Finding a local minimum of a multivariate function

Our interest today will be finding a (local) minimum of a function $f: U \rightarrow \mathbb{R}$, where $U \subseteq \mathbb{R}^{n}$. (Of course, we already know how to do that with appropriate use of Newton's iteration.) Using the gradient/steepest descent method we find a minimum of a function $f: U \rightarrow \mathbb{R}$ by starting with some initial guess $\mathbf{x}^{(0)}$, and then continue iteratively:

$$
\begin{aligned}
\mathbf{x}^{(1)} & =\mathbf{x}^{(0)}-h \operatorname{grad} f\left(\mathbf{x}^{(0)}\right), \\
\mathbf{x}^{(2)} & =\mathbf{x}^{(1)}-h \operatorname{grad} f\left(\mathbf{x}^{(1)}\right), \\
& \vdots \\
\mathbf{x}^{(k+1)} & =\mathbf{x}^{(k)}-h \operatorname{grad} f\left(\mathbf{x}^{(k)}\right) .
\end{aligned}
$$

Here, the step $h>0$ is a carefully chosen (small) real number. (The convergence of such method depends on f, initial guess $\mathbf{x}^{(0)}$, and the choice of h.)

1. A function f is given by

$$
f(x, y)=(1-x)^{2}+4\left(y-x^{2}\right)^{2} .
$$

(a) Find the minimum of f.
(b) Find (an approximation for) the minimum of the function f using the gradient descent method. Write an octave function $x=$ gradmet (gradf, h, x 0 , tol, maxit), which runs this method for the function f with gradient gradf, step size h, and initial guess $x 0$. (We use maxit to limit the maximum allowed number of iterations, and tol to prescribe desired accuracy.)
2. Suppose we are given two circles, K and L, the first one with origin at (a, b) and radius r, the second one with origin at (a^{\prime}, b^{\prime}) and radius r^{\prime}. We'd like to find the distance d between these two circles and points $P \in K$ and $Q \in L$ at this distance.
(a) Express the distance d between these two circles analytically. (As a comparison with the method below.)
(b) Write down the parametrizations \mathbf{p} and \mathbf{q} of circles K and L.
(c) Let $f(t, u)=\|\mathbf{p}(t)-\mathbf{q}(u)\|^{2}$. Express $\operatorname{grad} f$ using parametrizations \mathbf{p} and \mathbf{q} (and derivatives $\dot{\mathbf{p}}$ and $\dot{\mathbf{q}}$).
(d) Write an octave function [d, T] = razdal $\mathrm{jaK}(\mathrm{K})$, which uses the gradient descent method to find the minimum of the function f, ie. the distance between these two circles. The input K is a 3×2 matrix with first column $[a, b, r]^{\top}$ and second column $\left[a^{\prime}, b^{\prime}, r^{\prime}\right]^{\top}$. The function should return the distance d and a 2×2 matrix T containing the spatial vectors of P and Q, ie. $T=\left[\mathbf{r}_{P}, \mathbf{r}_{Q}\right]$.
(e) Can you use a similar method to find the points on K and L, which are farthest apart? Can you use a similar method to find the distance between two ellipses?
3. Can you find the distance from the previous exercise using the Newton's or Gauss-Newton iteration? Experiment and compare with gradient descent.
4. With some ingenuity we can use the gradient descent to solve systems of nonlinear equations. Instead of solving the system $\mathbf{F}(\mathbf{x})=\mathbf{0}$ we find the minimum of the function $f(\mathbf{x})=\mathbf{F}(\mathbf{x})^{\top} \mathbf{F}(\mathbf{x})=\|\mathbf{F}(\mathbf{x})\|^{2}$.
(a) Verify that

$$
\operatorname{grad} f(\mathbf{x})=2 J \mathbf{F}(\mathbf{x})^{\top} \mathbf{F}(\mathbf{x}),
$$

holds. One step of gradient descent for the function $f=\mathbf{F}^{\top} \mathbf{F}$ is therefore

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-2 h J \mathbf{F}\left(\mathbf{x}^{(k)}\right)^{\top} \mathbf{F}\left(\mathbf{x}^{(k)}\right) .
$$

(Compare this with one step of Newton's iteration.)
(b) Use the gradient descent to find at least one solution of the nonlinear system

$$
\begin{array}{r}
x_{1}^{2}-x_{2}^{2}-1=0, \\
x_{1}+x_{2}-x_{1} x_{2}-1=0 .
\end{array}
$$

