Constants and Flags ... 14-18
14.2 Lexical Rules .. 14-19
14.2.1 Identifiers.. 14-19
14.2.2 Constants ... 14-21
14.2.3 Absolute Addressing ... 14-25
14.2.4 Comments .. 14-27
14.2.5 Block Attributes... 14-28
14.3 Syntax Rules... 14-29
14.3.1 Structure of SCL Source Files ... 14-29
14.3.2 Structure of the Declaration Sections... 14-31
14.3.3 Data Types in SCL.. 14-35
14.3.4 Statement Section... 14-37
14.3.5 Value Assignments ... 14-39
14.3.6 Calling Functions and Function Blocks .. 14-41
14.3.7 Control Statements ... 14-43

15 Tips and Tricks

Glossary

Index

30.08.200006.09.2000

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 1-1

1 Product Overview and Installation

1.1 Overview of S7-SCL

Area of Application

Apart from their traditional control tasks, today’s programmable controllers are
increasingly expected to handle data management tasks and complex
mathematical operations. It is for these functions in particular that we offer SCL for
S7300/400 (Structured Control Language), the programming language that makes
programming easier and conforms to DIN EN 61131-3.

SCL not only assists you with “normal" control tasks but also with extensive
applications making it superior to the “traditional" programming languages in the
following areas:

• Data management

• Process optimization

• Recipe management

• Mathematical/statistical operations

S7-SCL Programming Language

SCL (Structured Control Language) is a higher-level programming language
oriented on PASCAL. It is based on a standard for PLCs (programmable logic
controllers).

The DIN EN-61131-3 standard (int. IEC 1131-3) standardizes the programming
languages for programmable logic controllers. The SCL programming language
complies with the PLCopen Basis Level of the ST (structured text) language
defined in this standard. In the NORM_TAB.WRI file, you will find an exact
definition of the standard compliance according to the DIN EN-61131-3 standard.

In addition to high-level language elements, SCL also includes language elements
typical of PLCs such as inputs, outputs, timers, bit memory, block calls, etc. In
other words, SCL complements and extends the STEP 7 programming software
and its programming languages Ladder Logic, Function Block Diagram, and
Statement List.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
1-2 A5E00059543-01

Development Environment

For optimum use and practical application of SCL, there is a powerful development
environment that is matched both to specific characteristics of SCL and STEP 7.
This development environment consists of the following components:

• An Editor for writing programs consisting of functions (FCs), function blocks
(FBs), organization blocks (OBs), data blocks (DBs) and user-defined data
types (UDTs). Programmers are supported in their tasks by powerful functions.

• A Batch Compiler to compile the edited program into MC7 machine code. The
MC7 code generated will run on all S7-300/400 CPUs from CPU 314 upwards.

• A Debugger to search for logical programming errors in the compiled program.
You debug at the source language level.

The individual components are simple and convenient to use since they run under
Windows and make use of all the advantages of this operating system.

Editor Batch Compiler Debugger

SCL for S7-300/400

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 1-3

1.2 What are the Advantages of S7-SCL?

SCL offers you all the advantages of a high-level programming language. SCL also
has a number of characteristics specifically designed to support structured
programming, such as:

• SCL supports the block concept of STEP 7 and therefore allows standardized
programming of blocks just as with Statement List (STL), Ladder Logic (LAD),
and Function Block Diagram (FBD).

STEP 7 Blocks

OB FC FB DB SFC SFBUDT

• You do not need to create every function yourself, but can use ready-made
blocks such as system functions or system function blocks that already exist in
the operating system of the CPU.

• You can use blocks programmed using SCL in combination with blocks
programmed in Statement List (STL), Ladder Logic (LAD), and Function Block
Diagram (FBD). This means that a block written in SCL can call a block written
in STL, LAD, or FBD. In the same way, SCL blocks can be called in STL, LAD,
or FBD programs. The programming languages of STEP 7 and SCL (optional
package) therefore complement one another perfectly.

• Source objects you create with SCL for STEP 5 are upwards compatible with
one or two minor exceptions; in other words these programs can also be
edited, compiled and debugged with S7 SCL.

• SCL blocks can be decompiled into the STEP 7 Statement List (STL)
programming language. Recompilation from STL to SCL is not possible.

• With some experience of high-level programming languages, SCL can be
learned quickly.

• When creating programs, the programmer is supported by powerful functions
for processing the source text.

• When you compile your edited program, the blocks are created and can be
executed on all the CPUs of the S7 300/400 programmable controllers with a
CPU 314 or higher.

• With the SCL test and debugging functions, you can search for logical
programming errors in the compiled program. You debug at the source
language level.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
1-4 A5E00059543-01

1.3 Characteristics of the Development Environment

Editor

The SCL Editor is a text editor that can be used for editing any text files. Its main
purpose is the creation and editing of source files for STEP 7 programs. You can
program one or more blocks in a source file. The Editor does not check the syntax
of text while it is being entered.

Source file1
. .

Source file j

Editor

Block 1

Block i

.

.

With the SCL Editor, you can:

• Edit a complete source file incorporating one or more blocks

• Edit a compilation control file which with which you can automate the
compilation of a series of source files

• Use additional functions that simplify the task of editing the source file, for
example, search and replace.

• Customize the editor settings to meet your requirements, for example, by
syntactically correct coloring of the various language elements.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 1-5

Compiler

Once you have created your source files using the SCL Editor, you compile them
into MC7 code.

Batch
Compiler

Block 1

Block i

.
.

Blocks in the S7
program

Source file 1

Source file j

.

.

SCL source file

Compilation control file

or

The SCL Compiler allows you to:

• Compile an SCL source file consisting of a number of blocks in a single
compilation.

• Compile a series of SCL source files using a compilation control file containing
the names of the source files.

• Compile selected blocks from a source file.

• Customize the compiler settings to suit your specific requirements.

• View all errors and warning messages that occur during the compilation
process.

• Localize errors in the source file, if required with descriptions of the errors and
instructions on rectifying them.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
1-6 A5E00059543-01

Debugger

With the SCL Debugger, you can check how a program will run on the PLC and
identify any logical errors.

Debugger

S7-300/400 programmable controller

SCL provides two different debugging modes:

• Single-step monitoring - this follows the logical processing sequence of the
program. You can execute the program algorithm one statement at a time and
observe how the variable values change in a results window;

• Continuous monitoring - in this mode you can test out a group of statements
within a block of the source file. During the test, the values of the variables and
parameters are displayed in chronological sequence and (where possible)
cyclically updated.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 1-7

1.4 What’s New in Version V5.1?

DIN EN 61131-1
From Version 5.0 onwards, S7-SCL complies with the PLCopen Basis Level for ST
(structured text) of the DIN EN 61131-3 standard (previously IEC 1131-3).

Extended Language Range

• Dynamic timer and counter calls
When a timer or counter function is called, you can specify a variable of the
INT data type instead of the absolute number. Each time the program is
executed, you can assign a different number to these variables and make the
function call dynamic.

• Type-defined notation of constants
Previously, a constant was given its data type only with the arithmetic or logical
operation in which it was used. In the following statement, for example, ’12345’
is given the data type INT:
Int1:=Int2 + 12345

You can now assign data types to constants explicitly by using a type-defined
notation for the constant as shown below:
INT#12345

• Several views of a variable
To access a declared variable with a different data type, you can define views
of the variable or of areas within the variable.

Improved Editor Functions

• Syntactically correct colors and styles
Using different styles and colors for the various language elements lends your
SCL source files a professional appearance.

• Syntactically correct formatting of source files
Automatic line indents increase the legibility of the SCL source files.

• Undoing and redoing input step by step
Using a menu command, several editing steps can be undone or redone.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
1-8 A5E00059543-01

Extended Print Functionality

• Selection of different fonts and styles for your printout
When you print out your SCL source file, you can select the styles that differ
from those shown on screen.

• Printing with line numbers
You can also print out line numbers or insert a form feed before the start of
each new block.

Selective Compilation and Downloading

• Selective compilation
With the "Compile Selected Blocks" function, you can compile individual blocks
from an SCL source file so that you can make changes in the program more
quickly.

• Selective Downloads
With the "Download Changes" function, you can download selected blocks of a
source file.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 1-9

1.5 Installation and Authorization

System Requirements

The S7-SCL V5.1 optional package can run on a programming device/PC with the
following:

• Microsoft Windows 95/98/2000/NT operating system

• STEP 7 V5 standard package, service pack 3 or higher (any corrected versions
of the standard package that are necessary are supplied).

Hardware Requirements

The requirements for S7-SCL are the same as those for the STEP 7 standard
package. The extra hard disk space required by the S7-SCL V5.1 optional package
can be found in the readme.wri file.

Starting the Installation Program

S7-SCL includes a Setup program that automatically installs the software. On-
screen prompts that appear on the screen guide you step by step through the
complete installation process.

Follow the steps outlined below:

1. Open the Control Panel in the Windows 95/98/2000/NT and double-click on the
Add/Remove Programs icon.

2. Select Install...

3. Insert the CD and click "Next". Windows then automatically searches for the
installation program "Setup.exe".

4. Follow the instructions displayed by the installation program.

Notes on Authorization

When you install the program, setup checks whether you have the authorization
required to use the S7-SCL programming software on your hard disk. If no
authorization is found, a message appears telling you that the software can only be
used with the authorization. If you wish you can install the authorization at this point
or continue the installation and install the authorization later. To install the
authorization during installation, simply insert the authorization diskette when the
prompt is displayed.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
1-10 A5E00059543-01

Authorization Diskette

To install the authorization you require the authorization diskette (note that
authorizations cannot be copied with normal copy functions). The actual
authorization itself is on this diskette. The "AuthorsW" program required for
displaying, installing and uninstalling the authorization is on the same CD ROM as
S7-SCL V5.1.

The number of possible user authorizations is specified by an authorization counter
on the authorization diskette. Each time you install an authorization, the counter
decrements by 1. Once it reaches zero, there are no more authorizations available
on the diskette.

! Caution

Read the instructions in the README.WRI file in the AuthorsW folder on the CD.
If you do not keep to the instructions, the authorization may be irretrievably lost.

Loss of the Authorization

You could, for example, lose an authorization due to a defect on your hard disk that
prevents you from uninstalling the authorization from the defective disk.

If you lose your authorization, you can fall back on the emergency authorization.
This is also on the authorization diskette. With the emergency authorization, you
can continue to use the software for a restricted period. In this case, when you start
up, the time left until the validity expires is displayed. During this period, you should
obtain a substitute for the lost authorization. To obtain a replacement for your
authorization, please contact your SIEMENS representative.

Note

You will find further instructions and rules relating to installing and uninstalling
software in the "Programming with STEP 7 V5.x" manual.

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 1-11

1.6 Notes on Compatibility with DIN EN 61131-3

From version 5.0 onwards, S7-SCL complies with the PLCopen Basis Level for ST
(structured text) of the DIN EN 61131-3 standard (previously IEC 1131-3).

If you have an ST program, you can now import it as an ASCII file into the STEP 7
data management using the SIMATIC Manager or copy/insert it into the SCL editor.

Settings and Requirements

You require the following settings to create a system environment complying with
the standard:

• Select the English mnemonics for the project in the SIMATIC Manager with
Options > Customize > Language.

• In SCL, deselect the "Permit nested comments" option with Options >
Customize > Compiler.

• Instead of the keywords FUNCTION_BLOCK / END_FUNCTION_BLOCK, the
keywords PROGRAM / END_PROGRAM are also permitted.

• The name of the PROGRAM / FUNCTION_BLOCK or FUNCTION must be
assigned a unique number in the symbol table.

Changes in the Syntax and Semantics

As a result of the compliance with the standard, the following changes have been
made in the syntax and semantics of the SCL language Version 5.0:

• Symbols are no longer case-sensitive. For symbols from the symbol table, this
applies from STEP 7 V4.02 onwards.

• The lines END_VAR, END_CONST, END_LABEL, and FUNCTION_BLOCK
name, FUNCTION name etc. must not be completed by a semicolon. A
semicolon is interpreted as an "empty" statement so that all following
constructs are evaluated as statements.

• Value lists in the CASE statement no longer need to be sorted in ascending
order. Only if you specify a range of values in the format "a .. b", then a <= b
must be true.

• Addresses of the type INT or DINT are no longer automatically converted to
the REAL data type in division (/). The data type of the result of division (/) is
now determined by the data type of the most significant address.
If, for example, two addresses of the data type INT are divided, the result is
also of the data type INT (for example 10/3=3, whereas 10.0/3=3.33).

Product Overview and Installation

S7-SCL V5.1 for S7-300/S7-400
1-12 A5E00059543-01

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-1

2 Designing an SCL Program

2.1 Welcome to "Measured Value Acquisition" - A Sample
Program for First-Time Users

What You Will Learn

The sample program for first-time users shows you how to use SCL effectively. At
first, you will probably have lots of questions, such as:

• How do I design a program written in SCL?

• Which SCL language functions are suitable for performing the task?

• What debugging functions are available?

These and other questions are answered in this section.

SCL language Elements Used

The sample program introduces the following SCL language functions:

• Structure and use of the various SCL block types

• Block calls with parameter passing and evaluation

• Various input and output formats

• Programming with elementary data types and arrays

• Initializing variables

• Program structures and the use of branches and loops

Required Hardware

You can run the sample program on a SIMATIC S7-300 or SIMATIC S7-400 and
you will need the following peripherals:

• One 16-channel input module

• One 16-channel output module

Debugging Functions

The program is constructed in so that you can test the program quickly using the
switches on the input module and the displays on the output module. To run a
thorough test, use the SCL debugging functions.

You can also use all the other system functions provided by the STEP 7 Standard
package.

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-2 A5E00059543-01

2.2 Task

Overview

Measured values will be acquired by an input module and then sorted and
processed by an SCL program. The results will be displayed on an output module.

Acquire Measured Values

A measured value is set using the 8 input switches. This is then read into the
measured value array in memory when an edge is detected at an input switch (see
following diagram).

The range of the measured values is 0 to 255. One byte is therefore required for
the input.

Processing Measured Values

The measured value array will be organized as a ring buffer with a maximum of
eight entries.

When a signal is detected at the Sort switch, the values stored in the measured
value array are arranged in ascending order. After that, the square root and the
square of each number are calculated. One word is required for the processing
functions.

Sort switchMeasured value

Sort measured data Calculate resultsRead in measured data

Calcula
tions

x=Signal detection

Enter switch

1

3

7

15

31

63

127

255

255

127

63

31

15

7

3

1

1

2

3

4

6

8

11

16

1

9

49

225

961

3969

16129

Overflow

Square Root Square

1 1 1 1 1 1 1 1

255

Data Entry:

X X

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-3

Selectable Outputs

Only one value can ever be displayed on the output module. The following
selections can therefore be made:

• Selection of an element from a list

• Selection of measured value, square root or square

The displayed value is selected as follows:

• Three switches are used to set a code that is copied if a signal is detected at a
fourth switch, the Coding switch. From this, an address is calculated that is
used to access the output.

• The same address identifies three values: the measured value, its square root
and its square. To select one of these values, two selector switches are
required.

Data Entry:

Two changeover switches Code

Sorted data Calculated results

Data Output:

Output

Coding switch

x=Signal detection

X

4

Square root
or Square

Measured value or
Calculated result

10

1

3

7

15

31

63

127

255

1

2

3

4

6

8

11

16

1

9

49

225

961

3969

16129

Overflow

Square
Root

3

Address

1

1

0

Measured Value

Address

Switches on Input Module

Displays on
Output Module

Select
Output

Access
output data

Change
over switch

Square

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-4 A5E00059543-01

2.3 Design of a Structured SCL Program

Block Types

The task defined above is best solved using a structured SCL program. This
means using a modular design; in other words, the program is subdivided into a
number of blocks, each responsible for a specific subtask. In SCL, as with the other
programming languages in STEP 7, you have the following block types available.

STEP 7-
Blocks

OB

FB

FC

DB

UDT

Organization blocks form the interface between the S7 CPU operating system
and the user program. The organization blocks specify the sequence in which
the blocks of the user program are executed.

Function blocks are logic blocks with static data. Since an FB has a "memory",
it is possible to access its parameters (for example, outputs) at any point
in the user program.

Functions are logic blocks that do not have memory. Since they do not have
memory, the calculated values must be processed further immediately af ter
the function is called.

Data blocks are data areas in which the usr data are stored. There are
shared data blocks that can be accessed by all logic blocks and there are
instance data blocks that are assigned to a specific FB call.

User-defined data types are structured data types you can create yourself as
required and then use as often as you wish. A user-defined data type is useful
for generating a number of data blocks with the same structure. UDTs are
handled as if they were blocks.

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-5

Arrangement of Blocks in SCL Source Files

An SCL program consists of one or more SCL source files. A source file can
contain a single block or a complete program consisting of various blocks.

One source file for
a program

Several source files for
a program

.
FB22

.

.

.
FC2

.

.

.
OB1

.

SCL source file

OB1
FC2

DB

Block folder
offline

SCL
source
file for
OB1

SCL

FC2

SCL

FB22

FB22

source source
file for file for

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-6 A5E00059543-01

2.4 Defining the Subtasks

Subtasks

The subtasks are shown in the figure below. The rectangular shaded areas
represent the blocks. The arrangement of the logic blocks from left to right is also
the order in which they are called.

Organization Block
CYCLE

Function Block
ACQUIRE

Function Block
EVALUATE

Sort
measured

data

Acquire
measured

data

Access
and select
output data

Calculate
results

Cyclic
program

call

Data Block
ACQUIRE_DATA

Data
input

Data
output

Square root,
Square

Store
data

Functions
SQRT

 (Square Root)
and SQUARE

Program flow Data flow

Selecting and Assigning the Available Block Types

The individual blocks were selected according to the following criteria:

 Function Block Name

User programs can only be started in an OB. Since the
measured values will be acquired cyclically, an OB for a cyclic
call (OB1) is required. Part of the program - data input and
data output - is programmed in the OB.

⇒

"Cycle" OB

The subtask "acquire measured values" requires a block with
a memory; in other words, a function block (FB), since certain
local block data (for example, the ring buffer) must be retained
from one program cycle to the next. The location for storing
data (memory) is the instance data block ACQUIRE_DATA.
The same FB can also handle the address and select output
subtask, since the data is available here.

⇒

"Acquire" FB

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-7

 Function Block Name

When selecting the type of block for the subtasks sort
measured values and calculate results, remember that you
need an output buffer containing the calculated results
"square root" and "square" for each measured value. The
only suitable block type is therefore an FB. Since this FB is
called by an FB higher up in the call hierarchy, it does not
require its own DB. Its instance data can be stored in the
instance data block of the calling FB.

⇒

"Evaluate" FB

A function (FC) is best suited for the subtasks calculate
square root and square since the result can be returned as a
function value. Morevoer, no data used in the calculation
needs to be retained for more than one program cycle. The
standard SCL function SQRT can be used to calculate the
square root. A special function SQUARE will be created to
calculate the square and this will also check that the value is
within the permitted range.

⇒

⇒

"SQRT" FC (square
root) and
"Square" FC

2.5 Defining the Interfaces Between Blocks

Overview

The interface of a block is formed by parameters that can be accessed by other
blocks.

Parameters declared in the blocks are placeholders that have a value only when
the block is actually used (called). These placeholders are known as formal
parameters and the values assigned to them when the block is called are referred
to as the actual parameters. When a block is called, input data is passed to it as
actual parameters. After the program returns to the calling block, the output data is
available for further processing. A function (FC) can pass on its result as a function
value.

Block parameters can be subdivided into the categories shown below:

 Block Parameter Explanation Declaration

 Input parameters Input parameters accept the actual input values
when the block is called. They are read-only.

VAR_INPUT

 Output parameters Output parameters transfer the current output
values to the calling block. Data can be written to
and read from them.

VAR_OUTPUT

 In/out parameters In/out parameters accept the actual value of a
variable when the block is called, process the
value, and write the result back to the original
variable.

VAR_IN_OUT

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-8 A5E00059543-01

Cycle OB

The CYCLE OB has no formal parameters itself. It calls the ACQUIRE FB and
passes the measured value and the control data for its formal parameters to it.

Acquire FB

 Parameter Name Data
Type

 Declaration
Type

 Description

 measval_in INT VAR_INPUT Measured value

 newval BOOL VAR_INPUT Switch for entering measured value in
ring buffer

 resort BOOL VAR_INPUT Switch for sorting and evaluating
measured data

 funct_sel BOOL VAR_INPUT Selector switch for square root or square

 selection WORD VAR_INPUT Code for selecting output value

 newsel BOOL VAR_INPUT Switch for reading in code

 result_out DWORD VAR_OUTPUT Output of calculated result

 measval_out DWORD VAR_OUTPUT Output of measured value

Evaluate

The ACQUIRE FB calls the EVALUATE FB. The data they share is the measured
value array that require sorting. This array is therefore declared as an in/out
parameter. A structured array is created as an output parameter for the calculated
results Square Root and Square. The following table shows the formal parameters:

 Name Data Type Declaration
Type

 Description

 sortbuffer ARRAY[..]
OF REAL

VAR_IN_OUT Measured value array, corresponds to ring
buffer

 calcbuffer ARRAY[..]OF
STRUCT

VAR_OUTPUT Array for results:
Structure with "square root" and "square"
components of type INT

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-9

SQRT and Square

These functions are called by EVALUATE. They require an input value (argument)
and return their results as a function value.

 Name Data Type Declaration
Type

 Description

 value REAL VAR_INPUT Input for SQRT

 SQRT REAL Function value Square root of input value

 value INT VAR_INPUT Input for SQUARE

 SQUARE INT Function value Square of input value

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-10 A5E00059543-01

2.6 Defining the Input/Output Interface

The figure below shows the input/output interface. Note that when input/output is in
bytes, the lower-order byte is at the top and the higher-order byte is at the bottom.
If input/output is in words, on the other hand, the opposite is true.

Input module

 0 Read in measured value
 1 Start sorting and calculation
 2 Select result: square root or square
 3 Select output: measured value or result
 4 Coding bit 0
 5 Coding bit 1
 6 Coding bit 2
 7 Read in coding

0 to 7 Input byte: measured value

Output
module

0 to 7 Higher-order byte of the output word
 (bits 8 to 15) only required for calculation
 of square, otherwise 0

0 to 7 Lower-order byte of the output word
 (bits 0 to 7): measured value or result:
 square root or square

Programmable controller

Digital input
 module

Digital output
 module

Byte 1

Byte 5

Byte 4

Byte 0

I0.3

I0.4

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Byte 0

Byte 1 Byte 5

Byte 4

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-11

2.7 Defining the Order of the Blocks in the Source File

When arranging the order of the blocks in the SCL source file, remember that a
block must exist before you use it; in other words, before it is called by another
block. This means that the blocks must be arranged in the SCL source file as
shown below:

FC SQUARE

FB EVAL

FB ACQ

OB CYCLE

calls

calls

calls

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-12 A5E00059543-01

2.8 Defining Symbols

Using symbolic names for module addresses and blocks makes your program
easier to follow. Before you can use these symbols, you must enter them in the
symbol table.

The figure below shows the symbol table of the sample program. It describes the
symbolic names that you declare in the symbol table so that the source file can be
compiled free of errors:

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-13

2.9 Creating the SQUARE Function

2.9.1 Statement Section of the SQUARE Function

Statement Section

The program first checks whether the input value exceeds the limit at which the
result would be outside the numeric range. If it does, the maximum value for an
integer is inserted. Otherwise, the square calculation is performed. The result is
passed on as a function value.

FUNCTION SQUARE : INT
(***
This function returns as its function value the square of the
input value or if there is overflow, the maximum value that
can be represented as an integer.
***)
VAR_INPUT
 value : INT;
END_VAR
BEGIN
IF value <= 181 THEN
 SQUARE := value * value; //Calculation of function
value
ELSE
 SQUARE := 32_767; // If overflow, set maximum value
END_IF;
END_FUNCTION

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-14 A5E00059543-01

2.10 Creating the EVALUATE Function Block

2.10.1 Flow Chart for EVALUATE

Start

I >= 1 ?

sortbuffer [I-1] >
sortbuffer[I] ?

Swap the values
of sortbuffer[I-1] and

sortbuffer[I]

SWAP = TRUE

I := I-1

End

swap := FALSE

I := LIMIT

I := 0

I := I+1

EVALUATE
Function Block

Start of
REPEAT loop

Start of
FOR loop

I represents index

no

yes

yes

no

TRUE
FALSE

no

yes

End of
FOR loop

End of
REPEAT loop swap?

I <= LIMIT ?

Start of
FOR loop

SQRT

SQUARE

Enter results in the structured
results array

Enter results in the structured
results array

End of
FOR loop

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-15

2.10.2 Declaration Section of FB EVALUATE

Structure of the Declaration Section

The declaration section of this block consists of the following subsections:

• Constants: between CONST and END_CONST.

• In/out parameters between VAR_IN_OUT and END_VAR.

• Output parameters: between VAR_OUTPUT and END_VAR.

• Temporary variables: between VAR_TEMP and END_VAR.

CONST
 LIMIT := 7;
END_CONST

VAR_IN_OUT
 sortbuffer : ARRAY[0..LIMIT] OF INT;
END_VAR

VAR_OUTPUT
 calcbuffer : ARRAY[0..LIMIT] OF
 STRUCT
 squareroot : INT;
 square : INT;
 END_STRUCT;
END_VAR

VAR_TEMP
 swap : BOOL;
 index, aux : INT;
 valr, resultr: REAL ;
END_VAR

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-16 A5E00059543-01

2.10.3 Statement Section of FB EVALUATE

Program Sequence

The in/out parameter “sortbuffer" is linked to the ring buffer “measvals" so that the
original contents of the buffer are overwritten by the sorted measured values.

The new array “calcbuffer" is created as an output parameter for the calculated
results. Its elements are structured so that they contain the square root and the
square of each measured value.

The figure below shows you the relationship between the arrays.

EVALUATION

measured values

sort buffer

calculate buffer

This interface shows the heart of the data exchange for processing the measured
values. The data is stored in the instance data block ACQUIRE_DATA since a local
instance for FB EVALUATE was created in the calling FB ACQUIRE.

Statement Section of EVALUATE

First, the measured values in the ring buffer are sorted and then the calculations
are made.

• Sort algorithm
The permanent exchange of values method is used to sort the measured value
buffer. This means that consecutive values are compared and their order
reversed until the final order is obtained throughout. The buffer used is the
in/out parameter "sortbuffer".

• Starting the calculation
Once sorting is completed, a loop is executed in which the functions SQUARE
for squaring and SQRT for extracting the square root are called. Their results
are stored in the structured array "calcbuffer".

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-17

Statement Section of EVALUATE

The statement section of the logic block is as follows:

BEGIN
(**
Part 1 Sorting : According to the "bubble sort" method: Swap
pairs of values until the measured value buffer is sorted.
**)
REPEAT
 swap := FALSE;
 FOR index := LIMIT TO 1 BY -1 DO
 IF sortbuffer[index-1] > sortbuffer[index]
 THEN aux :=sortbuffer[index];
 sortbuffer[index] := sortbuffer[index-1];
 sortbuffer[index-1] := aux;
 swap := TRUE;
 END_IF;
 END_FOR;
 UNTIL NOT swap
END_REPEAT;
(**
Part 2 Calculation : Square root with standard function
SQRT and squaring with the SQUARE function.
**)
FOR index := 0 TO LIMIT BY 1 DO
 valr := INT_TO_REAL(sortbuffer[index]);
 resultr := SQRT(valr);
 calcbuffer[index].squareroot := REAL_TO_INT(resultr);
 calcbuffer[index].square := SQUARE(sortbuffer[index]);
END_FOR;
END_FUNCTION_BLOCK

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-18 A5E00059543-01

2.11 Creating the ACQUIRE Function Block

2.11.1 Flow Chart for ACQUIRE

The following figure shows the algorithm in the form of a flow chart:

Start

End

newval yes

yes

yes

no

no

no

TRUE

FALSE

new code

resort

function
choice?

changed?

changed?

changed?

RECORD
Function Block

Copy measured value to cyclic
buffer, recalculate index

Cyclic buffer is imple
mented by means of
MOD operation:
when limit is reached
start from beginning again

Sort cyclic buffer and
perform calculations
(set up results array)

Load from instance
data block

First shift relevant bits to right
margin then hide spaces not
required by means of AND

Load:
Write list items with output addresses
to the output parameters so that their
values can be displayed afterwards.

Copy calculated results
to results array

 Analyze code and
 calculate output address

Load square root result Load square result

 Load measured value

ANALYZE

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-19

2.11.2 Declaration Section of FB ACQUIRE

Structure of the Declaration Section

The declaration section in this block consists of the subsections:

• Constants: between CONST and END_CONST.

• Input parameters: between VAR_INPUT and END_VAR.

• Output parameters: between VAR_OUTPUT and END_VAR.

• Static variables: between VAR and END_VAR. This also includes
declaration of the local instance for the EVALUATE block.

CONST
 LIMIT := 7;
 QUANTITY := LIMIT + 1;
END_CONST
VAR_INPUT
 measval_in : INT ; // New measured value
 newval : BOOL; // Measured value in "measvals" ring buffer
 resort : BOOL; // Sort measured values
 funct_sel : BOOL; // Select calculation square
root/square
 newsel : BOOL; // Take output address
 selection : WORD; // Output address
END_VAR
VAR_OUTPUT
 result_out : INT; // Calculated value
 measval_out : INT; // Corresponding measured value
END_VAR
VAR
 measvals : ARRAY[0..LIMIT] OF INT := 8(0);
 resultbuffer : ARRAY[0..LIMIT] OF
 STRUCT
 squareroot : INT;
 square : INT;
 END_STRUCT;
 pointer : INT := 0;
 oldval : BOOL := TRUE;
 oldsort : BOOL := TRUE;
 oldsel : BOOL := TRUE;
 address : INT := 0; //Converted output address
 outvalues_instance: EVALUATE; // Define local instance
END_VAR

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-20 A5E00059543-01

Static Variables

The FB block type was chosen because some data needs to be retained from one
program cycle to the next. These are the static variables declared in the declaration
subsection “VAR, END_VAR".

Static variables are local variables whose values are retained throughout the
processing of every block. They are used to save values of a function block and
are stored in the instance data block.

Initializing Variables

Note the initialization values that are entered in the variables when the block is
initialized (after being downloaded to the CPU). The local instance for the
EVALUATE FB is also declared in the declaration subsection “VAR, END_VAR".
This name is used subsequently for calling and accessing the output parameters.
The shared instance ACQUIRE_DATA is used to store the data.

 Name Data Type Initialization
Value

 Description

measvals ARRAY [..]
OF INT

8(0) Ring buffer for measured values

resultbuffer ARRAY [..]
OF STRUCT

- Array for structures with the
components "square root" and "square"
of the type INT

index INT 0 Index for ring buffer identifying location
for next measured value

oldval BOOL FALSE Previous value for reading in measured
value using "newval"

oldsort BOOL FALSE Previous value for sorting using "resort"

oldsel BOOL FALSE Previous value for reading in code
using "newsel"

address INT 0 Address for output of measured value
or result

eval_instance Local instance - Local instance for the EVALUATE FB

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-21

2.11.3 Statement Section of FB ACQUIRE

Structure of the Statement Section

The statement section of ACQUIRE is divided into three subsections:

• Acquire measured values:
If the input parameter "newval" is different from the "oldval", a new measured
value is read into the ring buffer.

• Start sorting and calculation
Sorting and calculation are started by calling the EVALUATE function block
when the input parameter "resort" has changed compared with "oldsort".

• Evaluating the coding and preparing output data
The coding is read word by word. According to SIMATIC conventions, this
means that the upper group of switches (byte 0) contains the higher-order eight
bits of the input word and the lower group of switches (byte 1) the lower-order
bits. The figure below shows the location of the coding switches.

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-22 A5E00059543-01

Calculating the Address

The figure below shows how the address is calculated: Bits 12 to 14 of input word
IW0 contain the coding that is read in when an edge is detected at the coding
switch (bit 15). The “address" is obtained by shifting right using the standard
function SHR and masking the relevant bits using an AND mask.

This address is used to write the array elements (calculated result and
corresponding measured value) to the output parameters. Whether square root or
square is output depends on “funct_sel".

An edge at the coding switch is detected because “newsel" is different from
“oldsel".

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6

Switches
for code
number

Coding
switch

0
1
2
3
4
5
6
7

8
9
10
11

15

12
13
14

Switches on
module

Word in
memory

After SHR
by 12 places

After AND,
mask 0007

0
1
2
3
4
5
6
7

8
9
10
11

15

12
13
14

0
1
2
3
4
5
6
7

8
9
10
11

15

12
13
14

address"

7

Byte 0

Byte 1 IW0

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-23

Statement Section

The statement section of the logic block is shown below:

BEGIN
(***
Part 1 : Acquiring measured values. If "newval" changes, the
measured value is entered. The MOD operation is used to
implement a ring buffer for measured values.
**)
IF newval <> oldval THEN
 pointer := pointer MOD QUANTITY;
 measvals[pointer] := measval_in;
 pointer := pointer + 1;
END_IF;
oldval := newval;
(**
Part 2 : Start sorting and calculation
if "resort" changes, start sorting the
ring buffer and run calculations with the
measured values. Results are stored in a new array called
"calcbuffer".
**)
IF resort <> oldsort THEN
 pointer := 0; //Reset ring buffer pointer
 eval_instance(sortbuffer := measvals); //Call EVALUATE
END_IF;
oldsort := resort;
resultbuffer := eval_instance.calcbuffer; //Square and square
root

(**
Part 3 : Evaluate coding and prepare output: If
"newsel" changes, the coding for addressing the array element
for output is recalculated: The relevant bits of "selection"
are masked and converted to integer. Depending on the setting
of
the "funct_sel" switch, "squareroot" or "square" is selected
for output.
**)
IF newsel <> oldsel THEN
 address := WORD_TO_INT(SHR(IN := selection, N := 12) AND
16#0007);
END_IF;
oldsel := newsel;
IF funct_sel THEN
 result_out := resultbuffer[address].square;
ELSE
 result_out := resultbuffer[address].squareroot;
END_IF;
measval_out := measvals[address]; //Measured value display
END_FUNCTION_BLOCK

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-24 A5E00059543-01

2.12 Creating the CYCLE Organization Block

Tasks of the CYCLE OB

An OB1 was chosen because it is called cyclically. It performs the following tasks
for the program:

• Calls and supplies the ACQUIRE function block with input and control data.

• Reads in the data returned by the ACQUIRE function block.

• Outputs the values to the display

At the beginning of the declaration section, there is the 20-byte temporary data
array “system data".

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-25

Program Code of the CYCLE OB

ORGANIZATION_BLOCK CYCLE
(***
CYCLE is like an OB1, i.e. it is called cyclically by the S7
system.
Part 1 : Function block call and transfer of
the input values Part 2 : Reading in of the output values
and output
with output switchover
***)
VAR_TEMP
 systemdata : ARRAY[0..20] OF BYTE; // Area for OB1
END_VAR
BEGIN
(* Part 1 :
***)
ACQUIRE.ACQUIRE_DATA(
 measval_in:= WORD_TO_INT(input),
 newval := "Input 0.0", //Input switch as signal
identifier
 resort := Sort_switch,
 funct_sel:= Function_switch,
 newsel := Coding_switch,
 selection := Coding);

(* Part 2 :
**)
IF Output_switch THEN
//Output changeover
 Output := ACQUIRE_DATA.result_out;
 //Square root or square
ELSE
 Output := ACQUIRE_DATA.measval_out; //Measured value
END_IF;
END_ORGANIZATION_BLOCK

Data Type Conversion

The measured value is applied to the input as a BYTE data type. It must be
converted to the INT data type. You will need to convert it from WORD to INT (the
prior conversion from BYTE to WORD is made implicitly by the compiler). The
output on the other hand requires no conversion, since this was declared as INT in
the symbol table.

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-26 A5E00059543-01

2.13 Test Data

Requirements

To perform the test, you require an input module with address 0 and an output
module with address 4.

Before performing the test, set all eight switches in the upper group to the left (“0")
and all eight switches in the lower group to the right (“1").

Reload the blocks on the CPU, since the initial values of the variables must also be
tested.

Test Procedure

Run the test as described in the table .

 Test Action Result

 1 Set the code to "111" (I0.4, I0.5 and I0.6) and
enter this with the coding switch (I0.7).

All outputs on the output module (lower-order
byte) are activated and the LEDs light up.

 2 Display the corresponding square root by
setting the output switch (I0.3) to "1".

The LEDs on the output module indicate the
binary number "10000" (=16).

 3 Display the corresponding square by setting the
function switch (I0.2) to "1".

15 LEDs on the output module light up. This
indicates an overflow since the result of
255 x 255 is too high for the integer range.

 4a Reset the output switch (I0.3) back to "0". The measured value is displayed again. All
LEDs on the outputs of the lower-order output
byte are set.

 4b Set the value 3 (binary "11") as the new
measured value at the input.

The output does not change at this stage.

 5a Monitor reading in of the measured value: Set
the code to "000" and enter it with coding switch
(I0.7) so that you can later watch the value
input.

The output module shows 0; i.e none of the
LEDs lights up.

 5b Switch over the input switch "Input 0.0" (I0.0).
This reads in the value set in test stage 4.

The output displays measured value 3, binary
"11".

 6 Start sorting and calculation by switching over
the sort switch (I0.1).

The output again indicates 0 since the sorting
process has moved the measured value to a
higher position in the array.

 7 Display the measured value after sorting: Set
the code "110" (I0.6 = 1, I0.5 = 1, I0.4 = 0 of
IB0; corresponds to bit 14, bit 13 and bit 12 of
IW0) and read it in by switching over the coding
switch.

The output now indicates the measured value
"11" again since it is the second highest value
in the array.

 8a Display the corresponding results as follows:
Switching over the output switch (I0.3) displays
the square of the measured value from the
7th step.

The output value 9 (binary "1001") is displayed.

 8b Switch over the function switch (I0.2) to obtain
the square root.

The output value 2 (binary "10") is displayed.

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 2-27

Additional Test

The following tables describe the switches on the input module and the examples
for square and square root. These descriptions will help you to define your own
tests:

• Input is made using switches. You can control the program with the top eight
switches and you can set the measured value with the bottom 8 switches.

• Output is indicated by LEDs. The top group displays the higher-order output
byte, the bottom group the lower-order byte.

 Switch Parameter Name Description

Channel 0 Enter switch Switch over to read in measured value

Channel 1 Sort switch Switch over to start sorting/calculation

Channel 2 Function switch Switch left ("0"): Square root,
Switch right ("1"): Square

Channel 3 Output switch Switch left ("0"): Measured value,
Switch right ("1"): Result

Channel 4 Code Output address bit 0

Channel 5 Code Output address bit 1

Channel 6 Code Output address bit 2

Channel 7 Code switch Switch over to enter code

The following table contains eight examples of measured values that have already
been sorted.

You can enter the values in any order. Set the bit combination for each value and
transfer this value by operating the input switch. Once all values have been
entered, start sorting and calculation by changing over the sort switch. You can
then view the sorted values or the results (square root or square).

 Measured Value Square Root Square

 0000 0001 = 1 0, 0000 0001 = 1 0000 0000, 0000 0001 = 1

 0000 0011 = 3 0, 0000 0010 = 2 0000 0000, 0000 1001 = 9

 0000 0111 = 7 0, 0000 0011 = 3 0000 0000, 0011 0001 = 49

 0000 1111 = 15 0, 0000 0100 = 4 0000 0000, 1110 0001 = 225

 0001 1111 = 31 0, 0000 0110 = 6 0000 0011, 1100 0001 = 961

 0011 1111 = 63 0, 0000 1000 = 8 0000 1111, 1000 0001 = 3969

 0111 1111 = 127 0, 0000 1011 = 11 0011 1111, 0000 0001 = 16129

 1111 1111 = 255 0, 0001 0000 = 16 0111 111, 1111 1111 =
Overflow!

Designing an SCL Program

S7-SCL V5.1 for S7-300/S7-400
2-28 A5E00059543-01

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-1

3 Using SCL

3.1 Starting the SCL Program

Starting from the Windows Interface

Once you have installed the SCL software on your programming device/PC, you
can start SCL using the Start button in the Windows taskbar (entry under “SIMATIC
/ STEP7").

Starting from the SIMATIC Manager

The quickest way to start SCL is to position the mouse pointer on an SCL source
file in the SIMATIC Manager and double-click on it.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-2 A5E00059543-01

3.2 User Interface

The SCL windows have the following standard components:

1. Title bar:
Contains the window title and window control buttons.

2. Menu bar:
Shows all menus available for the open window.

3. Toolbar:
Contains buttons for frequently used commands.

4. Working area:
Contains one or more windows in which you can edit program text or read
compiler information or debugging data

5. Status bar:
Displays the status and other information on the active object

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-3

3.3 Customizing the User Interface

Customizing the Editor

To make the settings for the editor, select the menu command Options >
Customize and click the "Editor" tab in the "Customize" dialog box. In this tab, you
can make the following settings:

 Options in the "Editor" Tab Explanation

Fonts Specifies the font for the entire source text.

Tabulator length Specifies the column width of tabulators.

Display line numbers Displays line numbers at the beginning of the lines.

Save before compiling Before compiling, you are asked whether you want to save
the source file.

Confirm before saving Asks for confirmation before saving.

Adapting the Style and Color

To change the style and color of the various language elements, select the menu
command Options > Customize and click the "Format" tab in the "Customize"
dialog box. Here, you can make the following settings:

 Options in the "Format" Tab Explanation

Keywords in uppercase Formats SCL keywords such as FOR, WHILE,
FUNCTION_BLOCK, VAR or END_VAR as upper case
characters when you are writing your program.

Indent keywords Indents lines in the declaration sections and within the
control statements IF, CASE, FOR, WHILE and REPEAT
while you are writing your program.

Indent automatically After a line break, the new line is automatically indented by
the same amount as the previous line. This setting applies
only to new lines.

Style/Color You can select the style and color of the individual
language elements.

The settings in this tab are only effective when you have selected the option "Use
following formats" in the "Format" tab.

Toolbar, Breakpoint Bar, Status Bar

You can toggle the display of the toolbar, breakpoint bar and status bar on and off
individually. Simply select or deselect the appropriate command in the View menu.
When the function is activated, a check mark appears next to the command.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-4 A5E00059543-01

3.4 Creating and Handling an SCL Source File

3.4.1 Creating a New SCL Source File

Before you can write an SCL program, you must first create a new SCL source file.
You create the source file in the source files folder in an S7 program.

Structure of an S7 Program in the SIMATIC Manager

Source files created in SCL can be integrated in the structure of an S7 program as
shown below:

Blocks

S7 Program

Sources

Block
(e.g. FB1, OB1)

Source file
(e.g. SCL source file)

Symbols

Follow the steps outlined below:

1. Open the "New" dialog box as follows:

- Click the "New" button in the toolbar or

- Select the menu command File > New.

2. In the "New" dialog box, select

- A project

- The filter setting "SCL Source File" and

- The source files folder within the S7 program

3. Type in the name of the source object in the text box. The name can be up to
24 characters long.

4. Confirm with "OK".

The source object is created under the name you have selected and is then
displayed in a window where you can continue working with it.

Note

You can also create an SCL source file with the SIMATIC Manager by selecting a
source file folder and the menu command Insert > S7 Software > SCL Source
File.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-5

3.4.2 Opening an SCL Source File

You can open an SCL source file so that you can compile or edit it.

Follow the steps outlined below:

1. Open the "Open" dialog box as follows:

- Click the "Open" button in the toolbar or

- Select the menu command File > Open.

2. Once the dialog box is open, select the following:

- Required project

- The required S7 program

- The corresponding source files folder

3. Select the SCL source file.

4. Click the "OK" button.

Note

You can also open an SCL source file in the SIMATIC Manager by double-
clicking its icon or using the menu command Edit > Open Object when the object
is selected.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-6 A5E00059543-01

3.4.3 Opening Blocks

It is not possible to open blocks with the SCL application. Blocks created with SCL
can, however, be opened with the LAD/STL/FBD editor and displayed and edited in
the STL programming language. Do not make any modifications to the block in this
STL representation for the following reasons:

• The displayed MC7 commands do not necessarily represent a valid STL block.

• An error-free compilation with the STL compiler involves modifications that
require thorough knowledge of both STL and SCL.

• The block compiled with STL has the STL language identifier and no longer the
SCL identifier.

• The SCL source file and the MC7 code are no longer consistent.

Further information is available in the STEP 7 online help.

Note

It is easier to maintain your CPU programs by making any changes you require in
the SCL source files, and then compiling them again.

3.4.4 Closing an SCL Source File

Follow the steps outlined below:

• Select the menu command File > Close.

• Click on the "Close" symbol in the title bar of the window.

Note

If you have modified the source file, you will be asked whether or not you want to
save any changes before you close the file. If you do not save changes they are
lost.

3.4.5 Specifying Object Properties

You can specify the program properties by assigning attributes to the blocks. You
can select the properties for the SCL source file (for example, the author) in the
"Properties" dialog box.

Follow the steps outlined below:

1. Select the menu command File > Properties.

2. Enter the options you require in the "Properties" dialog box.

3. Confirm with "OK".

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-7

3.4.6 Creating Source Files with a Standard Editor

You can also use a standard ASCII editor for editing your SCL source file. If you
choose this method, the helpful editing functions and integrated online help of SCL
are not available.

Once you have created the source file and saved it, you must then import it into the
source file folder of an S7 progam using the SIMATIC Manager (see STEP 7
documentation). Following this, you can open the source file in SCL and continue
working with it or compile it.

3.4.7 Block Protection

You can protect blocks by specifying the KNOW_HOW_PROTECT attribute when
you program the block in the source file.

Result of Block Protection

• When you open a compiled block later with the incremental STL editor, the
statements of the block are hidden.

• In the declarations of the block, only the variables of types VAR_IN, VAR_OUT
and VAR_IN_OUT are displayed. The variables of the declaration fields VAR
and VAR_TEMP remain hidden.

Rules for Using Block Protection

• The keyword is KNOW_HOW_PROTECT. Enter this before all other block
attributes.

• OBs, FBs, FCs, and DBs can be protected in this way.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-8 A5E00059543-01

3.5 Guidelines for SCL Source Files

3.5.1 General Rules for SCL Source Files

SCL source files must comply with the following rules:

• Any number of logic blocks (FB, FC, OB), data blocks (DB), and user-defined
data types (UDT) can be edited in an SCL source file.

• Each block type has a typical structure.

• Each statement and each variable declaration ends with a semicolon (;).

• No distinction is made between upper- and lowercase characters.

