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Preface

The area of smart homes is fast developing as an emergent area attracting the
synergy of several areas of science. Here we offer a collection of contributions
addressing how artificial intelligence (AI), one of the core areas of computer
science, can bring the growing area of smart homes to a higher level of func-
tionality where homes can truly realize the long-standing dream of proactively
helping their inhabitants in an intelligent way.

Here we focus on a particular exemplar application scenario (provision of
healthcare and safety-related services to increase the quality of life) and we
explore the application of specific areas of AI to this scenario. What will be
presented is not an exclusive suite of solutions: other AI techniques can also be
applied and other problems can be solved with similar approaches. We hope this
volume is the spark that ignites further explorations into these possibilities.

The book starts with an introductory section, Smart Homes Can Be Smarter,
where we describe a smart home scenario and provide some basic terminology
which will be used in other sections.

The next contribution, Spatiotemporal Reasoning for Smart Homes by Got-
tfried, Guesgen, and Hübner, provides a survey of some relevant developments in
the area of spatial and temporal reasoning and discusses their role for reasoning
about the spaces and the times where activities develop within a house.

Temporal Constraints with Multiple Granularities in Smart Homes , by Combi
and Rossato, describes how the problem of temporal granularities can affect the
system in practical terms. The balance between reading and storing information
from sensors as often as possible to keep good coverage of the main events oc-
curring has to be weighted against the problems that storing and searching vast
amounts of information pose for an efficient implementation of the system.

In Causal Reasoning for Alert Generation in Smart Homes, Galton considers
a topic at the core of a reasoning system, namely, how to represent and use the
causal laws governing the behavior of the system. This contribution illustrates
how such a framework can be successfully used to implement an important mod-
ule of the system where alerts are generated as a response to the recognition of
meaningful events by the system.

Plans and Planning in Smart Homes by Simpson, Schreckenghost, LoPresti
and Kirsch, focuses on the roles of plans and planning in the context of smart
homes including their use in monitoring of activities to identify emergencies and
on the provision of guidance to people with cognitive impairment.

Temporal Data Mining for Smart Homes by Galushka, Patterson and Rooney
introduces temporal data mining and illustrates how the essential components
of clustering, classification, and rule discovery and prediction can be used to
develop a sophisticated smart home environment.
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The next chapter, Cases, Context, and Comfort: Opportunities for Case-
Based Reasoning in Smart Homes by Leake, Maguitman and Reichherzer, com-
ments on three main areas where CBR can provide benefits for smart homes:
supporting personalization, supporting interactive adjustment of the system by
the user, and facilitating customization and knowledge acquisition by the devel-
oper.

Stankovski and Trnkoczy explain in Applications of Decision Trees to Smart
Homes that decision trees can be used to evaluate how usual or unusual an
activity or event in the smart home can be and in this way help the system to
detect contexts where the inhabitant of the house may need assistance.

Artificial Neural Networks in Smart Home by Begg and Hassan explains
how ANN can assist in the design of a smart home specially tailored to pro-
vide assistance during: entertainment, safety and security, caregiving and health
monitoring.

Finally, A Multi-Agent Approach to Controlling a Smart Environment by
Cook, Youngblood and Das discusses the application of multi-agent systems to
control a smart environment and describes its implementation in the MavHome
project.

This volume offers important contributions for the development of smart
homes. It is expected that as the area reaches maturity a more scientific approach
to the design of these systems will replace the less systematic approach currently
employed. It is expected that the area will benefit from well-established domains
of research like AI and we hope this volume offers a good range of examples of
how AI can help those interested in the development of truly smart homes.

May 2006 JC Augusto and CD Nugent
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Smart Homes Can Be Smarter

Juan C. Augusto and Chris D. Nugent

School of Computing and Mathematics,
University of Ulster at Jordanstown, UK
{jc.augusto, cd.nugent}@ulster.ac.uk

Abstract. Smart Homes have become firmly established as an active
research area with potential for huge social and economic benefits. The
concept of a Smart Home refers to the enrichment of a living environ-
ment with technology in order to offer improved habitual support to its
inhabitants and therefore an improved quality of life for them.

In this article we purport how advances from the device and tech-
nological side have not necessarily been matched with a similar level of
development in processing of the information recorded within the living
environment from an algorithmic or ‘intelligent’ perspective. We surmise
how traditional areas in Artificial Intelligence can bridge this gap and
improve the experience for the user within a Smart Home.

1 Introduction

The term Smart Homes creates expectations of an environment which is capable
to react ‘intelligently’ by anticipating, predicting and taking decisions with signs
of autonomy. From a computational perspective there is a natural association be-
tween this expectation and the use of techniques from Artificial Intelligence (AI).
However, research addressing Smart Homes ([1, 2, 3, 4]) has in the past largely fo-
cused on network and hardware oriented solutions.AI-based techniques which pro-
mote intelligent behaviour have not been examined to the same extent, although
notable exceptions can be found (see for example the MavHome project [5]).

In this article we begin the discusion that well-established techniques in the
AI field can be successfully applied to the area of Smart Home technology. Fur-
thermore, we suggest that due to the characteristics of Smart Homes they (a)
offer a context of application which can soon be deployed into society (b) can
have a significant impact in our society and can offer fundamental services (e.g.,
in health-related applications) (c) they are much more amenable to the creation
of feasible algorithms (as opposed to complex-AI problems where computational
complexity makes system’s construction prohibitively expensive or impossible).

Some of the functionalities offered by Smart Homes are related to economic
and comfort-related aspects for example lights and heater systems automati-
cally turning on/off according to the inhabitant’s location/presence within the
home. Nevertheless, one of the most beneficial elements witnessed from Smart
Homes is the improvement in Independent Living such an environment can of-
fer. An example of a cohort who could benefit from such an environment are
those suffering from cognitive impairments. The introduction of technology and

J.C. Augusto and C.D. Nugent (Eds.): Designing Smart Homes, LNAI 4008, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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technological support into the lives of such patients offers the potential for them
to undertake daily activities which they previously would have relied upon from
external support. With such a radical change in living environment and lifestyle
it is possible to witness an improved quality of life, an improved level of inde-
pendence and finally an extended amount of time where the person can remain
within their own home without the need of institutionalisation.

We illustrate our hypothesis above by describing throughout this article an
application of the Smart Home concept for the support of people with cogni-
tive impairments in order to provide a protective environment but with more
independence and privacy than in a traditional caring institution.

A scenario of common reference throughout this article will be introduced.
Different limitations of state-of-the-art systems to consider such scenarios will
subsequently be unravelled in relation to the described scenario and subsequently
each will be related to areas of AI which have the potential to remove those
limitations.

The remainder of this Chapter is organized as follows. Section 2 will describe
the general concept of a Smart Home, then in Section 3 we introduce a typical
specification, including typical sensors and problems which can be considered
once the system is in operation. Section 4 presents a conceptualization by refer-
ring to concepts from an AI perspective (a system transitioning through states as
the events occur in the house by, for example, sensors being triggered). Section 5
describes a possible context of interest where a hazardous situation develops and
there is an expectation that the Smart Home will be able to react in a range of
possible ways to address the problem. Finally in Section 6 we discuss how differ-
ent well established areas within AI (spatio-temporal reasoning, temporal granu-
larity, causal reasoning, planning, learning, case-based reasoning (CBR), decision
trees, neural networks, and multi-agent systems (MAS)) can be considered to
provide the kind of intelligent behaviour expected from a truly Smart Home.

2 Background on Smart Homes

To effectively address the needs within the realms of the ‘Smart Home’ environ-
ment requires a multidisciplinary collaboration. Such developments will usually
involve specialists from Architecture, Computer Science, Electrical and Elec-
tronic Engineering and some applications related to the health sector may also
require participation of professionals from Social Sciences, Medicine and Occupa-
tional Therapy. Within this text we endeavour to address one small component
within the scope of Smart Homes namely the improvements in life style and
safety that can be offered based upon the intelligent use of the characteristics of
such homes and the intelligent processing of information which can be acquired.

The use of Smart Homes to support independent living refers here to the
possibility of designing an intelligent monitoring system that can detect when
an undesirable situation may be developing (e.g., hazard, security threat, etc).
Although all people can be involved in such undesirable situations, elderly people
and people with health problems require more exhaustive monitoring when they
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are not accompanied by a healthcare professional. It is possible for someone
exhibiting early stages of cognitive impairments to, for example, begin to cook
a meal, forgot they have started this activity and subsequently proceed to leave
the house or take a bath/shower.

Smart Homes are usually equipped with embedded devices that can enhance
the functionality of conventional domotic appliances. Within our work we have
focused on improving the level of support offered by devices which are readily
available from a commercial perspective and can be deployed with a simple user
interface. ‘Sensor’ is a keyword in this area. By this we understand a coupling of
hardware and software that is installed in one or more locations of the house and
can provide information about what it is happening inside the house or in its
vicinity. Examples of these can be a movement sensor, a smoke alarm and a timer
fitted in a microwave. There are also enriched devices which besides providing
information can also accept it, e.g., a tap can provide information detailing how
long it has been turned on for and conversely the water flow to the tap can be
remotely stopped.