• Comments are only intended for documenting the program. They do not affect
the running of the program.

• Instance data blocks are created automatically when a function block is called.
They do not need to be edited.

• DB 0 has a special purpose. You cannot create a data block with this number.

3.5.2 Order of the Blocks

When creating the SCL source file, remember the following rules governing the
order of the blocks:

• Called blocks must precede the calling blocks.

• User-defined data types (UDTs) must precede the blocks in which they are
used.

• Data blocks that have been assigned a user-defined data type (UDT) are
located after the UDT.

• Shared data blocks come before all blocks that access them.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-9

3.5.3 Using Symbolic Addresses

In an SCL program, you work with addresses such as I/O signals, memory bits,
counters, timers, and blocks. You can address these elements in your program
using absolute addresses (for example. I1.1, M2.0, FB11), however the SCL
source files are much easier to read if you use symbols (for example Motor_ON).
The address can then be accessed in your user program using the symbol.

Local and Shared Symbols

• You use shared symbols for memory areas of the CPU and block identifiers.
These are known throughout the entire application program and must therefore
be identified uniquely. You can create the symbol table with STEP 7.

• Local symbols are only known in the block in whose declaration section they
are defined. You can assign names for variables, parameters, constants, and
jump labels and can use the same name for different purposes in different
blocks.

Note

Make sure that the symbolic names are unique and are not identical to any of the
keywords.

3.6 Editing in SCL Source Files

3.6.1 Undoing the Last Editing Action

With the menu command Edit > Undo, you can reverse one or more actions.

You cannot reverse all actions. As an example, the menu command File > Save
cannot be reversed.

3.6.2 Redoing an Editing Action

After you have reversed one or more actions, you can restore the reversed actions
with the menu command Edit > Redo.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-10 A5E00059543-01

3.6.3 Finding and Replacing Text Objects

If you want to edit or modify an SCL source file, you can often save valuable time
by searching for text objects and replacing them. You can search, for example, for
keywords, absolute identifiers, symbolic identifiers etc.

Follow the steps outlined below:

1. Select the menu command Edit > Find and Replace....

2. Enter the options in the "Find and Replace" dialog box.

3. Start the search as follows:

- Click the "Find" button to find a text object and to mark it or

- Click the "Replace" or "Replace All" button to find a text and replace it by
the text entered in the "Replace with" text box.

3.6.4 Selecting Text Objects

You can select text objects by holding down the mouse button and dragging the
mouse pointer over the selected area of text.

You can also:

• Select the complete source text by selecting the menu command Edit > Select
All.

• Select a word by double-clicking on it.

• Select an entire line by clicking in the margin to the left of the line.

With the menu command Edit > Undo Selection, you can cancel the selection.

3.6.5 Copying Text Objects

With this function you can copy entire programs or sections of them. The copied
text is placed on the clipboard and can then be pasted as often as you require at
other points in the text.

Follow the steps outlined below:

1. Select the text object to be copied.

2. Copy the object as follows:

- Click the "Copy" button in the toolbar or

- Select the menu command Edit > Copy.

3. Move the cursor to the point at which you want to paste the object (in the same
or in a different application).

4. Paste the object as follows:

- Click the "Paste" button in the toolbar or

- Select the menu command Edit > Paste.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-11

3.6.6 Cutting Text Objects

With this function, you place the selected text on the clipboard. Normally, this menu
command is used in conjunction with the menu command Edit > Paste that inserts
the content of the clipboard at the position currently marked by the cursor.

Follow the steps outlined below:

1. Select the object you want to cut.

2. Cut the object as follows:

- Click the "Cut" button in the toolbar or

- Select the menu command Edit > Cut .

Note
• The selected object cannot be cut if the menu command Edit > Cut is not activated (on

a gray background).

• Using the menu command Edit > Paste, you can insert the text you have cut at any
point (in the same or in a different program).

• The content of the clipboard is retained until you use one of the menu commands Edit >
Cut or Edit > Copy again.

3.6.7 Deleting Text Objects

You can delete a selected text object from the source text.

Follow the steps outlined below:

1. Select the text you want to delete.

2. Select the menu command Edit > Delete.

The deleted text is not copied to the clipboard. The deleted object can be retrieved
with the menu command Edit > Undo or Edit > Redo.

3.6.8 Positioning the Cursor in a Specific Line

With this function you can position the cursor at the start of a particular line.

Follow the steps outlined below:

1. Open the "Go To" dialog box by selecting the menu command Edit > Go To
Line.

2. Type in the line number in the "Go To" dialog box.

3. Confirm with "OK".

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-12 A5E00059543-01

3.6.9 Syntactically Correct Indenting of Lines

The following functions allow you to structure SCL source files by indenting lines.

• Automatic indent
When this function is active, the new line following a line break is automatically
indented by the same amount as the previous line.

• Indenting keywords
When this function is active, lines in the declaration sections and within the
control structures IF, CASE, FOR, WHILE and REPEAT are indented.

Follow the steps outlined below:

1. Select the Options > Customize menu command.

2. Select the "Format" tab in the dialog displayed.

3. Make sure that the option "Use following formats" is active.

4. Activate the option "Indent automatically" or "Indent keywords".

3.6.10 Setting the Font Style and Color

 The use of different styles and colors for the various language elements makes an
SCL source file easier to read and lends it a more professional appearance. To
format the source text, you can use the following functions:

• Keywords in uppercase:
When this function is active, defined keywords such as FOR, WHILE,
FUNCTION_BLOCK, VAR or END_VAR are written in uppercase letters.

• Defining the style and color:
There are various default styles and colors for the various language elements
such as operations, comments or constants. You can change these default
settings.
The following colors are the defaults:

 Font Color Language Element Example

Blue Keywords ORGANIZATION_BLOCK

Predefined data types INT

Predefined identifiers ENO

Standard functions BOOL_TO_WORD

Ochre Operations NOT

Pink Constants TRUE

Blue-green Comments //... or (*...*)

Violet Shared symbols (symbol table) inside quotes "Motor"

Black Normal text Variables

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-13

Follow the steps outlined below:

1. Select the Options > Customize menu command.

2. Select the "Format" tab in the dialog displayed.

3. Make sure that the option "Use following formats for printing:" is enabled.

4. You can now make the required settings. You can display detailed information
about the dialog box by clicking the "Help" button while the dialog is open.

3.6.11 Inserting Templates

3.6.11.1 Inserting Block Calls

SCL supports you when programming block calls. You can call the following
blocks:

• System function blocks (SFB) and system functions (SFC) from the SIMATIC
libraries,

• Function blocks and functions created in SCL,

• Function blocks and functions created in other STEP 7 languages.

Follow the steps outlined below:

1. Select the Insert > Block Call menu command.

2. Select the required SFC, SFB, FC, or FB in the dialog box and confirm your
selection with "OK".
SCL copies the called block automatically to the S7 program and enters the
block call and the formal parameters of the block with the correct syntax into
the source file.

3. If you call a function block, add the information about the instance DB.

4. Enter the actual parameters required by the block. To help you select an actual
parameter, SCL indicates the required data type as a comment.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-14 A5E00059543-01

3.6.11.2 Inserting Block Templates

One SCL editing function allows you to insert block templates for OBs, FBs, FCs,
instance DBs, DBs, DBs that reference UDTs, and UDTs. Using these block
templates makes it easier to program and to keep to the required syntax.

Follow the steps outlined below:

1. Position the cursor at the point at which you want to insert the block template.

2. Select the menu command Insert > Block Template > OB/FB/FC/DB/IDB/DB
Referencing UDT/UDT.

3.6.11.3 Inserting Templates for Comments

This SCL editing function allows you to insert templates for comments. Using these
templates makes it easier to input your information and to keep to the required
syntax.

Follow the steps outlined below:

1. Position the cursor after the block header of the required block.

2. Select the menu command Insert > Block Template > Comment.

3.6.11.4 Inserting Parameter Templates

One SCL editing function allows you to insert templates for the declarations of the
parameters. Using these templates makes it easier to type in your program and to
keep to the required syntax. You can declare parameters in function blocks and in
functions.

Follow the steps outlined below:

1. Position the cursor in the declaration section of an FB or FC.

2. Select the menu command Insert > Block Template > Parameter.

3.6.11.5 Inserting Control Structures

This SCL editing function allows you to insert control structure templates for logic
blocks. Using these templates makes it easier to input your information and to keep
to the required syntax.

Follow the steps outlined below:

1. Position the cursor at the point at which you want to insert the template.

2. Select the menu command Insert > Control Structure >
IF/CASE/FOR/WHILE/REPEAT.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-15

3.7 Compiling an SCL Program

3.7.1 What You Should Know About Compiling

Before you run can run or test your program, you must first compile it. Once you
start compilation, the compiler is started automatically. The compiler has the
following characteristics:

• You can compile an entire SCL source file in one compilation session or
compile selected individual blocks from the source file.

• All syntax errors found by the compiler are displayed in a window.

• Each time a function block is called, a corresponding instance data block is
created if it does not already exist.

• You can also compile several SCL source files together by creating an SCL
compilation control file.

• Using the Options > Customize menu command, you can set options for the
compiler.

Once you have created a user program that is free of errors and has been
compiled, you can assume that the program is correct. Problems can,
nevertheless, occur when the program is run on the PLC. Use the debugging
functions of SCL to find errors of this type.

3.7.2 Customizing the Compiler

You can adapt the compilation to meet your own requirements.

Follow the steps outlined below:

1. Select the menu command Options > Customize to open the "Customize"
dialog box.

2. Select the "Compiler" tab or "Create Block" tab.

3. Enter the options you require in the tab.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-16 A5E00059543-01

Options in the "Compiler" Tab

Create object code With this option, you decide whether or not you want to create executable
code. Compilation without this option serves simply as a syntax check.

Optimize object code When you select this option, the blocks are optimized in terms of memory
requirements and runtime on the PLC. It is advisable to keep this option
permanently selected since the optimization has no disadvantages that affect
the functionality of the block.

Monitor array limits If you select this option, a check is made during the runtime of the S7
program to determine whether array indexes are within the permitted range
according to the declaration for the ARRAY. If an array index exceeds the
permitted range, the OK flag is set to FALSE.

Create debug info This option allows you to run a test with the debugger after you have
compiled the program and downloaded it to the CPU. The memory
requirements of the program and the runtimes on the AS are, however,
increased by this option.

Set OK flag This option allows you to query the OK flag in your SCL source texts.

Permit nested comments Select this option if you want to nest comments within other comments in your
SCL source file.

Maximum string length: Here, you can reduce the standard length of the STRING data type. The
default is 254 characters. The setting affects all output and in/out parameters
as well as the return values of functions. Note the value you set must not be
smaller than the STRING variables actually used in the program.

Options in the "Create Block" Tab

Overwrite blocks Overwrites existing blocks in the "Blocks" folder of an S7 program if blocks
with the same identifier are created during compilation.
Blocks with the same name that already exist on the target system are also
overwritten when you download blocks.
If you do not select this option, you are prompted for confirmation before a
block is overwritten.

Display warnings You can decide whether you also want warnings displayed in addition to
errors following compilation.

Display errors before
warnings

You can have errors listed before warnings in the display window.

Generate reference data Select this option if you want reference data to be generated automatically
when a block is created.
With the menu command Options > Reference Data, you can also generate
or update the reference data later.

Include system attribute
’S7_server’

Select this option if you want the "S7 server" system attribute for parameters
to be taken into account when a block is created. You assign this attribute
when the parameter is relevant to the configuration of connections or
messages. It contains the connection or message number. This option
extends the time required for compilation.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-17

3.7.3 Compiling the Program

Before you can test a program or run it, it must first be compiled. To make sure that
you always compile the latest version of your SCL source file, it is advisable to
select the menu command Options > Customize and to select the option "Save
before compiling" in the "Editor" tab. The menu command File > Compile then
implicitly saves the SCL source file.

Follow the Steps Outlined Below:

1. Save the SCL source file to be compiled.

2. To create an executable program, you must select the option "Create object
code" in the "Compiler" tab of the "Customize" dialog box.

3. If required, modify other compiler settings.

4. Check whether the corresponding symbol table is in the same program folder.

5. You can start compilation in the following ways:

- The menu command File > Compile compiles the entire source file.

- The menu command File > Compile Selected Blocks opens a dialog box
in which you can select individual blocks for compilation.

6. The "Errors and Warnings" dialog box displays all syntax errors and warnings
that occurred while the program was being compiled. Correct any errors
reported by the compiler and then repeat the procedure outlined above.

3.7.4 Creating a Compilation Control File

If you create a compilation control file, you can compile several SCL source files at
one time within a source folder. In the compilation control file, you enter the name
of the SCL source files in the order in which they are to be compiled.

Follow the Steps Outlined Below:

1. Open the "New" dialog box by selecting the menu command File > New.

2. In the "New" dialog box, select

- a source file folder within an S7 program and

- the filter "SCL Compilation Control File"

3. Enter the name of the control file in the corresponding box
(max. 24 characters) and confirm with "OK".

4. The file is created and displayed in a working window for further editing.
In the working window, enter the name of the SCL source files to be compiled
in the required order and save the file.

5. Then start the compilation by selecting the menu command File > Compile.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-18 A5E00059543-01

3.7.5 Debugging the Program After Compilation

All the syntax errors and warnings that occur during compilation are displayed in
the "Errors and Warnings" window. If an error occurs, the block cannot be
compiled, whereas if only warnings occur, an executable block is compiled. You
may still, nevertheless, encounter problems running the block on the PLC.

To correct an error:

1. Select the error and press the F1 key to display a description of the error and
instructions on correcting the error.

2. If a line number and column number are displayed, you can locate the error in
the source text as follows:

- Click the error message in the "Errors and Warnings" window with the right
mouse button and then select the Display Errors command.

- Double-click the error message to position the cursor on the point reported
(line, column).

3. Find out the correct syntax in the SCL Language Description.

4. Make the necessary corrections in the source text.

5. Save the source file.

6. Compile the source file again.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-19

3.8 Saving and Printing an SCL Source File

3.8.1 Saving an SCL Source File

The term "saving" in SCL always refers to saving the source files. Blocks are
generated in SCL when the source file is compiled and automatically stored in the
appropriate program folder. You can save an SCL source file in its current state at
any time. The object is not compiled. Any syntax errors are also saved.

Follow the steps outlined below:

• Select the menu command File > Save, or click the "Save" button in the
toolbar.
The SCL source file is updated.

• If you want to create a copy of the active SCL source file, select the menu
command File > Save As. The Save As dialog box appears in which you can
enter a name and path for the duplicate file.

3.8.2 Customizing the Page Format

You can modify the appearance of a printout as follows:

• The menu command File > Page Setup allows you to select the page format
for your printout.

• You can set headers and footers for your documents in the SIMATIC Manager
using the menu command File > Headers and Footers.

• You can also display and check the page layout before you print it using the
menu command File > Print Preview.

3.8.3 Printing an SCL Source File

The SCL source file in the active editing window is printed; in other words, to print
an SCL source file, this file must already be open.

Follow the steps outlined below:

1. Activate the editing window for the SCL source file you want to print.

2. Open the "Print" dialog box as follows:

- Click the "Print" button in the toolbar or

- Select the menu command File > Print.

3. Select the option you require in the "Print" dialog box, such as print range and
number of copies.

4. Confirm with "OK".

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-20 A5E00059543-01

3.8.4 Setting the Print Options

You can use the following functions to format your printout:

• Form feed at start of block
When this check box is enabled, each block is printed out on a new page.

• Print line numbers
When this check box is enabled, line numbers are printed out at the beginning
of each line.

• Define the font
The default font for the entire text is Courier size 8. You can change this
setting.

• Define style
You can define various styles for the various language elements. You can
select the following elements:

 Language Element Example

Normal text

Keyword ORGANIZATION_BLOCK

Identifiers of predefined data types INT

Predefined identifiers ENO

Identifiers of standard functions BOOL_TO_WORD

Operations NOT

Constants TRUE

Comment section (* *)

Line comment //...

Shared symbols (symbol table) inside quotes "Motor"

Follow the steps outlined below:

1. Select the Options > Customize menu command.

2. Select the "Print" tab in the dialog displayed.

3. Make sure that the "Use following formats" check box is enabled.

4. Now make the required settings. You can display detailed information about
the dialog box by clicking the "Help" button while the dialog is open.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-21

3.9 Downloading the Created Programs

3.9.1 CPU Memory Reset

With the Clear/Reset function, you can delete the entire user program on a CPU
online.

Follow the steps outlined below:

1. Select the menu command PLC > Operating Mode and switch the CPU to
STOP.

2. Select the menu command PLC > Clear/Reset.

3. Confirm this action in the dialog box that is then displayed.

! Warning
• The CPU is reset.

• All user data are deleted.

• The CPU terminates all existing connections.

• If a memory card is inserted, the CPU copies the content of the memory card to the
internal load memory after the memory reset.

3.9.2 Downloading User Programs to the CPU

Requirements

When you compile an SCL source file, blocks are created from the source file and
are saved in the "Blocks" folder of the S7 program.

Blocks that are called at the first level in SCL blocks are automatically copied to the
"Blocks” directory and entered in the load list.

You can download further blocks from the user program with the SIMATIC
Manager from the programming device to the CPU.

Before you can download blocks, a connection must exist between the
programming device and CPU. An online user program must be assigned to the
CPU module in the SIMATIC manager.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-22 A5E00059543-01

Procedure

Once you have compiled the source file, you can start the download in the
following ways.

• The File > Download menu command downloads all blocks in the source file
and all blocks that are called at the first level.

• The File > Compile Selected Blocks menu command opens a dialog box in
which you can select individual blocks for compilation.

The blocks are transferred to the CPU. If a block already exists in the RAM of the
CPU you will be asked to confirm whether or not you want to overwrite the block.

Note

It is advisable to download the user program in the STOP mode, since errors can
occur if you overwrite an old program in the RUN mode.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-23

3.10 Debugging the Created Programs

3.10.1 The SCL Debugging Functions

Using the SCL debugging functions, you can check the execution of a program on
the CPU and locate any errors in the program. Syntax errors are indicated by the
compiler. Runtime errors occurring during the execution of the program are also
indicated, in this case, by system interrupts. You can locate logical programming
errors using the debugging functions.

SCL Debugging Functions

In SCL, you can start the following test functions:

• Monitor (S7-300/400-CPUs)
With this function, you can display the names and current values of variables in
the SCL source file. During the test, the values of the variables and the
parameters are displayed in chronological order and updated cyclically.

• Debug with Breakpoints/Single Step (S7-400 CPUs only)
With this function, you can set breakpoints and then debug in single steps. You
can execute the program algorithm, for example statement by statement and
can see how the values of the variables change.

! Caution

Running a test while your plant is in operation can lead to serious injury to
personnel or damage to equipment if the program contains errors!

Always make sure that no dangerous situations can occur before activating
debugging functions.

Requirements for Debugging

• The program must be compiled with the options "Create object code" and
"Create debug info". You can select the options in the "Compiler" tab of the
"Customize" dialog box. You can display this dialog with the menu command
Options > Customize.

• There must be an online connection from the programming device/PC to the
CPU.

• The program must also be loaded on the CPU. You can do this with the menu
command PLC > Download.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-24 A5E00059543-01

3.10.2 The "Monitor" Debugging Function

Using the continuous monitoring function, you can debug a group of statements.
This group of statements is also known as the monitoring range. During the test,
the values of the variables and the parameters of this range are displayed in
chronological order and updated cyclically. If the monitoring range is in a program
section that is executed in every cycle, the values of the variables cannot normally
be obtained from consecutive cycles.

Values that have changed in the current cycle and values that have not changed
can be distinguished by their color.

The range of statements that can be tested depends on the performance of the
connected CPU. After compilation, the SCL statements in the source code produce
different numbers of statements in machine code so that the length of the
monitoring range is variable and is determined and indicated by the SCL debugger
when you select the first statement of the required monitoring range.

Remember the following restrictions for the "Monitor" function:

• Variables of a higher data type cannot be displayed in their entirety. The
elements of these variables can be monitored providing they are not of an
elementary data type.

• Variables of the type DATE_AND_TIME and STRING and parameters of the
type BLOCK_FB, BLOCK_FC, BLOCK_DB, BLOCK_SDB, TIMER and
COUNTER are not displayed.

• Access to data blocks with the format <symbol>.<absoluteaddress> are not
displayed (for example data.DW4).

Querying this information usually extends the length of the cycle times. To allow
you to influence the extent to which the cycle time is extended, SCL provides two
different modes of operation.

 Operating
Mode

 Explanation

Test Operation In the "Test Operation" mode, the monitoring range is only limited by the
performance of the connected CPU. All the debugging functions can be
used without restrictions. The CPU cycle time can be extended
considerably since the status of statements, for example, in programmed
loops is queried in each iteration.

Process
Operation

In the "Process Operation" mode, the SCL debugger restricts the
maximum monitoring range so that the cycle times during testing do not
exceed the real runtimes of the process or only insignificantly.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-25

3.10.3 Debugging with Breakpoints/Single Step Mode"

If you test with breakpoints, the program is tested step by step. You can execute
the program algorithm statement by statement and can see how the values of the
variables change.

After setting breakpoints, you can allow the program to be executed as far as a
breakpoint and then start step-by-step monitoring at this breakpoint.

Single Step Functions:

When the "Debugging with Breakpoints" function is active, you can use the
following functions:

• Next Statement
The currently selected statement is executed.

• Resume
Resume until the next active breakpoint.

• To Cursor
Resume as far as the cursor position you have selected in the source file.

• Execute Call
Jump to or call an SCL block lower down the call hierarchy.

Breakpoints

You can define breakpoints at any point in the statement section of the source text.

The breakpoints are only transferred to the programmable controller and activated
when you select the menu command Debug > Breakpoints Active. The program
is then executed as far as the first breakpoint.

The maximum number of active breakpoints depends on the CPU.

CPU 416 maximum of 4 active breakpoints possible

CPU 414 maximum of 4 active breakpoints possible

S7-300 CPUs no active breakpoints possible

Requirements:

The opened source file was not modified previously in the editor.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-26 A5E00059543-01

3.10.4 Steps in Monitoring

Once you have downloaded the compiled program to the programmable controller,
you can test it in the "Monitor" mode.

Follow the steps outlined below:

1. Make sure that the requirements for debugging are satisfied and that the CPU
is in the RUN or RUN-P mode.

2. Select the window containing the source file of the program to be tested.

3. If you want to change the default mode (process operation), select the menu
command Debug > Operation > Test Operation.

4. Position the cursor in the line of the source text containing the first statement of
the range to be tested.

5. Make sure that no dangerous situations can result from running the program
and then select the menu command Debug > Monitor.
Result: The largest possible monitoring range is calculated and indicated by a
gray bar at the left edge of the window. The window is split and the names and
current values of the variables in the monitoring range are displayed line by
line in the right-hand half of the window.

6. Select the menu command View > Symbolic Representation to toggle the
symbolic names from the symbol table on and off in your program.

7. Select the menu command Options > Customize, open the "Format" tab, and
make the settings for the colors in which the values will be displayed.

8. Select the menu command Debug > Monitor to halt debugging.

9. Select the menu command Debug > Finish Debugging to quit the debugging
function.

Note

The number of statements that you can debug (monitoring range) depends on the
performance of the connected CPU.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-27

3.10.5 Steps for Debugging with Breakpoints

3.10.5.1 Defining Breakpoints

To set and define breakpoints:

1. Open the source file you want to debug.

2. Display the toolbar for breakpoint editing with the menu command View >
Breakpoint Bar.

3. Position the cursor at the required point and select the menu command Test >
Set Breakpoint or the button in the breakpoint bar. The breakpoints are
displayed at the left edge of the window as a red circle.

4. If required, select Debug > Edit Breakpoints and define a call environment.
The call environment decides whether or not a breakpoint is only active when
the block in which it is located

- is called by a specific higher-level block and/or

- is called with a specific data block.

3.10.5.2 Starting the Test with Breakpoints

Once you have downloaded the compiled program to the programmable controller
and set breakpoints, you can debug it in the "Test with Breakpoints" mode.

Follow the steps outlined below:

1. Open the SCL source file of the program you want to debug.

2. Make sure that no dangerous situations can result from running the program
and that the CPU is in the RUN-P mode. Select the menu command Debug >
Breakpoints Active and then Debug > Monitor.
Result: The window is split vertically into two halves. The program is executed
as far as the next breakpoint. When this is reached, the CPU changes to
HOLD and the red breakpoint is marked by a yellow arrow.

3. Continue with one of the following commands:

- Select the menu command Debug > Resume or click the "Resume"
button.
The CPU changes to the RUN mode. When the next active breakpoint is
reached, it changes to hold again and displays the breakpoint in the right-
hand window.

- Select the menu command Debug > Next Statement or click the "Next
Statement" button.
The CPU changes to RUN. After processing the selected statement it
changes to hold again and displays the contents of the currently processed
variables in the right-hand window.

- Select the menu command Debug > To Cursor or click the "To Cursor"
button.
The CPU changes to the RUN mode. When the selected point in the
program is reached, it changes to hold again.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-28 A5E00059543-01

- Select the menu command Debug > Execute call, if the program stops in
a line containing a block call.
If the lower block in the call hierarchy was created with SCL, it is opened
and executed in the test mode. After it is processed, the program jumps
back again to the call point.
If the block was created in another language, the call is skipped and the
program line that follows is selected.

Note

The menu commands Debug > Next Statement or Debug > To Cursor set and
activate a breakpoint implicitly. Make sure that you have not used the maximum
number of active breakpoints for your particular CPU when you select these
functions.

3.10.5.3 Stopping the Test with Breakpoints

To return to normal program execution:

• Deactivate the Debug > Breakpoints Active menu command to interrupt
debugging or

• Select the menu command Debug > Finish Debugging to quit debugging.

3.10.5.4 Activating, Deactivating and Deleting Breakpoints

You can activate/deactivate and delete set breakpoints individually:

1. Select the menu command Debug > Edit Breakpoints.

2. In the dialog, you can

- activate and deactivate selected breakpoints with a check mark.

- delete individual breakpoints.

To delete all breakpoints, select the menu command Debug > Delete All
Breakpoints.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-29

3.10.5.5 Debugging in the Single Step Mode

Follow the steps outlined below:

1. Set a breakpoint before the statement line from which you want to debug your
program in the single step mode.

2. Select the menu command Debug > Breakpoints Active.

3. Run the program until it reaches this breakpoint.

4. To execute the next statement, select the menu command Debug > Next
Statement or click the button in the toolbar.

- If the statement is a block call, the call is executed and the program jumps
to the first statement after the block call.

- With the Debug > Execute Call menu command, you jump to the block.
Here, you can then continue debugging in the single step mode or you can
set breakpoints. At the end of the block, you return to the statement after
the block call.

3.10.6 Using the STEP 7 Debugging Functions

3.10.6.1 Creating and Displaying Reference Data

You can create and evaluate reference data to help you when debugging and
modifying your user program.

You can display the following reference data:

• The user program structure

• The cross reference list

• The assignment list

• The list of unused addresses

• The list of addresses without symbols

Creating reference data

You can create reference data in the following ways:

• Using the menu command Options > Reference Data > Display, you can
create or update and display the data as required.

• By filtering, you can restrict the amount of reference data displayed and speed
up the creation and display of the data considerably. Select the Options >
Reference Data > Filter menu command.

• Using menu command Options > Customize, you can decide whether or not
the reference data are created automatically when the source file is compiled.
If you want the reference data compiled automatically, enter a check mark
beside “Create Reference Data" in the “Create Block" tab.
Remember that creating reference data automatically will increase the time
taken to compile your program.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-30 A5E00059543-01

3.10.6.2 Monitoring and Modifying Variables

When you test your program with the "monitoring and modifying variables" function,
you can do the following:

• Display the current values of global data contained in your user program
(monitor)

• Assign fixed values to the variables used in your user program (modify)

Follow the steps outlined below:

• Select the menu command PLC > Monitor/Modify Variables.

• Create the variable table (VAT) in the displayed window. If you want to modify
variables, enter the new values for the variables.

• Specify the trigger points and conditions.

! Caution

Running a test while your plant is in operation can lead to serious injury to
personnel or damage to equipment if the program contains errors! Before running
the debugging functions, make sure that no dangerous situations can occur!

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-31

3.11 Displaying and Modifying CPU Properties

3.11.1 Displaying and Modifying the CPU Operating Mode

You can query and modify the current operating mode of a CPU. There must be a
connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Operating Mode.

2. In the dialog box that is then displayed, select one of the following modes:

- Warm restart

- Cold restart

- Hot restart

- STOP

! Warning

Modifying the operating mode while your plant is in operation can lead to serious
injury to personnel or damage to equipment if the program contains errors!

Before running the debugging functions, make sure that no dangerous situations
can occur!

3.11.2 Displaying and Setting the Date and Time on the CPU

You can query and modify the current time on a CPU. There must be a connection
to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Set Date and Time.

2. In the dialog box that appears, set the date and time for the real-time clock of
the CPU.

If the CPU is not equipped with a real-time clock, the dialog box for the time
displays "00:00:00" and the date box has the value "00.00.00". This means that
you cannot make any changes.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-32 A5E00059543-01

3.11.3 Reading Out CPU Data

You can display the following information about a CPU:

• The system family, CPU type, order number, and version of the CPU.

• Size of the work memory and the load memory and the maximum possible
configuration of the load memory.

• Number and address area of inputs and outputs, timers, counters, and memory
bits.

• Number of local data with which this CPU can work.

• Whether or not a CPU is capable of multiprocessing (CPU-dependent).

There must be a connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Module Information.

2. Select the "General" tab in the dialog box.

3.11.4 Reading Out the Diagnostic Buffer of the CPU

If you read out the diagnostic buffer, you can find out the cause of the STOP mode
or back track the occurrence of diagnostic events.

There must be a connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Module Information.

2. Select the "Diagnostic Buffer" tab in the next dialog box.

3.11.5 Displaying/Compressing the User Memory of the CPU

Using this function, you can display information about the memory load of the CPU
and, if necessary, reorganize the CPU memory. This is necessary when the largest
free continuous memory area is no longer large enough to take a new object
downloaded onto the CPU from the PG.

There must be a connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Module Information.

2. Select the "Memory" tab in the next dialog box.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 3-33

3.11.6 Displaying the Cycle Time of the CPU

The following times are represented within the two selectable limit values:

• Duration of the longest cycle since the last change from STOP to RUN.

• Duration of the shortest cycle since the last change from STOP to RUN.

• Duration of the last cycle.

If the duration of the last cycle comes close to the watchdog time, it is possible that
the watchdog time will be exceeded, and that the CPU will change to the STOP
mode. The cycle time can be extended, for example, if you test blocks in the
program status. To display the cycle times of your program, there must be a
connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Module Information.

2. Select the "Cycle Time" tab in the next dialog box.

3.11.7 Displaying the Time System of the CPU

The time system of the CPU includes information about the internal clock and the
time synchronization between multiple CPUs.

There must be a connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Module Information.

2. Select the "Time System" tab in the next dialog box.

3.11.8 Displaying the Blocks on the CPU

You can display the blocks available online for the CPU.

There must be a connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Module Information.

2. In the next dialog box, select the "Performance Data/Blocks" tab.

Using SCL

S7-SCL V5.1 for S7-300/S7-400
3-34 A5E00059543-01

3.11.9 Displaying Information about Communication with the CPU

For each CPU, you can display information online about the selected and
maximum transmission rates, connections and the communications load.

There must be a connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Module Information.

2. Select the "Communication" tab in the next dialog box.

3.11.10 Displaying the Stacks of the CPU

By selecting this tab, you can display information online about the content of the
stacks of each CPU. The CPU must be in the STOP mode or must have reached a
breakpoint.

Displaying the stacks is extremely useful to help you locate errors, for example
when testing your blocks. If the CPU changes to STOP, you can display the
interrupt point with the current status bits and accumulator contents in the interrupt
stack (I stack) to find out the cause (for example of a programming error).

There must be a connection to the CPU.

Follow the steps outlined below:

1. Select the menu command PLC > Module Information.

2. Select the "Stacks" tab in the next dialog box.

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 4-1

4 Basic SCL Terms

4.1 Interpreting the Syntax Diagrams

The basic tool for the description of the language in the various sections is the
syntax diagram. It provides a clear insight into the structure of SCL syntax. The
section entitled "Language Description" contains a collection of all the diagrams
with the language elements.

What is a Syntax Diagram?

The syntax diagram is a graphical representation of the structure of the language.
That structure is defined by a series of rules. One rule may be based on others at a
more fundamental level.

Box 1 Box 2 Box 4

Box 3

Box 5

Name of rule

Iteration
Alternative

Sequence

Option

The syntax diagram is read from right to left. The following rule structures must be
adhered to:

• Sequence: a sequence of boxes

• Option: a skippable branch

• Iteration: repetition of branches

• Alternative: multiple alternative branches

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
4-2 A5E00059543-01

What Types of Boxes Are There?

A box is a basic element or an element made up of other objects. The diagram
below shows the symbols that represent the various types of boxes.

Complex element that is described
by other syntax diagrams.

Basic element that requires no further
explanation.
These are printable characters or special
characters, keywords and predefined
identifiers.
The details of these blocks are copied
unchanged.

What Does Flexible Format Mean?

When writing source code, the programmer must observe not only the syntax
rules but also lexical rules.

The lexical and syntax rules are described in detail in the section entitled
"Language Description". Flexible format means that you can insert formatting
characters such as spaces, tabs and page breaks as well as comments between
the rule sections.

With lexical rules, there is no flexibility of format! When you apply a lexical rule,
you must adopt the specifications exactly as set out.

Lexical Rule

Underscore

_ _

Number

Letter

Digit

Letter Letter

Underscore

The following examples keep to the above rule:
R_CONTROLLER3
_A_FIELD
_100_3_3_10
The following examples are invalid for the reasons listed
above:
1_1AB
RR__20
*#AB

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 4-3

Syntax Rule

With syntax rules, the format is flexible.

:= ;ConstantSimple variable

The following examples keep to the above rule:
VARIABLE_1 := 100; SWITCH:=FALSE;
VARIABLE_2 := 3.2;

4.2 Character Set

Letters and Numeric Characters

SCL uses the following characters as a subset of the ASCII character set:

• The (upper- and lowercase) letters A to Z.

• The Arabic numbers 0 to 9.

• Blanks - the blank itself (ASCII value 32) and all control characters
(ASCII 0-31) including the end of line character (ASCII 13).

Other Characters

The following characters have a specific meaning in SCL:

 + - * / = < > [] ()

 : ; $ # " ’ { } % . ,

Note

In the section entitled "Language Description", you will find a detailed list of all the
permitted characters and information on how the characters are interpreted in
SCL.

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
4-4 A5E00059543-01

4.3 Reserved Words

Reserved words are keywords that you can only use for a specific purpose. No
distinction is made between uppercase and lowercase.

Keywords in SCL

AND END_CASE ORGANIZATION_BLOCK

ANY END_CONST POINTER

ARRAY END_DATA_BLOCK PROGRAM

AT END_FOR REAL

BEGIN END_FUNCTION REPEAT

BLOCK_DB END_FUNCTION_BLOCK RETURN

BLOCK_FB END_IF S5TIME

BLOCK_FC END_LABEL STRING

BLOCK_SDB END_TYPE STRUCT

BLOCK_SFB END_ORGANIZATION_BLOCK THEN

BLOCK_SFC END_REPEAT TIME

BOOL END_STRUCT TIMER

BY END_VAR TIME_OF_DAY

BYTE END_WHILE TO

CASE ENO TOD

CHAR EXIT TRUE

CONST FALSE TYPE

CONTINUE FOR VAR

COUNTER FUNCTION VAR_TEMP

DATA_BLOCK FUNCTION_BLOCK UNTIL

DATE GOTO VAR_INPUT

DATE_AND_TIME IF VAR_IN_OUT

DINT INT VAR_OUTPUT

DIV LABEL VOID

DO MOD WHILE

DT NIL WORD

DWORD NOT XOR

ELSE OF Names of the standard functions

ELSIF OK

EN OR

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 4-5

4.4 Identifiers

Definition

An identifier is a name that you assign to an SCL language object; in other words,
to a constant, a variable or a block.

Rules

Identifiers can be made up of a maximum of 24 letters or numbers in any order but
the first character must be either a letter or the underscore character. Both
uppercase and lowercase letters are permitted. However, the identifiers are not
case-sensitive (AnNa and AnnA, for example, are identical).

Underscore

_ _

Digit

Letter

Digit

Letter Letter

IDENTIFIER

Underscore

Examples

The following names are examples of valid identifiers.

X y12
Sum Temperature
Name Surface
Controller Table

The following names are not valid identifiers for the reasons specified.

4th //The first character must be a letter or an
//underscore character

Array //ARRAY is a keyword
S Value //Blanks are not allowed (remember

//that a blank is also a character).

Notes
• Make sure that the name is not already being used by keywords or standard identifiers.

• It is advisable to select unique names with a clear meaning to make the source text
easier to understand.

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
4-6 A5E00059543-01

4.5 Standard Identifiers

In SCL, a number of identifiers are predefined and are therefore called standard
identifiers. These standard identifiers are as follows:

• The block identifiers,

• The address identifiers for addressing memory areas of the CPU,

• The timer identifiers and

• The counter identifiers.

4.6 Block Identifier

Definition

These standard identifiers are used for absolute addressing of blocks.

Rules

The table is sorted in the order of the German mnemonics and the corresponding
international mnemonics are shown in the second column. The letter x is a
placeholder for a number between 0 and 65533 or 0 and 65535 for timers and
counters.

 Mnemonic (SIMATIC) Mnemonic (IEC) Identifies

DBx DBx Data block. The block identifier DB0 is reserved for SCL.

FBx FBx Function block

FCx FCx Function

OBx OBx Organization block

SDBx SDBx System data block

SFCx SFCx System function

SFBx SFBx System function block

Tx Tx Timer

UDTx UDTx User-defined data type

Zx Cx Counter

In SCL, there are several ways in which you can specify the block identifier. You
can specify a whole decimal number as the number of the block.

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 4-7

DB, FB, FC, OB, UDT

Keyword
Block

IDENTIFIER

Symbol

Number

Example

The following are examples of valid identifiers:
FB10
DB100
T141

4.7 Address Identifier

Definition

At any point in your program, you can address memory areas of a CPU using their
address identifiers.

Rules

The table is sorted in the order of the German mnemonics and the corresponding
international mnemonics are shown in the second column. The address identifiers
for data blocks are only valid when the data block is also specified.

 Mnemonic
(German)

 Mnemonic
(Internat.)

 Addresses Data Type

Ax.y Qx,y Ouptut (via the process image) Bit

ABx QBx Output (via process image) Byte

ADx QDx Output (via process image) Double word

AWx QWx Output (via process image) Word

AXx.y QXx.y Output (via process image) Bit

Dx.y Dx.y Data block Bit

DBx DBx Data block Byte

DDx DDx Data block Double word

DWx DWx Data block Word

DXx.y DXx.y Data block Bit

Ex.y Ix.y Input (via the process image) Bit

EBx IBx Input (via process image) Byte

EDx IDx Input (via process image) Double word

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
4-8 A5E00059543-01

 Mnemonic
(German)

 Mnemonic
(Internat.)

 Addresses Data Type

EWx IWx Input (via process image) Word

EXx.y IXx.y Input (via process image) Bit

Mx.y Mx.y Memory bit Bit

MBx.y MBx.y Bit memory Byte

MDx MDx Bit memory Double word

MWx MWx Bit memory Word

MXx MXx Bit memory Bit

PABx PQBx Output (Direct to peripherals) Byte

PADx PQDx Output (Direct to peripherals) Double word

PAWx PQWx Output (Direct to peripherals) Word

PEBx PIBx Input (Direct from peripherals) Byte

PEDx PIDx Input (Direct from peripherals) Double word

PEWx PIWx Input (Direct from peripherals) Word

x = number between 0 and 65535 (absolute address)

Example

I1.0 MW10 PQW5 DB20.DW3

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 4-9

4.8 Timer Identifier

Rules

In SCL, there are several ways in which you can specify a timer. You can specify a
whole decimal number as the number of the timer.

Number

in German
and English mnemonics

IDENTIFIER

Symbol

T

4.9 Counter Identifier

Rules

There are several ways of specifying a counter in SCL. You can specify a whole
decimal number as the number of the counter.

NumberC

IDENTIFIER

Symbol

’C’ in English mnemonics
’Z’ in German mnemonics

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
4-10 A5E00059543-01

4.10 Numbers

In SCL, there are various ways of writing numbers. The following rules apply to all
numbers:

• A number can have an optional sign, a decimal point, and an exponent.

• A number must not contain commas or spaces.

• To improve legibility, the underscore (_) can be used as a separator.

• The number can be preceded if required by a plus (+) or minus (-). If the
number is not preceded by a sign, it is assumed to be positive.

• Numbers must not exceed or fall below certain maximum and minimum values.

Integers

An integer contains neither a decimal point nor an exponent. This means that an
integer is simply a sequence of digits that can be preceded by a plus or minus sign.
Two integer types are implemented in SCL, INT and DINT, each of which has a
different range of possible values.

Examples of valid integers:

0 1 +1 -1

743 -5280 600_00 -32_211

The following integers are incorrect for the reasons stated in each case:

123,456 Integers must not contain commas.

 36. Integers must not contain a decimal point.

10 20 30 Integers must not contain spaces.

In SCL, you can represent integers in different numeric systems by preceding the
integer with a keyword for the numeric system. The keyword 2# stands for the
binary system, 8# for the octal system and 16# for the hexadecimal system.

Valid integers for decimal 15:

2#1111 8#17 16#F

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 4-11

Real Numbers

A real number must either contain a decimal point or an exponent (or both). A
decimal point must be between two digits. This means that a real number cannot
start or end with a decimal point.

Examples of valid real numbers:

0.0 1.0 -0.2 827.602

50000.0 -0.000743 12.3 -315.0066

The following real numbers are incorrect:

1. There must be a digit on both sides of the decimal
point.

 1,000.0 Integers must not contain commas.

.3333 There must be a digit on both sides of the decimal
point.

A real number can include an exponent to specify the position of the decimal point.
If the number contains no decimal point, it is assumed that it is to the right of the
digit. The exponent itself must be either a positive or a negative integer. Base 10 is
represented by the letter E.

The value 3 x 10 exponent 10 can be represented in SCL by the following real
numbers:

3.0E+10 3.0E10 3e+10 3E10

0.3E+11 0.3e11 30.0E+9 30e9

The following real numbers are incorrect:

3.E+10 There must be a digit on both sides of the decimal point.

8e2.3 The exponent must be an integer.

.333e-3 There must be a digit on both sides of the decimal point.

30 E10 Integers must not contain spaces.

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
4-12 A5E00059543-01

4.11 Character Strings

Definition

A character string is a sequence of characters (in other words letters, numbers,
and special characters) set in quotes.

Examples of valid character strings:
’RED’ ’76181 Karlsruhe’ ’270-32-3456’
’DM19.95’ ’The correct answer is:’

Rules

You can enter special formatting characters, the quote (’) or a $ character with the
escape symbol $.

 Source Text After Compilation

’SIGNAL$’RED$’’ SIGNAL’RED’

’50.0$$’ 50.0$

’VALUE$P’ VALUE page break

’RUL$L’ RUL line feed

’CONTROLLER$R CONTROLLER carriage
return

’STEP$T’ STEP tabulator

To enter nonprintable characters, type in the substitute representation in
hexadecimal code in the form $hh, where hh stands for the value of the ASCII
character expressed in hexadecimal.

To enter comments in a character string that are not intended to be printed out or
displayed, you use the characters $> and $< to enclose the comments.

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 4-13

4.12 Symbol

You can enter symbols in SCL using the following syntax. The quotes are only
necessary when the symbol does not adhere to the IDENTIFIER rule.

Syntax:

" "
Printable
character

4.13 Comment Section

Rules

• The comment section can extend over a number of lines and is preceded by
‘ (*’ and terminated by ‘ *)’.

• The default setting permits the nesting of comment sections. You can,
however, change this setting and prevent the nesting of comment sections.

• Comments must not be placed in the middle of a symbolic name or a constant.
They may, however, be placed in the middle of a string.

Syntax

The comment section is represented formally by the following syntax diagram:

Comment Section

(* *)Character

Example
(* This is an example of a comment section,
that can extend over several lines.*)

SWITCH := 3 ;
END_FUNCTION_BLOCK

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
4-14 A5E00059543-01

4.14 Line Comment

Rules

• The line comment is introduced by "//" and extends to the end of the line.

• The length of a comment is limited to a maximum of 254 characters including
the introductory characters ’//’.

• Comments must not be placed in the middle of a symbolic name or a constant.
They may, however, be placed in the middle of a string.

Syntax

The line comment is represented formally by the following syntax diagram:

// CR
Printable
character

Line Comment

Example
VAR
 SWITCH : INT ; // line comment
END_VAR

Notes
• Comments within the declaration section that begin with // are included in the interface

of the block and can therefore also be displayed in the LAD/STL/CSF editor.

• The printable characters are listed in the section entitled "Language Description".

• Within the line comment, the pair of characters "(*" and "*)" have no significance.

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 4-15

4.15 Variables

An identifier whose value can change during the execution of a program is called a
variable. Each variable must be individually declared before it can be used in a
logic block or data block. The declaration of a variable specifies that an identifier is
a variable (rather than a constant, etc.) and defines the variable type by assigning it
to a data type.

The following types of variable are distinguished on the basis of their scope:

• Local data

• Shared user data

• Permitted predefined variables (CPU memory areas)

Local Data

Local data are declared in a logic block (FC, FB, OB) and have only that logic block
as their scope. Specifically these are the following:

 Variable Explanation

Static Variables Static variables are local variables whose value is retained both
during and after execution of the block (block memory). They are
used for storing values for a function block.

Temporary
Variables

Temporary variables belong to a logic block locally and do not
occupy any static memory area. Their values are only retained while
the block concerned is running. Temporary variables cannot be
accessed from outside the block in which they are declared.

Block Parameters Block parameters are formal parameters of a function block or a
function. They are local variables that are used to pass the actual
parameters specified when a block is called.

Shared User Data

These are data or data areas that can be accessed from any point in a program. To
use shared user-defined variables, you must create data blocks (DBs).

When you create a DB, you define its structure in a structure declaration. Instead of
a structure declaration, you can use a user-defined data type (UDT). The order in
which you specify the structural components determines the sequence of the data
in the DB.

Memory Areas of a CPU

You can access memory areas of a CPU directly using the address identifiers from
any point in the program without having to declare these variables.

Remember also that you can always address these memory areas symbolically.
The assignment of symbols in this situation is made globally using the symbol table
in STEP 7.

Basic SCL Terms

S7-SCL V5.1 for S7-300/S7-400
4-16 A5E00059543-01

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-1

5 SCL Program Structure

5.1 Blocks in SCL Source Files

You can program any number of blocks in an SCL source file. STEP 7 blocks are
subunits of a user program distinguished according to their function, their structure
or their intended use.

Block Types

The following blocks are available:

STEP 7 Blocks

OB FC FB DB UDT

Ready-Made Blocks

You do not have to program every function yourself. You can also make use of
various ready-made blocks. These are available in the CPU operating system or
libraries (S7lib) in the STEP 7 Standard Package and can be used, for example,
to program communication functions.

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-2 A5E00059543-01

5.2 Order of the Blocks

The following general rule applies:

Called blocks are located before the calling blocks.

Specifically, this means the following:

• User-defined data types (UDTs) must precede the blocks in which they are
used.

• Data blocks with an assigned user-defined data type (UDT) must follow the
UDT.

• Data blocks that can be accessed by all logic blocks must precede all blocks
that access them.

• Data blocks with an assigned function block come after the function block.

• The organization block OB1, which calls other blocks, comes at the very end.
Blocks that are called by blocks called in OB1 must precede the calling blocks.

• Blocks that you call in a source file, but that you do not program in the same
source file must exist already when the file is compiled into the user program.

Instance DB for FB 3

UDT

DB

DB from UDT

FB 3

FC5

OB1

calls

assigned

calls

calls

calls

O
rd

er
 in

 th
e

so
ur

ce
 fi

le

assigned

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-3

5.3 General Structure of a Block

A block consists of the following areas:

• Block start identified by a keyword and a block number or a symbolic block
name, for example, "ORGANIZATION_BLOCK OB1" for an organization block.
With functions, the function type is also specified. This decides the data type of
the return value. If you want no value returned, specify the keyword VOID.

• Optional block title preceded by the keyword "TITLE =".

• Optional block comment. The block comment can extend over several lines,
each line beginning with "//".

• Entry of the block attributes (optional)

• Entry of the system attributes for blocks (optional)

• Declaration section (depending on the block type)

• Statement section in logic blocks or
assignment of actual values in data blocks (optional)

• In logic blocks: Statements

• Block end indicated by END_ORGANIZATION_BLOCK,
END_FUNCTION_BLOCK or END_FUNCTION

5.4 Block Start and End

Depending on the type of block, the source text for a single block is introduced by a
standard identifier for the start of the block and the block name. It is closed with a
standard identifier for the end of the block.

The syntax for the various types of blocks can be seen in the following table:

 Identifier Block Type Syntax

Function block FB FUNCTION_BLOCK fb_name
. . .
END_FUNCTION_BLOCK

Function FC FUNCTION fc_name : function type
. . .
END_FUNCTION

Organization block OB ORGANIZATION_BLOCK ob_name
. . .
END_ORGANIZATION_BLOCK

Data block DB DATA_BLOCK db_name
. . .
END_DATA_BLOCK

Shared data type UDT TYPE udt_name
. . .
END_TYPE

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-4 A5E00059543-01

Block Name

In the table, xx_name stands for the block name according to the following syntax:

DB, FB, FC, OB, UDT

Keyword
Block

IDENTIFIER

Symbol

Number

The block number can be a value from 0 to 65533, the data block identifier DB0 is,
however, reserved.

Please note also that you must define an identifier or a symbol in the STEP 7
symbol table.

Example
FUNCTION_BLOCK FB10
FUNCTION_BLOCK Controller Block
FUNCTION_BLOCK "Controller.B1&U2"

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-5

5.5 Attributes for Blocks

Definition

A block attribute is a block property that you can use, for example, to specify the
block type, the version, the block protection or the author. You can display the
properties in a STEP 7 properties page when you select blocks for your application.

You can assign the following attributes:

 Keyword/Attribute Explanation Examples

TITLE=’printable
characters’

Title of the block TITLE=’SORT’

VERSION :’decimal digit
string.
decimal digit string’

Version number of the block
(0 to 15)
Note: With data blocks (DBs),
the VERSION attribute is not
specified in quotes.

VERSION : ’3.1’

//With a DB:

VERSION : 3.1

KNOW_HOW_PROTECT Block protection; a block
compiled with this option cannot
be opened with STEP 7.

KNOW_HOW_PROTECT

AUTHOR : Name of the author: company
name, department name or
other name (IDENTIFIER)

AUTHOR : Siemens

NAME : Block name (IDENTIFIER) NAME : PID

FAMILY : Name of the block family: for
example motors. This saves the
block in a group of blocks so that
it can be found again more
quickly (IDENTIFIER).

FAMILY : example

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-6 A5E00059543-01

Rules

• You declare the block attributes using keywords directly after the statement for
the block start.

• The identifier can be up to a maximum of 8 characters long.

The syntax for entering block attributes is shown below:

Title

TITLE = ’ ’
Printable

character

Version

: ’ ’
DECIMAL

DIGIT STRINGVersion .

Block Protection

KNOW_HOW_PROTECT

Author

: IDENTIFIERAUTHOR

max. 8

Name

: IDENTIFIERNAME

max. 8

Block Family

: IDENTIFIERFAMILY

max. 8

DECIMAL
DIGIT STRING

Examples

FUNCTION_BLOCK FB10
TITLE = ’Mean_Value’
VERSION : ’2.1’
KNOW_HOW_PROTECT
AUTHOR : AUT_1

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-7

5.6 Block Comment

You can enter comments for the entire block in the block header after the "TITLE:"
line. Here, you use the line comment notation. The comment can extend over
several lines, each line beginning with "//".

The block comment is displayed, for example, in the Properties window of the block
in the SIMATIC Manager or in the LAD/STL/FBD editor.

Example
FUNCTION_BLOCK FB15
TITLE=MY_BLOCK
//This is a block comment.
//It is entered as a series of line comments
//and can be displayed, for example, in the SIMATIC Manager.
AUTHOR...
FAMILY...

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-8 A5E00059543-01

5.7 System Attributes for Blocks

Definition

System attributes are control system attributes valid beyond the scope of a single
application. System attributes for blocks apply to the entire block.

Rules

• You specify system attributes immediately after the block start statement.

• The syntax for the entries is shown below:

System attributes for blocks

{ }’:=IDENTIFIER

max. 24 characters
Printable

character
’

;

Examples

FUNCTION_BLOCK FB10
{S7_m_c := ’true’ ;
S7_blockview := ’big’}

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-9

5.8 Declaration Section

Definition

The declaration section is used for declarations of local variables, parameters,
constants, and labels.

• The local variables, parameters, constants, and labels that must only be valid
within a block are defined in the declaration section of the logic block.

• You define the data areas you want to be accessible to any logic block in the
declaration section of data blocks.

• In the declaration section of a UDT, you specify the user-defined data type.

Structure

A declaration section is divided into different declaration subsetions indicated by
their own pair of keywords. Each subsection contains a declaration list for data of
the same type. These subsections can be positioned in any order. The following
table shows the possible declaration subsections:

 Data Syntax FB FC OB DB UDT

Constants CONST
declaration list
END_CONST

X X X

Labels LABEL
declaration list
END_LABEL

X X X

Temporary Variables VAR_TEMP declaration list
END_VAR X X X

Static variables VAR
declaration list
END_VAR

X X *) X **) X **)

Input parameters VAR_INPUT
declaration list
END_VAR

X X

Output parameters VAR_OUTPUT
declaration list
END_VAR

X X

In/out parameters VAR_IN_OUT
declaration list
END_VAR

X X

 *) Although the declaration of variables between the keyword pair VAR and
END_VAR is permitted in functions, the declarations are shifted to the
temporary area when the source file is compiled.

 **) In DBs and UDTs, the keywords VAR and END_VAR are replaced by
 STRUCT and END_STRUCT respectively.

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-10 A5E00059543-01

5.9 System Attributes for Parameters

Definition

System attributes are control system attributes valid beyond the scope of a single
application. They are used, for example, for configuring messages or connections.
System attributes for parameters apply only to the specific parameters that have
been configured. You can assign system attributes to input, output and in/out
parameters.

Rules

• You assign system attributes for parameters in the declaration fields input
parameters, output parameters, or in/out parameters.

• An identifier can have up to a maximum of 24 characters.

• The syntax for the entries is shown below:

System attributes for parameters

{ }’:=IDENTIFIER

max. 24 characters
Printable

character
’

;

Example
VAR_INPUT
 in1 {S7_server:=’alarm_archiv’;
 S7_a_type:=’ar_send’}: DWORD ;
END_VAR

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-11

5.10 Statement Section

Definition

The statement section contains statements that will be executed when a logic block
is called. These statements are used for processing data or addresses.

The statement section of a data block contains statements for initializing its
variables.

Rules

• If you prefer, you can start the statement section with the BEGIN keyword.
BEGIN is mandatory for data blocks. The statement section ends with the
keyword for the end of the block.

• Each statement ends with a semicolon.

• Identifiers used in the statement section must already have been declared.

• If required, you can enter a label before each statement.

The syntax for the entries is shown below:

Statement

Label

:Identifier ;

Statement Section

Example

BEGIN
 INITIAL_VALUE :=0;
 FINAL_VALUE :=200;
.
.
STORE: RESULT :=SETPOINT;
.
.
END_FUNCTION_BLOCK

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-12 A5E00059543-01

5.11 Statements

Definition

A statement is the smallest self-contained unit the user program. It represents an
instruction to the processor to perform a specific operation.

The following types of statement can be used in SCL:

• Value assignments used to assign the result of an expression or the value of
another variable to a variable.

• Control statements used to repeat statements or groups of statements or to
branch within a program.

• Subroutine calls used to call functions or function blocks.

Rules

The syntax for the entries is shown below:

Value assignment

Subroutine
call

Control statement

Statement

Example

The following examples illustrate the various types of statement:
// Example of a value assignment
MEASVAL:= 0 ;

// Example of a subroutine call
FB1.DB11 (TRANSFER:= 10) ;

// Example of a control statement
WHILE COUNTER < 10 DO..
.
.
END_WHILE;

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-13

5.12 Structure of a Function Block (FB)

Definition

A function block (FB) is a logic block that contains part of a program and that has a
memory area assigned to it. Whenever an FB is called, an instance DB must be
assigned to it. You specify the structure of this instance DB when you define the
FB declaration section.

Syntax

Statement sectionBEGIN

FB declaration
section

FB
IDENTIFIER

Function block

FUNCTION_BLOCK

PROGRAM

END_FUNCTION_BLOCK

END_PROGRAM

FB Identifier

After the FUNCTION_BLOCK or PROGRAM keyword, enter the keyword FB as the
FB identifier followed by the block number or the symbolic name of the FB. The
block number can be a value from 0 to 65533.

Examples:
FUNCTION_BLOCK FB10
FUNCTION_BLOCK MOTOR1

FB Declaration Section

The FB declaration section is used to define the block-specific data. The possible
declaration sections are described in detail in the section entitled "Declaration
Section". Remember that the declaration section also determines the structure of
the assigned instance DB.

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-14 A5E00059543-01

Example

The example below shows the source code for a function block. The input and
output parameters (in this case, V1 and V2) are assigned initial values in this
example.

FUNCTION_BLOCK FB11
VAR_INPUT
 V1 : INT := 7 ;
END_VAR
VAR_OUTPUT
 V2 : REAL ;
END_VAR
VAR
 FX1, FX2, FY1, FY2 : REAL ;

END_VAR
BEGIN
 IF V1 = 7 THEN
 FX1 := 1.5 ;
 FX2 := 2.3 ;
 FY1 := 3.1 ;
 FY2 := 5.4 ;
//Call function FC11 and supply parameters
//using the static variables.
 V2 := FC11 (X1:= FX1, X2 := FX2, Y1 := FY1, Y2 := FY2) ;
 END_IF ;
END_FUNCTION_BLOCK

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-15

5.13 Structure of a Function (FC)

Definition

A function (FC) is a logic block that is not assigned its own memory area. It does
not require an instance DB. In contrast to an FB, a function can return a function
result (return value) to the point from which it was called. A function can therefore
be used like a variable in an expression. Functions of the type VOID do not have a
return value.

Syntax

Function

Statement sectionBEGIN END_FUNCTION

Data type
specification:

FC declaration
section

FUNCTION

VOID

FC
IDENTIFIER

FC Identifier
After the "FUNCTION" keyword, enter the keyword FC as the FC identifier followed
by the block number or the symbolic name of the FC. The block number can be a
value from 0 to 65533.

Example
FUNCTION FC17 : REAL
FUNCTION FC17 : VOID

Data Type Specification

The data type specification determines the data type of the return value. All data
types are permitted except for STRUCT and ARRAY. No data type needs to be
specified if you do not require a return value (using VOID).

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-16 A5E00059543-01

FC Declaration Section

The FC declaration section is used to declare the local data (temporary variables,
input parameters, output parameters, in/out parameters, constants, labels).

FC Code Section

The function name must be assigned the function result in the code section. This
assignment is unnecessary with functions of the type VOID. The following is an
example of a valid statement within a function with the name FC31:
FC31:= VALUE;

Example
FUNCTION FC11: REAL
VAR_INPUT
 x1: REAL ;
 x2: REAL ;
 x3: REAL ;
 x4: REAL ;
END_VAR
VAR_OUTPUT

Q2: REAL ;
END_VAR
BEGIN
 // Return value from function
 FC11:= SQRT((x2 - x1)**2 + (x4 - x3) **2) ;
 Q2:= x1 ;
END_FUNCTION

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-17

5.14 Structure of an Organization Block (OB)

Definition

The organization block just like an FB or FC is part of the user program and is
called cyclically or as a response to certain events by the operating system. It
provides the interface between the user program and the operating system.

Syntax

Organization Block

Statement sectionBEGIN END_ORGANIZATION_BLOCK

OB
IDENTIFIER

OB declaration sectionORGANIZATION_BLOCK

OB Identifier
After the "ORGANIZATION_BLOCK" keyword, enter the keyword OB as the
OB identifier followed by the block number or the symbolic name of the OB. The
block number can be a value from 1 to 65533.

Examples
ORGANIZATION_BLOCK OB1
ORGANIZATION_BLOCK ALARM

OB Declaration Section

The OB declaration section is used to declare the local data (temporary variables,
constants, labels).

To execute, each OB always requires 20 bytes of local data for the operating
system. You must declare an array for this with an identifier. If you insert the block
template for an OB, this declaration is already included.

Example
ORGANIZATION_BLOCK OB1
VAR_TEMP
 HEADER : ARRAY [1..20] OF BYTE ; //20 bytes for opsy
END_VAR
BEGIN
 FB17.DB10 (V1 := 7) ;
END_ORGANIZATION_BLOCK

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-18 A5E00059543-01

5.15 Structure of a Data Block (DB)

 Definition

Shared user-specific data that can be accessed by all blocks in a program are
contained in data blocks. Each FB, FC or OB can read or write these data blocks.

There are two types of data blocks:

• Data blocks
Data blocks that can be accessed by all logic blocks of the S7-program. Every
FB, FC or OB can read or write the data contained in these data blocks.

• Data blocks assigned to an FB (instance DB)
Instance data blocks are data blocks that are assigned to a particular function
block (FB). These contain the local data for the function block to which they are
assigned. These data blocks are created automatically by the SCL compiler
when the FB is called in the user program.

Syntax

Data Block

DB assignment sectionBEGIN END_DATA_BLOCK

DATA_BLOCK DB declaration section
DB

NAME

DB Identifier
After the "DATA_BLOCK" keyword, enter the keyword DB as the DB identifier
followed by the block number or the symbolic name of the DB. The block number
can be a value from 1 to 65533.

Examples:
DATA_BLOCK DB20
DATA_BLOCK MEASRANGE

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-19

DB Declaration Section

You define the data structure of the DB in the DB declaration section. There are
two ways of doing this, as follows:

• By assigning a user-defined data type
Here, you can specify the identifier of a user-defined data type defined earlier
in the program. The data block then takes the structure of this UDT. You can
assign initial values for the variables in the assignment section of the DB.

• By defining a STRUCT data type
Within the STRUCT data type specification, you specify the data type for each
variable to be stored in the DB and possibly also initial values.

DB
NAME

Structure of Data
Type Specification

DB Declaration Section

Example
DATA_BLOCK DB20
 STRUCT // Declaration section
 VALUE:ARRAY [1..100] OF INT;
 END_STRUCT

BEGIN // Start of assignment section
:
END_DATA_BLOCK // End of data block

DB Assignment Section

In the assignment section, you can adapt the data you declared in the declaration
section so that they have DB specific values for your particular application.

The assignment section begins with the keyword BEGIN and then consists of a
sequence of value assignments.

:= ;Constant*Simple variable

DB Assignment Section

* in STL notation

When assigning initial values (initialization), STL syntax applies to entering
attributes and comments. For information on how to write constants, attributes and
comments, use the STL online help or refer to the STEP 7 documentation.

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-20 A5E00059543-01

Example
// Data block with STRUCT data type assigned DATA_BLOCK DB10
 STRUCT // Date declaration with initial values
 VALUE : ARRAY [1..100] OF INT := 100 (1) ;
 SWITCH : BOOL := TRUE ;
 S_WORD : WORD := W#16#FFAA ;
 S_BYTE : BYTE := B#16#FF ;
 S_TIME : S5TIME := S5T#1h30m10s ;
 END_STRUCT

BEGIN // Assignment section
 // Value assignment for specific array elements
 VALUE [1] := 5;
 VALUE [5] := -1 ;

END_DATA_BLOCK

// Data block with user-defined data type assigned
DATA_BLOCK DB11
 UDT 51
BEGIN
END_DATA_BLOCK

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 5-21

5.16 Structure of a User-Defined Data Type

User-defined data types (UDTs) are special data structures that you create
yourself. Since user-defined data types are assigned names they can be used
many times over. Once they have been defined, they can be used at any point in
the CPU program; in other words, they are shared data types. They can therefore
be used:

• In blocks in the same way as elementary or complex data types, or

• As templates for creating data blocks with the same data structure.

When using user-defined data types, remember that they are located in the
SCL source file before the blocks in which they are used.

TYPE
UDT

NAME END_TYPE

Structure
data type
specification

User-Defined Data Type

UDT Identifier
After the TYPE keyword, enter the UDT keyword followed by a number or simply
the symbolic name of the UDT. The block number can be a value from 0 to 65533.

Examples:

TYPE UDT10
TYPE SUPPLYBLOCK

Specifying the Data Type

The data type is always specified with a STRUCT data type specification. The
data type UDT can be used in the declaration subsections of logic blocks or in data
blocks or assigned to DBs.

SCL Program Structure

S7-SCL V5.1 for S7-300/S7-400
5-22 A5E00059543-01

Example of a UDT Definition

TYPE MEASVALUES
STRUCT
// UDT definition with symbolic identifier
 BIPOL_1 : INT := 5;
 BIPOL_2 : WORD := W#16#FFAA ;
 BIPOL_3 : BYTE := B#16#F1 ;
 BIPOL_4 : WORD := B#(25,25) ;
 MEASURE : STRUCT
 BIPOLAR_10V : REAL ;
 UNIPOLAR_4_20MA : REAL ;
 END_STRUCT ;
END_STRUCT ;
END_TYPE

//Use of the UDT in an FB
FUNCTION_BLOCK FB10
VAR
 MEAS_RANGE : MEASVALUES;
END_VAR
BEGIN
 // . . .
 MEAS_RANGE.BIPOL_1 := -4 ;
 MEAS_RANGE.MEASURE.UNIPOLAR_4_20MA := 2.7 ;
 // . . .
END_FUNCTION_BLOCK

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-1

6 Data Types

6.1 Overview of the Data Types in SCL

The data types decide:

• the type and interpretation of the data elements,

• the permitted ranges for the data elements,

• the permitted operations that can be executed on an address of a data type

• the notation of the constants of the data type.

Elementary Data Types

Elementary data types define the structure of data elements that cannot be
subdivided into smaller units. They correspond to the definition in the
DIN EN 1131-3 standard. An elementary data type describes a memory area with a
fixed length and stands for bit, integer, real, time period, time-of-day and character
values. The following data types are predefined in SCL.

 Group Data Types Explanation

Bit Data Types BOOL

BYTE

WORD

DWORD

Date elements of this type occupy either 1 bit, 8 bits, 16 bits or
32 bits

Character Types CHAR Data elements of this type occupy exactly 1 character in the
ASCII character set

Numeric Types INT

DINT

REAL

Data elements of this type are available for processing numeric
values.

Time Types TIME

DATE

TIME_OF_DAY

S5TIME

Data elements of this type represent the various time and date
values in STEP 7.

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-2 A5E00059543-01

Complex Data Types

SCL supports the following complex data types:

 Data Type Explanation

DATE_AND_TIME

DT

Defines an area of 64 bits (8 bytes). This data type stores date and
time (as a binary coded decimal) and is a predefined data type in
SCL.

STRING Defines an area for a character string of up to 254 characters (data
type CHAR).

ARRAY Defines an array consisting of elements of one data type (either
elementary or complex).

STRUCT Defines a group of data types in any combination of types. It can be
an array of structures or a structure consisting of structures and
arrays.

User-Defined Data Types

You can create your own user-defined data types in the data type declaration.
Each one is assigned a unique name and can be used any number of times. Once
it has been defined, a user-defined data type can be used to generate a number of
data blocks with the same structure.

Parameter Types

Parameter types are special data types for timers, counters and blocks that can be
used as formal parameters.

 Data Type Explanation

TIMER This is used to declare timer functions as parameters.

COUNTER This is used to declare counter functions as parameters.

BLOCK_xx This is used to declare FCs, FBs, DBs and SDBs as parameters.

ANY This is used to allow an address of any data type as a parameter.

POINTER This is used to allow a memory area as a parameter.

ANY Data Type

In SCL, you can use variables of the ANY data type as formal parameters of a
block. You can also create temporary variables of this type and use them in value
assignments.

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-3

6.2 Elementary Data Types

6.2.1 Bit Data Types

Data of this type are bit combinations occupying either 1 bit (data type BOOL),
8 bits, 16 bits or 32 bits. A numeric range of values cannot be specified for the data
types: byte, word, and double word. These are bit combinations that can be used
only to formulate Boolean expressions.

 Type Keyword Bit Width Alignment Value Range

Bit BOOL 1 bit Begins at the least significant bit in the
byte

0, 1 or FALSE, TRUE

Byte BYTE 8 bits Begins at the least significant byte in
the word.

-

Word WORD 16 bits Begins at a WORD boundary. -

Double word DWORD 32 bits Begins at a WORD boundary. -

6.2.2 Character Types

Data elements of this type occupy exactly one character of the ASCII character set.

 Type Keyword Bit Width Value Range

Single character CHAR 8 Extended ASCII character set

6.2.3 Numeric Data Types

These types are available for processing numeric values (for example for
calculating arithmetic expressions).

 Type Keyword Bit Width Alignment Value Range

Integer INT 16 Begins at a WORD
boundary.

-32_768 to 32_767

Double integer DINT 32 Begins at a WORD
boundary.

-2_147_483_648 to
 2_147_483_647

Floating-point number
(IEEE floating-point
number)

REAL 32 Begins at a WORD
boundary.

-3.402822E+38 to -1.175495E-38
+/- 0
1.175495E-38 to 3.402822E+38

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-4 A5E00059543-01

6.2.4 Time Types

Data of this type represent the various time and date values within STEP 7 (for
example for setting the date or for entering the time value for a time).

 Type Keyword Bit Width Alignment Value Range

S5 time S5TIME

S5T

16 Begins at a
WORD boundary.

T#0H_0M_0S_10MS to
T#2H_46M_30S_0MS

Time period:
IEC time in
steps of
1 ms.

TIME
T

32 Begins at a
WORD boundary.

-T#24D_20H_31M_23S_647MS to
T#24D_20H_31M_23S_647MS

Date
IEC data in
steps of
1 day

DATE
D

16 Begins at a
WORD boundary.

D#1990-01-01 to
D#2168-12-31

Time of day
time in steps
of 1 ms.

TIME_OF_DAY
TOD

32 Begins at a
WORD boundary.

TOD#0:0:0.0 to
TOD#23:59:59.999

If the set value is higher than the upper limit of the range, the upper limit value is
used.
With variables of the data type S5TIME, the resolution is limited, in other words,
only the time bases 0.01 s, 0.1 s, 1 s, 10 s are available. The compiler rounds the
values accordingly. If the set value is higher than the upper limit of the range, the
upper limit value is used.

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-5

6.3 Complex Data Types

6.3.1 DATE_AND_TIME Data Type

Definition

This data type defines an area with 64 bits (8 bytes) for specifying the date and
time. The data area stores the following information (in binary coded decimal
format):

year, month, day, hours, minutes, seconds, milliseconds.

Syntax

DATE_AND_TIME#

DT#

TimeDate -

DATE_AND_TIME

The exact syntax for specifying the date and time is described in "Declaring
Constants".

Value Range

 Type Keyword Bit
Width

 Alignment Value Range

Date and time DATE_AND_TIME
DT

64 Begins and ends at a
WORD boundary.

DT#1990-01-01-0:0:0.0
to
DT#2089-12-31-23:59:59.999

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-6 A5E00059543-01

The Date_And_Time data type is stored in BCD format:

 Bytes Content Range

 0 Year 1990 to 2089

 1 Month 01 to 12

 2 Day 1 to 31

 3 Hour 0 to 23

 4 Minute 0 to 59

 5 Second 0 to 59

 6 2 MSD (most significant decade) of ms 00 to 99

 7 (4 MSB) LSD (least significant decade) of ms 0 to 9

 7 (4 LSB) Weekday 1 to 7 (1 = Sunday)

Example

A valid definition for the date and time 20/Oct./1995 12:20:30 and 10 milliseconds
is shown below:
DATE_AND_TIME#1995-10-20-12:20:30.10
DT#1995-10-20-12:20:30.10

Note

You can use standard functions (FCs) in the STEP 7 library to access the specific
components DATE or TIME.

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-7

6.3.2 STRING Data Type

Definition

A STRING data type defines a character string with a maximum of 254 characters.
The standard area reserved for a character string consists of 256 bytes. This memory
area is required to store 254 characters and a header of 2 bytes.

You can reduce the memory required by a character string by defining a maximum
number of characters to be saved in the string. A null string, in other words a string
containing no data, is the smallest possible value.

Syntax

STRING Data Type Specification

[]Simple
expression

String dimension

STRING

The simple expression stands for the maximum number of characters in the
STRING. All the characters of the ASCII code are permitted in a character string. A
string can also include special characters, for example, control characters and
nonprintable characters. You can enter these using the syntax $hh, where hh
stands for the value of the ASCII character expressed in hexadecimal (example:
’$0D$0AText’)

When you declare the memory space for character strings, you can define the
maximum number of characters that can be stored in the string. If you do not
specify a maximum length, a string with a length of 254 is created.

Example

VAR
 Text1 : String [123];
 Text2 : String;
END_VAR

The constant "123" in the declaration of the variable "Text1" stands for the
maximum number of characters in the string. For variable "Text2", a length of
254 characters is reserved.

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-8 A5E00059543-01

Note

For output and in/out parameters and for return values of functions, you can
reduce the default length (254) reserved for strings to make better use of the
resources on your CPU. To reduce the default length, select the menu command
Options > Customize and

enter the required length in the "Maximum String Length" box in the "Compiler"
tab. Remember that this setting affects all STRING variables in the source file.
The value you set must therefore not be smaller than the STRING variables
actually used in the program.

Initializing Character Strings

String variables, just like other variables, can be initialized in the declaration of the
parameters of function blocks (FBs) with constant character strings. It is not
possible to initialize parameters of functions (FCs).

If the initialized string is shorter that the declared maximum length, the remaining
characters are not initialized. When the variable is processed in the program, only
the currently occupied character locations are taken into account.

Example

x : STRING[7]:=’Address’;

If temporary variables of the STRING type are required, for example, for buffering
results, they must always be initialized with a string constant either in the variable
declaration or in a value assignment before they are used for the first time.

Note

If a function from a standard library returns a value of the STRING data type and if
you want this value to be assigned to a temporary variable, the variable must first
be initialized.

Example

FUNCTION Test : STRING[45]
VAR_TEMP
 x : STRING[45];
END_VAR
x := ’a’;
x := concat (in1 := x, in2 := x);
Test := x;
END_FUNCTION

Without the initialization x := ’a’; , the function would return an incorrect result.

Alignment

Variables of the STRING type begin and end at a WORD boundary.

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-9

6.3.3 ARRAY Data Type

Definition

ARRAYs have a specified number of components of one data type. The following
array types are possible in SCL:

• The one-dimensional ARRAY type. This is a list of data elements arranged in
ascending order.

• The two-dimensional ARRAY type. This is a table of data consisting of rows
and columns. The first dimension refers to the row number and the second to
the column number.

• The multidimensional ARRAY type. This is an extension of the two-dimensional
ARRAY type adding further dimensions. The maximum number of dimensions
permitted is 6.

Syntax

ARRAY Data Type Specification

[]..

Data type
specificationOF

,

ARRAY Index Index

Index specification

1 n

max. 6 dimensions

Index Specification

This describes the dimensions of the ARRAY data type as follows:

• The smallest and highest possible index (index range) for each dimension.
The index can have any integer value (-32768 to 32767).

• The limits must be separated by two periods. The individual index ranges must
be separated by commas.

• The entire index specification is enclosed in square brackets.

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-10 A5E00059543-01

Data Type Specification

With the data type specification, you declare the data type of the components.
Apart from the ARRAY data type, all the data types are permitted for the
specification. The data type of an array can, for example, also be a STRUCT type.
Parameter types must not be used as the element type for an array.

Example
VAR
 CONTROLLER1 :
 ARRAY[1..3,1..4] OF INT:= -54, 736, -83, 77,
 -1289,10362, 385, 2,
 60, -37, -7, 103 ;
 CONTROLLER2 : ARRAY[1..10] OF REAL ;
END_VAR

Alignment

Variables of the ARRAY type are created row by row. Each dimension of a variable
of the type BOOL, BYTE or CHAR ends at a BYTE boundary, all others at a
WORD boundary.

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-11

6.3.4 STRUCT Data Type

Definition

The STRUCT data type describes an area consisting of a fixed number of
components that can be of different data types. These data elements are specified
immediately following the STRUCT keyword in the component declaration.

The main feature of the STRUCT data type is that a data element can also be
complex. This means that nesting of STRUCT data types is permitted.

Syntax

STRUCT

Component
declaration

END_STRUCTSTRUCT

Component Declaration

The component declaration is a list of the various components of the STRUCT data
type. It consists of the following:

• 1 to n identifiers with the assigned data type and

• an optional specification of initial values

Component Declaration

Data type
specification

Data type
initialization: ;IDENTIFIER

Component name

The identifier is the name of a structure element to which the subsequent data type
specification will apply.

All data types with the exception of parameter types are permitted for the data type
specification.

You have the option of specifying an initial value for a specific structure element
after the data type specification using a value assignment.

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-12 A5E00059543-01

Example
VAR
 MOTOR : STRUCT
 DATA : STRUCT
 LOADCURR : REAL ;
 VOLTAGE : INT := 5 ;
 END_STRUCT ;
 END_STRUCT ;
END_VAR

Alignment

Variables of the STRUCT type begin and end at a WORD boundary.

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-13

6.4 User-Defined Data Types

6.4.1 User-Defined Data Types (UDT)

Definition

You define a user-defined data type (UDT) as a block. Once it has been defined, it
can be used throughout your user program; in other words, it is a shared data type.
You can use these data types with their UDT identifier, UDTx (x represents a
number), or with an assigned symbolic name defined in the declaration section of a
logic block or data block.

The user-defined data type can be used to declare variables, parameters, data
blocks, and other user-defined data types. Components of arrays or structures can
also be declared with user-defined data types.

Syntax

TYPE
UDT

NAME END_TYPE

Structure
data type
specification

User-Defined Data Type

UDT Identifier

The declaration of a user-defined data type starts with the TYPE keyword followed
by the name of the user-defined data type (UDT identifier). The name of the user-
defined data type can either be specified in absolute form; in other words, a
standard name in the form UDTx (x stands for a number), or as a symbolic name.

Examples:
TYPE UDT10
TYPE MEASVALUES

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-14 A5E00059543-01

Data Type Specification

The UDT identifier is followed by the data type specification. The only data type
specification permitted in this case is STRUCT.
STRUCT
:
END_STRUCT

Note

The syntax of STL must be used within a user-defined data type. This applies, for
example, to the notation for constants and the assignment of initial values
(initialization). For information about the syntax of the constants, refer to the
STL online help.

Example
// UDT definition with a symbolic name
TYPE MEASVALUES:
 STRUCT
 BIPOL_1 : INT := 5;
 BIPOL_2 : WORD := W#16#FFAA ;
 BIPOL_3 : BYTE := B#16#F1 ;
 BIPOL_4 : WORD := W#16#1919 ;
 MEASURE : STRUCT
 BIPOLAR_10V : REAL ;
 UNIPOLAR_4_20MA : REAL ;
 END_STRUCT;
 END_STRUCT;
END_TYPE

//Use of the UDT in an FB
FUNCTION_BLOCK FB10
VAR

MEAS_RANGE : MEASVALUES;
END_VAR
BEGIN
 // . . .
 MEAS_RANGE.BIPOL_1 := -4 ;
 MEAS_RANGE.MEASURE.UNIPOLAR_4_20MA := 2.7 ;
 // . . .
END_FUNCTION_BLOCK

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-15

6.5 Data Types for Parameters

6.5.1 Data Types for Parameters

To specify the formal block parameters of FBs and FCs, you can use parameter
types in addition to the data types that have already been introduced.

 Parameter Size Description

TIMER 2 bytes Identifies a specific timer to be used by the program in the logic
block called.

Actual Parameter for example, T1

COUNTER 2 bytes Identifies a specific counter to be used by the program in the
logic block called.

Actual Parameter for example, C10

BLOCK_FB
BLOCK_FC
BLOCK_DB
BLOCK_SDB

 2 bytes Identifies a specific block to be used by the program in the
block called.

Actual Parameter: for example, FC101
DB42

ANY 10 bytes Used if any data type with the exception of ANY is to be
allowed for the data type of the actual parameter.

POINTER 6 bytes Identifies a particular memory area to be used by the program.

Actual Parameter: for example, M50.0

6.5.2 TIMER and COUNTER Data Types

You specify a particular timer or a particular counter to be used when a block
executes. The TIMER and COUNTER data types are permitted only for input
parameters (VAR_INPUT).

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-16 A5E00059543-01

6.5.3 BLOCK Data Types

You specify a block that will be used as an input parameter. The declaration of the
input parameter determines the block type (FB, FC, DB). For supplying
parameters, you specify the block identifier. Both absolute and symbolic identifiers
are permitted.

You can access the BLOCK_DB data type using absolute addressing
(myDB.dw10). SCL does not provide any operations for the other block data types.
Parameters of this type can only be supplied with values when the blocks are
called. When using functions, input parameters cannot be passed on.

In SCL, you can assign addresses of the following data types as actual
parameters:

• Function blocks without formal parameters

• Functions without formal parameters or return value (VOID function)

• Data blocks and system data blocks.

6.5.4 POINTER Data Type

You can assign variables to the POINTER data type that you have declared as
formal parameters of a block. If you call such a block, these parameters can be
supplied with addresses of any data type (except ANY).

SCL, however, only provides one statement for processing the POINTER data
type, namely passing on to underlying blocks.

You can assign the following types of addresses as actual parameters:

• Absolute addresses

• Symbolic names

• Addresses of the POINTER data type
This is only possible when the address is a formal parameter with a compatible
parameter type.

• NIL constant
You specify a nil pointer.

Restrictions

• The POINTER data type is permitted for formal input parameters, in/out
parameters of FBs and FCs and for output parameters of FCs. Constants are
not permitted as actual parameters (with the exception of the NIL constant).

• If you supply a formal parameter of the type POINTER with a temporary
variable when an FB or FC is called, you cannot pass this parameter on to a
further block. Temporary variables lose their validity when they are passed on.

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-17

Example

FUNCTION FC100 : VOID
VAR_IN_OUT
 N_out : INT;
 out : POINTER;
END_VAR
VAR_TEMP
 ret : INT;
END_VAR
BEGIN
 // ...
 ret := SFC79(N := N_out, SA := out);
 // ...
END_FUNCTION

FUNCTION_BLOCK FB100
VAR
 ii : INT;
 aa : ARRAY[1..1000] OF REAL;
END_VAR

BEGIN
 // ...
 FC100(N_out := ii, out := aa);
 // ...
END_FUNCTION_BLOCK

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-18 A5E00059543-01

6.6 ANY Data Type

In SCL, you can declare variables of the ANY data type as follows:

• As formal parameters of a block; these parameters can then be supplied with
actual parameters of any data type when the block is called.

• As temporary variables; you can assign values of any data type to these
variables.

You can use the following data as the actual parameters or as a value assignment
on the right-hand side:

• Local and shared variables

• Variables in the DB (addressed absolutely or symbolically)

• Variables in the local instance (addressed absolutely or symbolically)

• NIL constant
You specify a nil pointer.

• ANY data type

• Timers, counters, and blocks
You specify the identifier (for example, T1, C20 or FB6).

Restrictions

• The ANY data type is permitted for formal input parameters, in/out parameters
of FBs and FCs and for output parameters of FCs. Constants are not permitted
as the actual parameters or on the right-hand side of a value assignment (with
the exception of the NIL constant).

• If you supply a formal parameter of the type ANY with a temporary variable
when an FB or FC is called, you cannot pass this parameter on to a further
block. Temporary variables lose their validity when they are passed on.

• Variables of this type must not be used as a component type in a structure or
as an element type for an array.

Data Types

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 6-19

6.6.1 Example of the ANY Data Type

VAR_INPUT
 iANY : ANY;
END_VAR

VAR_TEMP
 pANY : ANY;
END_VAR

CASE ii OF
1:
 pANY := MW4; // pANY contains the address of MW4

3..5:
 pANY:= aINT[ii]; //pANY contains the address of the ii th
 // element of the aINT field;
100:
 pANY:= iANY; //pANY contains the value of the iANY input
 variable
ELSE
 pANY := NIL; // pANY contains the value of the NIL
 pointer
END_CASE;

SFCxxx(IN := pANY);

Data Types

S7-SCL V5.1 for S7-300/S7-400
6-20 A5E00059543-01

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 7-1

7 Declaring Local Variables and Parameters

7.1 Local Variables and Block Parameters

Categories of Variables

The following table illustrates the categories of local variables:

 Variable Explanation

Static Variables Static variables are local variables whose value is retained throughout
all block cycles (block memory). They are used to save values of a
function block and are stored in the instance data block.

Temporary
Variables

Temporary variables belong to a logic block at local level and do not
occupy a static memory area, since they are stored in the CPU stack.
Their value is only retained while the block concerned is running.
Temporary variables cannot be accessed from outside the block in
which they are declared.

Categories of Block Parameters

Block parameters are placeholders that are only assigned a specific value when
the block is called. The placeholders in the block are known as formal parameters
and the values assigned to them when the block is called are referred to as the
actual parameters. The formal parameters of a block can be viewed like local
variables.

Block parameters can be subdivided into the categories shown below:

 Block
Parameter

 Explanation

Input
parameters

Input parameters accept the current input values when the block is
called. They are read-only.

Output
parameters

Output parameters transfer the current output values to the calling block.
Data can be written to and read from them.

In/out
parameters

In/out parameters adopt current input values when a block is called. After
processing the value, they receive the result and return it to the calling
block.

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
7-2 A5E00059543-01

Flags (OK Flag)

The SCL compiler provides a flag that can be used to detect errors when programs
are running on the CPU. It is a local variable of the type BOOL with the predefined
name “OK".

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 7-3

7.2 General Syntax of a Variable or Parameter Declaration

Variables and block parameters must be declared individually before they can be
used within a logic block or data block. The declaration specifies that an identifier is
used as a block parameter or variable and assigns it a data type.

A variable or parameter declaration consists of an identifier (named by the user)
and a data type. The basic format is shown in the syntax diagram below.

Syntax of a Variable or Parameter Declaration

Variable Declaration

,

:AT ;

Variable name,

IDENTIFIER Data typeSimple
variable specification

Data type
initialization

parameter name
or

component name

1)

1) System attributes for parameters

2) not for AT

2)

Examples

VALUE1 : REAL;
if there are several variables of the same type:

VALUE2, VALUE3,VALUE4,....: INT;
ARR : ARRAY[1..100, 1..10] OF REAL;
SET : STRUCT
 MEASARR:ARRAY[1..20] OF REAL;
 SWITCH:BOOL;
 END_STRUCT

Note

If you want to use reserved words as identifiers, they must be preceded by the
"#" character (for example, #FOR).

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
7-4 A5E00059543-01

7.3 Initialization

Static variables as well as input and output parameters of an FB can be assigned
an initial value when they are declared. In/out parameters can also be assigned an
initial value, however, only if they are of an elementary data type. With simple
variables, the initial value is assigned by assigning (:=) a constant after the data
type specification.

Syntax

Array
initialization list

Constant

:=

Initialization

Example

VALUE :REAL := 20.25;

Note

Initialization of a variable list (A1, A2, A3,...: INT:=...) is not possible. In such
cases, the variables have to be initialized individually.

Array Initialization

To initialize ARRAYs, you can either specify a value for each component separated
by a comma, or by specifying a repetition factor (integer) you can initialize several
components with the same value.

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 7-5

Syntax of Array Initialization

Constant

Array
initialization list

()

Array Initialization List

Constant

Array
initialization list

Repeat factor

Decimal
digit string

,

Examples

VAR
// Initialization of static variables:
 INDEX1 : INT := 3 ;
//Array initialization:
 CONTROLLER1 : ARRAY [1..2, 1..2] OF INT := -54, 736, -83,
 77;
 CONTROLLER2 : ARRAY[1..10] OF REAL := 10(2.5);
//Structure initialization:
 GENERATOR: STRUCT
 DAT1 : REAL := 100.5;
 A1 : INT := 10 ;
 A2 : STRING[6] := ’FACTOR’;
 A3 : ARRAY[1..12] OF REAL := 0.0, 10(100.0), 1.0;
 END_STRUCT ;
END_VAR

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
7-6 A5E00059543-01

7.4 Declaring Views of Variable Ranges

To be able to access a declared variable with a different data type, you can define
views of the variable or of ranges within the variables using the "AT" keyword. A
view is visible only locally in the block; it is not included in the interface. A view can
be used like any other variable in the block. It inherits all the properties of the
variable that it references; only the data type is new.

Example

The following example makes several views of one input parameter possible:

VAR_INPUT
 Buffer : ARRAY[0..255] OF BYTE;
 Frame1 AT Buffer : UDT100 ;
 Frame2 AT Buffer : UDT200 ;
END_VAR

The calling block supplies the Buffer parameter, it does not see the names Frame1
and Frame2. The calling block now has three ways of interpreting the data, namely
the array under the name buffer or with a different structure under Frame1 or
Frame2.

Rules

• The declaration of a further view of a variable must be made following the
declaration of the variable to which it points in the same declaration
subsection.

• Initialization is not possible.

• The data type of the view must be compatible with the data type of the
variable. The variable specifies the size of the memory area. The memory
requirements of the view can be equal to this or smaller. The following rules for
combining data types also apply:

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 7-7

 Data Type of the
View

 Data Type of the
Variable

 Elementary Complex ANY/POINTER

FB Declaration of a view in
VAR, VAR_TEMP, VAR_IN

or VAR_OUT

Elementary

Complex

ANY/POINTER

x

x

x

x

 x (1)

x (1)

Declaration of a view in
VAR_IN_OUT

Elementary

Complex

ANY/POINTER

x

x

FC Declaration of a view in
VAR or VAR_TEMP

Elementary

Complex

ANY/POINTER

x

x

x

x

 x

x

Declaration of a view in
VAR_IN, VAR_OUT or
VAR_IN_OUT

Elementary

Complex

ANY/POINTER

x

x

 (1) ANY pointer not permitted in VAR_OUT.

Elementary = BOOL, BYTE, WORD, DWORD, INT, DINT, DATE, TIME, S5TIME,
CHAR
Complex = ARRAY, STRUCT, DATE_AND_TIME, STRING

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
7-8 A5E00059543-01

7.5 Using Multiple Instances

It is possible that you may want to or have to use a restricted number of data
blocks for instance data owing to the performance (for example, memory capacity)
of the S7 CPUs you are using. If other existing function blocks are called in an FB
in your user program (call hierarchy of FBs), you can call these other function
blocks without their own (additional) instance data blocks.

Use the following solution:

• Include the function blocks you want to call as static variables in the variable
declaration of the calling function block.

• In this function block, call other function blocks without their own instance data
block.

• This concentrates the instance data in one instance data block, allowing you to
use the available number of data blocks more effectively.

7.6 Instance Declaration

For function blocks, you can also declare variables of the type FB or SFB in the
declaration subsection for static variables (VAR; END_VAR) in addition to the
variables with elementary, complex or user-defined data types. Such variables are
called local instances of the FB or SFB.

The local instance data is stored in the instance data block of the calling function
block. A local instance-specific initialization is not possible.

Blocks called as a local instance must not have the length 0. At least one static
variable or a parameter must be declared in such blocks.

Syntax

Local instance name

,

IDENTIFIER : ;

FB
NAME

SFB
NAME

Instance Declaration FBs must
already exist!

Example
Supply1 : FB10;
Supply2,Supply3,Supply4 : FB100;
Motor1 : Motor ;

Where Motor is a symbol for an FB entered in the symbol table.

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 7-9

7.7 Flags (OK Flag)

The OK flag is used to indicate the correct or incorrect execution of a block. It is a
local variable of the type BOOL with the predefined name “OK".

At the beginning of the program, the OK flag has the value TRUE. It can be queried
at any point in the block or can be set to TRUE / FALSE using SCL statements. If
an error occurs while an operation is being executed (for example division by zero),
the OK flag is set to FALSE. When the block is exited, the value of the OK flag is
saved in the output parameter ENO and can be evaluated by the calling block.

Declaration

The OK flag is a system variable. Declaration is not necessary. You must,
however, select the compiler option "Set OK flag" before compilation if you want to
use the OK flag in your user program.

Example

// Set OK flag to TRUE
// to check whether the
// action executes correctly.
OK:= TRUE;
Division:= 1 / IN;
IF OK THEN
 // Division was correct.

 // :
 // :

ELSE // Division was not correct.