Most of the work focused in the literature is devoted to individual sen-
sors/devices that can bring new services. Our position is that for this technology
to reach a second, and more evolved stage it has to introduce more AI-related
problem solving strategies so that all the sensors available can be used to form :
(a) a more cohesive diagnostic system combining different sources of information
in order to provide a more global insight into the activities of a patient and (b) a
more flexible diagnostic tool as the circumstances in which the semi-autonomous
devices have to act can be better identified having a global view of the activities
inside the home.

The essential point here is that, according to our experience, Smart Homes
can be much more intelligent than they currently are. However, despite being
thematically close, research in Smart Homes has remained quite disconnected
from the software oriented AI community. On the AI side, researchers have not
yet realized the potential of Smart Homes as a realistic and feasible scenario
where their general problem solving discoveries can be applied to benefit society
in the short term. Smart Homes can provide the AI community with a very
interesting benchmark were different techniques can be compared against or
integrated whilst research in AI can help make diagnostic systems more flexible
and holistic regarding the state of the art in Smart Homes. This text attempts
to build a bridge between the two areas.

3 Smart Home Scenario

We consider a model for a Smart Home based on a residential care institu-
tion in the United Kingdom. The environment is one of shared community care
where approximately 30 individual one-person apartments are contained within
the same building each offering high technology solutions to promote indepen-
dent living for the elderly. At the core of the environment is a central monitor-
ing facility (CMF) which has the ability to detect all sensor and alarm events
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Smart Homes Can Be Smarter 5

concurrently from each apartment. However, to convey the concepts of this Chap-
ter it will be sufficient to focus on just one such apartment. Figure 1 depicts the
typical layout of a person’s apartment.

3.1 Sensors

In this Section we provide a brief description of the sensors in the aforementioned
scenario. Not all of them have to be present in a Smart Home and on the other
hand new sensors can be incorporated. We focus here on a subset of sensors which
are commercially available, affordable and combined can offer an autonomous
living environment while maintaining the privacy of the inhabitant.

Location Sensors: The environment has motion sensors in the following loca-
tions which have the ability to identify the whereabouts of the person (kitchen,
livingroom, toilet, reception, bedroom, outside (right below front door)).

In addition, it is assumed the person wears an electronic tag. Such a tag
communicates with sensors on the doors to each room and has the ability to
complement the aforementioned location sensors.

Smokealarms. The environment will have smoke alarms in all rooms.

Sensors / Appliances. The Smart Home will have control or monitoring abil-
ities over the following common domestic appliances:

1. cooker
2. tv
3. fridge
4. kitchen tap
5. bathroom sink tap
6. bath tap
7. air conditioning
8. doorbell
9. phone
10. emergency pull cord switch
11. temperature sensor
12. radiators
13. bed

All the above will operate in a toggle fashion i.e. can only be active/non active.
There is also a difference between items 1-7 and 8-13. The first group are also
equipped with switches so that they can be remotely deactivated if needed.

The house will be fitted with a generic medical device which will have in built
diagnostic capabilities and warning functionalities which can then be incorpo-
rated into the overall system. After the person has made a measurement, for
example of blood pressure or glucose levels, the information is automatically
sent to the CMF. The system can make an evaluation of the data received to
check if a given threshold has been exceeded (e.g. high blood pressure or low
blood sugar level).
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3.2 Sensors at Work

An example of a possible sequence of primitive events for our case study
would be: at kitchen on, cooker on, cooker off, alarm kitchen on,
alarm kitchen off, at living on, tv on, tv off, doorbell on, inbed on,
at outside on.

From the initial state, a possible sequence of primitive events (preceded by
their instant of occurrence) arriving at the system would be:

0 at kitchen on 1 cooker on
2 at reception on 3 no event
4 at toilet on 5 tapSinkBathroom on
6 no event 7 tapSinkBathroom off
8 no event 9 at reception on
11 at bedroom on 11 inbed on
12 no event 13 no event
... ...

Events with suffixes ‘ on’ and ‘ off’ represent sensors changing values from
‘off’ to ‘on’ and viceversa, respectively. One special event we considered is the
absence of an event at a given point in time, we denote this as no event. These
represent that at a particular time no sensor changed its value. The fact that no
sensor changed its value does not mean nothing happened inside the house but
instead nothing that can be captured by the sensors occurred.

In order to develop the necessary approaches to process all of the information
from these sensory elements and provide a means of support it is necessary
to consider the possible activities that a person may undertake during normal
and abnormal conditions. The key parameter is primarily to assess the current
location of the person in the living environment. Once this has been realized,
it is then possible to determine if the sequence of actions the person becomes
involved in are ‘normal’ or ‘abnormal’.

The diversity of the types of information generated by the sensors provides a
number of dimensions to the information which can be generated for a person.
These can be considered to be (a) their whereabouts (b) their interaction with
appliances and (c) the duration of these events. Hence, with such information,
rules may be modeled and used to discriminate between normal conditions and
potentially hazardous situations when an alarm condition should be raised.

4 Smart Homes as Dynamic Systems

We can make an abstraction of a Smart Home and look at it as a system that start-
ing in an initial state can then evolve through different states as events occur inside.
Each state is defined by the place the person is in, which devices and alarms are
activated, e.g. the temperature of the room. Each of these parameters are discrete
values, either boolean ‘on’-‘off’ or within ranges like those used for temperatures.

It is important to mention here from a computational point of view that all
the constituent parts of the theory (houses, sensors, possible events, possible
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states and time spanning since the initial state until the current time of use)
can be defined as finite sets. The sequence of events can potentially develop ad
infinitum but from a practical perspective it would not make much sense to take
the complete history and the possible ‘sequence to be’. In reality what happens
is that we look at a specific window in time to assess the history and another
limited window to assess the possible future sequence in order to infer what may
be the case in the next minutes. We do not consider if the cooker was left on by
mistake one year ago and we do not try to infer if it will be left on by mistake
in one year’s time.

Once the initial state has been defined on the basis of the layout of the house,
the sensors available and their initial values, subsequent states will be produced
as events are triggered and their effects are recorded. Hence, from a perspec-
tive of knowledge representation, the evolution of the system will go through a
cycle of sequence of states Si provoked by the event occurrences Ei registered:
S0, E1, S1, E2, S2, . . .. Lets suppose MDR represents the Movement Detector in
the Reception area, TDRK the Tag Detector fitted around the door between the
Reception area and the Kitchen and MDK the Movement Detector sensor in the
Kitchen and events n + 1 . . . n + 3 denotes the three events when the person is
going through the door, walking into the kitchen and turning on the cooker. The
evolution of the system in terms of what can be detected and perceived through
the sensors is depicted in figure 2.

Lets suppose a patient/tenant is allocated one such house. The event of the
door being opened triggers the anti-burglar sensor attached to the door. This
will update the system to the next state where the front door is open. The
movement sensor in the reception area will also detect movement and that event
will trigger an update to a new state where movement in that room is explicitly
included. While the patient is walking through the front door the movement
sensor in the reception area will stay on. Eventually, if for example the patient
enters the living room area then the movement sensor in the reception area will
go off and the sensor in the living room will go on detecting movement of the
person entering the room.

Movement sensors have to be strategically located; this posses the first prac-
tical challenge relating to the interaction between sensors and the reasoning

MDR_on
TDRK_off
MDK_off

Cooker_off
...

MDR_off
TDRK_on
MDK_off

Cooker_off
...

MDR_off
TDRK_off
MDK_on

Cooker_off
...

MDR_off
TDRK_off
MDK_on

Cooker_on
...

State n State n+1 State n+2 State n+3

Event n+1 Event n+2 Event n+3 ...new events occurring...

n n+1 n+2 n+3

Fig. 2. Example of the smart house epistemic dynamics
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system. Lets imagine two contiguous rooms like the living room and the recep-
tion area. Each one will have a movement sensor, lets call them Sl and Sr re-
spectively. If Sl and Sr have an overlapping area of detection then when a person
is moving in that particular area the system will believe they are in both areas
simultaneously and automated analysis may become very difficult or at least it
may decrease substantially the options the system can consider. On the contrary
if there is a transition area such that it does not belong to any of the two regions
then there may be important events/states that can pass unnoticed to the sys-
tem, like the person staying in that area for a long time, e.g., alzheimer patients
can stay in the same place for a prolonged duration during a time of crisis.

Occasionally the system can enter into loops. This is neither good nor bad
and can be more or less frequent depending on how many moving objects there
are inside the house, how many sensors there are and how sensitive they are. For
example, imagine a state where the patient is sitting quietly in the living room
on one side of the sofa watching TV, the movement sensor in the living room is
off. Lets call this state S1. Then the patient/tenant moves to the other side of
the sofa activating the movement sensor. After a short period where the patient
remains reasonably inactive in the new location the sensor will go off again. Lets
call this state S2. If no other sensors are triggered then the state of the house
from the system’s perspective, i.e., from outside and based on sensor values, will
be exactly the same as in S1.

Based on these notions further analysis of possible evolutions of the envi-
ronment under consideration can be made. These analysis can be made before
the system is built as an initial approximation during the modelling stage [6].
Alternatively they can also be used once the system is in operation to reason
about the way the system itself is evolving, or may evolve, during real-time mon-
itoring of activities in order to understand the context and decide how to react
appropriately [7].

5 A Possible Scenario

Imagine the following sequences of events developing one after the other in
sequence:

at living on,
at reception on,
at kitchen on,
cooker on,
at reception on,
at bedroom on,
inbed on,
...

These roughly depict a person moving from the living room to the kitchen to
turn the cooker on and then going to bed. It is a common and normal sequence
of activities. There are, however, potentially interesting issues in this sequence
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which depends on other aspects of the activities considered. For example, staying
in bed for ‘too long’.

To address those issues we need to consider explicitly the time when the events
occurred, lets suppose we have:

0 at living on,
3 at reception on,
5 at kitchen on,
8 cooker on,
10 at reception on,
13 at bedroom on,
15 inbed on,
...

The reader can assume that at times when no meaningful event has been
detected, for example at time 2, a default event no event is recorded by the
system to keep track of the activities developed in the house.

Also we omitted repetitions of events in the list above but a more realistic
depiction of the scenario will have more information as movement sensors will
be stimulated several times in sequence when a person is walking and also mul-
tiple sensors can be activated simultaneously. Hence a closer depiction of the
information recorded in our scenario will be as follows:

0 at living on,
1 at living on,
2 at door reception-living on,
3 at reception on,
4 at door reception-kitchen on,
5 at kitchen on,
6 at kitchen on,
7 at kitchen on, cooker on,
8 at kitchen on, cooker on,
9 at door reception-kitchen on, cooker on,
10 at reception on, cooker on,
11 at reception on, cooker on,
12 at door reception-bedroom on, cooker on,
13 at bedroom on, cooker on,
14 at bedroom on, cooker on,
15 at bedroom on, cooker on, inbed on,
...

Notice that in the list above at door reception-kitchen on and
at reception on correspond to what we generically described as MDR and
TDRK, respectively, in figure 2. Some sensors can be assumed to persist in an
‘on’ status once they have been activated, e.g. the cooker being on unless it is
turned off, whilst other sensors tend to persist in an ‘off’ status, e.g. a movement
sensor will be ‘on’ only while movement is detected.
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Also it is worth mentioning that although we considered a way to attach
temporal references to events in this section and to states in figure 2 which
resemble instants we do not intend to suggest that this is a mandatory way to
associate time with events and states.

6 Areas for Possible AI applications

AI techniques can be used to contribute in many ways to the development of
Smart Homes like the one described in the previous sections. The Sections below
exemplify this further, however, this should not be considered as an exhaustive
set of possibilities but more an opportunity to offer some concepts of how the
various levels of applications waiting to be explored may be deployed.

6.1 Spatio-temporal Reasoning

Analysis of the activities developed in the Smart Home described in Section 5
are not made based on visual aids due to privacy issues. Instead it is conducted
based on the information obtained from the sensors. It is vital in this process
for the system to be aware of the places visited by the patient and the order of
events generated as well as their duration.

For example, in the list of events listed in the previous section it is fundamental
to the understanding of a situation to be able to consider in which order the
places where visited and realizing that by being in bed last the patient is now
in a passive position and hence is more likely to forget about taking care of
what has been left on the cooker. Detection of position can be achieved via the
movement sensors in each room; to disambiguate some situations tag detectors
on each door are needed.

Here it is important also to distinguish the patient from a visitor, pets, or
other moving objects like a curtain moved by the wind. Keeping a history of the
last movements of the patient can help to diagnose where the patient may be,
sometimes tag detectors are essential for this task but then different questions
arise, for example what does it mean if the patient stays for a long period of
time under the door, has the patient fallen or are they talking to someone else
in the house or perhaps they are having a rest?

Spatio-temporal reasoning is fundamental here to reason about where the pa-
tient can be and according to the time elapsed to diagnose if action is required on
behalf of the caring personnel. The whole situation of leaving the cooker on fol-
lowed by a period of time where the patient goes outside the kitchen leaving the
cooker unattended is a complex event, depending on the condition that it takes
more time than it is considered safe, this may or may not constitute a situation
of interest for the monitoring system. Here qualitative as well as quantitative
temporal reasoning is required to differentiate between these situations.

6.2 Temporal Granularity

Activities can be monitored at many different levels in terms of information
granularity. Choosing the right level of information granularity is not trivial and
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can have important consequences in terms of what the system can achieve and
how well it can perform in terms of efficiency.

In the list of activities presented in Section 5 sensors give information at
a particular level of granularity which we also related to a particular level of
temporal granularity. Let us say that data from the sensors are recorded each
second.

There are reasoning activities that may demand to analyze only one, two or
three successive activities and for that a few seconds are enough but to infer
a trend a much more global view spanning for several minutes or days may be
needed. For some diagnostic tasks low levels of time granularity are needed to
allow the system to infer that the patient is in regular movement because of the
speed at which they are moving through the successive rooms. But for other
diagnostic tasks a way of abstracting different views of the system in terms of
the different granularity levels of temporal information is very important, for
example to identify a pattern indicating loss of memory or disorientation in the
patient according to the frequency of episodes in which the patient left the cooker
unattended or the apparently random process of wandering through rooms.

6.3 Causal Reasoning

Certainly the relation between the actions performed by the patient and the
resulting states is a fundamental part of an automated diagnosis system how-
ever this issue has not yet been considered from the perspective of information
analysis in Smart Homes and is not clear, for example, what system will be most
effective in predicting possible outcomes given a trend of behaviour of a patient.

Suppose the cooker has no timer, it will stay on and if it persists in that
state for a sufficiently long time the food may be burnt with the consequent
frustration for the patient and the possibility of causing a fire and subsequently
generating a call to the fire brigade. Persistency coupled with causal reasoning
is fundamental here to predict possible outcomes and help the system to react
in order to avoid possible problems.

Also of relevance here is the detection of complex events. Although there
are some suggestions addressing this in the literature there is still no rigorous
study for the case of Smart Homes on what complex events turn out to be more
important, what characteristics the language to describe them should have and
what the associated algorithms for their detections should be.

6.4 Planning

Planning can also be applied to the use of Smart Homes for healthcare. For
example, according to the patient’s demands for medicines, a plan can be con-
structed regulating medication intake hence its application or realization by the
patient can be monitored by the system reporting instances of non-compliance
or significant deviations from the prescribed medication regimen.

A variation of the scenario presented in Section 5 can be conceived where
instead of the patient turning-on the cooker s/he takes some medicine. The
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system should monitor the medicine is taken within an appropriate time win-
dow, the frequency of its intakes, and if say, it has some side effects related
to sleep disorders then the time the patient stays in bed can also be carefully
observed.

6.5 Learning

Learning about the behaviour of the patient is essential in order to self-tune
the system to further support the personalized independence the Smart Home
can offer. Even when a system is prescribed for a Smart Home environment,
different patients will have different conditions and habits which have to be
taken into account for the system to be useful. For example, the normal time for
a patient to be in bed may be from 11PM to 7AM and s/he may be expected
every day to be up and active at 7:30 AM. Detecting this is not the case will
be a cause for concern, while for other patients 9AM will be the normal time
and being contacted at 7:30 AM by the nurse to check if they are well would be
inappropriate.

Data Mining is useful here in order to learn new information from the statistics
of the system, which can then be focused on a single patient, group of patients
sharing a specific condition, or in a more heterogeneous group of people using a
group of Smart Homes.

These learning capabilities are essential, for example, to assist a diagnostic
system using CBR or any other diagnosis technique where, for instance, repeti-
tion of activities like the one leaving the cooker unattended or a persisting shift
in habits will lead to a case being identified and suggested by the system.

6.6 Case-Based Reasoning

CBR can be used to identify patterns of patient behaviour. This can be used for
diagnosis of situations which need urgent reaction on behalf of the system.

As shifts in habits are detected and learned by the system CBR-based tech-
niques can be applied, for example, to diagnose when these shifts are similar or
dissimilar to patterns of behaviour which constitutes a reason for concern.

Sometimes deviations from the expected time for taking meals or going to bed
can be expected as daily activities can be changed by visits or exceptional events
which are not related to any health problem affecting the patient. Differentiating
these issues on the basis of contextual and historical information poses a real
challenge for a diagnostic system to give useful advice whilst minimizing the
chances of raising false alarms.

6.7 Decision Trees

Decision Trees may be used to monitor the sequence of events within the home
and allow the monitoring system to react accordingly, especially in instances
of concern where the person requires a form of intervention. Within the home
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environment it is common that sequences of events will be repeated, some of
which will lead to hazardous situations requiring intervention and others can be
considered as normal behaviour. These events, although occurring at different
instances in time, should result in similar resulting supporting actions by the
system. Although finite, it is possible to identify a large set of repeating actions
with moderately varying degrees of support required.

For example, when considering the scenario described in Section 5 by simply
turning the cooker on and going to bed requires a form of automated inter-
vention which could be considered as the terminating node of a branch of the
tree. Here utility-related weights can be used to tune the decision support sys-
tem about the risks involved when decisions to attend a possible emergency are
made. For example, there is a cost on attending false alarms on behalf of the
assisting personnel that has to be weighted against the risks involved if the call is
ignored. There will be different costs associated with attending different alerts.
For example, the system suggesting a possibility that the TV has been left on
has different risks involved than when it is suggesting the possibility that the
cooker has been left on.

Although the aforementioned are at the most simplistic levels they may be
supported by such an approach. More intricate sequences and outcomes can be
detected by longer term monitoring and profiling of activities which can be used
as the basis to form the decision model and where appropriate introduce the
notion of time.