 // :

END_IF;

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
7-10 A5E00059543-01

7.8 Declaration Subsections

7.8.1 Overview of the Declaration Subsections

Each category of local variables or parameters has its own declaration subsection
identified by its own pair of keywords. Each subsection contains the declarations
that are permitted for that particular declaration subsection. These subsections can
be positioned in any order.

The following table shows which variables or types of parameter you can declare in
the various logic blocks:

 Data Syntax FB FC OB

Variable as:
Static variable

VAR
. . .
END_VAR

X X *)

Temporary variable
VAR_TEMP
. . .
END_VAR

X X X

Block parameter as:
Input parameter

VAR_INPUT
. . .
END_VAR

X X

Output parameter
VAR_OUTPUT
. . .
END_VAR

X X

In/out parameter
VAR_IN_OUT
. . .
END_VAR

X X

 *) Although the declaration of variables between the keyword pair VAR and
END_VAR is permitted in functions, the declarations are created in the temporary
area when the source file is compiled.

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 7-11

7.8.2 Static Variables

Static variables are local variables whose value is retained when the blocks are
run. They are used to save the values of a function block and are contained in a
corresponding instance data block.

Syntax

Static variables are declared in the VAR / END_VAR declaration section. This
declaration subsection is part of the FB declaration section. After compilation, this
subsection and the subsections for the block parameters decide the structure of the
assigned instance data block.

In this subsection you can:

• Create variables, assign data types to the variables and initialize the variables.

• Declare a called FB as a static variable if you want to call it in the current FB as
a local instance.

Variable
declaration

Instance
declaration

VAR END_VAR

Static Variable Block

Example

VAR
RUN :INT;
MEASARR :ARRAY [1..10] OF REAL;
SWITCH :BOOL;
MOTOR_1,MOTOR_2 :FB100; //Instance declaration

END_VAR

Access

The variables are accessed from the code section as follows:

• Access within the block: In the code section of the function block in which a
variable was declared in the declaration section, you can access the variable.
This is explained in detail in the section entitled "Value Assignment".

• External access using the instance DB: You can access the variable from
other blocks using indexed access, for example DBx.variable.

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
7-12 A5E00059543-01

7.8.3 Temporary Variables

Temporary variables belong locally to a logic block and do not occupy a static
memory area. They are located in the stack of the CPU. Their value is only
retained while the block concerned is running. Temporary variables cannot be
accessed from outside the block in which they are declared. When an OB, FB or
FC is first executed, the value of the temporary data has not been defined.
Initialization is not possible.

You should declare data as temporary data if you only require it to record interim
results while your OB, FB or FC executes.

Syntax

Temporary variables are declared in the VAR_TEMP / END_VAR declaration
section. This declaration subsection is part of an FB, FC, or OB. It is used to
declare variable names and data types within the variable declaration.

END_VAR

,

Variable
declarationVAR_TEMP

Temporary Variable Subsection

Initialization not possible

Example

VAR_TEMP
 BUFFER 1 : ARRAY [1..10] OF INT ;
 AUX1, AUX2 : REAL ;
END_VAR

Access

A variable is always accessed from the code section of the logic block in which the
variable is declared in the declaration section (internal access). Refer to the section
entitled "Value Assignment".

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 7-13

7.8.4 Block Parameters

Parameters are placeholders that are only assigned a value when the block is
actually called. The placeholders declared in the block are known as formal
parameters that are assigned values as actual parameters. Parameters therefore
provide a mechanism for the exchange of information between the blocks.

Types of Block Parameters

• Formal input parameters are assigned the actual input values
(data flow into the block).

• Formal output parameters are used to transfer output values
(data flow from the block to the outside)

• Formal in/out parameters have both the function of an input and an output
parameter.

Syntax

The declaration of formal parameters is made in the declaration section of a
function block or a function grouped according to parameter type in the three
declaration subsections for parameters. Within the variable declaration, you specify
the parameter name and the data type. Initialization is only possible for the input
and output parameters of an FB.

When declaring formal parameters, you can use not only elementary, complex, and
user-defined data types but also the data types for parameters.

VAR_OUTPUT Variable
declaration END_VAR

VAR_INPUT

VAR_IN_OUT

Parameter Subsection

Initialization only possible for VAR_INPUT and VAR_OUTPUT

Declaring Local Variables and Parameters

S7-SCL V5.1 for S7-300/S7-400
7-14 A5E00059543-01

Example

VAR_INPUT // Input parameters
 MY_DB : BLOCK_DB ;
 CONTROLLER : DWORD ;
 TIMEOFDAY : TIME_OF_DAY ;
END_VAR

VAR_OUTPUT // Output parameters
 SETPOINTS: ARRAY [1..10] of INT ;
END_VAR

VAR_IN_OUT // In_out parameters
 SETTING : INT ;
END_VAR

Access

Block parameters are accessed from the code section of a logic block as follows:

• Internal access: Access from the code section of the block in whose
declaration section the parameter is declared. This is explained in the sections
entitled "Value Assignment" and "Expressions, Operations and Addresses".

• External access using an instance data block: You can access block
parameters of function blocks using the assigned instance DB.

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-1

8 Declaring Constants and Jump Labels

8.1 Constants

Constants are data elements that have a fixed value that cannot change while the
program is running.

The following groups of constants can be used in SCL.

• Bit constants

• Numeric constants

- Integer constants

- Real-number constants

• Character constants

- Char constants

- String constants

• Times

- Date constants

- Time period constants

- Time-of-day constants

- Date and time constants

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-2 A5E00059543-01

8.1.1 Declaring Symbolic Names for Constants

You do not have to declare constants. However, you have the option of assigning
symbolic names for constants in the declaration section.

You can declare symbolic names for constants using the CONST statement in the
declaration section of your logic block. This is advisable for all constants of a block.
With this method, the block is easier to read and update if you want to make
changes to constant values.

Syntax

Constant Subsection

CONST := ;Simple
expression

Constant name

IDENTIFIER END_CONST

In simple expressions, only the seven basic arithmetic operations are permitted
(*, /, +, -, **, DIV, MOD).

Example
CONST
 Number := 10 ;
 TIMEOFDAY1 := TIME#1D_1H_10M_22S_2MS ;
 NAME := ’SIEMENS’ ;
 NUMBER2 := 2 * 5 + 10 * 4 ;
 NUMBER3 := 3 + NUMBER2 ;
END_CONST

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-3

8.1.2 Data Types for Constants

The assignment of data types to constants is different from the method in STL:

A constant is given its data type only with the arithmetic or logic operation in which
it is used, for example,

Int1:=Int2 + 12345 //"12345" is given the data type
INT
Real1:=Real2 + 12345 //"12345" is given the data type
REAL

The constant is assigned the data type with the smallest value range that will
accommodate the constant without any loss of value. For example, the constant
"12345" is not always given the INT data type as in STL but the ANY_NUM data
type class; depending on its use therefore, INT, DINT, or REAL.

Type-Defined Constants

Using the type-defined constant notation, you can also explicitly specify a data type
for the following numeric data types.

Examples:

 Data Type Type-Defined Notation

BOOL BOOL#1 bool#0
Bool#false BOOL#TRUE

BYTE BYTE#0 B#2#101
Byte#'ä' b#16#f

WORD WORD#32768 word#16#f
W#2#1001_0100 WORD#8#177777

DWORD DWORD#16#f000_0000 dword#32768
DW#2#1111_0000_1111_0000 DWord#8#37777777777

INT INT#16#3f_ff int#-32768
Int#2#1111_0000 inT#8#77777

DINT DINT#16#3fff_ffff dint#-1000_0000
DInt#2#1111_0000 dinT#8#17777777777

REAL REAL#1 real#1.5
real#2e4 real#3.1

CHAR CHAR#A CHAR#49

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-4 A5E00059543-01

8.1.3 Notation for Constants

There is a specific notation or format for the value of a constant depending on its
data type and data format. The type and value of a constant is decided directly by
the notation and does not need to be declared.

Examples:

15 VALUE 15 as integer constant in decimal format
2#1111 VALUE 15 as integer constant in binary format
16#F VALUE 15 as integer constant in hexadecimal format

Overview of the Possible Notations

 Data Type Description Example in SCL Examples in STL
(where different)

BOOL Bit 1 FALSE
TRUE
BOOL#0
BOOL#1
BOOL#FALSE
BOOL#TRUE

BYTE 8-bit hexadecimal
number

B#16#00
B#16#FF
BYTE#0
B#2#101
Byte#'ä'
b#16#f

CHAR 8-bit
(1 ASCII character)

'A'
CHAR#49

STRING Maximum of 254
ASCII characters

'Address'

WORD 16-bit hexadecimal
number

16-bit octal number

16-bit binary number

W#16#0000
W#16#FFFF
word#16#f

WORD#8#177777
8#177777

W#2#1001_0100
WORD#32768

DWORD 32-bit hexadecimal
number

32-bit octal number

32-bit binary number

DW#16#0000_0000
DW#16#FFFF_FFFF

Dword#8#37777777777
8#37777777777

DW#2#1111_0000_1111_0000
dword#32768

INT 16-bit -32768

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-5

 Data Type Description Example in SCL Examples in STL
(where different)

fixed-point number +32767
INT#16#3f_ff
int#-32768
Int#2#1111_0000
inT#8#77777

DINT 32-bit
fixed-point number

-2147483648
+2147483647
DINT#16#3fff_ffff
dint#-1000_0000
Dint#2#1111_0000
dinT#8#17777777777

L#-2147483648
L#+2147483647

REAL 32-bit floating-point
number

Decimal format
123.4567
REAL#1
real#1.5

Exponential format
real#2e4
+1.234567E+02

S5TIME 16-bit
time value in SIMATIC
format

T#0ms
TIME#2h46m30s
T#0.0s
TIME#24.855134d

S5T#0ms
S5TIME#2h46m30s

TIME 32-bit
time value in IEC
format

T#-24d20h31m23s647ms
TIME#24d20h31m23s647ms
T#0.0s
TIME#24.855134d

Date 16-bit
date value

D#1990-01-01
DATE#2168-12-31

TIME_OF_DAY 32-bit
time of day

TOD#00:00:00
TIME_OF_DAY#23:59:59.999

DATE_AND_
TIME

Date and time value DT#95-01-01-12:12:12.2

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-6 A5E00059543-01

8.1.3.1 Bit Constants

Bit constants contain values with the length 1 bit, 8 bits, 16 bits or 32 bits.
Depending on their length, these can be assigned to variables in the SCL program
with the data types BOOL, BYTE, WORD or DWORD.

Syntax

BIT CONSTANT

(1) only with data typeBYTE

DECIMAL DIGIT STRING
OCTAL DIGIT STRING

HEXADECIMAL DIGIT STRING
BINARY DIGIT STRING

CHARACTER (1)WORD#

BOOL#

BYTE#

DWORD#

Decimal Digit String

The decimal number in a constant consists of a string of digits (if required, these
can be separated by underscores). The underscores are used to improve
readability in the case of long numbers. Examples of valid notations for decimal
digit strings in constants are shown below:

DW#2#1111_0000_1111_0000
dword#32768

Binary, Octal and Hexadecimal Values

You can specify an integer constant in a numeric system other than the decimal
system by using the prefixes 2#, 8# or 16# followed by the number in the notation
of the selected system. This is illustrated in the figure below based on the example
of a digit string for an octal number:

_
Underscore

8# Octal number

Octal digit string

Example

The following examples illustrate the notations for bit constants:

Bool#false
8#177777
DW#16#0000_0000

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-7

8.1.3.2 Integer Constants

Integer constants contain whole number values with a length of 16 bits or 32 bits.
Depending on their length, these can be assigned to variables with the data types
INT or DINT in the SCL program.

Syntax

INTEGER CONSTANT

(1) only with INT data type

OCTAL DIGIT STRING

BINARY DIGIT STRING
CHARACTER (1)

HEXADECIMAL DIGIT STRING

INT#

DINT#

DECIMAL DIGIT STRING
+

-

Decimal Digit String

The decimal number in a constant consists of a string of digits (if required, these
can be separated by underscores). The underscores are used to improve
readability in the case of long numbers. Examples of valid notations for decimal
digit strings in constants are shown below:
1000
1_120_200
666_999_400_311

Binary, Octal and Hexadecimal Values

You can specify an integer constant in a numeric system other than the decimal
system by using the prefixes 2#, 8# or 16# followed by the number in the notation
of the selected system.

Example

The following examples illustrate the notations for integer constants:

Value_2:=2#0101; // Binary number, decimal value 5
Value_3:=8#17; // Octal number, decimal value 14
Value_4:=16#F; // Hexadecimal number, decimal value 15
Value_5:=INT#16#3f_ff // Hexadecimal number, type-defined
 notation

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-8 A5E00059543-01

8.1.3.3 Real Number Constants

Real number constants are values with decimal places. They can be assigned to
variables with the data type REAL.

Syntax

REAL NUMBER CONSTANT

. Exponent

.

-

+

 DECIMAL
DIGIT STRING

 DECIMAL
DIGIT STRING

REAL#

 DECIMAL
DIGIT STRING

 DECIMAL
DIGIT STRING

The use of a plus or minus sign is optional. If no sign is specified, the number is
assumed to be positive.

The decimal number in a constant consists of a string of digits (if required, these
can be separated by underscores). The underscores are used to improve
readability in the case of long numbers. Examples of valid notations for decimal
digit strings in constants are shown below:
 1000
 1_120_200
 666_999_400_311

Exponent

When specifying floating-point numbers, you can use an exponent. The exponent
is specified by the letter "E" or "e" followed by an integer value.

The value 3x1 0

 can be represented by the following real numbers in SCL:

3.0E+10 3.0E10 3e+10 3E10
0.3E+11 0.3e11 30.0E+9 30e9

Examples

NUM4:= -3.4 ;
NUM5:= 4e2 ;
NUM6:= real#1.5;

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-9

8.1.3.4 Char Constants (Single Characters)

The char constant contains exactly one character. The character is enclosed in
single quotes (’). Char constants cannot be used in expressions.

Syntax

Example

Charac_1 := ’B’;
Charac_2 := char#43;
Charac_3 := char#’B’;

Syntax of a Character

Any character in the complete, extended ASCII character set can be used. Special
formatting characters, the quote (’) or a $ character can be entered using the
escape symbol $.

You can also use the nonprintable characters from the complete, extended ASCII
character set. To do this, you specify the substitute representation in hexadecimal.

h a ra c te rs

$
E sc a p e s ym b o l $

P r in ta b le
c h a ra c te r

$ o r ’

A lte rn a tiv e re p re s e n ta tio n in h e x c o d e

H e xa d e c im a l
d ig i t

H e xa d e c im a l
d ig it

S u b s titu te ch a r.

C o n t ro l c h a r.

*P o r L o r R o r T o r N

*P = F o rm fe e d
 L = L in e fe e d
 R = C a rr ia g e re tu rn
 T = T a b u la to r
 N = N e w lin e

Example of a Character in Hexadecimal Code
CHARACTER := ’$41’ ; //Corresponds to the character ’A’
Blank :=’$20’; //Corresponds to the character |_|

CHARACTER CONSTANT

’ ’CharacterCHAR#

DECIMAL DIGIT STRING

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-10 A5E00059543-01

8.1.3.5 String Constants

A string constant is a character string with a maximum of 254 characters. The
characters are enclosed in single quotes. String constants cannot be used in
expressions.

Syntax

’ ’
break
String

Character Character

STRING CONSTANT

Syntax of a Character

Any character in the complete, extended ASCII character set can be used. Special
formatting characters, the quote (’) or a $ character can be entered using the
escape symbol $.

You can also use the nonprintable characters from the complete, extended
ASCII character set. To do this, you specify the substitute representation in
hexadecimal code.

Characters

$ Escape symbol $

Printable
character

$ or ’

Alternative representation in hex code

Hexadecimal
digit

Hexadecimal
digit

Substitute char.

Control char.

*P or L or R or T or N

*P = Form feed
 L = Line feed
 R = Carriage return
 T = Tabulator
 N = New line

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-11

Interrupting a String

You can interrupt and resume a string constant several times.

A string is located either in a line of an SCL block or is spread over several lines
using special identifiers. To interrupt a string, you use the $> identifier and to
continue it in a later line, you use the $< identifier. The space between the interrupt
and the resume identifiers can extend over several lines and can contain either
comments or blanks.

String Break Syntax

$<

Comments

Formatting
character

$>

Space,
Line feed,
Carriage return,
Form feed, or
Tabulator

Examples

// String constant:
NAME:= ’SIEMENS’;
//Interrupting a string constant
MESSAGE1:= ’MOTOR- $>
$< Controller’;
// string in hexadecimal:
MESSAGE1:= ’$41$4E’ (*character string AN*);

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-12 A5E00059543-01

8.1.3.6 Date Constants

A date is introduced by the prefixes DATE# or D# . The date is specified by
integers for the year (4 digits), the month and the day, separated by dashes.

Syntax

Date

- -

Year Month Day

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Example

TIMEVARIABLE1:= DATE#1995-11-11 ;
TIMEVARIABLE2:= D#1995-05-05 ;

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-13

8.1.3.7 Time Period Constants

A period of time is introduced by the prefixes TIME# or T#. The time period can be
expressed in two possible ways:

• Decimal format

• Composite Format

Syntax

TIME PERIOD

TIME#

T# Composite time

Simple time

Simple time

- Each time unit (hours, minutes, etc.) may only be specified once.
- The order days, hours, minutes, seconds, milliseconds must be adhered to.

A change from composite format to decimal format is only possible when the time
units have not yet been specified.

Following the introductory prefixes T# or TIME#, you must specify at least one time
unit.

Decimal Format

You use the decimal format if you want to specify time components such as hours
or minutes as a decimal number.

Simple Time Format

Use of the simple time format is only possible for undefined time units.

. D

. H

. M

. S

. MS

Days

Hours

Minutes

Seconds

Milliseconds

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-14 A5E00059543-01

Composite format

The composite format is a sequence of individual time components. First days and
then hours etc. are specified separated by the underscore character. You can,
however, omit components from the sequence. However, at least one time unit
must be specified.

Composite Time Format

_D

Days

_H

Hours

_M

Minutes

_S

Seconds

Milliseconds

_MS

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Example

// Decimal format
Interval1:= TIME#10.5S ;

// Composite format
Interval2:= T#3D_2S_3MS ;

// Composite and decimal format
Interval3 := T#2D_2.3s ;

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-15

8.1.3.8 Time-of-Day Constants

A time of day is introduced by the prefixes TIME_OF_DAY# or TOD#.

Syntax

TIME OF DAY

TIME_OF_DAY#

TOD#

Time

A time of day is indicated by specifying the number of hours, minutes and seconds
separated by colons. Specifying the number of milliseconds is optional. The
milliseconds are separated from the other numbers by a decimal point.

Specifying the Time of Day

Time of Day

: :

Hours Minutes

.

MillisecondsSeconds

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Example

TIMEOFDAY1:= TIME_OF_DAY#12:12:12.2 ;
TIMEOFDAY2:= TOD#11:11:11 ;

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-16 A5E00059543-01

8.1.3.9 Date and Time Constants

A date and time are introduced by the prefixes DATE_AND_TIME# or DT#. This is
constant formed by specifying a date and a time of day.

Syntax

DATE_AND_TIME#

DT#

Time of dayDate -

DATE AND TIME

Date

Date

- -

Year Month Day

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Time of Day

Time of Day

: :

Hours Minutes

.

MillisecondsSeconds

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Example

TIMEOFDAY1:= DATE_AND_TIME#1995-01-01-12:12:12.2 ;
TIMEOFDAY2:= DT#1995-02-02-11:11:11;

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 8-17

8.2 Declaring Labels

8.2.1 Declaring Labels

Labels are used to identify the destination of a GOTO statement. These are
declared in the declaration section of a logic block with their symbolic names.

Syntax

Label Subsection

LABEL END_LABEL;

,

Label

IDENTIFIER

Example

LABEL
 LAB1, LAB2, LAB3;
END_LABEL

Declaring Constants and Jump Labels

S7-SCL V5.1 for S7-300/S7-400
8-18 A5E00059543-01

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 9-1

9 Shared Data

9.1 Overview of Shared Data

In SCL, you can access shared data. There are two types of shared data as
follows:

• CPU Memory Areas

These memory areas contain system data, for example, inputs, outputs and bit
memory. The number of memory areas available depends on the CPU you are
using.

• Shared User Data in the Form of Loadable Data Blocks

These data areas are located within data blocks. To be able to use them, you
must first create the data blocks and declare the data in them. Instance data
blocks are based on specific function blocks and created automatically.

Access to Shared Data

You can access shared data as follows:

• With absolute addressing: Using the address identifier and the absolute
address.

• With symbolic addressing: Specifying a symbol previously defined in the
symbol table.

• Indexed: Using the address identifier and array index.

• Structured: Using a variable.

 Type of Access CPU Memory Areas Shared User Data

Absolute Yes Yes

Symbolic Yes Yes

Indexed Yes Yes

Structured No Yes

Shared Data

S7-SCL V5.1 for S7-300/S7-400
9-2 A5E00059543-01

9.2 Memory Areas of the CPU

9.2.1 Overview of the Memory Areas of the CPU

The memory areas of a CPU are areas declared throughout the system. For this
reason, these areas do not need to be declared in your logic block. Every CPU
provides the following memory areas with their own address ranges:

• Inputs/outputs in the process image (for example, Q1.0)

• Peripheral inputs/outputs (for example PQ1.0)

• Bit memory (for example M1.0)

• Timers, counters (C1)

Syntax for Access

• You access a CPU memory area using a value assignment in the code section
of a logic block, as follows: With simple access that you can specify as an
absolute location or as a symbol, or

• Using indexed access.

ADDRESS
IDENTIFIER

SIMPLE MEMORY ACCESS

absolute access

symbolic access

,

Basic
expression[]

INDEXED MEMORY ACCESS
Index

IDENTIFIER

SYMBOL

Address

ADDRESS
IDENTIFIER

Shared Data

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 9-3

9.2.2 Absolute Access to Memory Areas of the CPU

To access a memory area of the CPU with the absolute memory location, you use,
for example, a value assignment of an absolute identifier to a variable of the same
type.

STATUS_2:= IB10;

Variable of matching type
Absolute identifier

The absolute identifier indicates a memory area in the CPU. You specify this area
by specifying the address identifier (in this case IB) followed by the address (in this
case 10).

Syntax of the Absolute Identifier

Memory
prefix

Size
prefix

Memory Prefix

Memory Prefix

With the memory prefix, you specify the type of memory area to be addressed.

Input

Output

Bit memory

Peripheral input

Peripheral output

I

Q

M

PQ

A

M

PA

E

PIPE

Memory Prefix

German mnemonics English mnemonics

Depending on the mnemonic system you have selected, the German or English
address identifiers have a reserved meaning.

Shared Data

S7-SCL V5.1 for S7-300/S7-400
9-4 A5E00059543-01

Size Prefix

With the size prefix, you specify the length of the memory area to be read from the
peripheral I/Os. You can, for example read a byte or a word. Using the size prefix is
optional if you only want to specify one bit.

Bit

Byte

Word

Double word

X

W

D

B

Size Prefix

Address

For the address, you first specify the absolute byte address and then the bit
address of the byte separated by a period. Specifying a bit address is optional.

.Number Number

Bit address only

Address

Examples
STATUSBYTE :=IB10;
STATUS_3 :=I1.1;
MEASVAL :=IW20;

Shared Data

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 9-5

9.2.3 Symbolic Access to Memory Areas of the CPU

With symbolic addressing, instead of an absolute identifier, you can use symbolic
names to address the CPU memory areas.

You assign the symbolic names to the particular addresses in your user program
by creating a symbol table. You can open this table at any time in SCL with the
menu command Options > Symbol Table to add further symbols.

For the data type specification, you can use any elementary data type providing it
can accept the specified data element size. The table below illustrates how a
symbol table might appear.

 Symbol Absolute Address Data Type Comments

Motor_contact_1 I 1.7 BOOL Contact switch 1 for Motor A

Input1 IW 10 INT Status word

Access

The address is accessed by assigning a value to a variable of the same type with
the declared symbol.

Example
MEASVAL_1 := Motor_contact_1;
Status_Motor1 := Input1 ;

Shared Data

S7-SCL V5.1 for S7-300/S7-400
9-6 A5E00059543-01

9.2.4 Indexed Access to Memory Areas of the CPU

You can also access memory areas of the CPU using an index. Compared with
absolute addressing the advantage of this method is that you can address
dynamically using variable indexes. You can, for example, use the control variable
of a FOR loop as the address.

Indexed access to a memory area is performed in a similar manner to the absolute
method. It differs only by virtue of the address specification. Instead of the absolute
address, an index is specified which can be a constant, a variable or an arithmetic
expression.

For indexed access, the absolute identifier is made up of the address identifier
(memory prefix and size prefix) and the basic expression for indexing.

Memory prefix

Size prefix

E X [i,j]

Address identifier

Address
Basic expression for index
enclosed in square
brackets

Syntax of the Absolute Identifier

,[]Memory
prefix

Size
prefix

Address identifier Index

Bit access only

Basic
expression

Basic
expression

The Indexing (Base Expression) Must Adhere to the Following Rules:

• Each index must be an arithmetic expression of the data type INT.

• When accessing data of the types BYTE, WORD or DWORD, you must use
one index only. The index is interpreted as a byte address. The extent of the
access is specified by the size prefix.

• When accessing data of the type BOOL, you must use two indexes. The first
index specifies the byte address, the second index the bit position within the
byte.

Example
MEASVAL_1 :=IW[COUNTER];
OUTLABEL :=I[BYTENO, BITNO];

Shared Data

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 9-7

9.3 Data Blocks

9.3.1 Overview of Data Blocks

Within data blocks, you can save and process all the data for your application
whose scope is the entire program or the entire project. Each logic block can read
or write shared user data.

Access

You can access the data of a shared data block in the following ways:

• absolute or simple,

• structured ,

• indexed.

,

Basic
expression[]Address identifier

Absolute DB access

Structured DB access

AddressAddress identifier

. Simple
variable

Indexed DB access Index

Address identifier

Shared Data

S7-SCL V5.1 for S7-300/S7-400
9-8 A5E00059543-01

9.3.2 Absolute Access to Data Blocks

To program absolute access to a data block, you assign a value to a variable of the
same type just as with the memory areas of the CPU. You first specify the
DB identifier followed by the keyword "D" and the size prefix (for example X for bit)
and the byte address (for example 13.1).

STATUS_5:= DB11.DX13.1;

Variable of
matching type

Address

DB identifier

Size prefix

Syntax

You define the access by specifying the DB identifier along with the size prefix and
the address.

. D Size
prefix

DB
IDENTIFIER Address

Address identifier

Absolute DB Access

Size Prefix

The size prefix indicates the length of the memory area in the data block to be
addressed. You can, for example, read a byte or a word from the DB. Using the
size prefix is optional if you only want to specify one bit.

Bit

Byte

Word

Double word

X

W

D

B

Size Prefix

Shared Data

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 9-9

Address

When you specify the address, you first specify the absolute byte address and then
the bit address (only with bit access) of the relevant byte separated by a period.

.Number Number

Bit address only

Address

Example

Examples of absolute access to a data are shown below. The data block itself is
specified in absolute terms in the first part and in symbolic terms in the second
part.

STATUSBYTE :=DB101.DB10;
STATUS_3 :=DB30.D1.1;
MEASVAL :=DB25.DW20;

STATUSBYTE :=Status_data.DB10;
STATUS_3 :="New data".D1.1;
MEASVAL :=Measdata.DW20.DW20;

STATUS_1 :=WORD_TO_BLOCK_DB (INDEX).DW10;

Shared Data

S7-SCL V5.1 for S7-300/S7-400
9-10 A5E00059543-01

9.3.3 Indexed Access to Data Blocks

You can also access data blocks using an index. Compared with absolute
addressing, this has the advantage of allowing you to address locations whose
address is only decided during runtime. You can, for example, use the control
variable of a FOR loop as the address.

Indexed access to a data block is similar to absolute access. It differs only in the
address specification.

Instead of the absolute address, an index is specified which can be a constant, a
variable or an arithmetic expression.

Indexed access is made up of the DB identifier, the address identifier (keyword "D"
and size prefix) and a basic expression for indexing.

Memory prefixSize prefix

D X [i,j]

Address identifier

Address
Basic indexing expression
enclosed in square brackets

DB identifier

Syntax

D
DB

 IDENTIFIER
 Size
prefix

Address identifier

. ,Basic
expression[]

Basic
expression

When using indexes, the following rules must be adhered to:

• When accessing data of the types BYTE, WORD or DWORD, you must use
one index only. The index is interpreted as a byte address. The extent of the
access is specified by the size prefix.

• When accessing data of the type BOOL, you must use two indexes. The first
index specifies the byte address, the second index the bit position within the
byte.

• Each index must be an arithmetic expression of the data type INT (0 - 32767).

Example

STATUS_1:= DB11.DW[COUNTER];
STATUS_2:= DB12.DX[WNO, BITNO];
STATUS_1:= Database1.DW[COUNTER];
STATUS_2:= Database2.DX[WNO, BITNO];
STATUS_1:= WORD_TO_BLOCK_DB(INDEX).DW[COUNTER];

Shared Data

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 9-11

9.3.4 Structured Access to Data Blocks

Structured access uses the identifier of the variables declared in the data block.
You can assign the variable to any variable of the same type.

You reference the variable in the data block by specifying the DB name and the
name of the simple variable separated by a period.

Syntax

. Simple
variable IDENTIFIER

DB

The simple variable stands for a variable to which you assigned an elementary or
complex data type in the declaration of the DB.

If a parameter of the type BLOCK_DB or the result of the conversion function
WORD_TO_BLOCK_DB is used to initiate access to a data block, only absolute or
indexed access is possible and structured access is not.

Example
In the declaration section of FB10:
VAR
Result: STRUCT RES1 : INT;
RES2 : WORD;
END_STRUCT
END_VAR

User-defined data type UDT1
TYPE UDT1 STRUCT RES1 : INT;
RES2 : WORD;
END_STRUCT

DB20 with user-defined data type:
DB20
UDT1
BEGIN ...

DB30 without user-defined data type:
DB30 STRUCT RES1 : INT;
RES2 : WORD;
END_STRUCT
BEGIN ...

Shared Data

S7-SCL V5.1 for S7-300/S7-400
9-12 A5E00059543-01

Function block with the following accesses:
..
FB10.DB10();
RESWORD_A := DB10.Result.RES2;
RESWORD_B := DB20.RES2;
RESWORD_C := DB30.RES2;

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 10-1

10 Expressions, Operations and Addresses

10.1 Overview of Expressions, Operations and Addresses

An expression stands for a value that is calculated during compilation or during
runtime and consists of addresses (for example constants, variables or function
calls) and operations (for example *, /, + or -).

The data types of the addresses and the operations used determine the type of
expression. The following expressions are possible in SCL:

• Arithmetic expressions

• Comparison expressions

• Logical expressions

An expression is evaluated in a specific order. This is decided by the following:

• the precedence of the operations involved and

• working from left to right or

• with operations having the same precedence by the parentheses.

You can do the following with the result of an expression:

• Assign it to a variable.

• Use it as a condition for control statement.

• Use it as a parameter for calling a function or a function block.

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
10-2 A5E00059543-01

10.2 Operations

Expressions consist of operations and addresses. Most SCL operations combine
two addresses and are therefore termed binary operators. The other operations
involve only one address and are called unary operators.

Binary operations are written between the addresses (for example, A + B). A unary
operation always stands immediately before its address (for example, -B).

The precedence of the operations listed in the table below governs the order of
evaluation. ‘1’ represents the highest precedence.

 Class Operation Symbol Precedence

Assignment Operation: Assignment : = 11

Arithmetic Operations: Power

Unary Operations

Unary plus

Unary minus

Basic
Arithmetic Operations

Multiplication

Division

Modulo function

Integer division

Addition

Subtraction

 **

+

-

 *

/

MOD

DIV

+

-

 2

3

3

4

4

4

4

5

5

Comparison Operations: Less than

Greater than

Less than or equal to

Greater than or equal to

Equal to

Not equal to

<

>

<=

>=

=

<>

6

6

6

6

7

7

Logical Operations: Negation NOT 3

Basic
Logical Operations

And

Exclusive or

Or

AND or &

XOR

OR

8

9

10

Parentheses : Parentheses () 1

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 10-3

10.3 Addresses

Addresses are objects with which an expression can be formed. The following
elements are permitted in addresses:

Address

Constant

Extended variable

(Expression)

NOT Address

Constants

Constants can be a numerical value or a symbolic name or a character string.

Numerical value

Character string

Constant name

Constant

The following are examples of valid constants:
4_711
4711
30.0
’CHARACTER’
FACTOR

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
10-4 A5E00059543-01

Extended Variable

An extended variable is a generic term for a series of variables that are dealt with
in more detail in the section entitled "Value Assignments".

Extended variable

Simple variable

Absolute variable

Variable in DB

Variable in local instance

FC call

for CPU memory areas

Some examples of valid variables:
SETPOINT simple variable
IW10 absolute variable
I100.5 absolute variable
DB100.DW [INDEX] variable in the DB
MOTOR.SPEED variable in a local instance
SQR (20) standard function
FC192 (SETPOINT) function call

Note

In the case of a function call, the calculated result, the return value, is inserted in
the expression in place of the function name. VOID functions that do not return a
value are therefore not allowed as addresses in an expression.

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 10-5

10.4 Syntax of an Expression

Syntax

Basic
logic operations

Address

()

+

Expression

Expression

Expression

**

Exponent

-

Expression

NOT

Expression

Unary plus

Unary minus

Negation

Exponent

Expression

operations
Comparison

arithmetic oprations
Basic

Result of an Expression

You can do the following with the result of an expression:

• Assign it to a variable.

• Use it as the condition for a control instruction.

• Use it as a parameter for calling a function or a function block.

Order of Evaluation

The order of evaluation of an expression depends on the following:

• The precedence of the operations involved

• The order from left to right

• The use of parentheses (if operations have the same precedence).

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
10-6 A5E00059543-01

Rules

Expressions evaluate according to the following rules:

• An address between two operations with different precedence is always
associated with the higher precedence operation.

• The operations are processed according to the hierarchical order.

• Operations with the same precedence are evaluated from left to right.

• Placing a minus sign before an identifier is the same as multiplying it by -1.

• Arithmetic operations must not follow each other directly. The expression
a * - b is invalid, whereas a*(-b) is permitted.

• Parentheses can be used to overcome operation precedence; in other words,
parentheses have the highest precedence.

• Expressions in parentheses are considered as a single address and always
evaluated first.

• The number of left parentheses must match the number of right parentheses.

• Arithmetic operations cannot be used in conjunction with characters or logical
data. Expressions such as ’A’ + ’B’ and (n <= 0) + (m > 0) are incorrect.

Examples of Expressions
IB10 // address
A1 AND (A2) // logical expression
(A3) < (A4) // comparison expression
3+3*4/2 //arithmetic expression

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 10-7

10.5 Simple Expression

In SCL, a simple expression means a simple arithmetic expression. You can
multiply or divide constant values in pairs and add or subtract these pairs.

Syntax of a Simple Expression

+

-

Simple
multiplication

Simple
expression

Syntax of Simple Multiplication

*

/

DIV

MOD

Simple
multiplication

Constant

Simple
expression()

-

Example

SIMP_EXPRESSION= A * B + D / C - 3 * VALUE1;

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
10-8 A5E00059543-01

10.6 Arithmetic Expressions

An arithmetic expression is an expression formed with arithmetic operations. These
expressions allow numeric data types to be processed.

The following table shows all the possible operations and indicates the type to
which the result belongs depending on the addresses. The following abbreviations
are used:

ANY_INT for data types INT, DINT

ANY_NUM for data types ANY_INT and REAL

 Operation Identifier 1st Address 2nd Address Result Precedence

Power ** ANY_NUM ANY_NUM REAL 2

Unary plus + ANY_NUM - ANY_NUM 3

TIME - TIME 3

Unary minus - ANY_NUM - ANY_NUM 3

TIME - TIME 3

Multiplication * ANY_NUM ANY_NUM ANY_NUM 4

TIME ANY_INT TIME 4

Division / ANY_NUM ANY_NUM ANY_NUM 4

TIME ANY_INT TIME 4

Integer division DIV ANY_INT ANY_INT ANY_INT 4

TIME ANY_INT TIME 4

Modulo division MOD ANY_INT ANY_INT ANY_INT 4

Addition + ANY_NUM ANY_NUM ANY_NUM 5

TIME TIME TIME 5

TOD TIME TOD 5

DT TIME DT 5

Subtraction - ANY_NUM ANY_NUM ANY_NUM 5

TIME TIME TIME 5

TOD TIME TOD 5

DATE DATE TIME 5

TOD TOD TIME 5

DT TIME DT 5

DT DT TIME 5

Note

Remember that when you specify an address type (for example ANY_NUM), the
addresses depend on the type of the result. If the result of the expression is, for
example, of the type INTEGER, you must not use addresses of the type REAL.

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 10-9

Rules

Operations in arithmetic expressions are handled in the order of their precedence.

• It is advisable to place negative numbers in brackets for the sake of clarity
even in cases where it is not syntactically necessary.

• When dividing with two whole numbers of the type INT, the operations “DIV"
and “/" produce the same result (see example below).

• In the division operations (`/', `MOD' and `DIV'), the second address must not
be not equal to zero.

• If one number is of the INT type (integer) and the other of the REAL type (real
number), the result will always be of the REAL type.

Examples
// The result (11) of the arithmetic expression is
// assigned to the variable "VALUE"
VALUE1 := 3 + 3 * 4 / 2 - (7+3) / (-5) ;
// The VALUE of the following expression is 1
VALUE2 := 9 MOD 2 ;

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
10-10 A5E00059543-01

10.7 Logical Expressions

A logical expression is an expression formed by logic operations.

Basic Logic Operations

Using the operations AND, &, XOR and OR, logical addresses (BOOL type) or
variables of the data type BYTE, WORD or DWORD can be combined to form
logical expressions. To negate a logical address, the NOT operation is used.

AND & XOR OR

Basic Logic Operator
NOT is not a basic operator
The operator acts like a mathematical sign.

Logic Operations:

The result of the expression is either TRUE or FALSE following a logic operation
on Boolean addresses or it is a bit pattern after logic operation on the bits of two
addresses.

The following table lists the available logical expressions and data types for the
result and addresses. The following abbreviations are used:

ANY_BIT for data types BOOL, BYTE, WORD, DWORD

 Operation Identifier 1st Address 2nd Address Result Precedence

Negation NOT ANY_BIT - ANY_BIT 3

Conjunction AND ANY_BIT ANY_BIT ANY_BIT 8

Exclusive disjunction XOR ANY_BIT ANY_BIT ANY_BIT 9

Disjunction OR ANY_BIT ANY_BIT ANY_BIT 10

Result:

The result of a logic expression is either

• 1 (true) or 0 (false) if Boolean addresses are combined, or

• A bit pattern corresponding to the combination of the two addresses.

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 10-11

Examples

// The result of the comparison expression is negated.
 IF NOT (COUNTER > 5) THEN . . . ;
// The result of the first comparison expression is negated
 and
// combined with the result of the second
 A := NOT (COUNTER1 = 4) AND (COUNTER2 = 10) ;
// Disjunction of two comparison expressions
 WHILE (A >= 9) OR (SCAN <> "n") DO.... ;
// Masking an input byte (bit operation)
 Result := IB10 AND 2#11110000 ;

Expressions, Operations and Addresses

S7-SCL V5.1 for S7-300/S7-400
10-12 A5E00059543-01

10.8 Comparison Expressions

The comparison operations compare the values of two addresses and evaluate to
a Boolean value. The result is TRUE if the comparison condition is true and FALSE
if it fails.

Syntax

>< <>=>=<=

Comparison Operation

Rules

The following rules apply to comparison expressions:

• Comparisons of all variables in the following type classes are permitted:

- INT, DINT, REAL

- BOOL, BYTE, WORD, DWORD

- CHAR, STRING

• With the following time types, only variables of the same type can be
compared:

- DT, TIME, DATE, TOD

• When comparing characters (CHAR type), the operation uses the order of the
ASCII character set.

• S5 TIME variables are not permitted in comparison operations. S5TIME format
must be converted explicitly to TIME using IEC functions.

• Comparison expressions can be combined according to the rules of Boolean
logic to implement statements such as "if a < b and b < c then ...".
(Example: Value_A > 20 AND Value_B < 20)
The operations are evaluated in the order of their precedence. The precedence
can be changed by parentheses.
Example:
A<>(B AND C)

Examples
// Compare 3 LESS THAN OR EQUAL TO 4. The result
// is "TRUE"
 A := 3 <= 4
// Compare 7 NOT EQUAL TO 7. The result
// is "FALSE"
 7 <> 7
// Evaluation of a comparison expression in
// an IF statement
 IF COUNTER < 5 THEN

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-1

11 Statements

11.1 Value Assignments

When a value is assigned, the current value of a variable is replaced by a new
value specified by an expression. This expression can also contain identifiers for
functions that are activated by the statement and then return corresponding values
(return value).

As shown in the diagram below, the expression on the right-hand side of the
assignment operator is evaluated and the value obtained as the result is set in the
variable whose name is on the left-hand side of the assignment operator. The
variables permitted for this function are shown in the figure.

Syntax of a Value Assignment

Simple variable

Absolute variable

Variable in DB

Value Assignment

Expression:= ;

in CPU memory areas

Variable in local instance

The type of an assignment expression is the type of the left address. The simple
variable can be a variable of an elementary or complex data type.

Statements

S7-SCL V5.1 for S7-300/S7-400
11-2 A5E00059543-01

11.1.1 Value Assignments with Variables of an Elementary Data Type

Every expression and every variable of an elementary data type can be assigned
the value of a different variable of the same type.

Identifier := Expression ;
Identifier := Variable ;

Example
FUNCTION_BLOCK FB12
VAR
 SWITCH_1 : INT ;
 SWITCH_2 : INT ;
 SETPOINT_1 : REAL ;
 SETPOINT_2 : REAL ;
 QUERY_1 : BOOL ;
 TIME_1 : S5TIME ;
 TIME_2 : TIME ;
 DATE_1 : DATE ;
 TIMEOFDAY_1 : TIME_OF_DAY ;
END_VAR
BEGIN

// Assignment of a constant to a variable
 SWITCH_1 := -17 ;
 SETPOINT_1 := 100.1 ;
 QUERY_1 := TRUE ;
 TIME_1 := T#1H_20M_10S_30MS ;
 TIME_2 := T#2D_1H_20M_10S_30MS ;
 DATE_1 := D#1996-01-10 ;

// Assignment of a variable to a variable
 SETPOINT_1 := SETPOINT_2 ;
 SWITCH_2 := SWITCH_1 ;
// Assignment of an expression to a variable

 SWITCH_2 := SWITCH_1 * 3 ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-3

11.1.2 Value Assignments with Variables of the Type STRUCT and UDT

Variables of the types STRUCT and UDT are structured variables that represent
either a complete structure or a component of the structure.

The following are examples of valid structure variables:

Image //Identifier for a structure
Image.element //Identifier for a structure component
Image.arr //Identifier for a single array

//within a structure
Image.arr[2,5] //Identifier for an array component

//within a structure

Assigning a Complete Structure

An entire structure can only be assigned to another structure when the structure
components match each other both in terms of data type and name. The following
assignments would be valid:

structname_1 := structname_2 ;

Assigning Structure Components

You can assign a variable of the same type, an expression of the same type or
another structure component to any structure component.

You can reference a structure component by specifying the identifier of the
structure and the identifier of the structure component separated by a period. The
following assignments would be valid:

structname_1.element1 := Value ;
structname_1.element1 := 20.0 ;
structname_1.element1 := structname_2.element1 ;
structname_1.arrname1 := structname_2.arrname2 ;
structname_1.arrname[10] := 100 ;

Statements

S7-SCL V5.1 for S7-300/S7-400
11-4 A5E00059543-01

Example
FUNCTION_BLOCK FB3
VAR
 AUXVAR : REAL ;
 MEASVAL : STRUCT //Target structure
 VOLTAGE:REAL ;
 RESISTANCE:REAL ;
 SIMPLEARR : ARRAY [1..2, 1..2] OF INT ;
 END_STRUCT ;
 PROCVAL : STRUCT //Source structure
 VOLTAGE : REAL ;
 RESISTANCE : REAL ;
 SIMPLEARR : ARRAY [1..2, 1..2] OF INT ;
 END_STRUCT ;
END_VAR

BEGIN
//Assignment of a complete structure to a complete structure
 MEASVAL := PROCVAL ;
//Assignment of a structure component to a structure
component
 MEASVAL.VOLTAGE := PROCVAL.VOLTAGE ;
//Assignment of a structure component to a variable of the
same type
 AUXVAR := PROCVAL.RESISTANCE ;
//Assignment of a constant to a structure component
 MEASVAL.RESISTANCE := 4.5;
//Assignment of a constant to a single array element
 MEASVAL.SIMPLEARR[1,2] := 4;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-5

11.1.3 Value Assignments with Variables of the Type ARRAY

An array consists of one up to a maximum of six dimensions and contains
elements that are all of the same type. To assign arrays to a variable there are two
access variants. You can reference complete arrays or a component of an array.

Assigning a Complete Array

A complete array can be assigned to another array when both the data types of the
components and the array limits (lowest and highest possible array indexes)
match. If this is the case, specify the identifier of the array after the assignment
operator. The following assignments would be valid:

arrname_1 := arrname_2 ;

Assigning a Component of an Array

A single component of an array is addressed using the array name followed by
suitable index values in square braces. An index is available for each dimension.
These are separated by commas and also enclosed in square brackets. An index
must be an arithmetic expression of the data type INT.