6.8 Neural Networks

Neural Networks have long been established as powerful tools for classification
and prediction. The vast array of topologies and supervised and un-supervised
methods of learning offer the potential for a number of solutions to the manage-
ment and processing of information within the Smart Home. For example, from
a monitoring perspective Time Delay Neural Networks can be used to represent
temporal relationships and hence within the given context of Smart Homes be
used to predict likely activities of the person based on a preceding set of ac-
tions over time. Considering the scenario described in Section 5, the activities
of the person and their time dependencies can be used as continuous inputs to
the network and the output of the network can be trained to either automat-
ically ’turn off the cooker’ as in the scenario described in Section 5 or for a
more generic sequence of time related events, automatically raise an alarm to
the CMF.

6.9 Multi-agent Systems

MAS can be used as a development paradigm where a house is monitored for a
group of agents with different skills and duties. The application of agent-oriented
technology to healthcare is an area which is receiving increasing attention in the
research community.
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The scenario depicted in Section 5 can be assisted at a design level by including
MAS-related developing methodologies where different parts of the system are
seen as interacting agents with specific skills and monitoring duties. For example,
an agent can be designed to monitor activities in the kitchen and another in the
living and another in the bedroom or there can be agents specialized in different
types of sensors. Hence, while one is dealing with devices another is in charge of
movement monitoring sensors. Conclusions in the system can be reached after
deliberation of different agents and using different techniques related to the
representation of consensus and disagreement.

7 Conclusions

We present our view in this article which relates to the fact that much more needs
and can be performed in terms of equipping Smart Home systems with advanced
reasoning capabilities. Increasing the functionality of the available hardware with
computational intelligence techniques will have the resultant effect of increasing
the complexity of contexts to be understood, increasing the capabilities of the
system to identify interesting situations, for example hazards, and to offer the
ability of the system to react in a more appropriate way in terms of the quality
of judgment.

We describe problems where a system should be able to intelligently detect a
particular situation of interest and react intelligently and identified how tradi-
tional areas in AI can provide answers from dfferent perspectives to these prob-
lems. We hope this analysis will inspire, motivate and guide the development of
the next generation of truly Smart Homes.
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Abstract. An important aspect in smart homes is the ability to reason
about space and time. Certain things have to be done at certain times or
at certain places, or they have to be done in relation with other things.
For example, it might be necessary to switch on the lights in a room
during the night and while a person is present in that room, but not
if the room is the bedroom and the person is asleep. In this chapter,
we discuss several AI-techniques for dealing with temporal and spatial
knowledge in smart homes, mainly focussing on qualitative approaches
to spatiotemporal reasoning.

1 Introduction and Motivation

Reasoning about space and time plays an essential role in our everyday lives:
when navigating around our cities through road networks, when working accord-
ing to schedules at our work places, or when finding our way around at home.
In the latter case, smart homes can support us in this reasoning process, as they
can remind us to do certain things at certain times or to be at certain places at
certain times. This is of particular benefit for the elderly or people with cognitive
impairments.

In a recent article in the AI Magazine [1], Martha Pollack paints the picture
of an aging world, which experiences a demographic shift from a population with
mainly relatively young people to one with many old people. Some of these need
assistance if they want to be able to continue living in the homes they are used to.
As an example of such an assistance, Pollack describes the Autominder system,
which uses temporal reasoning in its plan manager. Temporal reasoning in this
system is based on temporal constraints, for example, the time interval reserved
for eating breakfast cannot overlap the interval set aside for taking a bath.
When constructing a plan for the day, the system has to produce a plan that
is consistent with the constraints, i.e. it has to assign time intervals to various
activities in such a way that the intervals satisfy the temporal constraints.

Pollack’s Autominder system is just one example of how temporal, spatial,
and spatiotemporal approaches impact smart homes. Another one is the SLAM
(simultaneous localisation and mapping) problem [2], which occurs in smart

J.C. Augusto and C.D. Nugent (Eds.): Designing Smart Homes, LNAI 4008, pp. 16–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Spatiotemporal Reasoning for Smart Homes 17

home to some extent. When an elderly person moves around in the house, her
position cannot be determined with 100% accuracy, as one can hardly make the
person wear sensor gloves, or any other technical equipment which is probably
difficult to manage, but which is necessary in order to determine her position.
Therefore, one has to rely on external sensor information, which means that
there is a localisation problem. Additionally, the environment is usually not
known completely. The layout of the rooms in the house might not change, but
chairs can be moved around, doors can be opened or shut, etc., which means
that there is also a mapping problem.

In robotics, SLAM problems are usually tackled with probabilistic approaches,
which often require complex computations. We argue that in the context of
smart homes, more light-weight approaches can be used, which for some prob-
lems can be restricted to qualitative approaches. Some of these approaches are
based on topology, while others use spatial arrangements. The following section
will discuss in more detail why qualitative approaches are often preferred over
quantitative ones.

2 Qualitative vs. Quantitative Approaches

Reasoning about time and space in AI is always related to the ways in which hu-
man beings deal with time and space in their everyday life. This is different, for
example, in physics where we are normally interested in the precise spatiotem-
poral behaviour of systems. Instead of precise measurements, in AI qualitative
knowledge is employed and there are a number of reasons for this:

1. Binary decisions are frequently to be made, requiring a concise spatiotempo-
ral assessment of the state of affairs, instead of precise measurements about
space and time.

2. Coarse preliminary decisions are useful in planning since the world changes
all the time. It makes no sense that an AI-system commits itself too early
to precise spatiotemporal conditions.

3. Coarse qualitative representations frequently suffice for solving some prob-
lems which do not require precise measurements at all (before the elderly
lies down in bed she has to take her medicine).

4. The usage of a number of qualitative distinctions leads to more efficient
reasoning techniques than when using precise quantities and variables with
continuous domains.

5. Actions are to be performed in space and time; for this purpose, additional
knowledge beyond space and time must be integrated with the present spa-
tiotemporal conditions (the preparation of a meal includes a list of ingredi-
ents, the order of their treatment, and information about how to combine
them correctly). This knowledge is normally available in the form of symbolic
representations which can be reconciled particularly well with spatiotempo-
ral knowledge which is given qualitatively.

As we shall learn in the following sections, this rationale in particular applies
to smart homes in which means for helping people are to be provided. Both
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temporal knowledge and spatial knowledge are expressible in terms of defini-
tions about qualitative concepts which meet in a number of qualitative calculi,
all of which share fundamental structural similarities. These calculi, in the first
place, improve the efficiency of AI-systems and their modelling. However, when-
ever precise, quantitative information matters for the purpose of solving specific
spatial problems, we refer to the field of computational geometry (cf. [3], [4]).

3 Temporal Calculi

Although there is a spectrum of approaches to temporal reasoning, two ap-
proaches within this spectrum stick out from the rest and are frequently referred
to in applications: Allen’s temporal logic [5] and the point algebra [6]. In the fol-
lowing subsections, we review these approaches and apply them to problems
occurring in smart homes.

3.1 Allen’s Temporal Logic

Instead of dealing with time points, it is common practice to describe scenarios
by intervals which last over a period of time, and which describe specific events.
Allen [5] introduced a temporal logic based on a set of thirteen atomic tem-
poral relations between time intervals (see Figure 1). These relations are used
to describe how an event relates to another event. For example, the event of a
sensor in a room being triggered occurs during the event of a person being in
that room. Or the event of the door to the room being opened occurs before the
event of the person entering the room. If I1 denotes the time intervals in which
the door-opening event occurs, I2 the one for the person-in-room event, and I3
the one for sensor-triggering event, then we would have the following relations:

I1<I2 and I2diI3

Together with the 13 relations depicted in Figure 1, Allen introduced an algo-
rithm to reason about networks of such relations. The basis of Allen’s algorithm
is a composition table, which determines the possible relations between two in-
tervals like I1 and I3 given the relations between I1 and another interval I2
as well as the relation between I2 and I3. The composition table is shown in
Figure 2.

If, for example, the door to the room is opened (I1) before the person is in
the room (I2) and the sensor is triggered (I3) during the person’s presence in
the room, then the composition table tells us that the door is opened before the
sensor is triggered:

I1<I2 and I2diI3 then I1<I3

If we then learn that the event of the sensor being triggered overlaps with the
event of an automatic phone call being made to a helpline (represented by I4),
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Relation Illustration Interpretation

I1<I2
I1 I1 before I2

I2>I1
I2 I2 after I1

I1mI2
I1 I1 meets I2

I2miI1
I2 I2 met by I1

I1oI2
I1 I1 overlaps I2

I2oiI1
I2 I2 overlapped by I1

I1sI2
I1 I1 starts I2

I2siI1
I2 I2 started by I1

I1dI2
I1 I1 during I2

I2diI1
I2 I2 contains I1

I1fI2
I1 I1 finishes I2

I2fiI1
I2 I2 finished by I1

I1=I2
I1 I1 equals I2
I2

Fig. 1. Allen’s thirteen atomic relations

we can conclude that the event of the person being in the room either overlaps
the phone call, is finished by the phone call, or contains the phone call:

I2diI3 and I3oI3 then I1{o, fi, di}I3

A set of possible relations such as {o, fi, di} is also called a non-atomic Allen
relation.

Non-atomic Allen relations provide a way to express uncertainty (which we
discuss in detail in Section 5). Although in principle any subset of the 13 Allen
relations is a non-atomic Allen relation, it is often the case that a non-atomic
Allen relation is a set of relations that is connected under the neighbourhood
relation. Whether or not a relation is a neighbour of another relation depends
on the conceptual distance between the relations.
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Fig. 2. Allen’s composition table including = as arranged in [7]. The entry at row r1

and column r2 in the table denotes the possible relations between O1 and O3, assuming
that O1r1O2 and O2r2O3.

Given a particular interval relation, the other relations can be put in a partial
order that indicates the conceptual distance between the given relation and each
of the other relations [7]. For example, if two intervals are in relation m, then by
moving or deforming the intervals slightly, we can change this relation to < or o.
Therefore, < and o are conceptual neighbours of m. The relation f, for example,
is not a conceptual neighbour of m, as f cannot be obtained from m by deforming
or moving objects without passing through any third relation.
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Fig. 3. The thirteen Allen relations arranged in conceptual neighbourhood structures

Freksa [7] distinguishes three different neighbourhood structures (A-, B-, and
C-neighbours), depending on how intervals are allowed to be changed. If exactly
one endpoint of one of the intervals is allowed to be moved whereas all other
endpoints are fixed, we obtain the A-neighbour relation – this corresponds to
an asymmetrical deformation. If the length of both intervals is fixed and we are
allowed to move complete intervals, we obtain the B-neighbour relations. If we
leave the location of intervals fixed at their midpoints and allow their length to
vary, we obtain the C-neighbour relation – this corresponds to a symmetrical
deformation. Figure 3

shows these neighbourhood graphs. For example, if the objects can be moved
but not deformed, s is not a conceptual neighbour of =. However, if we allow for
deformations, s and = are neighbours. Given a particular neighbourhood graph,
the conceptual distance between two relations in that graph is defined as the
length of the shortest path between the relations.

For example, if a person is supposed to take his or her medication (represented
by I1) before dinner (represented by I2), then we would introduce a temporal
constraint in our smart home scheduling system of the form I1<I2. This con-
straint, however, might sometimes be too strict, which means that we might
want to include a neighbouring relation in the constraint:

I1{<, m}I2

Given a set of intervals and a set of interval relations (non-atomic relations or
Allen relations) between these intervals, the purpose of Allen’s algorithm is to
remove inconsistent relations. It does this by repeatedly selecting three intervals
from the set of all intervals and examining the interval relations between the
selected intervals. The examination is performed by checking for each Allen
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relation in the third interval relation whether that relation can be obtained
by concatenating an Allen relation from the first interval relation with an Allen
relation from the second interval relation. If this is not the case, the Allen relation
is removed from the third interval relation. Allen’s algorithm terminates when
no three intervals can be found anymore for which the examination of their
relations leads to a change.

The result of applying Allen’s algorithm to a network of interval relations is a
locally consistent network of relations, which means that every triplet of relations
is consistent with respect to the composition table, i.e. this is a path-consistent
network. This does not mean that the network is globally consistent: it might
not be possible to select an Allen relation from each interval relation such that
the selected Allen relations form a consistent network of relations. This task is in
general more complex and requires an algorithm whose runtime performance is
exponential in the worst case (and not cubic, as in the case of Allen’s algorithm).
Researchers have recognised this problem and have suggested an alternative
approach to solve it. The next subsection introduces this alternative approach,
and [8] identify a number of tractable subalgebras and discuss complexity issues
on the satisfiability on these algebras.

3.2 The Point Algebra

Not long after the publication of Allen’s interval logic, Vilain and Kautz pub-
lished a paper on constraint propagation algorithms for temporal reasoning [6],
in which they proved the intractability of the interval logic and introduced the
point algebra as a tractable alternative. The point algebra uses time points rather
than time intervals for comparison. Given two points in time, P1 and P2, either
of three relations can hold between the points. These relations are depicted in
Figure 4.

Relation Illustration Interpretation

P1 < P2
P1• P2• P1 precedes P2

P1 = P2
P1• P1 same as P2
P2•

P1 > P2
P2• P1• P1 follows P2

Fig. 4. The three different point relations from the point algebra
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Point relations can be used in a similar way as interval relations. For example,
the time point at which we start to open the door precedes the time point at
which we commence entering the room. In fact, Vilain and Kautz pointed out
that many interval relations can be expressed as point relations by using the
starting and finishing endpoints of the intervals:

Interval relation Corresponding point relations

I1dI2 I1 > I2 ∧ I1 < I2 ∧ I1 < I1 ∧ I2 < I2

I1{<, m, o}I2 I1 < I2 ∧ I1 < I2 ∧ I1 < I1 ∧ I2 < I2

In the table above, Ij and Ij represent the starting endpoint, respectively fin-
ishing endpoint, of the interval Ij .

The interval relations that can be expressed in terms of point relations are
usually referred to as pointisable interval relations. Of course, not every interval
relation is pointisable, or else the interval logic would be tractable. The relation
I1{<, >}I2, for example, cannot be expressed as a set of point relations on the
interval endpoints.

In the following section, it will become apparent that fundamental ideas which
we have been discussed in the context of temporal reasoning are the same in
spatial reasoning.

4 Spatial Calculi

There exist a number of calculi for reasoning about space. These calculi can
be classified regarding their degree of precision, with topology at one extreme
and Euclidean geometry at the other. As we shall learn in the current section,
topological approaches and those which are based on ordering information are
particularly useful in the context of smart homes, or more generally, in the
context of room space; [9] surveys other kinds of spatial scales.

4.1 Topology

Topological relations, which describe the most abstract geometric concepts, are
already sufficient for the purpose of representing which rooms link to other rooms
by passages. While rooms are represented by the nodes of a topological net, edges
correspond to the passages. As soon as specific regions and their relationships
are to be described, more sophisticated representations are required. The same
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TV

sofa
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chair

door

Fig. 5. A number of regions determining the spatial context in a living room and
hallway - black regions are fixed, dark grey regions correspond to objects which can be
removed, and bright regions (white and bright grey) can be occupied by people
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Fig. 6. The RCC8 relations arranged in a graph showing the conceptual neighbours

net allows the whereabouts of people to be represented. Regions in the present
application context correspond to rooms, passages between rooms, or specific
sub-regions dividing up a room into a number of (not necessarily disjoint) areas
and places. Places correspond to specific regions which are connected to a land-
mark (a specific identifier, such as the TV or window); areas on the other hand
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are less specific and refer to regions without landmarks. For instance, places cor-
respond to the whereabouts of furniture, and the less specific areas correspond
to those regions which can be occupied by objects and which can especially be
passed by people. Each path through areas of the flat can then be described in
terms of a number of landmarks which mark that path.

Topological relations for the purpose of spatial reasoning have been proposed
by Randell, Cui, and Cohn [10] and by Egenhofer and Franzosa [11]. Randell, Cui,
and Cohn define different dyadic relations between extended regions. In their
Region Connection Calculus (RCC for short), they have chosen an axiomatic
formalisation based on the binary predicate C(x, y), which indicates whether
two regions x and y are connected or not. Egenhofer and Franzosa derived their
formalisation by considering the intersections of boundaries and interiors for two
regions. This approach is therefore called the 4-intersection calculus. Considering
the interior, boundary, and complement the relationship between two regions can
be characterised by a 3x3-matrix called the 9-intersection. Both RCC and the
9-intersection calculus define topological relations between two regions, such as
those depicted in Figure 6. These relations allow the spatial context of the flat
in Figure 5 to be characterised. Some of these relations are:

{EC(living room, hallway), PO(passage, living room), PO(passage, hallway),
TPP(window, living room), TPP(shelf, living room), TPP(sofa, living room),
TPP(light-cone, living room), PO(light-cone, passage), TPP(sofa, light-cone),
NTPP(chair1, light-cone), NTPP(chair2, light-cone), NTPP(table, light-cone)}

The same constraint satisfaction algorithm which has been proposed by Allen
can be applied to these relations, since Allen’s algorithm works for all those sys-
tems which define a number of jointly exhaustive and pairwise disjoint relations
regarding some dimension, such as relations between events in time or between
regions in two-dimensional space. That a set of relations are jointly exhaustive
means that there exists no undefined relation between two objects regarding the
considered dimension; that they are pairwise disjoint refers to the fact that there
exists at most one relation for any given pair of objects, in this way, guaranteeing
that every determined relation can be unambiguously described. In qualitative
reasoning we attach great value to sets of jepd -relations, as they are referred to
in short form.

By means of the topological relations of the RCC calculus alone (1.) or to-
gether with knowledge about time and further background knowledge (2.-3.) a
number of inferences can be made:

1. NTPP(chair1, light-cone) ∧ TPP(light-cone, living room) → NTPP(chair1,
living room)

2. If a sensor detects a person in the area of the light-cone, and if, after a short
period of time, another sensor detects a person in the hallway, whereas the
passage sensor did not detect anything in the meantime, it can be concluded
that there are either two persons in the flat (one in the living room, the
other one in the hallway), or that the sensor in the passage is out of order.
The latter holds if the system knows there is only one person in the flat.
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3. From the knowledge that a wheelchair enters the light-cone, it can be inferred
that the chairs, the table, and the sofa are potential obstacles, whereas the
shelf and the television are outside of the wheelchair’s scope.