To obtain a value assignment for a permitted component, you omit indexes starting
at the right in the square braces after the name of the array. In this way, you
address a subset of the array whose number of dimensions is equal to the number
of indexes omitted. The following assignments would be valid:

arrname_1[i] := arrname_2[j] ;
arrname_1[i] := expression ;
identifier_1 := arrname_1[i] ;

Statements

S7-SCL V5.1 for S7-300/S7-400
11-6 A5E00059543-01

Example

FUNCTION_BLOCK FB3
VAR
 SETPOINTS :ARRAY [0..127] OF INT ;
 PROCVALS :ARRAY [0..127] OF INT ;
// Declaration of a matrix (=two-dimensional array)
// with 3 rows and 4 columns
 CRTLLR : ARRAY [1..3, 1..4] OF INT ;
// Declaration of a vector (=one-dimensional array) with 4
components
 CRTLLR_1 : ARRAY [1..4] OF INT ;
END_VAR

BEGIN
// Assignment of a complete array to an array
 SETPOINTS := PROCVALS ;
// Assignment of a vector to the second row of the CRTLLR
//array
 CRTLLR[2] := CRTLLR_1 ;
//Assignment of a component of an array to a component of the
//CTRLLR array
 CRTLLR [1,4] := CRTLLR_1 [4] ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-7

11.1.4 Value Assignments with Variables of the Data Type STRING

A variable of the data type STRING contains a character string with a maximum of
254 characters. Each variable of the STRING data type can be assigned another
variable of the same type. The following assignments would be valid:

stringvariable_1 := stringconstant;
stringvariable_1 := stringvariable_2 ;

Example
FUNCTION_BLOCK FB3
VAR
 DISPLAY_1 : STRING[50] ;
 STRUCTURE1 : STRUCT
 DISPLAY_2 : STRING[100] ;
 DISPLAY_3 : STRING[50] ;
 END_STRUCT ;
END_VAR

BEGIN
// Assignment of a constant to a STRING variable
 DISPLAY_1 := ’Error in module 1’ ;
// Assignment of a structure component to a STRING variable.
 DISPLAY_1 := STRUCTURE1.DISPLAY_3 ;
// Assignment of a STRING variable to a STRING variable
 If DISPLAY_1 <> STRUCTURE1.DISPLAY_3 THEN
 DISPLAY_1 := STRUCTURE1.DISPLAY_3 ;
 END_IF;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
11-8 A5E00059543-01

11.1.5 Value Assignments with Variables of the Type DATE_AND_TIME

The data type DATE_AND_TIME defines an area with 64 bits (8 bytes) for the date
and time. Each variable of the data type DATE_AND_TIME can be assigned
another variable of the same type or a constant. The following assignments would
be valid:

dtvariable_1 := date and time constant;
dtvariable_1 := dtvariable_2 ;

Example
FUNCTION_BLOCK FB3
VAR
 TIME_1 : DATE_AND_TIME ;
 STRUCTURE1 : STRUCT
 TIME_2 : DATE_AND_TIME ;
 TIME_3 : DATE_AND_TIME ;
 END_STRUCT ;
END_VAR

BEGIN
// Assignment of a constant to a DATE_AND_TIME variable
 TIME_1 := DATE_AND_TIME#1995-01-01-12:12:12.2 ;
 STRUCTURE1.TIME_3 := DT#1995-02-02-11:11:11 ;
// Assignment of a structure component to a DATE_AND_TIME
// variable.
 TIME_1 := STRUCTURE1.TIME_2 ;
// Assignment of a DATE_AND_TIME variable to a DATE_AND_TIME
// variable
 If TIME_1 < STRUCTURE1.TIME_3 THEN
 TIME_1 := STRUCTURE1.TIME_3 ;
 END_IF ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-9

11.1.6 Value Assignments with Absolute Variables for Memory Areas

An absolute variable references the memory areas of a CPU with global scope.
You can access these areas in three ways:

• Absolute Access

• Indexed Access

• Symbolic Access

Syntax of Absolute Variables

Memory
prefix AddressSize

prefix

Address identifier

Absolute Variable

Example
FUNCTION_BLOCK FB3
VAR
 STATUSWORD1 : WORD ;
 STATUSWORD2 : BOOL ;
 STATUSWORD3 : BYTE ;
 STATUSWORD4 : BOOL ;
 ADDRESS : INT ;
END_VAR
BEGIN
 ADDRESS := 10 ;
// Assignment of an input word to a variable (simple access)
 STATUSWORD1 := IW4 ;
// Assignment of a variable to an output bit (simple access)
 a1.1 := STATUSWORD2 ;
// Assignment of an input byte to a variable (indexed access)
 STATUSWORD3 := IB[ADDRESS] ;
// Assignment of an input bit to a variable (indexed access)
 FOR ADDRESS := 0 TO 7 BY 1 DO
 STATUSWORD4 := e[1, ADDRESS] ;
 END_FOR ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
11-10 A5E00059543-01

11.1.7 Value Assignments with Shared Variables

You also access data in data blocks by assigning a value to variables of the same
type or vice-versa. You can assign any global variable a variable or expression of
the same type. There are several ways in which you can access this data:

• Structured Access

• Absolute Access

• Indexed Access

Syntax of the DB Variable

. D Size
prefix Address

DB
IDENTIFIER

Address identifier

DB Variable

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-11

Example
FUNCTION_BLOCK FB3
VAR
 CRTLLR_1 : ARRAY [1..4] OF INT ;
 STATUSWORD1 : WORD ;
 STATUSWORD2 : ARRAY [0..10] OF WORD ;
 STATUSWORD3 : INT ;
 STATUSWORD4 : WORD ;
 ADDRESS : INT ;
END_VAR
VAR_INPUT
 ADDRESSWORD : WORD ;
END_VAR
BEGIN
// Assignment of word 1 from DB11
//to a variable (simple access)
 STATUSWORD1 := DB11.DW1 ;
// The array component in the 1st row and
// 1st column of the matrix is assigned the value
// of the "NUMBER" variable (structured access):
 CRTLLR_1[1] := DB11.NUMBER ;
// Assignment of structure component "NUMBER2"
// of structure "NUMBER1" to the variable status word3
 STATUSWORD3 := DB11.NUMBER1.NUMBER2 ;
// Assignment of a word with index address
// from DB11 to a variable (indexed access)
 FOR
 ADDRESS := 1 TO 10 BY 1 DO
 STATUSWORD2[ADDRESS] := DB11.DW[ADDRESS] ;
 // Here the input parameter ADDRESSWORD as number of the
 //DB and the index ADDRESS are used to specify the word
 //address within the DB.
 STATUSWORD4 :=
WORD_TO_BLOCK_DB(ADDRESSWORD).DW[ADDRESS] ;

END_FOR ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
11-12 A5E00059543-01

11.2 Control Statements

11.2.1 Overview of Control Statements

Selective Statements

A selective statement enables you to direct program execution into alternative
sequences of statements.

 Types of Branch Function

IF Statement The IF statement enables you to direct program execution into one of
two alternative branches depending on a condition being TRUE or
FALSE:

CASE Statement The CASE statement enables you direct program execution into 1 of n
alternative branches based on the value of a variable.

Loops

You can control loop execution using iteration statements. An iteration statement
specifies which parts of a program should be iterated depending on certain
conditions.

 Types of Branch Function

FOR Statement Used to repeat a sequence of statements for as long as the control
variable remains within the specified value range

WHILE Statement Used to repeat a sequence of statements while an execution
condition continues to be satisfied

REPEAT Statement Used to repeat a sequence of statements until a terminate condition
is met

Program Jump

A program jump means an immediate jump to a specified jump destination and
therefore to a different statement within the same block.

 Types of Branch Function

CONTINUE Statement Used to stop execution of the current loop iteration.

EXIT Statement Used to exit a loop at any point regardless of whether the
terminate condition is satisfied or not

GOTO Statement Causes the program to jump immediately to a specified label

RETURN Statement Causes the program to exit the block currently being executed

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-13

11.2.2 Conditions

The condition is either a comparison expression, a logical expression or an
arithmetic expression. It is of the type BOOL and can have the values TRUE or
FALSE. Arithmetic expressions are TRUE if they result in a value other then 0 and
FALSE when they result in the value 0. The table below shows examples of
conditions:

 Type Example

Comparison expression TEMP > 50
COUNTER <= 100
CHAR1 < ’S’

Comparison and logical expression (ALPHA <> 12) AND NOT BETA

Boolean address I 1.1

Arithmetic expression ALPHA = (5 + BETA)

Statements

S7-SCL V5.1 for S7-300/S7-400
11-14 A5E00059543-01

11.2.3 IF Statements

The IF statement is a conditional statement. It provides one or more options and
selects one (or none) of its statement components for execution.

Execution of the conditional statement evaluates the specified logical expressions.
If the value of an expression is TRUE then the condition is satisfied, if it is FALSE
the condition is not satisfied.

Syntax

IF Statement

IF THENExpression

ELSIF THENExpression

ELSE END_IF

Statement
section

Statement
section

Statement
section

Condition

Condition

An IF statement is executed according to the following rules:

• The first sequence of statements whose logical expression = TRUE is
executed. The remaining sequences of statements are not executed.

• If no Boolean expression = TRUE, the sequence of statements introduced by
ELSE is executed (or no sequence of statements if the ELSE branch does not
exist).

• Any number of ELSIF statements can exist.

Note

Using one or more ELSIF branches has the advantage that the logical
expressions following a valid expression are no longer evaluated in contrast to a
sequence of IF statements. The runtime of a program can therefore be reduced.

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-15

Example
IF I1.1 THEN
 N := 0 ;
 SUM := 0 ;
 OK := FALSE ; // Set OK flag to FALSE
ELSIF START = TRUE THEN
 N := N + 1 ;
 SUM := SUM + N ;
ELSE
 OK := FALSE ;
END_IF ;

Statements

S7-SCL V5.1 for S7-300/S7-400
11-16 A5E00059543-01

11.2.4 CASE Statement

The CASE statement is used to select one of several alternative program sections.
This choice is based on the current value of a selection expression.

Syntax

Selection expression (Integer)
CASE Statement

CASE OFExpression

:

Value

:ELSE END_CASE

Statement
section

Statement
section

Value list

The CASE statement is executed according to the following rules:

• The selection expression must return a value of the type INTEGER.

• When a CASE statement is processed, the program checks whether the value
of the selection expression is contained within a specified list of values. If a
match is found, the statement component assigned to the list is executed.

• If no match is found, the program section following ELSE is executed or no
statement is executed if the ELSE branch does not exist.

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-17

Value List

This contains the values permitted for the selection expression

Integer

. .

,

Value

ValueValue

Value List

The following rules apply to the value list:

• Each value list begins with a constant, a list of constants or a range of
constants.

• The values within the value list must be of the type INTEGER.

• Each value must only occur once.

Value

The value has the syntax shown below:

IDENTIFIER

Constant name

Numeric constant

Example
CASE TW OF
 1 : DISPLAY:= OVEN_TEMP;
 2 : DISPLAY:= MOTOR_SPEED;
 3 : DISPLAY:= GROSS_TARE;
 QW4:= 16#0003;
 4..10: DISPLAY:= INT_TO_DINT (TW);
 QW4:= 16#0004;
 11,13,19: DISPLAY:= 99;
 QW4:= 16#0005;
ELSE:
 DISPLAY:= 0;
 TW_ERROR:= 1;
END_CASE ;

Statements

S7-SCL V5.1 for S7-300/S7-400
11-18 A5E00059543-01

11.2.5 FOR Statement

A FOR statement is used to repeat a sequence of statements as long as a control
variable is within the specified range of values. The control variable must be the
identifier of a local variable of the type INT or DINT. The definition of a loop with
FOR includes the specification of an initial and an end value. Both values must be
the same type as the control variable.

Syntax

FOR TO

DO

FOR Statement

Basic
expression

for final value

for increment

Initial
statement

Statement
section

END_FOR

BY

for initial value

Basic
expression

The FOR statement executes as follows:

• At the start of the loop, the control variable is set to the initial value (initial
assignment) and each time the loop iterates, it is incremented by the specified
increment (positive increment) or decremented (negative increment) until the
final value is reached.

• Following each run through of the loop, the condition is checked (final value
reached) to establish whether or not it is satisfied. If the condition is satisfied,
the sequence of statements is executed, otherwise the loop and with it the
sequence of statements is skipped.

Rules

Rules for formulating FOR statements

• The control variable may only be of the data type INT or DINT.

• You can omit the statement BY [increment]. If no increment is specified, it is
automatically assumed to be +1.

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-19

Initial Assignment

The initial value of the control variable must have the following syntax. The simple
variable on the left of the assignment must be data type INT or DINT.

:= expression
BasicSimple

variable

for initial valueof data type
INT/DINT

Initial Assignment

Examples of valid initial assignments:

FOR I := 1 TO 20
FOR I := 1 TO (START + J)

Final Value and Increment

You can write a basic expression for the final value and the required increment.
This basic expression must have the following syntax:

expression
Basic

 operator
Basic arithmetic

Address

()

+

-

Only with FOR statement

expression

expression

expression

Basic

Basic

Basic

• You can omit the statement BY [increment]. If no increment is specified, it
is automatically assumed to be +1.

• The initial value, final value and increment are expressions (see "Expressions,
Operations and Addresses"). It is evaluated once at the start when the FOR
statement is executed.

• Alteration of the values for final value and increment is not permitted while the
loop is executing.

Statements

S7-SCL V5.1 for S7-300/S7-400
11-20 A5E00059543-01

Example

FUNCTION_BLOCK FOR_EXA
VAR
 INDEX: INT ;
 IDWORD: ARRAY [1..50] OF STRING;
END_VAR
BEGIN
FOR INDEX := 1 TO 50 BY 2 DO
 IF IDWORD [INDEX] = ’KEY’ THEN
 EXIT;
 END_IF;
END_FOR;

END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-21

11.2.6 WHILE Statement

The WHILE statement allows the repeated execution of a sequence of statements
controlled by an execution condition. The execution condition is formed according
to the rules for logical expressions.

Syntax

Execution condition

WHILE Statement

Statement
section

END_WHILEWHILE Expression DO

The WHILE statement executes according to the following rules:

• Prior to each iteration of the loop body, the execution condition is evaluated.

• The loop body following DO iterates as long as the execution condition has the
value TRUE.

• Once the value FALSE occurs, the loop is skipped and the statement following
the loop is executed.

Example
FUNCTION_BLOCK WHILE_EXA
VAR
 INDEX: INT ;
 IDWORD: ARRAY [1..50] OF STRING ;
END_VAR
BEGIN
INDEX := 1 ;
WHILE INDEX <= 50 AND IDWORD[INDEX] <> ’KEY’ DO
 INDEX := INDEX + 2;
END_WHILE ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
11-22 A5E00059543-01

11.2.7 REPEAT Statement

A REPEAT statement causes the repeated execution of a sequence of statements
between REPEAT and UNTIL until a terminate condition occurs. The terminate
condition is formed according to the rules for logical expressions.

Syntax

Break condition

REPEAT Statement

Statement
section

END_REPEATREPEAT ExpressionUNTIL

The condition is evaluated after the loop body has been executed. This means that
the loop body must be executed at least once even if the termination condition is
satisfied when the loop is started.

Example
FUNCTION_BLOCK REPEAT_EXA
VAR
 INDEX: INT ;
 IDWORD: ARRAY [1..50] OF STRING ;
END_VAR

BEGIN
INDEX := 0 ;
REPEAT
 INDEX := INDEX + 2 ;
UNTIL INDEX > 50 OR IDWORD[INDEX] = ’KEY’
END_REPEAT ;

END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-23

11.2.8 CONTINUE Statement

A CONTINUE statement is used to terminate the execution of the current iteration
of a loop statement (FOR, WHILE or REPEAT).

Syntax

CONTINUE

CONTINUE Statement

The CONTINUE statement executes according to the following rules:

• This statement immediately terminates execution of a loop body.

• Depending on whether the condition for repeating the loop is satisfied or not
the body is executed again or the iteration statement is exited and the
statement immediately following is executed.

• In a FOR statement, the control variable is incremented by the specified
increment immediately after a CONTINUE statement.

Example
FUNCTION_BLOCK CONTINUE_EXA
VAR
 INDEX :INT ;
 ARRAY :ARRAY[1..100] OF INT ;
END_VAR

BEGIN
INDEX := 0 ;
WHILE INDEX <= 100 DO
 INDEX := INDEX + 1 ;
 // If ARRAY[INDEX] is equal to INDEX,
 // then ARRAY [INDEX] is not changed:
 IF ARRAY[INDEX] = INDEX THEN
 CONTINUE ;

 END_IF ;
 ARRAY[INDEX] := 0 ;
 // Further statements
END_WHILE ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
11-24 A5E00059543-01

11.2.9 EXIT Statement

An EXIT statement is used to exit a loop (FOR, WHILE or REPEAT) at any point
regardless of whether the terminate condition is satisfied.

Syntax

EXIT

EXIT Statement

The EXIT statement executes according to the following rules:

• This statement causes the repetition statement immediately surrounding the
exit statement to be exited immediately.

• Execution of the program is continued after the end of the loop (for example
after END_FOR).

Example
FUNCTION_BLOCK EXIT_EXA
VAR
 INDEX_1 : INT ;
 INDEX_2 : INT ;
 INDEX_SEARCH : INT ;
 IDWORD : ARRAY[1..51] OF STRING ;
END_VAR

BEGIN
INDEX_2 := 0 ;
FOR INDEX_1 := 1 TO 51 BY 2 DO
 // Exit the FOR loop, if
 // IDWORD[INDEX_1] is equal to ’KEY’:
 IF IDWORD[INDEX_1] = ’KEY’ THEN
 INDEX_2 := INDEX_1 ;
 EXIT ;
 END_IF ;
END_FOR ;
// The following value assignment is made
// after executing EXIT or after the
// regular end of the FOR loop:
INDEX_SEARCH := INDEX_2 ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-25

11.2.10 GOTO Statement

You can implement a program jump using the GOTO statement. This causes an
immediate jump to the specified label and therefore to a different statement within
the same block.

GOTO statements should only be used in special situations, for example in error
handling. According to the rules of structured programming, the GOTO statement
should not be used.

Syntax

GOTO IDENTIFIER

Label

GOTO Statement

Here, label is a label in the LABEL/END_LABEL declaration section. This label
precedes the statement that will be executed next after the GOTO statement.

If you use the GOTO statement, remember the following rules:

• The destination of the jump must be in the same block.

• The destination of the jump must be uniquely identified.

• It is not possible to jump to a loop section. It is possible to jump from within a
loop.

Example
FUNCTION_BLOCK GOTO_EXA
VAR
 INDEX : INT ;
 A : INT ;
 B : INT ;
 C : INT ;
 IDWORD : ARRAY[1..51] OF STRING ;
END_VAR
LABEL
 LAB1, LAB2, LAB3 ;
END_LABEL

BEGIN
IF A > B THEN
 GOTO LAB1 ;
ELSIF A > C THEN
 GOTO LAB2 ;
END_IF ;
// . . .
LAB1: INDEX := 1 ;
 GOTO LAB3 ;
LAB2: INDEX := 2 ;
// . . .
LAB3:
// . . .

Statements

S7-SCL V5.1 for S7-300/S7-400
11-26 A5E00059543-01

11.2.11 RETURN Statement

A RETURN statement exits the currently active block (OB, FB, FC) and returns to
the calling block or to the operating system, when an OB is exited.

Syntax

RETURN

RETURN Statement

Note

A RETURN statement at the end of the code section of a logic block or the
declaration section of a data block is redundant since this is automatically
executed.

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-27

11.3 Calling Functions and Function Blocks

11.3.1 Call and Parameter Transfer

Calling FCs and FBs

To make it easier to read and update user programs, the functions of the program
are divided into smaller individual tasks that are performed by function blocks (FBs)
and functions (FCs). You can call other FCs and FBs from within an SCL block.
You can call the following blocks:

• Function blocks and functions created in SCL

• Function blocks and functions created in other STEP 7 languages (LAD, FBD,
STL)

• System functions (SFCs) and system function blocks (SFBs) available in the
operating system of the CPU.

Basic Principle of Parameter Transfer

When functions or function blocks are called, data is exchanged between the
calling and the called block. Parameters are defined in the interface of the called
block with which the block works. These parameters are known as formal
parameters. They are merely “placeholders" for the parameters that are passed to
the block when it is called. The parameters passed to the block are known as
actual parameters.

Syntax of Parameter Transfer

The parameters that are to be transferred must be specified in the call in the form
of a parameter list. The parameters are enclosed in brackets. A number of
parameters are separated by commas.

In the example of a function call below, an input parameter, an in/out parameter
and an output parameter are specified.

I_Par 3
IO_ParLENGTH
O_Par Digitsum

Formal Parameter Actual Parameter

Statements

S7-SCL V5.1 for S7-300/S7-400
11-28 A5E00059543-01

The parameters are specified in the form of a value assignment. That value
assignment assigns a value (actual parameter) to the parameters defined in the
declaration section of the called block (formal parameters).

FB10.DB20 (X1:=5,X2:=78,......);

Parameter assignment

DRIVE.ON (X1:=5,X2:=78,......);

Absolute function call:

Symbolic function call:

11.3.2 Calling Function Blocks

When you call a function block, you can use both shared instance data blocks and
local instance areas of the currently active instance data block.

Calling an FB as a local instance differs from the call as a shared instance in the
way in which the data are stored. Here, the data are not saved in a special DB but
in the instance data block of the calling FB.

Syntax

(FB parameters)

Local instance name

IDENTIFIER

.

FB
IDENTIFIER

SFB
IDENTIFIER

DB
IDENTIFIER

Function Block Call

FB: Function block
SFB: System function block

Global instance name

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-29

Call as a Shared Instance

The call is made in a call statement by specifying the following:

• The name of the function block or system function block (FB or SFB identifier),

• The instance data block (DB identifier),

• The parameter supply (FB parameter).

A function call for a shared instance can be either absolute or symbolic.

FB10.DB20 (X1:=5,X2:=78,......);

Parameter assignment

DRIVE.ON (X1:=5,X2:=78,......);

Absolute function call:

Symbolic function call:

Call as a Local Instance

The call is made in a call statement by specifying the following:

• The local instance name (IDENTIFIER)

• The parameter supply (FB parameters)

A call for a local instance is always symbolic. You must declare the symbolic name
in the declaration section of the calling block.

MOTOR (X1:=5,X2:=78,......);

Parameter assignment

Statements

S7-SCL V5.1 for S7-300/S7-400
11-30 A5E00059543-01

11.3.2.1 Supplying FB Parameters

When calling a function block (as a shared or local instance) you must supply the
following parameters:

• Input Parameters

• In/out parameters

The output parameters do not have to be specified when an FB is called.

Syntax of a Value Assignment for Defining FB Parameters

The syntax of the FB parameter specification is the same when calling shared or
local instances.

,

Input
assignment

In/out
assignment

FB Parameters

The following rules apply when supplying parameters:

• The assignments can be in any order.

• The data types of formal and actual parameters must match.

• The assignments are separated by commas.

• Output assignments are not possible in FB calls. The value of a declared
output parameter is stored in the instance data. From there it can be accessed
by all FBs. To read an output parameter, you must define the access from
within an FB.

• Remember the special features for parameters of the ANY data type and
POINTER data type.

Result after Executing the Block

After executing the block:

• The actual parameters transferred are unchanged.

• The transferred and modified values of the in/out parameters have been
updated; In/out parameters of an elementary data type are an exception to this
rule.

• The output parameters can be read by the calling block from the shared
instance data block or the local instance area.

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-31

Example

A call with an assignment for an input and an in/out parameter could, for example,
appear as follows:

FB31.DB77(I_Par:=3, IO_Par:=LENGTH);

11.3.2.2 Input Assignment (FB)

The input assignments assign actual parameters to the formal parameters. The FB
cannot change these actual parameters. The assignment of actual input
parameters is optional. If no actual parameter is specified, the values of the last call
are retained.

Possible actual parameters are shown below:

 Actual Parameter Explanation

Expression • Arithmetic, logical or comparison expression
• Constant

• Extended variable

TIMER/COUNTER
identifier

Defines a specific timer or counter to be used when a block is
processed

BLOCK
identifier

Defines a specific block to be used as an input parameter. The block
type (FB, FC or DB) is specified in the input parameter declaration.

When assigning parameter values you specify the block number. You
can specify this in absolute or symbolic form.

Syntax

:=

Expression

TIMER
IDENTIFIER

BLOCK
IDENTIFIER

COUNTER
IDENTIFIER

Actual parameter

IDENTIFIER

Parameter name of the
input parameter

(formal parameter)

Input Assignment

Statements

S7-SCL V5.1 for S7-300/S7-400
11-32 A5E00059543-01

11.3.2.3 In/Out Assignment (FB)

In/out assignments are used to assign actual parameters to the formal in/out
parameters. The called FB can modify the in/out parameters. The new value of a
parameter that results from processing the FB is written back to the actual
parameters. The original value is overwritten.

If in/out parameters are declared in the called FB, they must be supplied with
values when the block is called the first time. When it is executed again, specifying
actual parameters is optional. With in/out parameters of an elementary data type,
there is no updating of the actual parameter if the formal parameter is not supplied
with a value when the block is called.

Since the assigned actual parameter as an in/out parameter can be changed while
the FB is being executed, it must be a variable.

 Actual Parameter Explanation

Extended Variable The following types of extended variable are possible:

• Simple variables and parameters

• Access to absolute variables

• Access to data blocks

• Function calls

Syntax

In/Out Assignment

Actual parameter
Parameter name of the
in/out parameter

:= Extended
variableIDENTIFIER

(formal parameter)

Note
• Special rules apply to supplying values for the data types ANY and POINTER.

• The following cannot be used as actual parameters for an in/out parameter of a non
elementary data type:

• FB in/out parameters

• FC parameters

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-33

11.3.2.4 Reading Output Values (FB Call)

After the called block has been executed, the output parameters can be read from
the shared instance block or the local instance area using a value assignment.

Example
RESULT:= DB10.CONTROL;

11.3.2.5 Example of a Call as a Shared Instance

An example of a function block with a FOR loop might appear as shown in the
following examples. These examples assume that the symbol TEST has been
declared in the symbol table for FB17.

Function Block
FUNCTION_BLOCK TEST

VAR_INPUT
 FINALVAL: INT; //Input parameter
END_VAR
VAR_IN_OUT
 IQ1 : REAL; //In_out parameter
END_VAR
VAR_OUTPUT
 CONTROL: BOOL;//Output parameter
END_VAR
VAR
 INDEX: INT;
END_VAR

BEGIN
CONTROL :=FALSE;
FOR INDEX := 1 TO FINALVAL DO
 IQ1 :=IQ1*2;
 IF IQ1 > 10000 THEN
 CONTROL := TRUE;
 END_IF;
END_FOR;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
11-34 A5E00059543-01

Call

To call the FB, you can choose one of the following variants. It is assumed that
VARIABLE1 has been declared in the calling block as a REAL variable.

//Absolute function call, shared instance:
FB17.DB10 (FINALVAL:=10, IQ1:=VARIABLE1);

//Symbolic call, shared instance:
TEST.TEST_1 (FINALVAL:=10, IQ1:= VARIABLE1);

Result:

After the block has executed, the value calculated for the in/out parameter IQ1 is
available in VARIABLE1 .

Reading an Output Value

The two examples below illustrate the two possible ways of reading the output
parameter CONTROL.

// The output parameter is accessed
//by:
 RESULT:= DB10.CONTROL;

//You can also use the output parameter
//directly in another FB call to
//supply an input parameter:
 FB17.DB12 (INP_1:=DB10.CONTROL);

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-35

11.3.2.6 Example of a Call as a Local Instance

A function block with a simple FOR loop could be programmed as in the example
"Call as a Shared Instance" assuming that the symbol TEST is declared in the
symbol table for FB17.

This FB can be called as shown below, assuming that VARIABLE1 has been
declared in the calling block as a REAL variable.

Call
FUNCTION_BLOCK CALL
VAR
// Local instance declaration
 TEST_L : TEST ;
 VARIABLE1 : REAL ;
 RESULT : BOOL ;
END_VAR
BEGIN
. . .

// Call local instance:
TEST_L (FINALVAL:= 10, IQ1:= VARIABLE1) ;

Reading an Output Value

The CONTROL output parameter can be read as follows:
// The output parameter is accessed
//by:
RESULT := TEST_L.CONTROL ;
END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
11-36 A5E00059543-01

11.3.3 Calling Functions

You call a function by specifying the function name (FC, SFC IDENTIFIER) and the
parameter list. You can specify the function name that identifies the return value in
absolute or symbolic form:

FC31 (X1:=5, Q1:=Checksum) ; // Absolute
DISTANCE (X1:=5, Q1=:Checksum) ; // Symbolic

After the call, the results of the function are available as a return value or as output
and in/out parameters (actual parameters).

Syntax

()FC parameter

Standard function name
or symbolic name

FC: Function

SFC: System function

Standard function implemented in compiler

FC
IDENTIFIER

SFC
IDENTIFIER

IDENTIFIER

Function Call

Note
If a function is called in SCL and its return value was not supplied, this can lead to incorrect
execution of the user program:

• This can occur with a function programmed in SCL when the return value was supplied
but the corresponding statement was not executed.

• This can occur in a function programmed in STL/LAD/FBD, if the function was
programmed without the supply of the return value or the corresponding statement was
not executed.

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-37

11.3.3.1 Return Value (FC)

In contrast to function blocks, functions supply a result known as the return value.
For this reason, functions can be treated as addresses (exception: functions of the
type VOID).

The function calculates the return value that has the same name as the function
and returns it to the calling block. There, the value replaces the function call.

In the following value assignment, for example, the DISTANCE function is called
and the result assigned to the LENGTH variable:

LENGTH:= DISTANCE (X1:=-3, Y1:=2);

The return value can be used in the following elements of an FC or FB:

• in a value assignment,

• in a logic, arithmetic or comparison expression or

• as a parameter for a further function block or function call.

Note
• If functions have the return value ANY, at least one input or in/out parameter must also

be of the type ANY. If more than one ANY parameter is defined, you must supply them
with actual parameters of the same type class (for example, INT, DINT and REAL).
The return value is then automatically of the largest used data type in this type class.

• The maximum length of the data type STRING can be reduced from 254 characters to
any length.

Statements

S7-SCL V5.1 for S7-300/S7-400
11-38 A5E00059543-01

11.3.3.2 FC Parameters

In contrast to function blocks, functions do not have any memory in which they
could save the values of the parameters. Local data is only stored temporarily while
the function is active. For this reason, when you call a function, all formal input,
in/out and output parameters defined in the declaration section of a function must
be assigned actual parameters.

Syntax

,

Input
assignment

Output/

assignment
In/Out

Expression

FC Parameter

Rules

Rules for supplying parameters

• The assignments can be in any order.

• The data types of formal and actual parameters must match.

• The data type of formal and actual parameters must match.

Example

A call with an assignment for an input, output and an in/out parameter could, for
example appear as follows:

FC32 (E_Param1:=5,D_Param1:=LENGTH,
A_Param1:=Checksum)

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-39

11.3.3.3 Input Assignment (FC)

Using input assignments, the formal input parameters of the called FC are
assigned values (actual parameters). The FC can work with these actual
parameters but cannot change them. In contrast to an FB call, this assignment is
not optional with an FC call.

The following actual parameters can be assigned in input assignments:

 Actual Parameter Explanation

Expression An expression represents a value and consists of addresses and
operations. The following types of expression are possible:

• Arithmetic, logical or comparison expression

• Constant

• Extended Variable

TIMER/COUNTER
Name

Defines a specific timer or counter to be used when a block is
processed

BLOCK
Name

Defines a specific block to be used as an input parameter. The block
type (FB, FC or DB) is specified in the input parameter declaration.
When assigning parameters, you specify the block address. You can
use either the absolute or the symbolic address.

Syntax

:=

Expression

TIMER
IDENTIFIER

BLOCK
IDENTIFIER

COUNTER
IDENTIFIER

Actual parameters

IDENTIFIER

Parameter name of the
input parameter

(formal parameter)

Input Assignment

Note

With formal input parameters of a non-elementary type, FB in/out parameters and
FC parameters are not permitted as actual parameters. Remember the special
features for the data types ANY and POINTER.

Statements

S7-SCL V5.1 for S7-300/S7-400
11-40 A5E00059543-01

11.3.3.4 Output and In/Out Assignment (FC)

In an output assignment, you specify the variable of the calling block into which the
output values resulting from executing a function will be written. An in/out
assignment is used to assign an actual value to an in/out parameter.

The actual parameters in output and in/out assignments must be variables since
the FC writes values to the parameters. For this reason, input parameters cannot
be assigned in in/out assignments (the value could not be written). This means that
only extended variables can be assigned in output and in/out assignments.

 Actual Parameter Explanation

Extended Variable The following types of extended variable are possible:

• Simple variables and parameters

• Access to absolute variables

• Access to data blocks

• Function calls

Syntax

:= Extended
variableIDENTIFIER

Actual parameter
Parameter name of the
output or in/out
parameter

(formal parameter)

Output and In/Out Assignments

Note
The following actual parameters are not permitted with formal output or in/out parameters:

• FC/FB input parameters

• FB in/out parameters of a non-elementary data type

• FC in/out parameters and output parameters of a non-elementary data type

• Remember the special features for the data types ANY and POINTER.

• The maximum length of the data type STRING can be reduced from 254 characters to
any length.

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-41

11.3.3.5 Example of a Function Call

Function to be Called

A function DISTANCE for calculating the distance between two points (X1,Y1) and
(X2,Y2) in the same plane using the Cartesian system of coordinates might take
the following form (the examples assume that the symbol DISTANCE has been
declared in a symbol table for FC37).

FUNCTION DISTANCE: REAL // symbolic
VAR_INPUT
 X1: REAL;
 X2: REAL;
 Y1: REAL;
 Y2: REAL;
END_VAR
VAR_OUTPUT
 Q2: REAL;
END_VAR
BEGIN
 DISTANCE:= SQRT((X2-X1)**2 + (Y2-Y1)**2);
 Q2:= X1+X2+Y1+Y2;
END_FUNCTION

Calling Block

The examples below show more options for further use of a function value:
FUNCTION_BLOCK CALL
VAR
 LENGTH : REAL ;
 CHECKSUM : REAL ;
 RADIUS : REAL;
 Y : REAL;
END_VAR
BEGIN
. . .
// Call in a value assignment:
LENGTH := DISTANCE (X1:=3, Y1:=2, X2:=8.9, Y2:= 7.4,
 Q2:=CHECKSUM) ;

//Call in an arithmetic or logic expression, for example,
Y := RADIUS + DISTANCE (X1:=-3, Y1:=2, X2:=8.9, Y2:=7.4,
Q2:=Checksum)

//Use in the parameter supply of a further called block
FB32.DB32 (DIST:= DISTANCE (X1:=-3, Y1:=2, X2:=8.9, Y2:=7.4),
Q2:=Checksum)
 . . .
 END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
11-42 A5E00059543-01

11.3.4 Implicitly Defined Parameters

11.3.4.1 Input Parameter EN

Every function block and every function has the implicitly defined input parameter
EN. EN is of the data type BOOL and is stored in the temporary block data area. If
EN is TRUE, the called block is executed. Otherwise it is not executed. Supplying a
value for the parameter EN is optional. Remember, however, that it must not be
declared in the declaration section of a block or function.

Since EN is an input parameter, you cannot change EN within a block.

Note

The return value of a function is not defined if it was not called (EN : FALSE).

Example
FUNCTION_BLOCK FB57
VAR
 MY_ENABLE: BOOL ;
 Result : REAL;
END_VAR
// . . .
BEGIN
// . . .
MY_ENABLE:= FALSE ;

// Calling a function and supplying the EN parameter:
Result := FC85 (EN:= MY_ENABLE, PAR_1:= 27) ;
// FC85 was not executed since MY_ENABLE above was set to
// FALSE

END_FUNCTION_BLOCK

Statements

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 11-43

11.3.4.2 Output Parameter ENO

Every function block and every function has the implicitly defined output parameter
ENO which is of the data type BOOL. It is stored in the temporary block data. Once
a block has executed, the current value of the OK flag is entered in ENO.

Immediately after a block has been called, you can check the value of ENO to see
whether all the operations in the block ran correctly or whether errors occurred.

Example
// Function block call:
FB30.DB30 ([Parameter supply]);

// Check whether everything ran correctly in the called
// block:
IF ENO THEN
// Everything OK
// . . .
ELSE
// Error occurred, so error handling required
// . . .
END_IF;

Statements

S7-SCL V5.1 for S7-300/S7-400
11-44 A5E00059543-01

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-1

12 Counters and Timers

12.1 Counters

12.1.1 Counter Functions

STEP 7 provides a series of standard counter functions. You can use these
counters in your SCL program without needing to declare them previously. You
must simply supply them with the required parameters. STEP 7 provides the
following counter functions:

 Counter Function Explanation

S_CU Count Up

S_CD Count Down

S_CUD Count Up Down

12.1.2 Calling Counter Functions

Counter functions are called like functions. The function identifier can therefore be
used anywhere instead of an address in an expression as long as the type of the
function value is compatible with that of the replaced address.

The function value (return value) returned to the calling block is the current count
value (BCD format) in data type WORD.

Absolute or Dynamic Call

For the call, you can enter an absolute value as the counter number (for example
C_NO:=C10). Such values can, however, no longer be modified during runtime.

Instead of the absolute counter number, you can also specify a variable or constant
of the INT data type. The advantage of this method is that the counter call can be
made dynamic by assigning the variable or constant a different number in each
call.

To achieve a dynamic call, you can also specify a variable of the COUNTER data
type.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-2 A5E00059543-01

Examples
//Example of an absolute call:
S_CUD (C_NO:=C12,
 CD:=I0.0,
 CU:=I0.1,
 S:=I0.2 & I0.3,
 PV:=120,
 R:=FALSE,
 CV:=binVal,
 Q:=actFlag);

//Example of a dynamic call: In each iteration of a
//FOR loop, a different counter is called:
FUNCTION_BLOCK COUNT
VAR_INPUT
 Count: ARRAY [1..4] of STRUCT
 C_NO: INT;
 PV : WORD;
 END_STRUCT;
.
.
END_VAR
.
.
FOR I:= 1 TO 4 DO
 S_CD(C_NO:=Count[I].C_NO, S:=true, PV:= Count[I].PV);
END_FOR;

//Example of a dynamic call using a variable of the
//COUNTER data type:
FUNCTION_BLOCK COUNTER
VAR_INPUT
 MYCounter:COUNTER;
END_VAR
.
.
CurrVal:=S_CD (C_NO:=MyCounter,.....);

Note

The names of the functions and parameters are the same in both the German and
English mnemonics. Only the counter identifier differs (German: Z, English: C).

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-3

12.1.3 Supplying Parameters for Counter Functions

The following table provides you with an overview of the parameters for counter
functions.

 Parameter Data Type Description

C_NO COUNTER
INT

Counter number (COUNTER IDENTIFIER); the area depends
on the CPU

CD BOOL CD input: Count down
CU BOOL CU input: Count up
S BOOL Input for presetting the counter

PV WORD Value in the range between 0 and 999 for initializing the
counter (entered as 16#<value>, with the value in BCD format)

R BOOL Reset input
Q BOOL Output: Status of the counter
CV WORD Output: Count value binary

Rules
Since the parameter values (for example, CD:=I0.0) are stored globally, it is not
necessary to specify them in certain situations. The following general rules should
be observed when supplying parameters with values:

• The parameter for the counter identifier C_NO must be supplied when the
function is called. Instead of the absolute counter number (for example, C12),
you can also specify a variable or a constant with the INT data type or an input
parameter of the COUNTER data type in the call.

• Either the parameter CU (count up) or the parameter CD (count down) must be
supplied.

• The parameters PV (initialization value) and S (set) can be omitted as a pair.

• The result value in BCD format is always the function value.

Example
FUNCTION_BLOCK FB1
VAR
 CurrVal, binVal: word;
 actFlag: bool;
END_VAR

BEGIN
CurrVal :=S_CD (C_NO: C10, CD:=TRUE, S:=TRUE, PV:=100,
 R:=FALSE, CV:=binVal,Q:=actFlag);
CurrVal :=S_CU (C_NO: C11, CU:=M0.0, S:=M0.1, PV:=16#110,

R:=M0.2, CV:=binVal,Q:=actFlag);
CurrVal :=S_CUD(C_NO: C12, CD:=I0.0, CU:=I0.1, S:=I0.2

&I0.3, PV:=120, R:=FALSE, CV:=binVal,Q:=actFlag);
CurrVal :=S_CD (C_NO: C10, CD:=FALSE, S:=FALSE, PV:=100,
R:=TRUE, CV:=binVal,Q:=actFlag);
END_FUNCTION_BLOCK

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-4 A5E00059543-01

12.1.4 Input and Evaluation of the Counter Value

To input the initialization value or to evaluate the result of the function you require
the internal representation of the count value. The count value is of the data type
WORD in which bits 0 to 11 contain the count value in BCD code. Bits 12-15 are
not used.

When you set the counter, the value you have specified is written to the counter.
The range of values is between 0 and 999. You can change the count value within
this range by specifying the operations count up/down (S_CUD), count up (S_CU)
and count down (S_CD).

Format

The figure below illustrates the bit configuration of the count value.

These bits are irrelevant, they are ignored when a counter is set.

Count value in BCD format (0 to 999)

15 14 13 12

1 2 7

11 10 9 8 7 6 5 4 3 2 1 0

0 I 1 I 1 I 10 I 0 I 1 I 00 I 0 I 0 I 1X I X I X I X

Input

• Decimal as an integer value: For example, 295, assuming that this value
corresponds to a valid BCD format.

• In BCD format (input as a hexadecimal constant): for example 16#127

Evaluation

• As a function result (type WORD): in BCD format

• As the output parameter CV (type WORD): in binary code

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-5

12.1.5 Count Up (S_CU)

With the count up (S_CU) function, you can only execute incrementing counter
operations. The table illustrates how the counter works.

 Operation Explanation

Count up The count value is increased by "1" if the signal status at input CU
changes from "0" to "1" and the count value is less than 999.

Set counter When the signal state at input S changes from "0" to "1", the counter is set
with the value of input PV. Such a signal change is always required to set
a counter.

Reset The counter is reset when input R = 1 is set. Resetting the counter sets
the count value to "0".

Query counter A signal status query at output Q returns "1" if the count value is greater
than "0". The query returns "0" if the count value is equal to "0".

12.1.6 Count Down (S_CD)

With the count down (S_CD) function, you can only execute decrementing counter
operations. The table illustrates how the counter works.

 Operation Explanation

Count down The value of the counter is decremented by "1" when the signal state at
input CD changes from "0" to "1" and the count value is greater than "0".

Set counter When the signal state at input S changes from "0" to "1", the counter is set
with the value of input PV. Such a signal change is always required to set
a counter.

Reset The counter is reset when input R = 1 is set. Resetting the counter sets
the count value to "0".

Query counter A signal state query at output Q produces "1" when the count value is
greater than "0". The query returns "0" if the count value is equal to "0".

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-6 A5E00059543-01

12.1.7 Count Up/Down (S_CUD)

With the count up/down (S_CUD) function, you can execute both up and down
counter operations. If up and down count pulses are received simultaneously, both
operations are executed. The count value remains unchanged. The table illustrates
how the counter works.

 Operation Explanation

Count up The value of the counter is incremented by "1" when the signal state at
input CU changes from "0" to "1" and the count value is less than 999.

Count down The value of the counter is decremented by "1" when the signal state at
input CD changes from "0" to "1" and the count value is greater than "0".

Set counter When the signal state at input S changes from "0" to "1", the counter is set
with the value of input PV. Such a signal change is always required to set
a counter.

Reset The counter is reset when input R = 1 is set. Resetting the counter sets
the count value to "0".

Query counter A signal status query at output Q returns "1" if the count value is greater
than "0". The query returns "0" if the count value is equal to "0".

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-7

12.1.8 Example of Counter Functions

Parameter Assignment

The table below illustrates the parameter assignment for the function S_CD.

 Parameter Description

C_NO MYCOUNTER:

CD INPUT I0.0

S SET

PV INITIALVALUE 16#0089

R RESET

Q Q0.7

CV BIN_VALUE

Example
FUNCTION_BLOCK COUNT
VAR_INPUT
 MYCOUNTER : COUNTER ;
END_VAR
VAR_OUTPUT
 RESULT : INT ;
END_VAR
VAR
 SET : BOOL ;
 RESET : BOOL ;
 BCD_VALUE : WORD ; // Count value BCD coded
 BIN_VALUE : WORD ; // Count value binary
 INITIALVALUE: WORD ;
END_VAR
BEGIN
 Q0.0 := 1 ;
 SET := I0.2 ;
 RESET := I0.3 ;
 INITIALVALUE := 16#0089 ;
//Count down
 BCD_VALUE := S_CD (C_NO := MYCOUNTER,
 CD := I0.0 ,
 S := SET ,
 PV := INITIALVALUE,
 R := RESET ,
 CV := BIN_VALUE ,
 Q := Q0.7) ;
//Further processing as output parameter
 RESULT := WORD_TO_INT (BIN_VALUE) ;
 QW4 := BCD_VALUE ;
END_FUNCTION_BLOCK

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-8 A5E00059543-01

12.2 Timers

12.2.1 Timer Functions

Timers are function elements in your program, that execute and monitor time-
controlled functions. STEP 7 provides a series of standard timer functions that you
can use in your SCL program.

 Timer Function Explanation

S_PULSE Start timer as pulse timer

S_PEXT Start timer as extended pulse timer

S_ODT Start timer as on-delay timer

S_ODTS Start timer as retentive on-delay timer

S_OFFDT Start timer as off-delay timer

12.2.2 Calling Timer Functions

Timer functions are called like functions. The function identifier can therefore be
used anywhere instead of an address in an expression as long as the type of the
function result is compatible with the first replaced address.

The function value (return value) that is returned to the calling block is a time value
of the data type S5TIME.

Absolute or Dynamic Call

In the call, you can enter an absolute value, (for example T_NO:=T10) of the
TIMER data type as the number of the timer function. Such values can, however,
no longer be modified during runtime.

Instead of the absolute number, you can also specify a variable or constant of the
INT data type. The advantage of this method is that the call can be made dynamic
by assigning the variable or constant a different number in each call.

To achieve a dynamic call, you can also specify a variable of the TIMER data type.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-9

Examples
//Example of an absolute call:
S_ODT (T_NO:=T10,
 S:=TRUE,
 TV:=T#1s,
 R:=FALSE,
 BI:=biVal,
 Q:=actFlag);

//Example of a dynamic call: In each iteration of a
//FOR loop, a different timer function is called:
FUNCTION_BLOCK TIME
VAR_INPUT
 MY_TIMER: ARRAY [1..4] of STRUCT
 T_NO: INT;
 TV : WORD;
 END_STRUCT;
.
.
END_VAR
.
.
FOR I:= 1 TO 4 DO
 S_ODT(T_NO:=MY_TIMER[I].T_NO, S:=true,
 TV:= MY_TIMER[I].TV);
END_FOR;

//Example of a dynamic call using a variable of the
//TIMER data type:
FUNCTION_BLOCK TIMER
VAR_INPUT
 mytimer:TIMER;
END_VAR
.
.
CurrTime:=S_ODT (T_NO:=mytimer,.....);

Note

The names of the functions are the same in both the German and English
mnemonics.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-10 A5E00059543-01

12.2.3 Supplying Parameters for Timer Functions

The following table shows an overview of the parameters of the timer functions:

 Parameter data type Description

T_NO TIMER
INTEGER

Identification number of the timer; the range depends on the
CPU

S BOOL Start input

TV S5TIME Initialization of the timer value (BCD format)

R BOOL Reset input

Q BOOL Status of the timer

BI WORD Time remaining (binary)

Rules

Since the parameter values are stored globally, it is not necessary to specify these
value in certain situations. The following general rules should be observed when
assigning values to parameters:

• The parameters for the timer identifier T_NO must be supplied when the
function is called. Instead of the absolute timer number (for example, T10), you
can also specify a variable of the INT data type or an input parameter of the
TIMER data type in the call.