If more precise knowledge matters, for instance, in order to take into account
the arrangement of obstacles, ordering information about objects becomes im-
portant.

4.2 Spatial Arrangements

Cardinal directions are frequently employed in spatial reasoning (mainly in ge-
ography), but they are inconvenient in room space. Instead, the layout of the
apartment and the arrangements of furniture and other objects define the cur-
rent spatial context relative to which spatial problems should be defined in room
space.

Spatial arrangements between objects can be described by generalising Allen’s
relations (see section 3.1). In [12] an external reference frame is used relative to
which positions are described. It is proposed to project orthogonally the end-
points of objects on both the axis of abscissae and the axis of ordinates. Allen’s
relations and his reasoning methods can then be used for describing the order
of objects regarding both dimensions. It is then, for instance, possible to deter-
mine that there is one chair between the table and the window (regardless of
what there else is between that chair and the window), and that there is another
chair between the shelf and the table (compare Figure 5). This allows an order-
ing of obstacles to be determined which a wheelchair has to pass when being
programmed to drive from the kitchen to the television. Precise measurements
are only required as soon as local decisions are to be made, for example, to
test whether the wheelchair fits through the gap between window and chair —
a local decision which can generally entail a lot of changes, though not in this
case, since the chair is not attached to the floor, so it can be pushed aside. The
idea of suspending local decisions is in accordance with [13] in which is shown
the effectiveness of hierarchical planning with detailed decisions being delayed
as long as possible until a high level plan has been achieved.

[12] is limited to adequately representing those objects which are aligned with
the axes of the underlying reference frame. In order to capture all possible two-
dimensional relationships between disconnected objects in room space, another
generalisation of Allen has been introduced in [14]. This approach defines re-
lations which are depicted in Figure 7, and which allow arrangements between
arbitrarily aligned objects to be described at the same granularity level as Allen.
Rather than using external frames of references, approaches like this one make
use of intrinsic reference systems, that is, objects themselves define a spatial
context relative to which other objects can be described. As a consequence,
the ordering between arbitrarily aligned furniture and other objects can be ade-
quately considered. For instance, the spatial relation in front of the TV can then
correctly be represented, and so can alignments between the oblique light-cone
and other objects (compare Figure 5).
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Fig. 7. Interval relations embedded in two dimensions, arranged in their neighbourhood
graph; the vertical reference interval is displayed bold; a mnemonic code on the right

As with the RCC calculus a number of inferences can be made with these
relations:

1. Dl(chair1, table) ∧ Cr(sofa, table) → Dl(chair1, sofa)
2. As the TV is slanted with respect to the room, and as its orientation can

be defined in a way that its front points to the window, it can be inferred
that daylight comes from the right when sitting on the sofa or on one of the
chairs and looking to the TV. If this arrangement is unfavourable another
arrangement can be found, by formulating appropriate constraints which
determine appropriate conditions, for instance, that daylight must not shine
onto the TV: not Dl(TV, window).

3. From the knowledge that a wheelchair enters the living room, it can be
inferred that one of the chairs poses a threat within the given arrangement
of furniture, if the wheelchair is programmed to drive to the shelf; compare
the less accurate conclusion at the topological level in the previous section.
For the position of this chair, and if both the shelf and the passage is defined
to be oriented upwards regarding the image plane, it holds that Dr(chair,
schelf) and Dl(chair, passage). As a consequence, it is probable that the
chair lies on the path between the passage and the shelf.

Like in this example, arrangement information is particularly useful for robot
navigation, as has been shown in [15]. Navigating through a furnished environ-
ment amounts to crossing virtual lines connecting specific furniture or other
landmarks found in the house. The wheelchair can be programmed in terms of
those landmarks and in terms of virtual lines it has to pass in order to find
its way from the kitchen to the television. Further approaches which relate to
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arrangement information applicable in room space are found in [16] and [17], as
well as [18] and [19] which relate more to orientation information.

4.3 Distances and Sizes

So far we have considered a number of spatial relations between regions and
objects. In doing so we neglected distances between objects and also their size.
It shows that often precise distances and sizes are unnecessary for the purpose of
making abstract spatial decisions. For instance, in order to provide the elderly a
seating-accommodation the nearest object must be found — this can be a chair,
the sofa, or the bed. The smart system has to decide which of these objects
is nearest to the fatigued person for providing her help to get to the seating.
A simple distance metric such as the one from [20] suffices for these purposes.
Here, directions are combined with simple distance information, such as far and
close.

Spatial representations of distances can be divided up into those which mea-
sure on absolute scales, and those like in the former example which use relative
measurements. Absolute scales are mainly necessary when precise local manoeu-
vre are executed. A combination of these kinds of approaches is the delta calculus
[21] which introduces a triadic relation: x(>, d)y indicating that x is larger than
y by an amount d. For instance, living room(>, 1.2)light-cone indicates that
daylight pervades most of the living room. This is of importance for the sys-
tem’s knowledge base which has to adapt the sensitivity of the motion sensors
accordingly when the sun is shining. That is, the delta calculus allows qualitative
statements about sizes of regions and objects to be described.

4.4 Activity Patterns

There are also issues which relate to both space and time. Whenever people move
around, for example, they perform specific patterns of movement-activity which
we refer to as activity patterns. Whereas the consideration of patterns and shapes
is generally an important issue in spatial reasoning, it is frequently sufficient to
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− − − − −−
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Fig. 8. Six primitives distinguished by T LT arranged in a neighbourhood graph
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Fig. 9. Two different activity patterns: the left hand side shows a goal-oriented
behaviour; by contrast, the right hand side shows a seeking-like pattern

Fig. 10. Depending on its size the same T LT relation refers to two different meanings.
On the left hand side, it shows a running to and fro in the passage, on the right hand
side it shows a large arc around the lounge (extending even the large light cone).

abstract away precise shapes, confining oneself to points and describing their
relative positions [19], using bounding boxes [22], or convex hulls ([23], [24]).
Since for privacy issues no cameras are used in the current application setting,
object recognition (which would involve shape) is not employed and we can
confine the discussion about shapes to activity patterns.

When atypical behaviours are to be distinguished from normal behaviours
activity patterns come into play. For this purpose it does not matter to precisely
record each movement. It is rather necessary to provide means for obtaining
the overall activity of a person, and to qualitatively distinguish a number of
clearly different patterns. Such patterns are then used to recognise, for example,
goal-oriented, seeking, and chaotic activities, and they thus trigger appropriate
support, or provide assurance that the elder is performing normally, or assess the
elder’s cognitive status. Figure 8 from [25] shows a number of jointly exhaustive
and pairwise disjoint pattern-primitives using which it is possible to characterise
trajectories. Whereas trajectories which are made up of T LT (6) and T LT (14)
relations show rather goal-oriented patterns, chaotic activities of confused elderly
are related to T LT (1) and T LT (9) which show more compact movements as
when running to and fro. Combinations of these primitives allow arbitrarily long
activity patterns to be characterised. Figure 9 shows two examples.

The characterisation of activity patterns can be improved by topological rela-
tions between regions and pattern primitives, in that there is a difference whether
a T LT (9)-relation is contained in a region or extends outside that same region
(compare Figure 10). In the former case such a relation could indicate a hectic
running to and fro, whereas in the latter case a T LT (9)-relation could refer to a
circle-like path indicating, for example, a systematic search. Describing primitive
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activity patterns by spatial arrangements and using information about distances,
even more sophisticated patterns can be distinguished.

Besides movement patterns, there are also hand gestures conceivable which
form specific activity patterns and which can be employed for easily instructing
devices, for instance, for the purpose of easily opening doors and windows, or
for switching on and off devices such as coffee machine and dish washer. Hand
gestures are comparable to graphical gestures as employed for easily instructing
a personal digital assistant. They are carried out in front of the device without
the need for touching it, thus not requiring to reach the respective device which
is probably not easily accessible.

4.5 Combining Space and Time

Although activity patterns already bring together spatial and temporal aspects,
in this context we have still treated them individually. Clearly, this will suffice
most of the smart home utilities conceivable. But for the sake of completeness
let us also refer to some work in which space and time is combined more closely.
Instead of considering space and time separately, [26] combine the two by bring-
ing in the consideration of the continuity of motion. They formalise the intuitive
notion of spatiotemporal continuity and provide a qualitative theory of motion.
[27] and [28] address similar issues about continuity, namely what it implies for
a commonsense theory of motion. [27] characterises continuity as a set of log-
ical constraints on transitions in a temporal framework, while [28] proposes a
mereotopological theory of space-time.

5 Handling Spatiotemporal Uncertainty

Though defining different sets of relations, the approaches introduced in the
previous sections have in common that they provide structures for dealing with
imprecise and incomplete data in a specific way. Both the temporal and the
spatial calculi define finite sets of qualitative relations (such as <, m, and o). Each
of these relations subsumes infinitely many metrically distinguishable situations.
By this means they are robust against small changes, generally not changing
the qualitative concept at hand. On the other hand, if the situation is close
to two different relations (<and m) we are always concerned with conceptually
neighbouring relations which are also semantically close to each other. As a
consequence imprecision is dealt with by conceptual neighbourhood graphs such
as those depicted in Figs. 3, 6, 7, and 8. Either the relation given is true, or one
of the relations in its neighbourhood.