• The parameters PV (initialization value) and S (set) can be omitted as a pair.

• The result value in S5TIME format is always the function value.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-11

Example
FUNCTION_BLOCK FB2
VAR
 CurrTime : S5time;
 BiVal : word;
 ActFlag : bool;
END_VAR

BEGIN
CurrTime :=S_ODT (T_NO:= T10, S:=TRUE, TV:=T#1s, R:=FALSE,
 BI:=biVal,Q:=actFlag);
CurrTime :=S_ODTS (T_NO:= T11, S:=M0.0, TV:= T#1s, R:=M0.1,
 BI:=biVal,Q:=actFlag);
CurrTime :=S_OFFDT(T_NO:= T12, S:=I0.1 & actFlag, TV:= T#1s,
 R:=FALSE, BI:=biVal,Q:=actFlag);
CurrTime :=S_PEXT (T_NO:= T13, S:=TRUE, TV:= T#1s, R:=I0.0,
 BI:=biVal,Q:=actFlag);
CurrTime :=S_PULSE(T_NO:= T14, S:=TRUE, TV:= T#1s, R:=FALSE,
 BI:=biVal,Q:=actFlag);
END_FUNCTION_BLOCK

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-12 A5E00059543-01

12.2.4 Input and Evaluation of a Time Value

To input the initial value and to evaluate the function result in BCD code, you
require the internal representation of the time value. The time value is of the
WORD data type, where bits 0 to 11 contain the time value in BCD format and bits
12 and 13 the time base. Bits 14 and 15 are not used.

Updating the time decreases the timer reading by 1 unit in 1 interval as specified by
the time base. The timer reading is decreased until it reaches "0". The possible
range of time is from 0 to 9990 seconds.

Format

The figure below illustrates the bit configuration of the time value.

Time base
1 second

Irrelevant: these bits are ignored when the timer is started.

Time value in BCD format (0 to 999)

15... ...8 7... ...0

1 2 7

X I X I 1 I 0 0 I 0 I 0 I 1 0 I 0 I 1 I 0 0 I 1 I 1 I 1

Input

You can load a predefined time value with the following formats:

• In composite time format

• In decimal time format

The time base is selected automatically in both cases and the value is rounded
down to the next number in this time base.

Evaluation

You can evaluate the result in two different formats:

• As a function result (type S5TIME): in BCD format

• As an output parameter (time without time base in data type WORD): in binary
code

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-13

Time Base for Time Values

To input and evaluate the time value, you require a time base (bits 12 and 13 of the
timer word). The time base defines the interval at which the time value is
decremented by one unit (see table). The smallest time base is 10 ms; the largest
10 s.

 Time Base Binary Code for Time Base

 10 ms 00

 100 ms 01

 1 s 10

 10 s 11

Note

Since time values are only saved at intervals, values that are not an exact multiple
of the time interval are truncated. Values with a resolution too high for the required
range are rounded down so that the required range but not the required resolution
is achieved.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-14 A5E00059543-01

12.2.5 Start Timer as Pulse Timer (S_PULSE)

The maximum time for which the output signal remains set to "1" is the same as
the programmed time value. If, during the run time of the timer, the signal state 0
appears at the input, the timer is set to "0". This means a premature termination of
the timer runtime.

I 2.1

Q 4.0

Input signal

Output signal
(pulse timer) t

S_PULSE

How the Timer Functions

The table shows how the "pulse timer" function works:

 Operation Explanation

Start time The "pulse timer" operation starts the specified time when the signal
state at the start input (S) changes from "0" to "1". To enable the timer, a
signal change is always required.

Specify runtime The timer runs using the value at input TV until the programmed time
expires and the input S = 1 is set.

Abort runtime If input S changes from "1" to "0" before the time has expired, the timer
is stopped.

Reset The time is reset when the reset input (R) changes from "0" to "1" while
the timer is running. With this change, both the timer reading and the
time base are reset to zero. The signal state "1" at input R has no effect
if the timer is not running.

Query signal
status

As long as the timer is running, a signal state query following a "1" at
output Q produces the result "1". If the timer is aborted, a signal state
query at output Q produces the result "0".

Query current
timer reading

The current timer reading can be queried at output BI and using the
function value S_PULSE.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-15

12.2.6 Start Timer as Extended Pulse Timer (S_PEXT)

The output signal remains set to "1" for the programmed time (t) regardless of how
long the input signal remains set to "1". Triggering the start pulse again restarts the
time so that the output pulse is extended (retriggering).

I 2.1

S_PEXT

Input signal

t
Q 4.0Output signal

(extended pulse
timer)

How the Timer Functions

The table shows how the "extended pulse timer" function works.:

 Operation Explanation

Start time The "extended pulse timer" (S_PEXT) operation starts the specified
time when the signal state at the start input (S) changes from "0" to
"1". To enable the timer, a signal change is always required.

Restart the counter
time

If the signal state at input S changes to "1" again while the timer is
running, the timer is restarted with the specified time value.

Initialize runtime The timer runs with the value at input TV until the programmed time
has expired.

Reset The time is reset when the reset input (R) changes from "0" to "1"
while the timer is running. With this change, both the timer reading
and the time base are reset to zero. The signal state "1" at input R has
no effect if the timer is not running.

Query signal status As long as the timer is running, a signal state query following "1" at
output Q produces the result "1" regardless of the length of the input
signal.

Query current
timer reading

The current time value can be queried at output BI and using the
function value S_PEXT.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-16 A5E00059543-01

12.2.7 Start Timer as On-Delay Timer (S_ODT)

The output signal only changes from "0" to "1" when the programmed time has
expired and the input signal is still "1". This means that the output is activated
following a delay. Input signals that remain active for a time that is shorter than the
programmed time do not appear at the output.

I 2.1Input signal

S_ODT

t

Q 4.0

Output signal
(on-delay timer)

How the Timer Functions

The table illustrates how the "on delay timer" function works.

 Operation Explanation

Start time The "on delay timer" starts a specified time when the signal state at
the start input (S) changes from "0" to "1". To enable the timer, a
signal change is always required.

Stop timer If the signal state at input S changes from "1" to "0" while the timer is
running, it is stopped.

Specify runtime The timer continues to run with the value at input TV as long as the
signal state at input S = 1 is set.

Reset The time is reset when the reset input (R) changes from "0" to "1"
while the timer is running. With this change, both the timer reading
and the time base are reset to zero. The time is also reset when R = 1
is set although the timer is not running.

Query signal status A signal state query following "1" at output Q produces "1" when the
time expired without an error occurring and input S is still set to "1".
If the timer was stopped, a signal status query following "1" always
produces "0".
A signal state query after "1" at output Q also produces "0" when the
timer is not running and the signal state at input S is still "1".

Query current
timer reading

The current time value can be queried at output BI and using the
function value S_ODT.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-17

12.2.8 Start Timer as Retentive On-Delay Timer (S_ODTS)

The output signal only changes from "0" to "1" when the programmed time has
expired regardless of how long the input signal remains set to "1".

I 2.1Input signal

S_ODTS
t

Q4.0
Output signal
(retentive on-delay timer)

How the Timer Functions

The table shows how the "retentive on delay timer" function works.

 Operation Explanation

Start time The "retentive on delay timer" starts a specified time when the signal
state at the start input (S) changes from "0" to "1". To enable the
timer, a signal change is always required.

Restart timer The timer is restarted with the specified value when input S changes
from "0" to "1" while the timer is running.

Specify runtime The timer continues to run with the value at input TV even if the signal
state at input S changes to "0" before the time has expired.

Reset If the reset input (R) changes from "0" to "1", the timer is reset
regardless of the signal state at input S.

Query signal status A signal state query following "1" at output Q produces the result "1"
after the time has expired regardless of the signal state at input S.

Query current
timer reading

The current time value can be queried at output BI and using the
function value S_ODTS.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-18 A5E00059543-01

12.2.9 Start Timer as Off-Delay Timer (S_OFFDT)

With a signal state change from "0" to "1" at start input S, a "1" is set at output Q. If
the start input changes from "1" to "0", the timer is started. The output only returns
to signal status "0" after the time has expired. The output is therefore deactivated
following a delay.

I 2.1Input signal

S_OFFDT
t

Q 4.0
Output signal
(Off-delay timer)

How the Timer Functions

The table shows how the "off delay timer" function works.

 Operation Explanation

Start time The "off delay timer" operation starts the specified time when the
signal state at the start input (S) changes from "1" to "0". A signal
change is always required to enable the timer.

Restart timer The timer is restarted when the signal state at input S changes from
"1" to "0" again (for example following a reset).

Specify runtime The timer runs with the value specified at input TV.

Reset If the reset input (R changes from "0" to "1" while the timer is running,
the timer is reset.

Query signal status A signal state query following "1" at output Q produces "1" if the signal
state at input S = 1 is set or the timer is running.

Query current
timer reading

The current time value can be queried at output BI and using the
function value S_OFFDT.

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 12-19

12.2.10 Example of Timer Functions

FUNCTION_BLOCK TIMER
VAR_INPUT
 mytime : TIMER ;
END_VAR
VAR_OUTPUT
 result : S5TIME ;
END_VAR
VAR
 set : BOOL ;
 reset : BOOL ;
 bcdvalue : S5TIME ;//Time base and time remaining in BCD
 binvalue : WORD ; //Time value in binary
 initialvalue : S5TIME ;
END_VAR
BEGIN
 Q0.0 := 1;
 set := I0.0 ;
 reset := I0.1;
 initialvalue := T#25S ;
 bcdvalue := S_PEXT (T_NO := mytime ,
 S := set ,
 TV := initialvalue ,
 R := reset ,
 BI := binvalue ,
 Q := Q0.7) ;
//Further processing as output parameter
 result := bcdvalue ;
//To output for display
 QW4 := binvalue ;
END_FUNCTION_BLOCK

Counters and Timers

S7-SCL V5.1 for S7-300/S7-400
12-20 A5E00059543-01

12.2.11 Selecting the Right Timer

The following figure provides an overview of the five different timer functions
described in this section. This overview will help you to select the timer function
best suited to your particular purpose.

The output signal only switches from "0" to "1" if the input signal
changes from "0" to "1". The output signal remains "1" for
the duration of the programmed period. The timer is started
when the input signal switches from "1" to "0".

I 2.1

Q 4.0

S_PEXT

S_ODT

S_ODTS

S_OFFDT

Input signal

Output signal
(Pulse timer) t

S_PULSE

t

t

t

t

The maximum time for which the output signal remains "1" is
equal to the programmed time t. The output signal remains
"1" for a shorter period if the input signal switches to "0".

The output signal remains "1" for the duration of the
programmed time regardless of how long the input signal
remains "1". The pulse is restarted if the start signal is
triggered again within "t".

The output signal only switches from "0" to "1" if the
programmed time has expired and the input signal is still "1".

The output signal only switches from "0" to "1" if the
programmed time has expired regardless of how long the
input signal remains "1".

Q 4.0Output signal
(Extended
pulse timer)

Q 4.0Output signal
(On delay timer)

Q 4.0Output signal
(Retentive
on-delay timer)

Q 4.0Output signal
(Off-delay timer)

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-1

13 SCL Standard Functions

13.1 Data Type Conversion Functions

13.1.1 Converting Data Types

If you use two addresses in a logic operation, you must make sure that the data
types of the addresses are compatible. If the addresses are of different data types,
a data type conversion is necessary. The following data type conversions are
possible in SCL:

• Implicit Data Type Conversion

The data types are grouped in classes. If the addresses fall within the same
class, SCL makes an implicit data type conversion. The functions used by the
compiler are grouped in "Conversion Functions Class A".

• Explicit Data Type Conversion

If the addresses do not belong to the same class, you must start a conversion
function yourself. To allow explicit data type conversion, SCL provides
numerous standard functions grouped in the following classes:

- Conversion Functions Class B

- Functions for Rounding and Truncating

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-2 A5E00059543-01

13.1.2 Implicit Data Type Conversion

13.1.2.1 Implicit Data Type Conversion

Within the classes of data types defined in the table, the compiler makes an implicit
data type conversion in the order shown. The common format of two addresses is
always the smallest data type with a range that accommodates both addresses -
the common format of BYTE and INTEGER, for example, is INTEGER.

Remember that a data type conversion in the ANY_BIT class results in leading bits
being set to 0.

 Classes Conversion Order

ANY_BIT BOOL > BYTE > WORD > DWORD

ANY_NUM INT > DINT > REAL

Example of Implicit Data Type Conversion
VAR
 PID_CTRLLER_1 : BYTE ;
 PID_CTRLLER_2 : WORD ;
END_VAR
BEGIN
IF (PID_CTRLLER_1 <> PID_CTRLLER_2) THEN ...
(* In the IF statement above, PID_CTRLLER_1 is converted
implicitly from BYTE to WORD. *)

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-3

13.1.2.2 Conversion Functions Class A

The table shows the data type conversion functions of Class A. These functions
are executed implicitly by the compiler, however, you can also specify them
explicitly if you prefer. The result is always defined.

 Function Name Conversion Rule

BOOL_TO_BYTE Adds leading zeros

BOOL_TO_DWORD Adds leading zeros

BOOL_TO_WORD Adds leading zeros

BYTE_TO_DWORD Adds leading zeros

BYTE_TO_WORD Adds leading zeros

CHAR_TO_STRING Transformation to a string (of length 1) containing the same
character.

DINT_TO_REAL Transformation to REAL according to the IEEE standard. The
value may change (due to the different accuracy of REAL).

INT_TO_DINT The higher-order word of the function value is padded with
16#FFFF for a negative input parameter, otherwise it is padded
with zeros. The value remains the same.

INT_TO_REAL Transformation to REAL according to the IEEE standard. The
value remains the same.

WORD_TO_DWORD Adds leading zeros

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-4 A5E00059543-01

13.1.3 Standard Functions for Explicit Data Type Conversion

You will find a general description of the function call in "Calling Functions".

Remember the following points when calling the conversion functions:

• Input parameters:
Each function for converting a data type has exactly one input parameter with
the name IN. Since it is a function with only one parameter, this does not need
to be specified.

• Function value
The result is always the function value.

• Names of the functions
The data types of the input parameter and the function value can clearly be
recognized in the function name in the overview of classes A and B. For
example, for the function BOOL_TO_BYTE, the data type of the input
parameter is BOOL and the data type of the function value BYTE.

13.1.3.1 Conversion Functions Class B

The table shows the data type conversion functions of Class B. These functions
must be specified explicitly. The result can also be undefined if the destination type
is not large enough.

You can check for this situation yourself by including a limit check or you can have
the system make the check by selecting the "OK flag" option prior to compilation. In
situations where the result is undefined, the system sets the OK flag to FALSE.

 Function Name Conversion Rule OK

BYTE_TO_BOOL Copies the least significant bit Y

BYTE_TO_CHAR Copies the bit string N

CHAR_TO_BYTE Copies the bit string N

CHAR_TO_INT The bit string in the input parameter is entered in the lower-order byte of
the function value. The higher-order byte is padded with zeros.

N

DATE_TO_DINT Copies the bit string N

DINT_TO_DATE Copies the bit string Y

DINT_TO_DWORD Copies the bit string N

DINT_TO_INT Copies the bit for the sign. The value in the input parameter is
interpreted in the data type INT. If the value is less than
-32_768 or greater than 32_767, the OK variable is set to FALSE.

Y

DINT_TO_TIME Copies the bit string N

DINT_TO_TOD Copies the bit string Y

DWORD_TO_BOOL Copies the least significant bit Y

DWORD_TO_BYTE Copies the 8 least significant bits Y

DWORD_TO_DINT Copies the bit string N

DWORD_TO_REAL Copies the bit string N

DWORD_TO_WORD Copies the 16 least significant bits Y

INT_TO_CHAR Copies the bit string Y

INT_TO_WORD Copies the bit string N

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-5

REAL_TO_DINT Rounds the IEEE REAL value to DINT.
If the value is less than -2_147_483_648 or greater than
2_147_483_647, the OK variable is set to FALSE.

Y

REAL_TO_DWORD Copies the bit string N

REAL_TO_INT Rounds the IEEE REAL value to INT.
If the value is less than -32_768 or greater than 32_767, the OK variable
is set to FALSE.

Y

STRING_TO_CHAR Copies the first character of the string.
If the STRING does not have a length of 1, the OK variable is set to
FALSE.

Y

TIME_TO_DINT Copies the bit string N

TOD_TO_DINT Copies the bit string N

WORD_TO_BOOL Copies the least significant bit Y

WORD_TO_BYTE Copies the 8 least significant bits Y

WORD_TO_INT Copies the bit string N

WORD_TO_BLOCK_DB The bit pattern of WORD is interpreted as the data block number N

BLOCK_DB_TO_WORD The data block number is interpreted as the bit pattern of WORD N

Note
You also have the option of using further IEC functions for data type conversion. For
information about the functions, refer to the reference manual "System Software for S7-300
and S7-400, System and Standard Functions".

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-6 A5E00059543-01

13.1.3.2 Functions for Rounding and Truncating

The functions for rounding and truncating numbers also belong to the data type
conversion functions. The table shows the names, data types (for the input
parameters and the function value) and tasks of these functions:

 Function
Name

 Data Type
Input
Parameter

 Data Type
Function
Value

 Task

ROUND REAL DINT Rounds (forming a DINT number)

In compliance with DIN EN 61131-3, the
function always rounds to the next even
integer value; in other words, 1.5 returns 2
and 2.5 also returns 2.

TRUNC REAL DINT Truncates (forming a DINT number)

Note

You also have the option of using further IEC functions for data type conversion.
For information about the functions, refer to the reference manual "System
Software for S7-300 and S7-400, System and Standard Functions".

Example
// Rounding down (result: 3)
 ROUND (3.14) ;

// Rounding up (result: 4)
 ROUND (3.56) ;

// Truncating (result: 3)
 TRUNC (3.14) ;

// Truncating (result: 3)
 TRUNC (3.56) ;

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-7

13.1.3.3 Examples of Converting with Standard Functions

In the example below, an explicit conversion is necessary since the destination
data type is of a lower order than the source data type.

FUNCTION_BLOCK FB10
VAR
 SWITCH : INT;
 CTRLLER : DINT;
END_VAR

(* INT is lower order than DINT *)
SWITCH := DINT_TO_INT (CTRLLER) ;
// . . .
END_FUNCTION_BLOCK

In the following example, an explicit data type conversion is necessary, since the
data type REAL is not allowed for an arithmetic expression with the
MOD operation.

FUNCTION_BLOCK FB20
VAR
 SWITCH : REAL
 INTVALUE : INT := 17;
 CONV2 : INT ;
END_VAR

(* MOD can only be used with data of the INT or DINT type *)
CONV2 := INTVALUE MOD REAL_TO_INT (SWITCH);
// . . .
END_FUNCTION_BLOCK

In the following example, conversion is necessary because the data type is
incorrect for a logical operation. The NOT operation can only be used for data of
the types BOOL, BYTE, WORD or DWORD.

FUNCTION_BLOCK FB30
VAR
 INTVALUE : INT := 17;
 CONV1 : WORD ;
END_VAR

(* NOT must not be applied to data of the INT type *)
CONV1 := NOT INT_TO_WORD(INTVALUE);
// . . .
END_FUNCTION_BLOCK

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-8 A5E00059543-01

The following example illustrates data type conversion for peripheral
inputs/outputs.

FUNCTION_BLOCK FB40
VAR
 Radius_in : WORD ;
 Radius : INT;
END_VAR

 Radius_in := %IB0;
 Radius := WORD_TO_INT (radius_in);
(* Conversion when changing to a different type class. Value
comes from input and is converted for further processing.*)

 Radius := Radius (area:= circledata.area)
 %QB0 :=WORD_TO_BYTE (INT_TO_WORD(RADIUS));
(*Radius is recalculated from the area and is then as an
integer. For output, the value is first converted to a
different type class (INT_TO_WORD) and then into a lower
order type (WORD_TO_BYTE).*)
// . . .
END_FUNCTION_BLOCK

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-9

13.2 Numeric Standard Functions

13.2.1 General Arithmetic Standard Functions

These are the functions for calculating the absolute value, the square or the square
root of a value.

The data type ANY_NUM stands for INT, DINT or REAL. Note that input
parameters of the INT or DINT type are converted internally to REAL variables if
the function value is of the REAL type.

 Function Name Data Type Input Parameter Data Type
Function
Value

 Description

ABS ANY_NUM ANY_NUM Number

SQR ANY_NUM REAL Square

SQRT ANY_NUM REAL Square Root

Note
You also have the option of using further IEC functions for data type conversion. For
information about the functions, refer to the reference manual "System Software for S7-300
and S7-400, System and Standard Functions".

13.2.2 Logarithmic Functions

These are functions for calculating an exponential value or a logarithm of a value.

The data type ANY_NUM stands for INT, DINT or REAL. Note that input
parameters of the type ANY_NUM are converted internally into real variables.

 Function Name Data Type Input Parameter Data Type
Function
Value

 Description

EXP ANY_NUM REAL e to the power IN

EXPD ANY_NUM REAL 10 to the power IN

LN ANY_NUM REAL Natural
logarithm

LOG ANY_NUM REAL Common
logarithm

Note

You also have the option of using further IEC functions for data type conversion.
For information about the functions, refer to the reference manual "System
Software for S7-300 and S7-400, System and Standard Functions".

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-10 A5E00059543-01

13.2.3 Trigonometric Functions

The trigonometric functions represented in the table calculate values of angles in
radians.

The data type ANY_NUM stands for INT, DINT or REAL. Note that input
parameters of the type ANY_NUM are converted internally into real variables.

 Function Name Data Type Input Parameter Data Type Function
Value

 Description

ACOS ANY_NUM REAL Arc cosine

ASIN ANY_NUM REAL Arc sine

ATAN ANY_NUM REAL Arc tangent

COS ANY_NUM REAL Cosine

SIN ANY_NUM REAL Sine

TAN ANY_NUM REAL Tangent

Note

You also have the option of using further IEC functions for data type conversion.
For information about the functions, refer to the reference manual "System
Software for S7-300 and S7-400, System and Standard Functions".

13.2.4 Examples of Numeric Standard Functions

 Call RESULT

RESULT := ABS (-5) ; //5

RESULT := SQRT (81.0); //9

RESULT := SQR (23); //529

RESULT := EXP (4.1); //60.340 ...

RESULT := EXPD (3); //1_000

RESULT := LN (2.718 281) ; //1

RESULT := LOG (245); //2.389_166 ...

PI := 3. 141 592 ;
RESULT := SIN (PI / 6) ; //0.5

RESULT := ACOS (0.5); //1.047_197 (=PI / 3)

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-11

13.3 Bit String Standard Functions

Every bit string standard function has two input parameters identified by IN and N.
The result is always the function value. The following table lists the function names
and data types of the two input parameters and the function value. Explanation of
input parameters:

• Input parameter IN: buffer in which bit string operations are performed. The
data type of this input parameter decides the data type of the function value.

• Input parameter N: number of cycles of the cyclic buffer functions ROL and
ROR or the number of places to be shifted in the case of SHL and SHR.

The table shows the possible bit string standard functions.

 Function Name Data Type
Input
Parameter
IN

 Data Type
Input
Parameter
N

 Data Type
Function
Value

 Task

ROL BOOL
BYTE
WORD
DWORD

INT
INT
INT
INT

BOOL
BYTE
WORD
DWORD

The value in the parameter IN is rotated
left by the number of bit places specified
by the content of parameter N.

ROR BOOL
BYTE
WORD
DWORD

INT
INT
INT
INT

BOOL
BYTE
WORD
DWORD

The value in the parameter IN is rotated
right by the number of bit places
specified by the content of parameter N.

SHL BOOL
BYTE
WORD
DWORD

INT
INT
INT
INT

BOOL
BYTE
WORD
DWORD

The value in the parameter IN is shifted
as many places left and as many bit
places on the right-hand side are
replaced by 0 as specified by the
parameter N.

SHR BOOL
BYTE
WORD
DWORD

INT
INT
INT
INT

BOOL
BYTE
WORD
DWORD

The value in the parameter IN is shifted
as many places right and as many bit
places on the left-hand side are replaced
by 0 as specified by the parameter N.

Note

You also have the option of using further IEC functions for data type conversion.
For information about the functions, refer to the reference manual "System
Software for S7-300 and S7-400, System and Standard Functions".

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-12 A5E00059543-01

13.3.1 Examples of Bit String Standard Functions

 Call Result

RESULT := ROL (IN:=BYTE#2#1101_0011, N:=5); //2#0111_1010

//(= 122 decimal)

RESULT := ROR (IN:=BYTE#2#1101_0011, N:=2); //2#1111_0100

//(= 244 decimal)

RESULT := SHL (IN:=BYTE#2#1101_0011, N:=3); //2#1001_1000

//(= 152 decimal)

RESULT := SHR (IN:=BYTE#2#1101_0011, N:=2); //2#0011_0100

//(= 52 decimal)

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-13

13.4 Functions for Processing Character Strings

13.4.1 Functions for String Manipulation

LEN

The LEN function (FC21) returns the current length of a string (number of valid
characters). An empty string (’’) has zero length. The function does not report
errors.
Example LEN (S:= ’XYZ’)

 Parameter Declaration Data
Type

 Memory Area Description

S INPUT STRING D, L Input variable in the STRING
format

Return
value

INT I, Q, M, D, L Current number of characters

CONCAT

The CONCAT function (FC2) combines two STRING variables to form a string. If
the resulting string is longer than the variable at the output parameter, the resulting
string is limited to the maximum length. Errors can be queried at the OK flag.
Example CONCAT (IN1:= ’Valve’, IN2:= ’ open’)

 Parameter Declaration Data
Type

 Memory Area Description

IN1 INPUT STRING D, L Input variable in the STRING
format

IN2 INPUT STRING D, L Input variable in the STRING
format

Return
value

STRING D, L Resulting string

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-14 A5E00059543-01

LEFT or RIGHT

The LEFT and RIGHT functions (FC20 and FC32) return the first or last
L characters of a string. If L is higher than the current length of the STRING
variable, the complete string is returned. If L = 0, an empty string is returned. If L is
negative, an empty string is output and the OK flag is set to "0".
Example LEFT (IN:= ’Valve’, L:= 4)

 Parameter Declaration Data
Type

 Memory Area Description

IN INPUT STRING D, L Input variable in the STRING
format

L INPUT INT I, Q, M, D, L,
const.

Length of the left string

Return
value

STRING D, L Output variable in the STRING
format

MID

The MID function (FC26) returns part of a string. L is the length of the string that
will be read out, P is the position of the first character to be read out.
If the sum of L and (P-1) is longer than the current length of the STRING variable, a
string is returned that starts at the character indicated by P and extends up to the
end of the input value. In all other situations (P is outside the current length, P
and/or L equal to zero or negative), an empty string is output and the OK flag is set
to "0".
Example MID (IN:= ’Temperature’, L:= 2, P:= 3)

 Parameter Declaration Data
Type

 Memory Area Description

IN INPUT STRING D, L Input variable in the STRING
format

L INPUT INT I, Q, M, D, L,
const.

Length of the mid string section

P INPUT INT I, Q, M, D, L,
const.

Position of the first character

Return
value

STRING D, L Output variable in the STRING
format

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-15

INSERT

The INSERT function (FC17) inserts the character string at parameter IN2 into the
string at parameter IN1 after the character identified by P. If P equals zero, the
second string is inserted before the first string. If P is higher than the current length
of the first string, the second string is appended to the first string. If P is negative,
an empty string is output and the OK flag is set to "0". The OK flag is also set to "0"
when the resulting string is longer than the variable specified at the output
parameter; in this case, the resulting string is limited to the configured maximum
length.
Example INSERT (IN1:= ’Participant arrived’, IN2:=’Miller’:=
2, P:= 11)

 Parameter Declaration Data
Type

 Memory Area Description

IN1 INPUT STRING D, L STRING variable into which
string will be inserted

IN2 INPUT STRING D, L STRING variable to be inserted

P INPUT INT I, Q, M, D, L,
const.

Insert position

Return
value

STRING D, L Resulting string

DELETE

The DELETE function (FC 4) deletes L characters in a string starting at the
character identified by P (inclusive). If L and/or P equals zero or if P is higher than
the current length of the input string, the input string is returned. If the sum of L and
P is higher than the input string length, the string is deleted up to the end. If L
and/or P is negative, an empty string is output and the OK flag set to "0".

Example: DELETE (IN:= ’Temperature ok’, L:= 6, P:= 5)

 Parameter Declaration Data
Type

 Memory Area Description

IN INPUT STRING D, L STRING variable in which
characters will be deleted

L INPUT INT I, Q, M, D, L,
const.

Number of characters to be
deleted

P INPUT INT I, Q, M, D, L,
const.

Position of the first character to
be deleted

Return
value

STRING D, L Resulting string

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-16 A5E00059543-01

REPLACE

The REPLACE function (FC31) replaces L characters of the first string (IN1)
starting at the character identified by P (inclusive) with the second string (IN2). if L
equals zero, the first string is returned. If P equals zero or one, the characters are
replaced starting at the first character (inclusive). If P is outside the first string, the
second string is appended to the first string. If L and/or P is negative, an empty
string is output and the OK flag set to "0". The OK flag is also set to "0" when the
resulting string is longer than the variable specified at the output parameter; in this
case, the resulting string is limited to the configured maximum length.
Example REPLACE (IN1:= ’Temperature’, IN2:= ’ high’ L:= 6,
P:= 5)

 Parameter Declaration Data
Type

 Memory Area Description

IN1 INPUT STRING D, L STRING variable in which
characters will be replaced

IN2 INPUT STRING D, L STRING variable to be inserted

L INPUT INT I, Q, M, D, L,
const.

Number of characters to be
replaced

P INPUT INT I, Q, M, D, L,
const.

Position of the first replaced
character

Return
value

STRING D, L Resulting string

FIND

The FIND function (FC11) returns the position of the second string (IN2) within the
first string (IN1). The search begins at the left; the first occurrence of the string is
reported. If the second string does not occur in the first string, zero is returned. The
function does not report errors.
Example FIND (IN1:= ’Processingstation’, IN2:=’station’)

 Parameter Declaration Data
Type

 Memory Area Description

IN1 INPUT STRING D, L STRING variable to search

IN2 INPUT STRING D, L STRING variable to search for

Return
value

INT I, Q, M, D, L Position of the located string

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-17

13.4.2 Functions for Comparing Strings

You can compare strings using the SCL comparison functions ==, <>, <, >, <= and >=.
The compiler includes the required function call automatically. The following functions
are listed simply to provide you with a complete picture.

EQ_STRNG and NE_STRNG

The EQ_STRNG (FC10) and NE_STRNG (FC29) functions compare the contents
of two variables in the STRING format for equality (FC10) or inequality (FC29) and
return the result of the comparison. The return value has signal state "1" if the
string of parameter S1 equals (does not equal) the string of parameter S2. The
function does not report errors.

 Parameter Declaration Data
Type

 Memory Area Description

S1 INPUT STRING D, L Input variable in the STRING
format

S2 INPUT STRING D, L Input variable in the STRING
format

Return
value

BOOL I, Q, M, D, L Comparison result

GE_STRNG and LE_STRNG

The GE_STRNG (FC13) and LE_STRNG (FC19) functions compare the contents
of two variables in the STRING format for greater than (less than) or equal to and
return the result of the comparison. The return value has signal state "1" if the
string of parameter S1 is greater than (less than) or equal to the string of parameter
S2. The characters are compared starting from the left using their ASCII coding (for
example, ’a’ is greater than ’A’). The first character to differ, decides the result of
the comparison. If the left part of the longer string is identical to the shorter string,
the longer string is considered to the greater. The function does not report errors.

 Parameter Declaration Data
Type

 Memory Area Description

S1 INPUT STRING D, L Input variable in the STRING
format

S2 INPUT STRING D, L Input variable in the STRING
format

Return
value

BOOL I, Q, M, D, L Comparison result

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-18 A5E00059543-01

GT_STRNG and LT_STRNG

The GT_STRNG (FC15) and LT_STRNG (FC24) functions compare the values of
two variables in the STRING format for greater than (less than) and return the
value of the comparison. The return value has signal state "1" if the string of
parameter S1 is greater than (less than) the string of parameter S2. The characters
are compared starting from the left using their ASCII coding (for example, ’a’ is
greater than ’A’). The first character to differ, decides the result of the comparison.
If the left part of the longer string is identical to the shorter string, the longer string
is considered to the greater. The function does not report errors.

 Parameter Declaration Data
Type

 Memory Area Description

S1 INPUT STRING D, L Input variable in the STRING
format

S2 INPUT STRING D, L Input variable in the STRING
format

RET_VAL BOOL I, Q, M, D, L Comparison result

13.4.3 Functions for Converting the Data Format

I_STRNG and STRNG_I

The functions I_STRNG (FC16) and STRNG_I (FC38) convert a variable in the
INT format into a character string or a string into an INT variable. The string is
represented with a leading sign. If the variable specified at the return parameter is
too short, no conversion is made and the OK flag is set to "0".

 Parameter Declaration Data
Type

 Memory Area Description

I_STRNG

I INPUT INT I, Q, M, D, L,
const.

Input value

Return
value

STRING D, L Resulting string

STRNG_I

S INPUT STRING D, L Input string

Return
value

INT I, Q, M, D, L Result

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-19

DI_STRNG and STRNG_DI

The functions DI_STRNG (FC5) and STRNG_DI (FC37) convert a variable in the
DINT format into a character string or a string into a DINT variable. The string is
represented with a leading sign. If the variable specified at the return parameter is
too short, no conversion is made and the OK flag is set to "0".

 Parameter Declaration Data
Type

 Memory Area Description

DI_STRNG

I INPUT DINT I, Q, M, D, L,
const.

Input value

Return
value

STRING D, L Resulting string

STRNG_DI

S INPUT STRING D, L Input string

Return
value

DINT I, Q, M, D, L Result

R_STRNG and STRNG_R

The functions R_STRNG (FC30) and STRNG_R (FC39) convert a variable in the
REAL format into a character string or a string into a REAL variable. The string is
represented with 14 places:
±v.nnnnnnnE±xx
If the variable specified at the return parameter is too short or if there is no valid
floating-point number at the IN parameter, no conversion is made and the OK flag
is set to "0".

 Parameter Declaration Data
Type

 Memory Area Description

R_STRNG

IN INPUT REAL I, Q, M, D, L,
const.

Input value

Return
value

STRING D, L Resulting string

STRNG_R

S INPUT STRING D, L Input string

Return
value

REAL I, Q, M, D, L Result

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-20 A5E00059543-01

13.4.4 Example of Processing Character Strings

Putting together message texts
//Put message texts together controlled by the process and store
//them
//
//The block contains the necessary message texts and the last 20
//messages generated
//

DATA_BLOCK Messagetexts

 STRUCT
 Index : int;
 textbuffer : array [0..19] of string[34];
 HW : array [1..5] of string[16]; //5 different devices
statuses : array [1..5] of string[12]; // 5 different statuses
 END_STRUCT
BEGIN
 Index :=0;
 HW[1] := ’Motor ’;
 HW[2] := ’Valve ’;
 HW[3] := ’Press ’;
 HW[4] := ’Weldingstation ’;
 HW[5] := ’Burner ’;
 Statuses[1] := ’ problem’;
 Statuses[2] := ’ started’;
 Statuses[3] := ’ temperature’;
 Statuses[4] := ’ repaired’;
 Statuses[5] := ’ maintained’;
END_DATA_BLOCK

//
//The function puts message texts together and enters them in
//the DB message texts. The message texts are stored in a
//circulating buffer. The next free index of the text buffer is
//also in the DB message texts and is updated by the function.
//

FUNCTION Textgenerator : bool
VAR_INPUT
 unit : int; //Index of the device text
 no : int; // ID no. of the device
 status : int;
 value : int;
END_VAR
VAR_TEMP
 text : string[34];
 i : int;
END_VAR
//initialization of the temporary variables
 text := ’’;

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-21

 Textgenerator := true;
 Case unit of
 1..5 : case status of
 1..5 : text := concat(in1 := Messagetexts.HW[unit],
 in2 := right(l:=2,in:=I_STRNG(no)));
 text := concat(in1 := text,
 in2 := Messagetexts.statuses[status]);
 if value <> 0 then
 text := concat(in1 := text,
 in2 := I_STRNG(value));
 end_if;
 else Textgenerator := false;
 end_case;
else Textgenerator := false;
end_case;
i := Messagetexts.index;
 Messagetexts.textbuffer[i] := text;
 Messagetexts.index := (i+1) mod 20;
END_FUNCTION

//
//The function is called in the cyclic program at an edge change
//in %M10.0 and a message is entered once if a parameter
//changes.
//

Organization_block Cycle
Var_temp
 Opsy_ifx : array [0..20] of byte;
 error: BOOL;
End_var;

//
//The following call enters the message "Motor 12 started" in
//text buffer of DB message texts, with %MW0 supplying a 1, %IW2
//the 12 and %MW2 a 2. *)
//

if %M10.0 <> %M10.1 then
 error := Textgenerator (unit := word_to_int(%MW0),
 no := word_to_int(%IW2),
 status := word_to_int(%MW2),
 value := 0);
 %M10.1:=M10.0;
end_if;
end_organization_block

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-22 A5E00059543-01

13.5 SFCs, SFBs and Standard Library

The S7 CPUs have integrated system and standard functions in their operating
systems that you can use when programming in SCL. Specifically these are the
following:

• Organization blocks(OBs)

• System functions (SFCs)

• System function blocks (SFBs)

Call Interface (SFC/SFB)

You can address blocks in symbolic or absolute form. You require either the
symbolic name that must be declared in the symbol table or the number of the
absolute identifier of the block.

When these functions and blocks are called, you must assign the actual
parameters (with the values used by the block when your program runs) to the
formal parameters whose names and data types were specified when the
configurable block was created.

SCL searches the following folders and libraries for the block to be called:

• The "Programs" folder

• The Simatic standard libraries

• The IEC standard library

If SCL finds a block, it is copied to the user program. The exceptions to this are the
blocks that must be called with the notation (" ... ") due to their names and those
that are called using the absolute identifier. SCL then searches for these names
only in the symbol table of the user program. You must copy these functions into
your user program yourself with the SIMATIC Manager. This affects the following
IEC functions.

• "DATE and TOD to DT"

• "DT to DATE"

• "DT to DAY"

• "DT to TOD"

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 13-23

Conditional Call (SFB/SFC)

For a conditional function call, you must set the predefined input parameter EN to 0
(for example, via input I0.3). The block is then not called. If EN has the value 1, the
function is called. The output parameter ENO is also set to "1" in this case
(otherwise to "0") if no error occurred during the execution of the block.

Conditional SFC calls are not recommended since the variable that should
normally receive the return value of the function is undefined if the function is not
called.

Note

If you use the following operations for the data types TIME, DATE_AND_TIME
and STRING in your program, SCL implicitly calls the corresponding standard
blocks.

The symbols and block numbers of these standard blocks are therefore reserved
and must not be used for other blocks. If you break this rule, it will not always be
detected by SCL and can lead to a compiler error.

The following table contains an overview of the IEC standard functions used
implicitly by SCL.

 Operation DATE_AND_TIME STRING

== EQ_DT (FC9) EQ_STRING (FC10)

<> NE_DT (FC28) NE_STRING (FC29)

> GT_DT (FC14) GT_STRING (FC15)

>= GE_DT (FC12) GE_STRING (FC13)

<= LE_DT (FC18) LE_STRING (FC19)

< LT_DT (FC23) LT_STRING (FC24)

DATE_AND_TIME + TIME AD_DT_TM (FC1)

DATE_AND_TIME + TIME SB_DT_TM (FC35)

DATE_AND_TIME + DATE_AND_TIME SB_DT_DT (FC34)

TIME_TO_S5TIME(TIME) TIM_S5TI (FC40)

S5TIME_TO_TIME(S5TIME) S5TI_TIM (FC33)

For detailed information about available SFBs, SFCs and OBs and a detailed
interface description, refer to the reference manual "System Software for S7-300
and S7-400, System and Standard Functions".

SCL Standard Functions

S7-SCL V5.1 for S7-300/S7-400
13-24 A5E00059543-01

13.5.1 Transfer Interface to OBs

Organization Blocks

Organization blocks form the interface between the CPU operating system and the
user program. OBs can be used to execute specific program sections in the
following situations:

• when the CPU is powered up

• as cyclic or timed operations

• at specific times or on specific days

• on expiry of a specified time period

• if errors occur

• if hardware or communications interrupts are triggered

Organization blocks are processed according to the priority they are assigned.

Available OBs

Not all CPUs can execute all OBs provided by S7. Refer to the data sheets for your
CPU to find out which OBs you can use.

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-1

14 Language Definition

14.1 Formal Language Definition

14.1.1 Overview of Syntax Diagrams

The basic tool for the description of the language in the various sections is the
syntax diagram. It provides a clear insight into the structure of SCL syntax. You will
find a complete collection of all the diagrams with the language elements in the
sections entitled "Lexical Rules" and "Syntax Rules".

What is a Syntax Diagram?

The syntax diagram is a graphic representation of the structure of the language.
The structure is defined by a series of rules. One rule may be based on others at a
more fundamental level.

Box 1 Box 2 Box 4

Box 3

Box 5

Name of rule

Iteration
Alternative

Sequence

Option

The syntax diagram is read from right to left. The following rule structures must be
adhered to:

• Sequence: a sequence of boxes

• Option: a skippable branch

• Iteration: repetition of branches

• Alternative: multiple alternative branches

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-2 A5E00059543-01

What Types of Boxes Are There?

A box is a basic element or an element made up of other objects. The diagram
below shows the symbols that represent the various types of boxes

Complex element described by
additional syntax diagrams.

Basic element that requires no further
explanation
This refers to printing characters and
special characters, keywords and
predefined identifiers. The information
in these blocks must be copied as it is
shown.

Term Non Term

Complex element used as a basic
element in the syntax rules and
explained in the lexical rules.

Token

<Rule name>

Rule name must always be in
upper case letters!

<Rule name>

Rule name may use upper
or lower case letters

14.1.2 Rules

The rules you apply to the structure of your SCL program are subdivided into the
categories lexical and syntax rules.

Lexical Rules

The lexical rules describe the structure of the elements (tokens) processed during
the lexical analysis performed by the Compiler. For this reason lexical rules do not
allow a flexible format and must be strictly observed. In particular, this means that

• Inserting formatting characters is not permitted,

• Section and line comments cannot be inserted.

• Inserting attributes for identifiers is not permitted.

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-3

The above example shows the lexical rule for IDENTIFIER. It defines the structure
of an identifier (name), for example:

MEAS_FIELD_12
SETPOINT_B_1

Underscore

_ _

Number

Letter

Digit

Letter Letter

Underscore

Syntax Rules

The syntax rules are built up from the lexical rules and define the structure of SCL.
Within the limitations of these rules, the structure of the your SCL program has a
flexible format.

Lexical Rules

Syntax
Rules

flexible format

fixed format

SCL Program

Formal Aspects

Each rule has a name which precedes the definition. If that rule is used in a
higher-level rule, that name appears in the higher-level rule as a non term.

If the rule name is written in upper case, it is a token that is described in the lexical
rules.

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-4 A5E00059543-01

Semantics

The rules can only represent the formal structure of the language. The meaning
(semantics) is not always obvious from the rules. For this reason, where it is
important, additional information is written next to the rule. The following are
examples of such situations:

• When elements of the same type have a different meaning, an additional name
is given: For example in the data specification rule for DECIMALDIGITSTRING
year, month or day. The name indicates the usage.

• Important restrictions are noted alongside the rules: For example, you will find
a note with the symbol rule telling you that a symbol must be defined in the
symbol table.

14.1.3 Terms Used in the Lexical Rules

Definition

A term is a basic element that cannot be explained by another rule but only
verbally. In a syntax diagram, it is represented by the following symbol:

A term is represented by an oblong box with rounded
corners or a circle. The item is shown in literal
terms or as a name (in upper case letters).
This defines the range of ASCII characters that
can be used.

The tables below define the terms on the basis of a range of characters from the
ASCII character set.

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-5

Letters and Numeric Characters

Letters and numeric characters are the main characters used. The IDENTIFIER, for
example, consists of letters, numeric characters and the underscore.

 Character Subgroup Character Set Range

Letter Uppercase
Lowercase

A to Z
a to z

Digit Decimal digits 0.. 9

Octal digit Octal digits 0.. 7

Hexadecimal digit Hexadecimal digits 0 to 9, A to F, a to f

Bit Binary digits 0, 1

Printable Characters and Special Characters

The complete, extended ASCII character set can be used in strings, comments and
symbols.

 Character Subgroup Character Set Range

Printable character Depends on the character
code used. In ASCII code,
for example, characters
starting at the decimal
equivalent of 32 without DEL
and without the following
substitute characters:

All printing characters

Substitute
characters

Dollar sign
Quote

$
’

Control characters $P or $p
$L or $l
$R or $r
$T or $t
$N or $n

form feed
line feed
carriage return
tabulator
new line

Substitute
representation in
hexadecimal code

$hh Any characters

capable of representation in
hexadecimal code (hh)

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-6 A5E00059543-01

14.1.4 Formatting Characters, Separators and Operations

Used in the Lexical Rules

The following table shows the characters of the ASCII character set used as
formatting characters and separators in the lexical rules.

 Character Description

: Delimiter between hours, minutes and seconds

Attribute

. Separator for absolute addresses in real number or time period
representation

’ ’ Characters and character strings

" " Introductory character for symbols according to symbol editor rules

_ Underscore Separator for numbers in constants and can be used in IDENTIFIERS

$ Escape symbol for specifying control characters or substitute characters

$> $< String break, in case the string does not fit in one line, or if the comments
are to be inserted.

For Constants

The following table shows the use of individual characters and character strings for
constants in the lexical rules. The table applies to both the English and German
mnemonics.