Incompleteness is treated as follows. If nothing can be said about the spatial or
temporal relation between two objects, all relations are to be taken into account
(this is the universal relation). If a subset of all relations is known the descrip-
tion is not completely undetermined but still incomplete. In this case, however,
known relations can be used for deriving possible relations for the unknown de-
pendencies. For this purpose, one has to proceed as described in Section 3.1. At
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first, the universal relation is taken as the domain of unknown relations (between
two objects); after that, triples of objects are considered in order to find pairs of
relations which are consistent between three objects. Inconsistent relations are
deleted from the domains, allowing the domains of unknown dependencies to be
restricted by propagating knowledge about known relations.

Another way to handle uncertainty is to use different granularities: the more
uncertain the spatiotemporal information, the coarser the granularity of the de-
scription. One way to express granularities in the time domain is discussed in
the next chapter [29]. Yet another way of dealing with uncertain temporal and
spatial knowledge, namely with fuzzy knowledge, is shown in [30]. There, con-
ceptual neighbourhood graphs are employed for determining membership values
for the purpose of fuzzy qualitative reasoning. This becomes of interest when
regions are to be used which gradually diminish towards their surrounding en-
vironments. Among other things, this concerns light, draught, odours, and the
scope of sensors. Essentially, the algorithms for fuzzy reasoning are the same
as those described in Section 3.1. There are only some modifications necessary
which are outlined in [31] and [32]. The idea behind the fuzzy algorithms is
to replace the standard set operations, which build the basis for Allen’s algo-
rithm, with their fuzzy counterparts. Rather than removing inconsistent atomic
relations from the set of interval relations, the fuzzy algorithms change the mem-
bership grades associated with the atomic relations.

Eventually, another author who deals with fuzzy representations is [33]. He
compares fuzzy and qualitative approaches with a specific emphasis on the rep-
resentation of distance information. He also discusses their relation to linguistic
and cognitive issues, and how well each of them models human perception and
expression of distance information, which may be of particular interest for the
purpose of modelling how humans deal with distance information in their smart
home. For a general and thorough discussion on Fuzzy techniques and AI we
refer to [34].

6 Conclusion

In this chapter we presented AI-techniques for dealing with temporal and spatial
knowledge in smart homes. Having their seeds in Allen’s approach [5], in the last
fifteen years a number of calculi have been proposed from which many still rely
on the same reasoning mechanisms as Allen’s algorithm (see section 3.1). In the
meantime, improvements have been made, among other things, concerning the
efficiency with the aid of neighbourhood based reasoning [7], and concerning soft
computing by incorporating fuzziness into qualitative approaches [30]. Further
on, many different qualitative reasoning approaches have been devised, focusing
on different application areas, scales, or spatial dimensions, such as shape [23],
size [21], discussing ontological issues [35], or considering even spatiotemporal
combinations [28]. A domain-independent overview of qualitative spatial and
temporal approaches is provided by [36].
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While most approaches in spatial reasoning are motivated by problems arising
in geography and navigation, we have shown here how such approaches can be
employed in smart homes. This is a challenging issue insofar as smart homes are
defined at quite a different spatial scale than geographical objects, demanding
the distinction between room space and geographic space. In room space, besides
topological approaches, spatial arrangements become important, whereas topo-
logy sometimes suffices in geographical information systems. By contrast, there
is no difference in applying temporal reasoning to room space or to other spatial
scales — temporal reasoning is more abstract than spatial reasoning, though
spatial reasoning is more complex. In the future, advances in the context of
smart homes and also the conquest of other areas might put further challenges
to the field of spatiotemporal reasoning in AI, not later than when smart homes
become inhabited by smart service robots.
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Abstract. In this chapter, we propose a logic-based approach to de-
scribe temporal constraints with multiple time granularities related to
events occurring in Smart Homes. We identify a time granularity as a
(possibly) infinite sequence of time points properly labeled with propo-
sitional symbols marking the starting and the ending points of each
granule. In particular, sensor granularities describe time intervals during
which Smart Home sensors are in the state “ON”. Both time and sensor
granularities and temporal constraints are expressed by means of PPLTL
formulae. Temporal constraints for Smart Home are satisfied when the
specific relationships between time/sensor granularities, involved in the
described constraints, hold.

1 Introduction

Every day, we show the ability to represent temporal knowledge of actions and
events (more generally, facts) in the world in order to model causation, construct
complex plans, anticipate possible outcomes of actions. Usually facts can be
temporally characterized by means of the valid time dimension [26], which allows
one to represent the time when the fact is true in the reality. For example, if a
person turns on the cooker on July 17, 2005 at 12:00 and she turns off it at 12:45
of the same day, then the valid time of the fact “the cooker is ON” is represented
by means of the time interval [2005July17 12:00, 2005July17 12:45].

The temporal units, used to specify the temporal validity of facts, are time
granularities ; any time granularity can be viewed as a partition of a time domain
in groups of indivisible elements (granules). For example, by considering the time
interval [12:00, 12:45] regarding to the fact “the cooker is ON”, we can note that
it is defined with respect to the bottom granularity of minute; bottom granularity
represents the minimal granularity for a particular application.

The ability of providing and relating the temporal representation of facts at
different levels of granularity is an important research theme in computer science
and, in particular, in the database area [4, 14, 18, 41].

In this area, one of the earliest formalization of the concept of time granular-
ities is described in [14]. The possibility of describing temporal constraints on
data stored in a database and possibly related to user defined calendars (i.e.,
sets of granularities), is a very interesting topic which has been studied in several
papers [8, 17, 18, 35, 38, 43, 44, 45].
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Other relevant works on time granularities has been done in the context of
classical and temporal logics [11, 31, 32, 33] and some of these works have been
applied to the verification of real-time system specifications and to temporal
reasoning in the artificial intelligence area. In this context, several problems
of scheduling, planning, diagnosis, and natural language understanding often
involve different time granularities [21, 24, 27, 29, 30, 39, 41].

The representation and reasoning about temporal constraints related to sev-
eral granularities is very important also for Smart Home applications, which
are applications related to environments which are capable to react “in an in-
telligent way” to some occurring situations [2, 3, 23, 42]. Smart Home is a term
commonly used to denote a residence that uses a home controller to integrate
various automation systems. A Smart Home is usually equipped with a set of
sensors, such as movement sensors, smoke alarm, and device sensors; a central
monitoring facility is able to detect all sensors and alarm events. Several projects
deal with the design of Smart Home architectures [1, 23], and some works focus
on formal specifications for Smart Home applications [2, 3].

In this context, the goal is to define an intelligent system which is able to an-
ticipate, predict, and take decisions with autonomy. In particular, the modeling
of temporal events occurring in a Smart Home and related to the people with
some disabilities (for example, cognitive disabilities) and elderly people is an
important question [42]. Temporal constraints possibly related to different time
granularities could model “normal” activities; if a temporal constraint is not
satisfied, then a potential “abnormal” or “critical” situation may occur inside
the house.

In this chapter we focus our attention on the description of temporal con-
straints for Smart Homes. We adopt a logic-based approach to describe tempo-
ral constraints with multiple time granularities related to events occurring in
Smart Homes. We identify a time granularity as an infinite sequence of time
points properly labeled with propositional symbols marking the starting and the
ending points of each granule. Moreover, we identify sensor granularities which
allow one to describe time intervals during which sensors are in the state “ON”;
granules of a sensor granularity describe the time intervals related to the valid-
ity of the considered sensor. Both time and sensor granularities, and temporal
constraints are expressed by means of logical PPLTL formulae.

For example, a temporal constraint we can model by means of our framework
allows one to describe that “the cooker cannot be turned on if the person is
not at the kitchen”. During a “normal” behavior with respect to the considered
constraint, the person goes into the kitchen and then he turn on the cooker; in
an “abnormal” situation, the cooker changes its state from OFF to ON even
if nobody is in the kitchen. As we will show in the following, temporal prop-
erties related to sensor granularities require specific relationships between the
granularities involved in the constraint.

Structure of the Chapter. Section 2 introduces the basic notions about time
granularities with particular emphasis on relationships between granularities.



Temporal Constraints with Multiple Granularities in Smart Homes 37

In Section 3, we consider the context of Smart Homes and highlight why it is
important to describe temporal constraints related to multiple granularities in
order to detect undesirable situations which may occur in the house.

Section 4 introduces a logical framework for the description of time granu-
larities and, in Section 5, we extend the framework to the description of sensor
granularities, which can be considered as time granularities associated to the
state “ON” of Smart Home sensors. In this way, temporal constraints related
to events occurring in a Smart Home can be described by means of specific
constraints between sensors granularities.

In Section 6, we discuss the problem of checking temporal constraints on our
logical framework and we propose an evaluation of the computational complex-
ity of the constraint checking phase related to the well-known results of model
checking problems for PPLTL.

In Section 7, we consider the advantages and limitations of our proposal with
respect to other approaches for the specification and verification of temporal
constraints. Section 8 reports the conclusions.

2 Background: Time Granularities

A time granularity can be perceived as a partition of a temporal domain in
groups of indivisible units called granules. Granularities are, for example, Day,
Month, and WorkingDay, which correspond to the usual partition on the timeline.
By using these granules it is possible to describe a fact providing a temporal
qualification.