 Prefix Represents Lexical Rule

 BOOL# Type-defined constant of type
BOOL

BIT constant

 BYTE# Type-defined constant of type
BYTE

BIT constant

 WORD# Type-defined constant of type
WORD

BIT constant

 DWORD# Type-defined constant of type
DWORD

BIT constant

 INT# Type-defined constant of type
INT

Integer constant

 DINT# Type-defined constant of type
DINT

Integer constant

 REAL# Type-defined constant of type
REAL

REAL constant

 CHAR# Type-defined constant of type
CHAR

CHAR constant

 2# Numeric constant Binary digit string
 8# Numeric constant Octal digit string
 16# Numeric constant Hexadecimal digit string
 D# Times DATE
 DATE# Times DATE
 DATE_AND_TIME# Times DATE AND TIME

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-7

 Prefix Represents Lexical Rule

 DT# Times DATE AND TIME
 E Separator for REAL number

constant
Exponent

 e Separator for REAL number
constant

Exponent

 D Separator for time unit (day) Days (rule: complex format)
 H Separator for time unit (hours) Hours: (rule: complex format)
 M Separator for time unit (minutes) Minutes : (rule: complex format)
 MS Separator for time unit

(milliseconds)
Milliseconds: (rule: complex
format)

 S Separator for time unit (seconds) Seconds: (rule: complex format)
 T# Times TIME PERIOD
 TIME# Times TIME PERIOD
 TIME_OF_DAY# Times TIME OF DAY
 TOD# Times TIME OF DAY

In the Syntax Rules

The following table shows the use of individual characters as formatting characters
and separators in the syntax rules and in comments and attributes.

 Character Description Syntax Rule, Remarks or Attribute

 : Delimiter for type specification
in statement after label

Variable declaration, instance declaration,
function code section, CASE statement

 ; Terminates a declaration or statement Constant and variable declarations, code
section, DB assignment section, constant
subsection, label subsection, component
declaration

 , Delimiter for lists and label subsection Variable declaration, array data type
specification, array initialization list, FB
parameters, FC parameters, value list,
instance declaration

 .. Range specification Array data type specification, value list
 . Delimiter for FB and DB name, absolute

address
FB call, structured variables

 () Function and function block calls bracketed
in expressions
Initialization list for arrays

Function call, FB call, expression,
Array initialization list, simple multiplication,
exponential expression

 [] Array declaration,
array structured variable section, indexing
of shared variables and strings

Array data type specification, STRING data
type specification

 (* *) Comment section See "Lexical Rules"
 // Line comment See "Lexical Rules"
 { } Attribute field For specifying attributes
 % Introduces a direct identifier To program in conformity with IEC, %M4.0 can

be used instead of M4.0.
 # Introduces a non-keyword Indicates that an identifier is not a keyword, for

example, #FOR.

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-8 A5E00059543-01

Operations

The following table lists all SCL operations, keywords, for example AND and the
common operations as single characters. This table applies to both the English and
German mnemonics.

 Operation Description Example, Syntax Rule

 := Assignment operation, initial
assignment, data type initialization

Value assignment, DB assignment
section, constant subsection, output
and in/out assignments, input
assignment, in/out assignment

 +, - Arithmetic operations: unary operations,
sign

Expression, simple expression,
exponential expression

 +, -, *, /

 MOD; DIV

Basic arithmetic operations Basic arithmetic operation, simple
multiplication

 ** Arithmetic operations: exponential
operation

Expression

 NOT Logical operations: negation Expression

 AND, &, OR; XOR, Basic logic operations Basic logic operation

 <,>,<=,>=,=,<> Comparison operation Comparison operation

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-9

14.1.5 Keywords and Predefined Identifiers

The following table list the keywords in SCL and the predefined identifiers in
alphabetical order. Alongside each one is a description and the syntax rule in
which they are used as a term. Keywords are generally independent of the
mnemonics.

 Keywords Description Example, Syntax Rule

AND Logic operation Basic logic operation
ANY Identifier for data type ANY Parameter data type specification
ARRAY Introduces the specification of an

array and is followed by the index
list enclosed in "[" and "]".

Array data type specification

AT Declares a view of a variable Variable Declaration
BEGIN Introduces code section in logic

blocks or initialization section in
data blocks

Organization block, function,
function block, data block

BLOCK_DB Identifier for data type
BLOCK_DB

Parameter data type specification

BLOCK_FB Identifier for data type
BLOCK_FB

Parameter data type specification

BLOCK_FC Identifier for data type
BLOCK_FC

Parameter data type specification

BLOCK_SDB Identifier for data type
BLOCK_SDB

Parameter data type specification

BOOL Elementary data type for binary
data

Bit data type

BY Introduces increment
specification

FOR statement

BYTE Elementary data type Bit data type
CASE Introduces control statement for

selection
CASE Statement

CHAR Elementary data type Character type
CONST Introduces definition of constants constant subsection
CONTINUE Control statement for FOR,

WHILE and REPEAT loops
CONTINUE statement

COUNTER Data type for counters, useable in
parameter subsection only

Parameter data type specification

DATA_BLOCK Introduces a data block Data block
DATE Elementary data type for dates Time type
DATE_AND_TIME Composite data type for date and

time
DATE_AND_TIME

DINT Elementary data type for whole
numbers (integers), double
resolution

Numeric data type

DIV Operation for division Basic arithmetic operation, simple
multiplication

DO Introduces statement section for
FOR statement

FOR statement, WHILE
statement

DT Elementary data type for date
and time

DATE_AND_TIME

DWORD Elementary data type for double Bit data type

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-10 A5E00059543-01

 Keywords Description Example, Syntax Rule
word

ELSE Introduces instructions to be
executed if condition is not
satisfied

IF statement CASE statement

ELSIF Introduces alternative condition IF statement
EN Block clearance flag
ENO Block error flag
END_CASE Terminates CASE statement CASE Statement
END_CONST Terminates definition of constants constant subsection
END_DATA_BLOCK Terminates data block Data block
END_FOR Terminates FOR statement FOR statement
END_FUNCTION Terminates function Function
END_FUNCTION_BLOCK Terminates function block Function block
END_IF Terminates IF statement IF statement
END_LABEL Terminates declaration of a label

subsection
Label subsection

END_TYPE Terminates UDT User-defined data type
END_ORGANIZATION_BLOCK Terminates organization block Organization block
END_REPEAT Terminates REPEAT statement REPEAT Statement
END_STRUCT Terminates specification of a

structure
Structure data type specification

END_VAR Terminates declaration block Temporary variables subsection,
static variables subsection,
parameter subsection

END_WHILE Terminates WHILE statement WHILE Statement
EXIT Executes immediate exit from

loop
EXIT

FALSE Predefined Boolean constant:
logic condition not true, value
equals 0

FOR Introduces control statement for
loop processing

FOR statement

FUNCTION Introduces function Function
FUNCTION_BLOCK Introduces function block Function block
GOTO Instruction for executing a jump

to a label
Program jump

IF Introduces control statement for
selection

IF statement

INT Elementary data type for whole
numbers (integers), single
resolution

Numeric data type

LABEL Introduces declaration of a label
subsection

Label subsection

MOD Arithmetic operation for division
remainder

Basic arithmetic operation, simple
multiplication

NIL Zero pointer
NOT Logic operation, belongs to the

unary operations
Expression

OF Introduces data type specification Array data type specification,
CASE statement

OK Flag that indicates whether the
instructions in a block have been

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-11

 Keywords Description Example, Syntax Rule
processed without errors

OR Logic operation Basic logic operation
ORGANIZATION_BLOCK Introduces an organization block Organization block
POINTER Pointer data type, only allowed in

parameter declarations in
parameter subsection, not
processed in SCL

see also Chapter 10

PROGRAM Introduces the statement section
of an FB (synonymous with
FUNCTION_BLOCK)

Function block

REAL Elementary data type Numeric data type
REPEAT Introduces control statement for

loop processing
REPEAT Statement

RETURN Control statement which
executes return from subroutine

RETURN Statement

S5TIME Elementary data type for time
specification, special S5 format

Time type

STRING Data type for character string STRING data type specification
STRUCT Introduces specification of a

structure and is followed by a list
of components

STRUCT data type specification

THEN Introduces resulting actions if
condition is satisfied

IF statement

TIME Elementary data type for time
specification

Time type

TIMER Data type of timer, useable only
in parameter subsection

Parameter data type specification

TIME_OF_DAY Elementary data type for time of
day

Time type

TO Introduces the terminal value FOR statement
TOD Elementary data type for time of

day
Time type

TRUE Predefined Boolean constant:
Logic condition met, value does
not equal 0

TYPE Introduces UDT User-defined data type
VAR Introduces declaration subsection Static variables subsection
VAR_TEMP Introduces declaration subsection Temporary variables subsection
UNTIL Introduces terminate condition for

REPEAT statement
REPEAT Statement

VAR_INPUT Introduces declaration subsection Parameter subsection
VAR_IN_OUT Introduces declaration subsection Parameter subsection
VAR_OUTPUT Introduces declaration subsection Parameter subsection
WHILE Introduces control statement for

loop processing
WHILE Statement

WORD Elementary data type Word Bit data type
VOID No return value from a function

call
Function

XOR Logic operation Basic logic operation

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-12 A5E00059543-01

14.1.6 Address Identifiers and Block Keywords

Shared System Data

The following table lists the SIMATIC mnemonics of SCL address identifiers
arranged in alphabetical order along with a description of each.

• Address identifier specification:

Memory prefix (Q, I, M, PQ, PI) or data block (D)

• Data element size specification:

Size prefix (optional or B, D, W, X)

The mnemonics represent a combination of the address identifier (memory prefix
or D for data block) and the size prefix. Both are lexical rules. The table is sorted in
the order of the German mnemonics and the corresponding English mnemonics
are shown in the second column.

 German
Mnemonic

 English
Mnemonic

 Memory Prefix or Data Block Size Prefix

A Q Output (via process image) Bit

AB QB Output (via process image) Byte

AD QD Output (via process image) Double word

AW QW Output (via process image) Word

AX QX Output (via process image) Bit

D D Data block Bit

DB DB Data block Byte

DD DD Data block Double word

DW DW Data block Word

DX DX Data block Bit

E I Input (via process image) Bit

EB IB Input (via process image) Byte

ED ID Input (via process image) Double word

EW IW Input (via process image) Word

EX IX Input (via process image) Bit

M M Bit memory Bit

MB MB Bit memory Byte

MD MD Bit memory Double word

MW MW Bit memory Word

MX MX Bit memory Bit

PAB PQB Output (direct to peripherals) Byte

PAD PQD Output (direct to peripherals) Double word

PAW PQW Output (direct to peripherals) Word

PEB PIB Input (direct from peripherals) Byte

PED PID Input (direct from peripherals) Double word

PEW PIW Input (direct from peripherals) Word

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-13

Block Keywords

Used for absolute addressing of blocks. The table is sorted in the order of the
German mnemonics and the corresponding English mnemonics are shown in the
second column.

 German
Mnemonic

 English
Mnemonic

 Memory Prefix or Data Block

DB DB Data block

FB FB Function block

FC FC Function

OB OB Organization block

SDB SDB System data block

SFC SFC System function

SFB SFB System function block

T T Timer

UDT UDT User-defined data type

Z C Counter

14.1.7 Overview of Non Terms

A non term is a complex element that is described by another rule. A non term is
represented by an oblong box. The name in the box is the name of the more
specific rule.

Non term

<Rule name>

Rule name may be in
upper or lower case!

This element occurs in lexical and syntax rules.

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-14 A5E00059543-01

14.1.8 Overview of Tokens

A token is a complex element used as a basic element in syntax rules and
explained in the lexical rules. A token is represented by an oblong box. The NAME,
written in upper case letters, is the name of the explanatory lexical rule (not shown
inside a box).

Token

<Rule name>

Rule name must always be in
upper case letters!

The defined tokens represent identifiers obtained on the basis of lexical rules. Such
tokens describe:

• Identifiers

• SCL Naming Conventions

• Predefined constants and flags

14.1.9 Identifiers

Identifier

You can access language objects of SCL using identifiers. The following table
shows the classes of identifiers.

 Identifier Type Comments, Examples

Keywords For example, control statements BEGIN,
DO,WHILE

Predefined names Names of
• Standard data types (for example, BOOL,

BYTE, INT)
• Predefined standard functions, for example

ABS

• Standard constants TRUE and FALSE
Absolute address identifiers For shared system data and data blocks:

For example, I1.2, MW10, FC20, T5,
DB30, DB10.D4.5

User-defined names based on the rule
IDENTIFIER

Names of
• declared variables
• structure components
• parameters
• declared constants
• labels

Symbol editor symbols Conform either to the lexical rule IDENTIFIER or
the lexical rule Symbol; in other words, enclosed
in quotes, for example, "xyz"

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-15

Upper- and Lowercase

Upper- and lowercase notation is not relevant for the keywords. Since S7 SCL
version 4.0, the notation of predefined names and the freely selectable names,
such as for variables and symbols from the symbol table is no longer case
sensitive. The following table provides an overview.

 Identifier Type Case-Sensitive?

Keywords No

Predefined names for standard data types No

Names of standard functions No

Predefined names for standard constants No

Absolute address identifiers No

User-defined names No

Symbol editor symbols No

The names of standard functions, such as BYTE_TO_WORD and ABS can also
be written in lowercase characters. This also applies to parameters for timer and
counter functions, for example, SV, se or CV.

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-16 A5E00059543-01

14.1.10 Assigning Names in SCL

Assigning Selectable Names

You can assign names in two basic ways:

• You can assign names within SCL itself. These names must conform to the
rule IDENTIFIER (see Figure). IDENTIFIER is the general term you can use
for any name in SCL.

• Alternatively, you can assign the name in STEP 7 using the symbol table. The
rule to be applied in this case is also IDENTIFIER or, as an additional option,
Symbol. By putting your entry in inverted commas, you can write the symbol
with all printable characters (for example, spaces).

" "
Printable

character

 SYMBOL

Underscore

_ _

Digit

Letter

Letter Letter

IDENTIFIER

Underscore

Symbols must be defined in the symbol table.

Digit

Rules for Assigning Names

Please remember the following points:

• Choose names that are unambiguous and self-explanatory and which enhance
the comprehensibility of the program.

• Check whether the name is already being used by the system, for example by
identifiers for data types or standard functions.

• Scope: If you use names with a global scope, the scope covers the entire
program. Names with a local scope are valid only within a block. This enables
you to use the same names in different blocks. The following table lists the
various options available.

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-17

Restrictions

When assigning names, remember the following restrictions:

A name must be unique within the limits of its own applicability, that is, names
already used within a particular block can not be used again within the same block.
In addition, the following names reserved by the system may not be used:

• Names of keywords: For example, CONST, END_CONST, BEGIN

• Names of operations: For example, AND, XOR

• Names of predefined identifiers: For example, names of data types such as
BOOL, STRING, INT

• Names of the predefined constants TRUE and FALSE

• Names of standard functions: For example, ABS, ACOS, ASIN, COS, LN

• Names of absolute address identifiers for shared system data: For example,
IB, IW, ID, QB, QW, QD MB, MD

Using IDENTIFIERS

The following table shows the situations in which you can use names that conform
to the rule for IDENTIFIERS.

 IDENTIFIER Description Rule

Block name Symbolic name for block BLOCK IDENTIFIER, function call

Name of timer or counter Symbolic name for timer or counter TIMER IDENTIFIER, COUNTER
IDENTIFIER

Attribute name Name of an attribute Attribute assignment

Constant name Declaration/use of symbolic constant constant subsection

Constant

Label Declaration of label, use of label Labels subsection statement section,
GOTO statement

Variable name Declaration of temporary or static
variable

Variable declaration, simple variable,

Structured variable

Local instance name Declaration of local instance Instance declaration, FB call name

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-18 A5E00059543-01

BLOCK IDENTIFIER

In the BLOCK IDENTIFIER rule, you can use IDENTIFIERs or symbols:

DB, FB, FC, OB, SDB, SFC, SFB, UDT

Keyword
Block

IDENTIFIER

Symbol

Number

BLOCK IDENTIFIER

The TIMER IDENTIFIER and COUNTER IDENTIFIER rules are analogous to the
BLOCK IDENTIFIER rule.

14.1.11 Predefined Constants and Flags

The tables apply to both the German and English mnemonics.

Constants
 Mnemonics Description

FALSE Predefined Boolean constants (standard constants) with the value 0. The
logical meaning is that a condition is not satisfied.

TRUE Predefined Boolean constants (standard constants) with the value 1. The
logical meaning is that a condition is satisfied.

Flags
 Mnemonics Description

EN Block enable flag

ENO Block error flag

OK Flag is set to FALSE if the statement has been incorrectly executed.

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-19

14.2 Lexical Rules

The lexical rules describe the structure of the elements (tokens) processed during
the lexical analysis performed by the Compiler. For this reason lexical rules do not
have a flexible format and must be strictly observed. In particular, this means that

• Inserting formatting characters is not permitted,

• Section and line comments cannot be inserted.

• Inserting attributes for identifiers is not permitted.

14.2.1 Identifiers

 Rule Syntax Diagram

Identifier

Underscore

_ _

Digit

Letter

Digit

Letter Letter

IDENTIFIER

Underscore

Block
identifier

DB, FB, FC, OB, SDB, SFC, SFB, UDT

Keyword
Block

IDENTIFIER

Symbol

Number

BLOCK IDENTIFIER

Timer identifier Number

in German
and English mnemonics

IDENTIFIER

Symbol

T

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-20 A5E00059543-01

 Rule Syntax Diagram

Counter identifier

NumberC

IDENTIFIER

Symbol

’C’ in English mnemonics
’Z’ in German mnemonics

Block keyword Organization block

System function block

Data block

User-defined data typeUDT

DB

SFB

OB

FunctionFC

System functionSFC

Function block
FB

Symbol

" "
Printable

character

Number

Number

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-21

14.2.2 Constants

 Rule Syntax Diagram

Bit constant BIT CONSTANT

(1) only with dataBYTE

DECIMAL DIGIT
OCTAL DIGIT

HEXADECIMAL DIGIT
BINARY DIGIT

CHARACTER (1)WORD#

BOOL#

BYTE#

DWORD#

Integer constant INTEGER CONSTANT

(1) only with INT data type

OCTAL DIGIT STRING

BINARY DIGIT STRING
CHARACTER (1)

HEXADECIMAL DIGIT STRING

INT#

DINT#

DECIMAL DIGIT STRING
+

-

Real number constant REAL NUMBER CONSTANT

. Exponent

.

-

+

 DECIMAL
DIGIT STRING

 DECIMAL
DIGIT STRING

REAL#

 DECIMAL
DIGIT STRING

 DECIMAL
DIGIT STRING

Decimal digit string

_

Underscore

Digit

Decimal Digit String

Decimal digits: 0-9

Binary digit string

_

Underscore

Binary digits2#

Binary digits: 0 or 1

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-22 A5E00059543-01

 Rule Syntax Diagram

Octal digit string

_
Underscore

8# Octal number

Octal digit string

Hexadecimal digit string

_

Underscore

Hexadecimal digits16#

Hexadecimal digit: 0-9
A-F

HEXADECIMAL DIGIT STRING

Exponent Exponent

e

E

-

+

DECIMAL
DIGIT STRING

Character constant CHARACTER CONSTANT

’ ’CharacterCHAR#

DECIMAL DIGIT STRING

String constant

’ ’
break
String

Character Character

STRING CONSTANT

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-23

 Rule Syntax Diagram

Characters Characters

$
Escape symbol $

Printable
character

$ or ’

Alternative representation in hex code

Hexadecimal
digit

Hexadecimal
digit

Substitute char.

Control char.

*P or L or R or T or N

*P = Form feed
 L = Line feed
 R = Carriage return
 T = Tabulator
 N = New line

String Break String Break Syntax

$<

Comments

Formatting
character

$>

Space,
Line feed,
Carriage return,
Form feed, or
Tabulator

Date
DATE#

Details of date

D#

DATE

Time period TIME PERIOD

TIME#

T# Composite time

Simple time

Simple time

- Each time unit (hours, minutes, etc.) may only be specified once.
- The order days, hours, minutes, seconds, milliseconds must be adhered to.

Time of day TIME OF DAY

TIME_OF_DAY#

TOD#

Time

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-24 A5E00059543-01

 Rule Syntax Diagram

Date and time

DATE_AND_TIME#

DT#

Time of dayDate -

DATE AND TIME

Date Date

- -

Year Month Day

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Time of day Time of Day

: :

Hours Minutes

.

MillisecondsSeconds

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Decimal representation Simple Time Format

Use of the simple time format is only possible for undefined time units.

. D

. H

. M

. S

. MS

Days

Hours

Minutes

Seconds

Milliseconds

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-25

 Rule Syntax Diagram

Composite time format Composite Time Format

_D

Days

_H

Hours

_M

Minutes

_S

Seconds

Milliseconds

_MS

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

14.2.3 Absolute Addressing

 Rule Syntax Diagram

Simple memory access ADDRESS

absolute access

symbolic access

IDENTIFIER

IDENTIFIER

Address

SYMBOL

Indexed memory access

,[]Memory
prefix

Size
prefix

Address identifier Index

Bit access only

Basic
expression

Basic
expression

Address identifier for
memory

Memory
prefix

Size
prefix

Memory Prefix

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-26 A5E00059543-01

 Rule Syntax Diagram

Absolute DB access

AddressAddress identifier DB

Absolute access

Indexed DB access

,Basic
expression

[]

Index

Address
identifie r DB

Basic
expression

in the case of bit access

Structured DB access

. Sim ple
variable IDENTIFIER

DB

Address
identifier DB

. D S ize
pre fix

D B
ID E N T IF IE R

A ddress iden tifie r

Memory prefix
Input

Output

Bit memory

Peripheral input

Peripheral output

I

Q

M

PQ

A

M

PA

E

PIPE

Memory Prefix

German mnemonics English mnemonics

Size prefix
for memory and DB Bit

Byte

Word

Double word

X

W

D

B

Size Prefix

Address
for memory and DB

.Number Number

Bit address only

Address

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-27

 Rule Syntax Diagram

Access to local instance

. Simple
variableIDENTIFIER

Local instance name

14.2.4 Comments

The following points are the most important things to remember when inserting
comments:

• Nesting of comments is permitted if the "Allow nested comments" is activated.

• They can be inserted at any point in the syntax rules but not in the lexical rules.

 Rule Syntax Diagram

Comment

Comment section

Line comment

Line comment

// CR
Printable

character

Line Comment

Comment section
Comment Section

(* *)Character

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-28 A5E00059543-01

14.2.5 Block Attributes

Block attributes can be placed after the BLOCK IDENTIFIER and before the
declaration of the first variable or parameter subsection using the syntax shown
here.

 Rule Syntax Diagram

Title
TITLE = ’ ’

Printable
character

Version

: ’ ’VERSION .
DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

0 - 15 0 - 15

Block protection KNOW_HOW_PROTECT

Author
: IDENTIFIERAUTHOR

max. 8 characters

Parameter name
: IDENTIFIERNAME

max. 8 characters

Block family
: IDENTIFIERFAMILY

max. 8 characters

System attributes for
blocks

System attributes for blocks

{ }’:=IDENTIFIER

max. 24 characters
Printable

character
’

;

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-29

14.3 Syntax Rules

The syntax rules are built up from the lexical rules and define the structure of SCL.
Within the limitations of these rules, the structure of the your SCL program is
flexible.

Each rule has a name that precedes the definition. If the rule is used in a
higher-level rule, the name appears in the higher-level rule as a non term.

If the name in the oblong box is in upper case letters, this means it is a token that is
described in the lexical rules.

You will find information on rule names in rounded or circular boxes in the section
entitled "Formal Language Description".

Flexible Format

Flexible format means:

• You can insert formatting characters at any point.

• You can insert comment lines and comment sections

14.3.1 Structure of SCL Source Files

 Rule Syntax Diagram

SCL program

SCL program unit

SCL program unit

Function block

Organization block

Data block

User-defined data type

Function

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-30 A5E00059543-01

 Rule Syntax Diagram

Organization block Organization Block

Statement sectionBEGIN END_ORGANIZATION_BLOCK

OB
IDENTIFIER

OB declaration sectionORGANIZATION_BLOCK

Function

Note that if functions do not
have VOID in the code
section, the return value
must be assigned to the
function name.

Function

Statement sectionBEGIN END_FUNCTION

Data type
specification:

FC declaration
section

FUNCTION

VOID

FC
IDENTIFIER

Function block

Statement sectionBEGIN

FB declaration
section

FB
IDENTIFIER

Function block

FUNCTION_BLOCK

PROGRAM

END_FUNCTION_BLOCK

END_PROGRAM

Data block Data Block

DB assignment sectionBEGIN END_DATA_BLOCK

DATA_BLOCK DB declaration section
DB

NAME

User-defined data type

TYPE
UDT

NAME END_TYPE

Structure
data type
specification

User-Defined Data Type

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-31

14.3.2 Structure of the Declaration Sections

 Rule Syntax Diagram

OB declaration section

Temporary
variables subsection

Constants subsection

Labels subsection

FC declaration section

Temporary
variables subsection

Labels subsection

Constants subsection

Parameters subsection

Interface

FB declaration section

Temporary
variables subsection

Static
variables subsection

Labels subsection

Constants subsection

Parameters subsection
Interface

DB declaration section

UDT
IDENTIFIER

Structure data type
specification

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-32 A5E00059543-01

 Rule Syntax Diagram

DB assignment section

:= ;Constant*Simple variable

DB Assignment Section

* in STL notation

constant subsection Constant Subsection

CONST := ;Simple
expression

Constant name

IDENTIFIER END_CONST

Label subsection Label Subsection

LABEL END_LABEL;

,

Label

IDENTIFIER

Static variable
subsection

Static Variable Section

Variable
declaration

Instance

* only with FB

declaration*

VAR END_VAR

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-33

 Rule Syntax Diagram

Variable declaration

,

: ;

Variable name,

IDENTIFIER Data type
specification

Data type
initialization

Component name within structures

Parameter name,
or

Component
name

Not during initialization

1)

{ }’: =IDENTIFIER

max. 24 characters
Printable

character
’

;

1) System attributes for parameters

Data type initialization

Array
initialization list

Constant

:=

Initialization

Array initialization list

Constant

Array
initialization list

()

Array Initialization List

Constant

Array
initialization list

Repeat factor

Decimal
digit string

,

Instance declaration
(possible only in the
VAR section of an FB)

Local instance name

,

IDENTIFIER : ;

FB
NAME

SFB
NAME

Instance Declaration FBs must
already exist!

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-34 A5E00059543-01

 Rule Syntax Diagram

Temporary variable
subsection

END_VAR
Variable
declaration

VAR_TEMP

Temporary Variable Subsection

Initialization not possible

Parameter subsection

VAR_OUTPUT Variable
END_VAR

VAR_INPUT

VAR_IN_OUT

Initialization only possible for VAR_INPUT and VAR_OUTPUT

Data type specification

ARRAY data type
specification

Elementary
data type

STRUCT data type
specification

UDT
IDENTIFIER

Parameter data type
specification

STRING data type
specification

DATE_AND_TIME

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-35

14.3.3 Data Types in SCL

 Rule Syntax Diagram

Elementary data type

Character type

Bit data
type

Time type

Numeric
data type

Bit data type Bit

Byte

Word

Double word

WORD

DWORD

BOOL

BYTE

Character type CHAR

STRING data type
specification

STRING Data Type Specification

[]Simple
expression

String dimension

STRING

Numeric data type

DINT

REAL

INT Integer

Real number

Integer, double resolution

Time type

Time

Time,
S5 format

TIME

S5TIME

TIME_OF_DAY

TOD

DATE

Time of day

Date

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-36 A5E00059543-01

 Rule Syntax Diagram

DATE_AND_TIME

DATE_AND_TIME#

DT#

TimeDate -

DATE_AND_TIME

ARRAY data type
specification

ARRAY Data Type Specification

[]..

Data type
specificationOF

,

ARRAY Index Index

Index specification

1 n

max. 6 dimensions

STRUCT data type
specification

Remember that the
END_STRUCT keyword
must be terminated by a
semicolon.

STRUCT

Component
declaration

END_STRUCTSTRUCT

Component declaration

Data type
specification

Data
initialization: ;IDENTIFIER

Component
name

Parameter type
specification

Counter

Timer

Any type

Function block

Function

Data block

System data block

COUNTER

TIMER

ANY

BLOCK_FC

BLOCK_SDB

BLOCK_DB

BLOCK_FB

POINTER Address

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-37

14.3.4 Statement Section

 Rule Syntax Diagram

Statement section

Statement

Label

:Identifier ;

Statement Section

Statement

Value assignment

Subroutine
call

Control statement

Statement

Value assignment

Simple variable

Absolute variable

Variable in DB

Value Assignment

Expression:= ;

in CPU memory areas

Variable in local instance

Extended variable Extended variable

Simple variable

Absolute variable

Variable in DB

Variable in local instance

FC call

for CPU memory areas

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-38 A5E00059543-01

 Rule Syntax Diagram

Simple variable

Structured
variable

Simple
array

Variable name or
Parameter name

IDENTIFIER

Structured variable

Simple
array

IDENTIFIER

.

First part of identifier is
variable name or

and part following
period is component name

parameter name,

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-39

14.3.5 Value Assignments

 Rule Syntax Diagram

Expression

Basic
logic operations

Address

()

+

Expression

Expression

Expression

**

Exponent

-

Expression

NOT

Expression

Unary plus

Unary minus

Negation

Exponent

Expression

operations
Comparison

arithmetic oprations
Basic

Simple expression

+

-

Simple
multiplication

Simple
expression

Simple multiplication
*

/

DIV

MOD

Simple
multiplication

Constant

Simple
expression()

-

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-40 A5E00059543-01

 Rule Syntax Diagram

Address Constant

Extended variable

(Expression)

NOT Address

Extended Variable Extended variable

Simple variable

Absolute variable

Variable in DB

Variable in local instance

FC call

for CPU memory areas

Constant Numeric value

Character string

Constant name

Constant

Exponent Exponent

e

E

-

+

DECIMAL
DIGIT STRING

Basic logic operation

AND & XOR OR

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-41

 Rule Syntax Diagram

Basic arithmetic
operation

/ MOD DIV* -+

Basic Arithmetic Operation

Comparison operation

>< <>=>=<=

Comparison Operation

14.3.6 Calling Functions and Function Blocks

 Rule Syntax Diagram

FB call

(FB parameters)

Local instance name

IDENTIFIER

.

FB
IDENTIFIER

SFB
IDENTIFIER

DB
IDENTIFIER

Function Block Call

FB: Function block
SFB: System function block

Global instance name

Function call

()FC parameter

Standard function name
or symbolic name

FC: Function

SFC: System function

Standard function implemented in compiler

FC
IDENTIFIER

SFC
IDENTIFIER

IDENTIFIER

Function Call

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-42 A5E00059543-01

 Rule Syntax Diagram

FB parameter

,

Input
assignment

In/out
assignment

FB Parameters

FC parameters

,

Input
assignment

Output/

assignment
In/Out

Expression

FC Parameter

Input assignment

:=

Expression

TIMER
IDENTIFIER

BLOCK
IDENTIFIER

COUNTER
IDENTIFIER

Actual parameter

IDENTIFIER

Parameter name of the
input parameter

(formal parameter)

Input Assignment

Output or in/out
assignment

:= Extended
variableIDENTIFIER

Actual parameter
Parameter name of the
output or in/out
parameter

(formal parameter)

Output and In/Out Assignments

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-43

 Rule Syntax Diagram

In/out assignment In/Out Assignment

Actual parameter
Parameter name of the
in/out parameter

:= Extended
variableIDENTIFIER

(formal parameter)

14.3.7 Control Statements

 Rule Syntax Diagram

 IF statement

Remember that the END_IF
keyword must be terminated
by a semicolon.

IF Statement

IF THENExpression

ELSIF THENExpression

ELSE END_IF

Statement
section

Statement
section

Statement
section

Condition

Condition

CASE statement

Remember that the
END_CASE keyword must
be terminated by a
semicolon.

Selection expression (Integer)
CASE Statement

CASE OFExpression

:

Value

:ELSE END_CASE

Statement
section

Statement
section

Value list

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-44 A5E00059543-01

 Rule Syntax Diagram

Value list
Integer

. .

,

Value

ValueValue

Value List

Value

IDENTIFIER

Constant name

Numeric constant

Iteration and jump
statements

WHILE
statement

REPEAT
statement

FOR
statement

CONTINUE
statement

EXIT
statement

RETURN
statement

GOTO
statement

Language Definition

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 14-45

 Rule Syntax Diagram

FOR statement

Remember that the
END_FOR keyword must
be terminated by a
semicolon.

FOR TO

DO

FOR Statement

Basic
expression

for final value

for increment

Initial
statement

Statement
section

END_FOR

BY

for initial value

Basic
expression

Initial assignment

:= expression
BasicSimple

variable

for initial valueof data type
INT/DINT

Initial Assignment

WHILE statement

Remember that the
END_WHILE keyword must
be terminated by a
semicolon.

Execution condition

WHILE Statement

Statement
section

END_WHILEWHILE Expression DO

REPEAT statement

Remember that the
END_REPEAT keyword
must be terminated by a
semicolon. Break condition

REPEAT Statement

Statement
section

END_REPEATREPEAT ExpressionUNTIL

CONTINUE statement

CONTINUE

CONTINUE Statement

RETURN statement

RETURN

RETURN Statement

Language Definition

S7-SCL V5.1 for S7-300/S7-400
14-46 A5E00059543-01

 Rule Syntax Diagram

EXIT statement

EXIT

EXIT Statement

Program jump

GOTO IDENTIFIER

Label

GOTO Statement

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 15-1

15 Tips and Tricks

Division of two Integer Values with the Result in the REAL Format

You program the following statement in SCL:

Fraction:=Dividend/Divisor;

Where Fraction is a real value, while Dividend and Divisor are integer
values.

Remember that when the SCL compiler detects such operations, it makes an
implicit data type conversion and compiles the statement above as follows:

Fraction:=INT_TO_REAL(Dividend/Divisor);

This means that the division always returns a rounded value as the result, for
example, 1/3 = 0 or 3/2 = 1.

Runtime Optimized Code when Accessing Structures in Data Blocks

If you need to access a structure more than once in a data block, the following
method can be recommended:

1. Create a local variable with the type of the structure.

2. Assign the structure from the data block to the variable once.

3. You can then use the variable more than once in the code without having to
access the DP again.

Example

DB100.array[i].value :=
DB100.array[i].value1 * DB100.array[i].value2 /
DB100.array[i].value3 ;

This example requires less memory and has a shorter runtime if you program it as
follows:

VAR_TEMP
 tmp : STRUCT
 value : REAL;
 value1 : REAL;
 value2 : REAL;
 value3 : REAL;
 END_STRUCT;
END_VAR
tmp := DB100.array[i];
DB100.array[i].value := tmp.value1 * tmp.value2 / tmp.value3;

Tips and Tricks

S7-SCL V5.1 for S7-300/S7-400
15-2 A5E00059543-01

Note
With VAR_TEMP, you store variables in the stack of the CPU. With smaller CPUs, this can
lead to a stack overflow. You should therefore use temporary variables sparingly!

Problems Allocating the L Stack with Small CPUs

Problems allocating the L stack are due to the small stack size of the smaller
CPUs. In most cases, the problem can be avoided by taking the measures outlined
below:

• Use temporary variables sparingly (VAR_TEMP or VAR section).

• Do not declare any variables of a higher data type and reduce the number of
variables of an elementary data type to a minimum.

• Use static variables:

- When you program an FB, you can use the VAR section instead of
VAR_TEMP.

- When you program an OB or FC, make use of a shared data block or bit
memory.

• Avoid complicated expressions. When it processes complicated expressions,
the compiler stores interim results on the stack. Depending on the type and
number of interim results, the available stack size might be exceeded.
Remedy:
Break down your expression into several smaller expressions and assign the
interim results explicitly to variables.

Output of REAL Numbers during Monitoring

The "Monitoring" test function can produce the following patterns when displaying
nonprintable REAL numbers:

 Value Symbol

 + infinity 1.#INFrandom-digits

 - infinity -1.#INFrandom-digits

 Indefinite digit.#INDrandom-digits

 NaN digit. #NANrandom-digits

Tips and Tricks

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 15-3

Displaying SCL Programs in STL Representation

You can open an SCL block with the STL/LAD/FBD editor and display the compiled
MC7 commands. Do not make any changes in STL for the following reasons:

• The displayed MC7 command do not necessarily represent a valid STL block.

• An error-free compilation with the STL compiler normally requires modifications
to be made that require thorough knowledge of both STL and SCL.

• The block compiled with STL then has the STL language identifier and no
longer the SCL identifier.

• The SCL source file and the MC7 code are no longer consistent.

Handling the Time Stamp of Interface and Code

If you create new blocks (FBs, FCs and OBs), the interface (block parameters) and
code have the time stamp of time at which they are compiled.

If a block already exists, the code always has the time stamp of the time at which it
is compiled. The interface may retain its old time stamp. The time stamp of an
interface is changed only when the structure of the interface is modified; in other
words,

• the time stamp is retained if modifications are made in the code section, in the
attributes, in the comment, in the section VAR_TEMP (with FCs also VAR) or
in the notation of the names of parameters or variables. This also applies to
underlying interfaces.

• The time stamp of an interface is updated when the data type or any
initialization of a parameter or variable is modified or when parameters are
removed or added and if the name of the FB changes when multiple instances
are involved. This also applies to underlying interfaces.

Tips and Tricks

S7-SCL V5.1 for S7-300/S7-400
15-4 A5E00059543-01

Return Value of STEP 7 Standard and System Functions

Many STEP 7 standard and system functions have a function value of the type INT
that contains the error code. In the reference manual for these functions, the
possible error codes are specified as WORD constants of the type "W#16#8093".

S7 SCL is a language that is strict in its rules regarding mixing of types, so that INT
and WORD cannot be mixed. The following query, for example, does not produce
the required result.

IF SFCxx(..) = 16#8093 THEN ...

You can, however, tell the S7 SCL compiler that a WORD constant should be
considered as INT as follows.

• By type-defining the constant. In this case, the query above appears as
follows:
IF SFCxx(..) = INT#16#8093 THEN ...

• By converting WORD_TO_INT(). You would then formulate the query above as
follows:
IF SFCxx(..) = WORD_TO_INT(16#8093) THEN ...

Rewiring Blocks

You can no longer rewire the block calls in the SCL blocks using the Options >
Rewire SIMATIC Manager function. You must edit the calls in the SCL source file
of the blocks affected manually.

Recommendation:

• Define symbolic names for the blocks in the symbol table and call the blocks
using their symbolic names.

• Define symbolic names for absolute addresses (I, M, Q etc.) in the symbol
table and use the symbolic names in your program.

If you want to rewire a block later, you only need to change the assignment in the
symbol table and do not need to make changes in the SCL source file.

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Glossary-1

Glossary

A

Actual Parameter

Actual parameters replace the formal parameters when a function block (FB) or
function (FC) is called.

Example: the formal parameter "Start" is replaced by the actual parameter "I3.6".

Address

An address is the part of a statement that specifies the data on which an operation
is to be performed. It can be addressed in both absolute and symbolic terms.

Address Identifier

An address identifier is that part of an address of an operation that contains
information, for example, the details of the memory area where the operation can
access a value (data object) with which it is to perform a logic operation, or the
value of a variable (data object) with which it is to perform a logic operation. In the
instruction "Value := IB10", "IB" is the address identifier ("I" designates the input
area of the memory and "B" stands for a byte in that area).

Addressing

Assignment of a memory location in the user program. Memory locations can be
assigned specific addresses or address areas (examples: input I 12.1, memory
word MW25)

Addressing, Absolute

With absolute addressing, you specify the memory location of the address to be
processed. Example: The address Q4.0 describes bit 0 in byte 4 of the
process-image output area.

Addressing, Symbolic

Using symbolic addressing, the address to be processed is entered as a symbol
and not as an address. The assignment of a symbol to an address is made in the
symbol table or using a symbol file.

Glossary

S7-SCL V5.1 for S7-300/S7-400
Glossary-2 A5E00059543-01

Array

An array is a complex data type consisting of a number of data elements of the
same type. These data elements in turn can be elementary or complex.

Assignment

Mechanism for assigning a value to a variable.

Attribute

An attribute is a characteristic that can be attached, for example, to a block
identifier or variable name. In SCL there are attributes for the following items of
information: block title, release version, block protection, author, block name, block
family.

B

BCD

Binary-coded decimal. In STEP 7, internal coding of timers and counters in the
CPU is in BCD format only.

Bit Memory (M)

A memory area in the system memory of a SIMATIC S7 CPU. This area can be
accessed using write or read access (bit, byte, word, and double word). The bit
memory area can be used to store interim results.

Block

Blocks are subunits of a user program and are distinguished by their function, their
structure or their purpose. In STEP 7, there are logic blocks (FBs, FCs, OBs, SFCs
and SFBs), data blocks (DBs and SDBs) and user-defined data types (UDTs).

Block Call

A block call starts a block in a STEP 7 user program. Organization blocks are only
called by the operating system; all other blocks are called by the STEP 7 user
program.

Block Class

Blocks are subdivided according to the type of information they contain into the
following two classes: Logic blocks and data blocks;

Glossary

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Glossary-3

Block Comment

You can enter additional information about a block (for example, to describe the
automated process). These comments are not loaded into the work memory of
SIMATIC S7 programmable controllers.

Block Protection

Using block protection, you can protect individual blocks from being decompiled.
You enable this protection by assigning the keyword
"KNOW_HOW_PROTECTED" when the block source file is compiled.

Block Type

The block architecture of STEP 7 includes the following block types: Organization
blocks, function blocks, functions, data blocks as well as system function blocks,
system functions, system data blocks and user-defined data types.

Breakpoint

This function can be used to switch the CPU to HOLD at specific points in the
program. When the program reaches a breakpoint, debugging functions such as
single-step instruction processing or controlling/monitoring variables are possible.

C

Call Hierarchy

Blocks must be called before they can be processed. The order and nesting
sequence of these block calls is known as the call hierarchy.

Call Interface

The call interface is defined by the input, output and in/out parameters (formal
parameters) of a block in the STEP 7 user program. When the block is called,
these parameters are replaced by the actual parameters.

CASE Statement

This statement is a selective branching statement. It is used to select a specific
program branch from a choice of n branches on the basis of the value of a
selection expression.

Comments

Language construction with which you can include explanatory text in a program
and that has no influence on the running of the program.

Glossary

S7-SCL V5.1 for S7-300/S7-400
Glossary-4 A5E00059543-01

Compilation

The process of generating an executable user program from a source file.

Compilation, Source-Oriented

In source-oriented input, the source is compiled into an executable user program
only when all the instructions have been entered. The compiler checks for input
errors.

Constant

Placeholders for constant values in logic blocks. Constants are used for improving
the legibility of a program. Example: Instead of specifying a value (for example, 10
), the placeholder "Max_loop_iterations" is specified. When the block is called, the
value of the constant (for example, 10) replaces the placeholder.

Constant, (symbolic)

Constants with symbolic names are placeholders for constant values in logic
blocks. Symbolic constants are used for improving the legibility of a program.

CONTINUE Statement

A CONTINUE statement is used in SCL to terminate the execution of the current
iteration of a loop statement (FOR, WHILE or REPEAT).

Counter

Counters are components of the system memory of the CPU. The contents of a
counter are updated by the operating system asynchronously with the user
program. STEP 7 instructions are used to define the precise function of a counter
(for example, count up) and to execute it (for example, start).

D

Data Block (DB)

Data blocks are blocks containing the data and parameters with which the user
program operates. In contrast to all other types of blocks, they contain no
instructions.

Data, Static

Static data are local data of a function block that are stored in the instance data
block and are therefore retained until the next time the function block is processed.

Glossary

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Glossary-5

Data, Temporary

Temporary data are the local data for a block that are entered in the local stack
(L stack) while the block is executing. Once a block has executed, this data is no
longer available.

Data Type

Data types determine the following:

• The type and interpretation of data elements

• The permitted memory and value ranges of data elements

• The set of operations that can be performed on an address of a data type

• The notation of data elements

Data Type, Complex

Complex data types made up of data elements of elementary data types. A
distinction is made between structures and arrays. The data types STRING and
DATE_AND_TIME are also complex data types.

Data Type Conversion

A data type conversion is necessary when an operation is required on two
variables of different data types.

Data Type, Elementary

Elementary data types are predefined data types in accordance with IEC 1131-3.
Examples: The data type "BOOL" defines a binary variable ("bit"); the data type
"INT" defines a 16-bit integer variable.

Data Type, User-defined

User-defined data types (UDTs) are data types you can create yourself using the
data type declaration. Each one is assigned a unique name and can be used any
number of times. A user-defined data type is useful for generating a number of data
blocks with the same structure (for example, controller).

Declaration

A mechanism for defining a language element. A declaration involves the linking of
an identifier with the language element and the assignment of attributes and data
types.

Glossary

S7-SCL V5.1 for S7-300/S7-400
Glossary-6 A5E00059543-01

Declaration Section

The variable declaration of a block is divided into various declaration sections for
declaring the various block parameters. The declaration section IN contains, for
example, the declaration of the input parameters, the declaration section OUT
contains the declaration of the output parameters.

Declaration Section

You declare the local data of a logic block in the declaration section if you write
your program with a text editor.

Download

The transfer of loadable objects (for example, logic blocks) from a programming
device to the load memory of a CPU.

E

Enable (EN)

In STEP 7, each function block and each function has the implicitly defined input
parameter "Enable" (EN) that can be set when the block is called. If EN is TRUE,
the called block is executed. Otherwise it is not executed.

Enable Output (ENO)

In STEP 7 every block has an "Enable Output" (ENO). When the execution of a
block is completed the current value of the OK flag is set in ENO. Immediately after
a block has been called, you can check the value of ENO to see whether all the
operations in the block ran correctly or whether errors occurred.

EXIT Statement

Language construction within a program used to exit a loop at any point regardless
of conditions.

Expression

In SCL, an expression is a means of processing data. A distinction is made
between arithmetic, logical and comparison expressions.

Glossary

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Glossary-7

F

FOR Statement

Language construction within a program. A FOR statement is used to execute a
sequence of statements in a loop while a control variable is continuously assigned
values.

Formal Parameter

A formal parameter is a placeholder for the "actual" parameter in configurable logic
blocks. In the case of FBs and FCs, the formal parameters are declared by the
programmer, in the case of SFBs and SFCs they already exist. When a block is
called, the formal parameters are assigned actual parameters with the result that
the called block works with the actual values. The formal parameters count as local
block data and are subdivided into input, output and in/out parameters.

Function (FC)

According to the International Electrotechnical Commission’s IEC 1131-3 standard,
functions are logic blocks that do not have static data. A function allows you to
pass parameters in the user program, which means they are suitable for
programming complex functions that are required frequently, for example,
calculations.

Function Block (FB)

According to the International Electrotechnical Commission’s IEC 1131-3 standard,
function blocks are logic blocks with static data (Data, Static). Since an FB has a
"memory" (instance data block), it is possible to access its parameters (for
example, outputs) at any time and at any point in the user program.

G

GOTO Statement

Language construction within a program. A GOTO statement causes the program
to jump immediately to a specified label and therefore to a different statement
within the same block.

H

HOLD

The CPU changes to the HOLD state from the RUN mode following a request from
the programming device. Special test functions are possible in this mode.

Glossary

S7-SCL V5.1 for S7-300/S7-400
Glossary-8 A5E00059543-01

I

Identifier

Combination of letters, numbers and underscores that identify a language element.

Initial Value

Value assigned to a variable when the system starts up.

In/Out Parameter

In/out parameters exist in functions and function blocks. In/out parameters are
used to transfer data to the called block, where they are processed, and to return
the result to the original variable from the called block.

Input Parameters

Input parameters exist only in functions and function blocks. Input parameters are
used to transfer data to the called block for processing.

Instance

The term "instance" refers to a function block call. The function block concerned is
assigned an instance data block or a local instance. If a function block in a STEP 7
user program is called n times, each time using different parameters and a different
instance data block name, then there are n instances.

Instance Data Block (Instance DB)

An instance data block stores the formal parameters and static local data for a
function block. An instance data block can be assigned to an FB call or a function
block call hierarchy.

Integer (INT)

Integer (INT) is one of the elementary data types. Its values are all 16-bit whole
numbers.

K

Keyword

A reserved word that characterizes a language element, for example, "IF".

Keywords are used in SCL to mark the beginning of a block, to mark subsections in
the declaration section and to identify instructions. They are also used for attributes
and comments.

Glossary

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Glossary-9

L

Lexical Rule

The lower level of rules in the formal language description of SCL consists of the
lexical rules. When applied, they do not permit flexible formats; in other words, the
addition of spaces and control characters is not permitted.

Literal

Formal notation that determines the value and type of a constant.

Local Data

Local data is data assigned to a specific logic block that is declared in its
declaration section or in its variable declaration. Depending on the particular block,
it consists of the formal parameters, static data and temporary data.

Logic Block

A logic block in SIMATIC S7 is a block that contains a section of a STEP 7 user
program. In contrast, a data block contains only data. There are the following types
of logic blocks: organization blocks (OBs), function blocks (FBs), functions (FCs),
system function blocks (SFBs) and system functions (SFCs).

M

Memory Area

A SIMATIC S7 CPU has three memory areas: the load area, the working area and
the system area.

Mnemonics

Mnemonics are the abbreviated representation of the addresses and programming
operations in the program. STEP 7 supports English representation (in which, for
example, "I" stands for input) and German representation (where, for example, "E"
stands for input (Eingang in German)).

Monitoring

By monitoring a program, you can check how the program is executed on the CPU.
During monitoring, for example, names and actual values of variables and
parameters are displayed in chronological order and updated cyclically.

Glossary

S7-SCL V5.1 for S7-300/S7-400
Glossary-10 A5E00059543-01

Multiple Instance

When multiple instances are used, the instance data block holds the data for a
series of function blocks within a call hierarchy.

N

Non Term

A non term is a complex element in a syntactical description that is described by
another lexical or syntax rule.

O

Offline

Offline is the operating mode in which the programming device is not connected
(physically or logically) to the PLC.

OK Flag

The OK flag is used to indicate the correct or incorrect execution of a sequence of
commands in a block. It is a shared variable of the type BOOL.

Online

Online is the operating mode in which the programming device is connected
(physically or logically) with the PLC.

Online Help

When working with STEP 7 programming software, you can display
context-sensitive help on the screen.

Operation

An operation is the part of a statement specifying what action the processor is to
perform.

Organization Block (OB)

Organization blocks form the interface between the S7 CPU operating system and
the user program. The organization blocks specify the sequence in which the
blocks of the user program are executed.

Glossary

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Glossary-11

Output Parameter

The output parameters of a block in the user program are used to pass results to
the calling block.

P

Parameter Type

A parameter type is a special data type for timers, counters and blocks. It can be
used for input parameters of function blocks and functions, and for in/out
parameters of function blocks only in order to transfer timer and counter readings
and blocks to the called block.

Process Image

The signal states of the digital input and output modules are stored on the CPU in
a process image. There is a process-image input table (PII) and a process-image
output table (PIQ)

Process-Image Input Table (PII)

The process image of the inputs is read in from the input modules by the operating
system before the user program is processed.

Process-Image Output Table (PIQ)

The process image of the outputs is transferred to the output modules at the end of
the user program by the operating system.

Programming, Structured

To make it easier to implement complex automation tasks, a user program is
subdivided into separate, self-contained subunits (blocks). Subdivision of a user
program is based on functional considerations or the technological structure of the
system.

Programming, Symbolic

The SCL programming language allows you to use symbolic character strings
instead of addresses: For example, the address Q1.1 can be replaced by
"valve_17". The symbol table creates the link between the address and its
assigned symbolic character string.

Project

A folder for storing all objects relating to a particular automation solution regardless
of the number of stations, modules or how they are networked.

Glossary

S7-SCL V5.1 for S7-300/S7-400
Glossary-12 A5E00059543-01

R

Real Number

A real number is a positive or negative number representing a decimal value, for
example 0.339 or –11.1.

REPEAT Statement

Language construction within a program used to repeat a sequence of statements
until a termination condition is reached.

RETURN Statement

Language construction within a program with which you can exit the current block.

Return Value (RET_VAL)

In contrast to function blocks, functions produce a result known as the return value.

RUN

In the RUN mode the user program is processed and the process image is updated
cyclically. All digital outputs are enabled.

RUN-P

The RUN-P operating mode is the same as RUN operating mode except that in
RUN-P mode, all programming device functions are permitted without restriction.

S

S7 User Program

A folder for blocks that are downloaded to a programmable S7 module (for
example CPU or FM) and are capable of being run on the module as part of the
program controlling a system or a process.

Scan Cycle Monitoring Time

If the time taken to execute the user program exceeds the set scan cycle
monitoring time, the operating system generates an error message and the CPU
switches to STOP mode.

Glossary

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Glossary-13

Scan Cycle Time

The scan cycle time is the time required by the CPU to execute the user program
once.

SCL

PASCAL-based high-level language that conforms to the standard
DIN EN-61131-3 (international IEC 1131-3) and is used to program complex
operations on a PLC, for example, algorithms and data processing tasks.
Abbreviation for "Structured Control Language".

SCL Compiler

The SCL Compiler is a batch compiler which is used to translate a program written
using a text editor (SCL source file) into M7 machine code. The compiled blocks
are stored in the “Blocks" folder in the S7 program.

SCL Debugger

The SCL Debugger is a high-level language debugger used for finding logical
programming errors in user programs created with SCL.

SCL Editor

The SCL Editor is a text editor specially designed for use with SCL with which you
create SCL source files.

SCL Source File

An SCL source file is a file in which a program is written in SCL. The SCL source
file is later translated into machine code by the SCL Compiler.

Semantics

Relationship between the symbolic elements of a programming language and their
meaning, interpretation and application.

Shared Data

Shared data is data that can be accessed by any logic block (FC, FB or OB).
Specifically it includes bit memory (M), inputs (I), outputs (O), timers, counters and
elements of data blocks (DBs). Global data can be addressed in either absolute or
symbolic terms.

Glossary

S7-SCL V5.1 for S7-300/S7-400
Glossary-14 A5E00059543-01

Single Step

A single step is a step in a debugging operation carried out by the SCL Debugger.
In single-step debugging mode, you can execute a program one instruction at a
time and view the results of each step in the Results window.

Source File

Part of a program created with a graphics or textual editor from which an
executable user program can be compiled.

Statement

A statement is the smallest indivisible unit of a user program written in a text-based
language. It represents an instruction to the processor to perform a specific
operation.

Status Word

The status word is a component of the CPU registers. The status word contains
status information and error information in connection with the processing of
STEP 7 commands. The status bits can be read and written by the programmer.
The error bits can only be read.

Structure (STRUCT)

Complex data type consisting of any data elements of different data types. The
data types within structures can be elementary or more complex.

Symbol

A symbol is a name defined by the user that adheres to certain syntax rules. This
name can be used in programming and in operating and monitoring once you have
defined it (for example, as a variable, a data type, a jump label, or a block).
Example: Address: I 5.0, data type: Bool, Symbol: Emer_Off_Switch

Symbol Table

A table used to assign symbols (or symbolic names) to addresses for shared data
and blocks. Examples: Emer_Off (Symbol), I1.7 (Address)Controller (Symbol),
SFB24 (Block)

Syntax Rule

The higher level of rules in the formal SCL language description consists of the
syntactical rules. When they are used they are not subject to formatting restrictions;
in other words, spaces and control characters can be added.

Glossary

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Glossary-15

System Data Block (SDB)

System data blocks are data areas in the S7 CPU that contain system settings and
module parameters System data blocks are created and edited using the STEP 7
standard software.

System Function (SFC)

A system function (SFC) is a function integrated in the CPU operating system that
can be called in the STEP 7 user program when required.

System Function Block (SFB)

A system function block (SFB) is a function block integrated in the CPU operating
system that can be called in the STEP 7 user program when required.

System Memory (System Area)

The system memory is integrated in the S7 CPU and is implemented as RAM. The
address areas (timers, counters, bit memory etc.) and data areas required
internally by the operating system (for example, backup for communication) are
stored in the system memory.

T

Term

A term is a basic element of a lexical or syntax rule that can not be explained by
another rule but is represented in literal terms. A term might be a keyword or even
a single character.

Timers

Timers are components of the system memory of the CPU. The contents of these
timers are updated by the operating system asynchronously to the user program.
You can use STEP 7 instructions to define the exact function of the timer (for
example, on-delay timer) and start its execution (Start).

Glossary

S7-SCL V5.1 for S7-300/S7-400
Glossary-16 A5E00059543-01

U

UDT

See: Data Type, User-defined

User Data

User data are exchanged between a CPU and a signal module, function module
and communications modules via the process image or by direct access. Examples
of user data are: Digital and analog input/output signals from signal modules,
control and status data from function modules.

User Program

The user program contains all the statements and declarations and the data
required for signal processing to control a plant or a process. The program is
assigned to a programmable module (for example, CPU, FM) and can be
structured in the form of smaller units (blocks.)

V

Variable

A variable defines an item of data with variable content that can be used in the
STEP 7 user program. A variable consists of an address (for example, M3.1) and a
data type (for example, BOOL), and can be identified by means of a symbolic
name (for example, TAPE_ON): Variables are declared in the declaration section.

Variable Declaration

The variable declaration includes the specification of a symbolic name, a data type
and, if required, an initialization value and a comment.

Variable Table

The variable table is used to collect together the variables including their format
information that you want to monitor and modify.

View

To be able to access a declared variable with a different data type, you can define
views of the variable or of areas within the variables. A view can be used like any
other variable in the block. It inherits all the properties of the variable that it
references; only the data type is new.

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Index-1

Index

- ..10-8
* ..10-9
** ..10-8
/ ..10-8
+ ..10-8
< ..10-12
<= ..10-12
<> ..10-12
= ..10-12
> ..10-12
>= ..10-12
ABS ...13-9
Absolute Access to Data Blocks 9-8
Absolute Access to Memory Areas

of the CPU... 9-3
Absolute Addressing

Lexical Rules ..14-25
ACOS ..13-10
Actual Parameters 7-1

Definition ... 7-1
Input Assignment11-39

Addition..10-2
Address Identifier... 4-7
Addresses ...9-2, 10-3
And ..10-2
AND...10-10
ANY ...6-18
ANY Data Type ..6-18
Arithmetic Expressions10-8
ARRAY ..6-9, 7-4, 11-5

Initialization.. 7-4
Value Assignment with Variables

of the Data Type ARRAY.....................11-5
ARRAY Data Type....................................... 6-9
Arrays ... 6-9
ASIN ..13-10
AT... 7-6
ATAN ...13-10
Attributes......................................5-6, 5-8, 5-10
Authorization ... 1-9
Authorization Diskette.................................. 1-9
AUTHORS.EXE... 1-9
Basic Terms in SCL.............................4-3–4-12
BIT.. 6-3
Bit Constants... 8-6

Bit Data Types ...6-3
Bit Memory ..9-2
Bit String Standard Functions 13-11
Block Attributes 5-5, 5-8

Definition..5-5
Lexical Rules.. 14-28
System Attributes for Blocks5-8

Block Call...3-13
BLOCK Data Types....................................6-16
Block End ..5-3
Block Identifier ...4-6
Block Name ...5-3
Block Parameters.............................. 4-15, 7-13
Block Protection ...3-7
Block Start ...5-3
Block Structure...5-3
Block Templates...3-14
Block Types ...1-3
BLOCK_DB_TO_WORD13-4
Blocks.. 2-4, 3-6, 5-1
Boolean Expression 10-12
Boxes in Syntax Diagrams............................4-1
Breakpoints....................................... 3-27–3-29
BYTE...6-3
BYTE_TO_BOOL.......................................13-4
BYTE_TO_CHAR.......................................13-4
Calling Blocks ..3-13
Calling Counter Functions...........................12-1
Calling Function Blocks (FB or SFB) 11-28

Call as Local Instance........................... 11-28
Call as Shared Instance........................ 11-28
In/Out Assignment 11-32
Input Assignment.................................. 11-31
Procedure .. 11-28
Reading Output Values......................... 11-33
Supplying FB Parameters 11-30
Syntax.. 11-28

Calling Functions (FC).............................. 11-36
Input Assignment.................................. 11-39
Input Parameter EN.............................. 11-42
Output or In/Out Assignment................. 11-40
Output Parameter ENO......................... 11-43
Parameter Supply................................. 11-38
Procedure .. 11-36
Return Value .. 11-37

06.09.2000

Index

S7-SCL V5.1 for S7-300/S7-400
Index-2 A5E00059543-01

Syntax ... 11-36
Calling Timer Functions.............................. 12-8
CASE Statement............................11-12, 11-16
CHAR.. 6-3
Char Constants.. 8-9
CHAR_TO_BYTE 13-4
CHAR_TO_INT.. 13-4
Character Set .. 4-3
Character Strings....................................... 4-12
Character Types .. 6-3
Closing an SCL Source File.......................... 3-6
Code blocks................................... 2-4, 3-8, 5-1
Color and Font Style of the

Source Text 3-12, 3-20
Comment

Comment Section................................... 4-13
Inserting Templates for Comments 3-14
Lexical Rules.. 14-27

Comment Section 4-13
Comments

Line Comment.. 4-14
Comparison Expressions.......................... 10-12
Compilation Control File 3-17
Compiler.. 3-15

Customizing the Compiler....................... 3-15
Development Environment................. 1-1, 1-4

Compiling ... 3-15–3-18
Complex Data Types...................... 6-1, 6-5, 6-7
Compliance with Standard............................ 1-1
CONCAT ... 13-13
Conditions ... 11-13
Constants8-2, 8-6–8-16
CONTINUE Statement11-12, 11-23
Continuous Monitoring 3-24
Control File for Compilation 3-17
Control Statements3-14, 5-12, 11-14

CASE Statement 11-16
CONTINUE Statement 11-23
EXIT Statement.................................... 11-24
FOR Statement 11-18
GOTO Statement 11-25
IF Statement .. 11-14
Inserting Control Statements................... 3-14
REPEAT Statement.............................. 11-22
Statements .. 5-12
Syntax Rules.. 14-43
WHILE Statement 11-21

Conversion Functions 13-4
Class B .. 13-4

Copying Text Objects................................. 3-10
Correct Syntax Formatting

the Source Text...................................... 3-12
COS .. 13-10

Count Down (S_CD)12-5
Count Up (S_CU)12-5
Count Up/Down (S_CUD)12-6
COUNTER ..6-15, 12-1
COUNTER Data Type.................................6-15
Counters ...12-1–12-7

Calling Counter Functions12-1
Count Down (S_CD)12-5
Count Up (S_CU)....................................12-5
Count Up/Down (S_CUD)........................12-6
Example of Counter Functions.................12-7
Input and Evaluation of the

Counter Value.....................................12-4
Parameter Supply for

Counter Functions...............................12-3
CPU Communication3-34
CPU Memory Areas..................................... 4-7
CPU Memory Reset3-21
Creating a Compilation Control File3-17
Creating a New SCL Source File.................. 3-4
Creating Source Files with a

Standard Editor.. 3-7
Customizing ..3-3, 3-15
Customizing the Page Format3-19
Cutting Text Objects3-11
Cycle Time ...3-33
Data Blocks................................ 5-18, 9-7–9-11
Data Type Conversion Functions13-4, 13-6
Data Type POINTER6-16
Data Type STRUCT....................................6-11
Data Type UDT ..6-13
Data Types..6-1–6-13

Complex .. 6-2
Description .. 6-1
Elementary ..6-1, 6-2

Data Types for Parameters6-15
DATE .. 6-4
Date Constant ..8-12
DATE_AND_TIME....................................... 6-5
DATE_AND_TIME Data Type 6-6
DATE_TO_DINT...13-4
Debugger .. 1-6

Development Environment 1-4
Debugging Functions in STEP 7..................3-29
Debugging Functions of STEP 73-30
Debugging the Program After Compilation...3-18
Debugging with Breakpoints........................3-25
Declaration.. 5-9
Declaration of Static Variables 7-3
Declaration Section.............. 5-9, 7-4, 7-10–7-14

Block Parameters7-14
Definition ... 5-9
Initialization.. 7-4

06.09.2000

Index

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Index-3

Overview of the Declaration
Subsections ..7-10

Static Variables.......................................7-11
Structure.. 5-9
Syntax Rules ..14-31
Temporary Variables...............................7-12

Decompile STL
SCL Block ... 1-3

DELETE...13-15
Deleting Text Objects..................................3-11
Designing SCL Programs............................. 2-1
Development Environment 1-2

Batch Compiler .. 1-1
Debugger... 1-1
Editor .. 1-1

DI_STRNG...13-19
Diagnostic Buffer ..3-32
DIN Standard EN-61131-3 1-1
DINT ... 6-3
DINT_TO_DATE...13-4
DINT_TO_DWORD13-4
DINT_TO_INT ..13-4
DINT_TO_TIME ...13-4
DINT_TO_TOD ..13-4
Displaying and Modifying the

CPU Operating Mode..............................3-31
Displaying and Setting the

Date and Time on the CPU3-31
Displaying Information about

Communication with the CPU..................3-34
Displaying the Blocks on the CPU3-33
Displaying the Cycle Time of the CPU3-33
Displaying the Stacks of the CPU................3-34
Displaying the Time System of the CPU3-33
Displaying/Compressing the

User Memory of the CPU3-32
DIV ..10-8
Division ..10-2
Double Word ... 6-3
Downloading ..3-21
Downloading User Programs.......................3-21
DWORD.. 6-3
DWORD_TO_BOOL...................................13-4
DWORD_TO_BYTE13-4
DWORD_TO_DINT13-4
DWORD_TO_REAL 1)13-4
DWORD_TO_WORD..................................13-4
Editing an SCL Source File3-9–3-14
Editor

Development Environment 1-4
Elementary Data Types..........................6-1–6-4
Emergency Authorization1-10
EN ...11-42

ENO .. 11-43
EQ_STRNG ... 13-17
Equality..10-2
Examples.................. 6-19, 11-33–11-35, 11-41,

 12-7, 13-7, 13-10, 13-12
Exclusive Or...10-2
EXIT Statement............................. 11-12, 11-24
EXP...13-9
EXPD...13-9
Expressions10-2, 10-6–10-12
Extended Variable......................................10-4
FB Parameters.............................. 11-30–11-33
FC ..5-15, 11-27, 11-36
FC Parameters.............................. 11-38–11-40
FIND.. 13-16
Finding Text Objects3-10
Flags (OK Flag)..7-9
Flexible Format ..4-2
Flow Chart for ACQUIRE............................2-18
Font Style and Color.......................... 3-12, 3-20
FOR Statement 11-12, 11-18
Formal Language Description14-1
Formal Parameters.......................................7-1
Function (FC)5-15, 11-27, 11-36
Function Block (FB)...............5-13, 11-27–11-30
Functions for Rounding and Truncating.......13-6
GE_STRNG ... 13-17
Generating and Displaying

Reference Data3-29
Go To ..3-11
GOTO Statement 11-25
GT_STRNG ... 13-18
I_STRNG ... 13-18
Identifiers4-5, 14-16–14-18

Definition..4-5
Examples ...4-5
Formal Language Description 14-14, 14-16
Lexical Rules.. 14-19
Rules ...4-5

IF Statement .. 11-12
IF Statements...11-14
In/Out Assignment......................... 11-32, 11-40

In/Out Assignment (FB/SFB)................. 11-32
In/Out Assignment (FC) 11-40

In/Out Parameters............................. 7-1, 11-32
Indent Automatically3-12
Indexed Access to Data Blocks...................9-10
Indexed Access to Memory Areas

of the CPU ...9-6
Inequality ...10-2
Initial Values ..7-4
Initialization..7-4
Input Parameters.......... 7-1, 11-31, 11-39, 11-42

06.09.2000

Index

S7-SCL V5.1 for S7-300/S7-400
Index-4 A5E00059543-01

Definition.. 7-1
Input Assignment (FB).......................... 11-31
Input Assignment (FC).......................... 11-39
Input Parameter EN.............................. 11-42

INSERT... 13-15
Inserting Block Calls................................... 3-13
Inserting Block Templates 3-14
Inserting Control Structures 3-14
Inserting Parameter Templates................... 3-14
Inserting Templates for Comments 3-14
Installation ... 1-9
Instance Declaration 7-8
INT.. 6-3
INT_TO_CHAR.. 13-4
INT_TO_WORD... 13-4
Integer Constant .. 8-7
Integer Division .. 10-2
Jump Statements..................................... 11-12
Keywords.. 4-4, 14-9
Labels ... 8-17
Language Description 4-1, 14-1
LE_STRNG ... 13-17
LEFT ...13-14, 13-16
LEN... 13-13
Lexical Rules ... 14-19
Line Comment ... 4-14
Line Indent... 3-12
Line Numbers 3-3, 3-20
Literals ... 8-6–8-16
LN ... 13-9
Local Data4-15, 7-1–7-4, 7-11
Local Instance..................... 11-28, 11-29, 11-35
LOG .. 13-9
Logarithmic Functions 13-9
Logic Blocks 2-4, 3-8, 5-1
Loops .. 11-12
LT_STRNG.. 13-18
Math Standard Functions 13-9
Memory Areas of the CPU..................... 9-1–9-6
Memory Location of Variables 7-6
Menu Bar... 3-2
MID ... 13-14
MOD.. 10-9
Modulo Function .. 10-2
Monitoring... 3-24, 3-26
Multiple Instances .. 7-8
Multiplication.. 10-2
Names... 4-5

Definition.. 4-5
Examples... 4-5
Formal Language Description14-14, 14-16
Rules ... 4-5

NE_STRNG... 13-17

Negation ..10-2
NIL Pointer ...6-18
Non Terms (in syntax diagrams)................14-13
Nonprintable Characters 8-9
NOT...10-10
Numbers ..4-10
Numeric Data Types 6-3
Numeric Standard Functions.......................13-9
OB ...5-17
OK Flag...7-1, 7-9
Opening an SCL Source File........................ 3-5
Opening Blocks ... 3-6
Operating Mode..3-31
Operations ...14-8

Alphabetic List ..14-6
Or ..10-2
OR...10-10
Order of the Blocks...................................... 3-8
Organization Block5-17
Output Parameter ENO.............................11-43
Output Parameters 7-1
Page Break ..3-20
Page Format ..3-19
Parameter ..7-13
Parameter Supply.....................................11-27
Parameter Supply for Counter Functions12-3
Parameter Templates3-14
Parameters 5-10, 6-15, 7-1, 7-10,

 11-30, 11-38–11-40
Parenthesis ..10-2
Peripheral Inputs/Outputs 9-2
POINTER...6-16
Positioning the Cursor in a Specific Line......3-11
Power...10-2
Predefined Constants and Flags

Formal Language Description................14-18
Printable Characters 8-9
Printing an SCL Source File3-19
Process Image of the Inputs and Outputs 9-2
Program Branch11-12
Program Design .. 2-1
Program Jump..11-12
Programming Structured 1-3
Programming Language

Higher ... 1-1
Higher-Level .. 1-3

Programming with Symbols.......................... 3-9
R_STRNG..13-19
Reading Out CPU Data...............................3-32
Reading Out the Diagnostic Buffer

of the CPU..3-32
Reading Output Values.............................11-33

Output Assignment at an FC Call...........11-40

06.09.2000

Index

S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01 Index-5

Output Assignment in an FB Call11-33
REAL .. 6-3
Real Number Constant 8-8
REAL_TO_DINT...13-4
REAL_TO_DWORD 2)13-4
REAL_TO_INT ...13-4
Redoing an Editing Action............................ 3-9
Reference Data ..3-29
REPEAT Statement 11-12, 11-22
REPLACE ..13-16
Replacing Text Objects...............................3-10
Reserved Words.. 4-4
RETURN Statement 11-12, 11-26
Return Value ..11-37
Return Value (FC)11-37
RIGHT ...13-14
ROL ...13-11
ROR...13-11
ROUND..13-6
Rule Structures.. 4-1
Rules for SCL Sources 3-8
S_CD ...12-5
S_CU ...12-5
S_CUD...12-6
S_ODT...12-16
S_ODTS ..12-17
S_OFFDT...12-18
S_PEXT ...12-15
S_PULSE...12-14
S5 Time ...12-12
S5TIME... 6-4
Sample Program

"Measured Value Acquisition"................... 2-1
Sample Program for First-Time Users 2-1
Saving an SCL Source File3-19
SCL Debugging Functions3-23–3-25
SCL User Interface 3-2
Selecting Text Objects3-10
Selecting the Right Timer..........................12-20
Selective Statement..................................11-12
Setting the Date..3-31
Setting the Time ...3-31
SFCs/SFBs ..13-22
Shared Data.. 9-1

Overview of Shared Data 9-2
Shared Instance 11-28, 11-33
SHL..13-11
SHR...13-11
Simple Expression......................................10-7
SIN ..13-10
Single Step...3-25
Source File................. 3-4–3-8, 3-19, 5-11, 5-21
Specifying Object Properties 3-6

SQR ..13-9
SQRT ..13-9
Stacks ...3-34
Standard Functions13-4, 13-6, 13-9–13-11
Standard Identifier ..4-6
Start

SCL ...3-1
Statement Section

Structure ..5-11
Syntax Rules .. 14-37

Statements11-1, 11-14–11-18,
... 11-21–11-26

Static Variables4-15, 7-1, 7-3, 7-8, 7-11
Status Bar..3-2
STEP 7 Block Concept1-3
STEP 7 Debugging Functions.....................3-29
STL

Extension SCL ...1-1
SCL Block Decompile1-3

STRING.................................... 6-7, 8-9, 13-15,
... 13-13–13-19

STRING Data Type6-7
STRING_TO_CHAR...................................13-4
STRNG_DI .. 13-19
STRNG_I ... 13-18
STRNG_R ... 13-19
STRUCT..6-11
Structure of a Data Block (DB)5-18
Structure of a Function (FC)5-15
Structure of a Function Block (FB)5-13
Structure of an Organization Block (OB)......5-17
Structure of an SCL Source File........... 5-9–5-18
Structure of the Declaration Section..............5-9
Structured Access to Data Blocks9-11
Structured Programming........................ 2-4, 2-6
Structures ..6-11
Subroutine Call ..5-12
Subtraction ..10-2
Supplying Parameters for

Timer Functions.................................... 12-10
Symbolic Access the

Memory Areas of the CPU9-5
Symbolic Constants......................................8-2
Syntax Diagrams................................. 4-1, 14-1
Syntax Rules.. 14-29
System Attributes 5-8, 5-10

for Blocks ...5-8
for Parameters5-10

System Functions/Function Blocks
and the Standard Library 13-22

TAN... 13-10
Templates..3-14

for Blocks ...3-14

06.09.2000

Index

S7-SCL V5.1 for S7-300/S7-400
Index-6 A5E00059543-01

for Comments .. 3-14
for Control Structures 3-14
for Parameters 3-14

Temporary Variables...................4-15, 7-1, 7-12
Terminate Condition.......................11-22, 11-24
Terms Used in the Lexical Rules

(Syntax Diagrams).................................. 14-4
Testing in Single Steps............................... 3-25
TIME ... 6-4
Time Period Constant 8-13
Time System.. 3-33
Time Value .. 12-12
TIME_OF_DAY.. 6-4
TIME_TO_DINT... 13-4
Time-of-Day Constant 8-15
TIMER (data type)...................................... 6-15
TIMER Data Type 6-15
Timer Functions ... 12-8
Timers ...12-8–12-19

Calling Timer Functions.......................... 12-8
Examples... 12-19
Input and Evaluation of a Time Value.... 12-12
Start Timer as Extended Pulse Timer

(S_PEXT)... 12-15
Start Timer as Off-Delay Timer

(S_OFFDT) 12-18
Start Timer as On-Delay Timer

(S_ODT) .. 12-16
Start Timer as Pulse Timer

(S_PULSE) 12-14
Start Timer as Retentive

On-Delay Timer (S_ODTS) 12-17
Supplying Parameters for

Timer Functions 12-10
Title Bar... 3-2
TOD_TO_DINT.. 13-4
Toolbar .. 3-2
Trigonometric Functions........................... 13-10
TRUNC.. 13-6
UDT... 6-13

Call .. 5-21
Definition.. 5-22
Elements.. 5-21

Unary Minus .. 10-2
Unary Plus... 10-2
Undoing the Last Editing Action.................... 3-9
User Authorization 1-9
User Data .. 9-1

Shared... 9-1

User Interface.. 3-2
User Memory..3-32
User Program..2-4, 5-1
User-Defined

Data Types (UDT)................. 5-21, 6-13, 11-3
Value Assignment............................11-2–11-10

Syntax Rules ..14-39
Value Assignment with

Absolute Variables for Memory Areas ..11-9
Value Assignment with Variables

of the Type DATE_AND_TIME11-8
Value Assignment with Variables

of the Type STRUCT and UDT11-3
Value Assignments with

Shared Variables11-10
Value Assignments with Variables

of an Elementary Data Type11-2
Value Assignments with

Variables of the Type STRING.............11-7
Value Assignments.....................................5-12
VAR ...7-10
VAR_IN_OUT...7-10
VAR_INPUT...7-10
VAR_OUTPUT ...7-10
VAR_TEMP..7-10
Variables

General Syntax of a
Variable or Parameter Declaration 7-3

Initialization.. 7-4
Instance Declaration 7-8
Local Variables and Block Parameters...... 7-1
Monitoring/Modifying Variables................3-30
Overview of the

Declaration Subsections......................7-10
Static Variables....................... 4-15, 7-1, 7-11
Temporary Variables............... 4-15, 7-1, 7-10

Views of Variable Ranges 7-6
Warnings..3-18
What’s New? ... 1-7
WHILE Statement.......................... 11-12, 11-21
WORD .. 6-3
WORD_TO_BLOCK_DB.............................13-4
WORD_TO_BOOL13-4
WORD_TO_BYTE......................................13-4
WORD_TO_INT ...13-4
Working Area... 3-2
Working with an SCL Source File3-5, 3-19
XOR...10-10

06.09.2000

S7-SCL V5.1 for S7-300/S7-400 1
A5E00059543-01

Siemens AG
A&D AS E 81
Oestliche Rheinbrueckenstr. 50
D-76181 Karlsruhe

Federal Republic of Germany

From:

Your Name:...

Your Title: ...

Company Name:...

Street: ...

City, Zip Code ...

Country: ..

Phone: ..

Please check any industry that applies to you:

❐ Automotive ❐ Pharmaceutical

❐ Chemical ❐ Plastic

❐ Electrical Machinery ❐ Pulp and Paper

❐ Food ❐ Textiles

❐ Instrument and Control ❐ Transportation

❐ Nonelectrical Machinery ❐ Other..

❐ Petrochemical

30.08.200006.09.2000

Remarks Form

2 S7-SCL V5.1 for S7-300/S7-400
A5E00059543-01

Remarks Form
Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it
to Siemens.

Please give each of the following questions your own personal mark within the range from 1
(very good) to 5 (poor).

1. Do the contents meet your requirements? o

2. Is the information you need easy to find? o

3. Is the text easy to understand? o

4. Does the level of technical detail meet your requirements? o

5. Please rate the quality of the graphics/tables: o

Additional comments:

..

..

..

..

..

..

..

..

..

..

..

...

30.08.200006.09.2000

	Title
	Preface
	Contents
	1 Product Overview and Installation
	1.1 Overview of S7-SCL
	1.2 What are the Advantages of S7-SCL?
	1.3 Characteristics of the Development Environment
	1.4 What's New in Version V5.1?
	1.5 Installation and Authorization
	1.6 Notes on Compatibility with DIN EN 61131-3

	2 Designing an SCL Program
	2.1 Welcome to "Measured Value Acquisition" - A Sample Program for First-Time Users
	2.2 Task
	2.3 Design of a Structured SCL Program
	2.4 Defining the Subtasks
	2.5 Defining the Interfaces Between Blocks
	2.6 Defining the Input/Output Interface
	2.7 Defining the Order of the Blocks in the Source File
	2.8 Defining Symbols
	2.9 Creating the SQUARE Function
	2.9.1 Statement Section of the SQUARE Function

	2.10 Creating the EVALUATE Function Block
	2.10.1 Flow Chart for EVALUATE
	2.10.2 Declaration Section of FB EVALUATE
	2.10.3 Statement Section of FB EVALUATE

	2.11 Creating the ACQUIRE Function Block
	2.11.1 Flow Chart for ACQUIRE
	2.11.2 Declaration Section of FB ACQUIRE
	2.11.3 Statement Section of FB ACQUIRE

	2.12 Creating the CYCLE Organization Block
	2.13 Test Data

	3 Using SCL
	3.1 Starting the SCL Program
	3.2 User Interface
	3.3 Customizing the User Interface
	3.4 Creating and Handling an SCL Source File
	3.4.1 Creating a New SCL Source File
	3.4.2 Opening an SCL Source File
	3.4.3 Opening Blocks
	3.4.4 Closing an SCL Source File
	3.4.5 Specifying Object Properties
	3.4.6 Creating Source Files with a Standard Editor
	3.4.7 Block Protection

	3.5 Guidelines for SCL Source Files
	3.5.1 General Rules for SCL Source Files
	3.5.2 Order of the Blocks
	3.5.3 Using Symbolic Addresses

	3.6 Editing in SCL Source Files
	3.6.1 Undoing the Last Editing Action
	3.6.2 Redoing an Editing Action
	3.6.3 Finding and Replacing Text Objects
	3.6.4 Selecting Text Objects
	3.6.5 Copying Text Objects
	3.6.6 Cutting Text Objects
	3.6.7 Deleting Text Objects
	3.6.8 Positioning the Cursor in a Specific Line
	3.6.9 Syntactically Correct Indenting of Lines
	3.6.10 Setting the Font Style and Color
	3.6.11 Inserting Templates
	3.6.11.1 Inserting Block Calls
	3.6.11.2 Inserting Block Templates
	3.6.11.3 Inserting Templates for Comments
	3.6.11.4 Inserting Parameter Templates
	3.6.11.5 Inserting Control Structures

	3.7 Compiling an SCL Program
	3.7.1 What You Should Know About Compiling
	3.7.2 Customizing the Compiler
	3.7.3 Compiling the Program
	3.7.4 Creating a Compilation Control File
	3.7.5 Debugging the Program After Compilation

	3.8 Saving and Printing an SCL Source File
	3.8.1 Saving an SCL Source File
	3.8.2 Customizing the Page Format
	3.8.3 Printing an SCL Source File
	3.8.4 Setting the Print Options

	3.9 Downloading the Created Programs
	3.9.1 CPU Memory Reset
	3.9.2 Downloading User Programs to the CPU

	3.10 Debugging the Created Programs
	3.10.1 The SCL Debugging Functions
	3.10.2 The "Monitor" Debugging Function
	3.10.3 Debugging with Breakpoints/Single Step Mode"
	3.10.4 Steps in Monitoring
	3.10.5 Steps for Debugging with Breakpoints
	3.10.5.1 Defining Breakpoints
	3.10.5.2 Starting the Test with Breakpoints
	3.10.5.3 Stopping the Test with Breakpoints
	3.10.5.4 Activating, Deactivating and Deleting Breakpoints
	3.10.5.5 Debugging in the Single Step Mode
	3.10.6 Using the STEP 7 Debugging Functions
	3.10.6.1 Creating and Displaying Reference Data
	3.10.6.2 Monitoring and Modifying Variables

	3.11 Displaying and Modifying CPU Properties
	3.11.1 Displaying and Modifying the CPU Operating Mode
	3.11.2 Displaying and Setting the Date and Time on the CPU
	3.11.3 Reading Out CPU Data
	3.11.4 Reading Out the Diagnostic Buffer of the CPU
	3.11.5 Displaying/Compressing the User Memory of the CPU
	3.11.6 Displaying the Cycle Time of the CPU
	3.11.7 Displaying the Time System of the CPU
	3.11.8 Displaying the Blocks on the CPU
	3.11.9 Displaying Information about Communication with the CPU
	3.11.10 Displaying the Stacks of the CPU

	4 Basic SCL Terms
	4.1 Interpreting the Syntax Diagrams
	4.2 Character Set
	4.3 Reserved Words
	4.4 Identifiers
	4.5 Standard Identifiers
	4.6 Block Identifier
	4.7 Address Identifier
	4.8 Timer Identifier
	4.9 Counter Identifier
	4.10 Numbers
	4.11 Character Strings
	4.12 Symbol
	4.13 Comment Section
	4.14 Line Comment
	4.15 Variables

	5 SCL Program Structure
	5.1 Blocks in SCL Source Files
	5.2 Order of the Blocks
	5.3 General Structure of a Block
	5.4 Block Start and End
	5.5 Attributes for Blocks
	5.6 Block Comment
	5.7 System Attributes for Blocks
	5.8 Declaration Section
	5.9 System Attributes for Parameters
	5.10 Statement Section
	5.11 Statements
	5.12 Structure of a Function Block (FB)
	5.13 Structure of a Function (FC)
	5.14 Structure of an Organization Block (OB)
	5.15 Structure of a Data Block (DB)
	5.16 Structure of a User-Defined Data Type

	6 Data Types
	6.1 Overview of the Data Types in SCL
	6.2 Elementary Data Types
	6.2.1 Bit Data Types
	6.2.2 Character Types
	6.2.3 Numeric Data Types
	6.2.4 Time Types

	6.3 Complex Data Types
	6.3.1 DATE_AND_TIME Data Type
	6.3.2 STRING Data Type
	6.3.3 ARRAY Data Type
	6.3.4 STRUCT Data Type

	6.4 User-Defined Data Types
	6.4.1 User-Defined Data Types (UDT)

	6.5 Data Types for Parameters
	6.5.1 Data Types for Parameters
	6.5.2 TIMER and COUNTER Data Types
	6.5.3 BLOCK Data Types
	6.5.4 POINTER Data Type

	6.6 ANY Data Type
	6.6.1 Example of the ANY Data Type

	7 Declaring Local Variables and Parameters
	7.1 Local Variables and Block Parameters
	7.2 General Syntax of a Variable or Parameter Declaration
	7.3 Initialization
	7.4 Declaring Views of Variable Ranges
	7.5 Using Multiple Instances
	7.6 Instance Declaration
	7.7 Flags (OK Flag)
	7.8 Declaration Subsections
	7.8.1 Overview of the Declaration Subsections
	7.8.2 Static Variables
	7.8.3 Temporary Variables
	7.8.4 Block Parameters

	8 Declaring Constants and Jump Labels
	8.1 Constants
	8.1.1 Declaring Symbolic Names for Constants
	8.1.2 Data Types for Constants
	8.1.3 Notation for Constants
	8.1.3.1 Bit Constants
	8.1.3.2 Integer Constants
	8.1.3.3 Real Number Constants
	8.1.3.4 Char Constants (Single Characters)
	8.1.3.5 String Constants
	8.1.3.6 Date Constants
	8.1.3.7 Time Period Constants
	8.1.3.8 Time-of-Day Constants
	8.1.3.9 Date and Time Constants

	8.2 Declaring Labels
	8.2.1 Declaring Labels

	9 Shared Data
	9.1 Overview of Shared Data
	9.2 Memory Areas of the CPU
	9.2.1 Overview of the Memory Areas of the CPU
	9.2.2 Absolute Access to Memory Areas of the CPU
	9.2.3 Symbolic Access to Memory Areas of the CPU
	9.2.4 Indexed Access to Memory Areas of the CPU

	9.3 Data Blocks
	9.3.1 Overview of Data Blocks
	9.3.2 Absolute Access to Data Blocks
	9.3.3 Indexed Access to Data Blocks
	9.3.4 Structured Access to Data Blocks

	10 Expressions, Operations and Addresses
	10.1 Overview of Expressions, Operations and Addresses
	10.2 Operations
	10.3 Addresses
	10.4 Syntax of an Expression
	10.5 Simple Expression
	10.6 Arithmetic Expressions
	10.7 Logical Expressions
	10.8 Comparison Expressions

	11 Statements
	11.1 Value Assignments
	11.1.1 Value Assignments with Variables of an Elementary Data Type
	11.1.2 Value Assignments with Variables of the Type STRUCT and UDT
	11.1.3 Value Assignments with Variables of the Type ARRAY
	11.1.4 Value Assignments with Variables of the Data Type STRING
	11.1.5 Value Assignments with Variables of the Type DATE_AND_TIME
	11.1.6 Value Assignments with Absolute Variables for Memory Areas
	11.1.7 Value Assignments with Shared Variables

	11.2 Control Statements
	11.2.1 Overview of Control Statements
	11.2.2 Conditions
	11.2.3 IF Statements
	11.2.4 CASE Statement
	11.2.5 FOR Statement
	11.2.6 WHILE Statement
	11.2.7 REPEAT Statement
	11.2.8 CONTINUE Statement
	11.2.9 EXIT Statement
	11.2.10 GOTO Statement
	11.2.11 RETURN Statement

	11.3 Calling Functions and Function Blocks
	11.3.1 Call and Parameter Transfer
	11.3.2 Calling Function Blocks
	11.3.2.1 Supplying FB Parameters
	11.3.2.2 Input Assignment (FB)
	11.3.2.3 In/Out Assignment (FB)
	11.3.2.4 Reading Output Values (FB Call)
	11.3.2.5 Example of a Call as a Shared Instance
	11.3.2.6 Example of a Call as a Local Instance

	11.3.3 Calling Functions
	11.3.3.1 Return Value (FC)
	11.3.3.2 FC Parameters
	11.3.3.3 Input Assignment (FC)
	11.3.3.4 Output and In/Out Assignment (FC)
	11.3.3.5 Example of a Function Call

	11.3.4 Implicitly Defined Parameters
	11.3.4.1 Input Parameter EN
	11.3.4.2 Output Parameter ENO

	12 Counters and Timers
	12.1 Counters
	12.1.1 Counter Functions
	12.1.2 Calling Counter Functions
	12.1.3 Supplying Parameters for Counter Functions
	12.1.4 Input and Evaluation of the Counter Value
	12.1.5 Count Up (S_CU)
	12.1.6 Count Down (S_CD)
	12.1.7 Count Up/Down (S_CUD)
	12.1.8 Example of Counter Functions

	12.2 Timers
	12.2.1 Timer Functions
	12.2.2 Calling Timer Functions
	12.2.3 Supplying Parameters for Timer Functions
	12.2.4 Input and Evaluation of a Time Value
	12.2.5 Start Timer as Pulse Timer (S_PULSE)
	12.2.6 Start Timer as Extended Pulse Timer (S_PEXT)
	12.2.7 Start Timer as On-Delay Timer (S_ODT)
	12.2.8 Start Timer as Retentive On-Delay Timer (S_ODTS)
	12.2.9 Start Timer as Off-Delay Timer (S_OFFDT)
	12.2.10 Example of Timer Functions
	12.2.11 Selecting the Right Timer

	13 SCL Standard Functions
	13.1 Data Type Conversion Functions
	13.1.1 Converting Data Types
	13.1.2 Implicit Data Type Conversion
	13.1.2.1 Implicit Data Type Conversion
	13.1.2.2 Conversion Functions Class A

	13.1.3 Standard Functions for Explicit Data Type Conversion
	13.1.3.1 Conversion Functions Class B
	13.1.3.2 Functions for Rounding and Truncating
	13.1.3.3 Examples of Converting with Standard Functions

	13.2 Numeric Standard Functions
	13.2.1 General Arithmetic Standard Functions
	13.2.2 Logarithmic Functions
	13.2.3 Trigonometric Functions
	13.2.4 Examples of Numeric Standard Functions

	13.3 Bit String Standard Functions
	13.3.1 Examples of Bit String Standard Functions

	13.4 Functions for Processing Character Strings
	13.4.1 Functions for String Manipulation
	13.4.2 Functions for Comparing Strings
	13.4.3 Functions for Converting the Data Format
	13.4.4 Example of Processing Character Strings

	13.5 SFCs, SFBs and Standard Library
	13.5.1 Transfer Interface to OBs

	14 Language Definition
	14.1 Formal Language Definition
	14.1.1 Overview of Syntax Diagrams
	14.1.2 Rules
	14.1.3 Terms Used in the Lexical Rules
	14.1.4 Formatting Characters, Separators and Operations
	14.1.5 Keywords and Predefined Identifiers
	14.1.6 Address Identifiers and Block Keywords
	14.1.7 Overview of Non Terms
	14.1.8 Overview of Tokens
	14.1.9 Identifiers
	14.1.10 Assigning Names in SCL
	14.1.11 Predefined Constants and Flags

	14.2 Lexical Rules
	14.2.1 Identifiers
	14.2.2 Constants
	14.2.3 Absolute Addressing
	14.2.4 Comments
	14.2.5 Block Attributes

	14.3 Syntax Rules
	14.3.1 Structure of SCL Source Files
	14.3.2 Structure of the Declaration Sections
	14.3.3 Data Types in SCL
	14.3.4 Statement Section
	14.3.5 Value Assignments
	14.3.6 Calling Functions and Function Blocks
	14.3.7 Control Statements

	15 Tips and Tricks
	Glossary
	Index