The standard definition [16] of time granularity is the following.

Definition 1. A granularity is a mapping G : N → 2N such that:

1. for all i < j, for any n ∈ G(i) and m ∈ G(j), n < m;
2. for all i < j, if G(j) �= ∅, then G(i) �= ∅.

The domain of a granularity G is called index set and an element of the codomain
of G is called a granule. The first condition of the definition states that granules
in a granularity do not overlaps and that their order is the same as their time
domain order. The second condition states that the subset of the index set that
maps to nonempty granules forms an initial segment.

The reported definition of time granularity specializes the definition given
in [4], assuming that both the index set and the time domain are the linear
discrete domain (N, <).

Most approaches proposed in the literature for representing and reasoning
about time granularities can be classified into algebraic approaches and logical
ones [16]. In the algebraic framework, a bottom granularity is assumed, and a
finite set of operators are introduced in order to create new granularities by
manipulating other granularities [5, 21, 35, 36]. In the logical framework for time
granularities, the different granularities and their relationships are described
by means of suitable mathematical structures (layered structures); these struc-
tures allow one to represent a possibly infinite set of related differently-grained
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temporal domains. Suitable operators make it possible to move within a given
temporal domain and across temporal domains. Temporal properties involving
different time granularities are expressed by means of logical formulae by mixing
such operators [22, 31, 33, 34].

2.1 Properties of Time Granularities

By considering the features of the partition that a time granularity induces over
the timeline, we can define the following properties.

Definition 2. A granularity G is said [4]:

– externally continuous, if there are no gaps between its nonempty granules;
– internally continuous, if there are no gaps inside its granules;
– continuous, if it is both internally and externally continuous;
– total, if the granules of G cover all the time domain;
– uniform, if all the nonempty granules of G have the same cardinality.

For example, with reference to the time granularities of the Gregorian calendar,
the granularity Day is continuous, uniform and total; granularities Month and
Year are not uniform, YearSince2002 is not total, BusinessWeek is not externally
continuous, and BusinessMonth is not internally continuous.

The organization of human activities often deals with a temporal context,
which is expressed in terms of an appropriate time granularity. New kinds of time
granularities can be defined in order to characterize the time intervals devoted
to working activities. For example, WorkingDay represents a time interval during
which some kind of working activity is performed and specifically it describes
a set of hours within a day. Different from the granularity Day, we can observe
that there is a gap between two consecutive working days and this means that
the granularity WorkingDay is not externally continuous.

2.2 Relationships Between Time Granularities

In a granularity system (i.e., a set of granularities), it is important to identify the
relationships between granularities defined on the same domain. For example,
by observing the granularities Day and WorkingDay, we can observe that each
working day is contained in a day.

A number of meaningful relationships [36] can be established between pairs
of time granularities G1 and G2, as reported in the following definitions [4].

Definition 3. A granularity G1 is finer than a granularity G2 if each granule of
G1 is contained into a granule of G2.

In particular, FinerThan(G1, G2) holds if and only if:

∀i ∃j s.t. G1(i) ⊆ G2(j)

Figure 1 depicts a finer than relationship between two granularities G1 and
G2. For example, the granularity Day is finer than Month, but the granularity
Week is not finer than Month because a week can spread over two consecutive
months.
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Fig. 1. The finer than relationship between the granularities G1 and G2
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Fig. 2. The subgranularity relationship between the granularities G1 and G2
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Fig. 3. The granule refinement relationship between the granularities G1 and G2

Definition 4. A granularity G1 is a subgranularity of G2 if each granule of G1

is equal to a granule of G2.
In particular, SubGranularity(G1, G2) holds if and only if:

∀i ∃j s.t. G1(i) = G2(j)

Figure 2 depicts a subgranularity relationship between two granularities G1 and
G2. For example, the granularity Monday is a subgranularity of Day.

Definition 5. A granularity G1 is a granule refinement of G2 if each granule of
G1 is contained into the corresponding granule of G2.

In particular, GranuleRefinement(G1, G2) holds if and only if:

∀i G1(i) ⊆ G2(i)

For example, Weekend is a granule refinement of Week. The graphical represen-
tation of a relationship granule refinement is reported in Figure 3.

Definition 6. A granularity G1 is a group of G2 if each granule of G2 is obtained
by grouping an arbitrary number of consecutive granules of G1.

In particular, Group(G1, G2) holds if and only if:

∀i ∃S = {j, j + 1, . . . , j + k} s.t. G2(i) =
⋃

l∈S

G1(l)
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Fig. 4. The group relationship between the granularities G1 and G2
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Fig. 5. The shift relationship between the granularities G1 and G2

For example, we have that Group(Day, Week) holds. In particular, Group7(Day,
Week) holds, where Groupp(G1, G2) holds if each granule of G2 is obtained by
grouping p consecutive granules of G1.

Definition 7. A granularity G1 is a shifting of G2 with size p, with p ≥ 0, if the
granules of G2 are obtained by backward shifting of p positions the granules of G1.

In particular, Shiftp(G1, G2) holds when:

∀i G2(i) = G1(i + p)

For example, suppose London-Hour stands for the hours in London. Since the
hours in Rome are 1 hour later that those in London, the granularities Rome-
Hour and London-Hour satisfy the relation: Shift1(Rome-Hour, London-Hour).

3 Motivation: Smart Home Applications

The possibility of designing an intelligent monitoring system that can detect
when an undesirable situation may arise, makes Smart Homes a protective envi-
ronment more independent and private than traditional caring institution. Dur-
ing the time, a Smart Home can be represented by means of a system composed
by states ; the evolution between states is characterized by events, such as the
change of the state of some sensor. The initial state of the system is defined on
the basis of the layout of the house. The evolution of the system is represented
by means of a sequence of states Si; the system changes its state from Si to Si+1
when an event Ei+1 occurs.

Example 1. Let us suppose Rec represents the movement detector in the recep-
tion area, TDRK the tag detector fitted around the door between the reception
area and the kitchen and Kit the movement detector sensor in the kitchen.
Figure 6 shows an evolution on time of events occurring in a Smart Home. At
time n, the sensor Rec is on state “ON”, while the others sensors are “OFF”;
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Fig. 6. Evolution of the state of some sensors in time

it means that the hosted person is in the reception area. The evolution between
the state n and the state n+1 occurs when the person is going through the door
between the reception area and the kitchen; at the state n+1 the sensor TDRK
is “ON”, while Rec is “OFF”, while at the state n+2 the sensor TDRK is “OFF”
while Kit is “ON”. The evolution between states n + 1 and n + 2 describes the
fact that the person is going through the door, walking into the kitchen.

4 A Logical Approach to Represent and Reason About
Granularities

In [15, 16] the authors have proposed a labeled linear time structure in or-
der to define possibly infinite sets of granularities by means of suitable linear
time formulae described in the context of the propositional temporal linear logic
(PPLTL). The idea is to identify the starting point of an arbitrary granule of the
granularity G in the structure with the propositional symbol PG and the ending
point of an arbitrary granule of G in the structure with the symbol QG.

Let G = {G1, G2, . . . , Gn} be a finite set of granularities (i.e., a calendar)
and let PG = {PGi , QGi |1 ≤ i ≤ n} be a set of propositional symbols associated
with the calendar G. Given an alphabet of propositional symbols P ⊇ PG, the
P-labeled (discrete) linear time structure has the form (N, <, V ), where (N, <) is
the set of natural numbers with the usual ordering modeling the time domain,
and V : N → 2P is a labeling function mapping the natural number set to sets
of propositional symbols.

The notion of consistency of a labeled structure with respect to a temporal
granularity G, is described as follows [16]:

Definition 8. A labeled linear time structure M = (N, <, V ) is G-consistent
when:

1. if PG ∈ V (i) for some i ∈ N, then either QG ∈ V (i) or QG ∈ V (j) for some
j > i such that PG �∈ V (k) for each i < k ≤ j and QG �∈ V (k) for each
i ≤ k < j;

2. if QG ∈ V (i) for some i ∈ N, then either PG ∈ V (i) or PG ∈ V (j) for some
j < i such that QG �∈ V (k) for each j ≤ k < i and PG �∈ V (k) for each
j < k ≤ j.
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A set of granularities is defined in an intensional declarative way by means of
a formula of a propositional linear time logic (PPLTL), extended with future
temporal operators [19]. The syntax of the considered logic is the following:

Definition 9. Formulae of PPLTL are inductively defined as follows:

– any propositional symbol p ∈ P is a PPLTL formula;
– if φ and ψ are PPLTL formulae, then φ ∧ ψ and ¬φ are PPLTL formulae;
– if φ and ψ are PPLTL formulae, then Xφ, φ U ψ, X−1φ and φ S ψ are

PPLTL formulae.

It is possible to define the logical operators ∨, →, and ⇔ by means of the
operators ¬ and ∧ as follows:

φ ∨ ψ
def= ¬(¬φ ∧ ¬ψ)

φ → ψ
def= ¬φ ∨ ψ

φ ⇔ ψ
def= (φ → ψ) ∧ (ψ → φ)

Moreover, Fα (α will hold in the future), Gα (α will always hold in the future),
Pα (α held in the past), and Hα (α always held in the past) are shorthand for

Fα
def= trueUα

Gα
def= ¬F¬α

Pα
def= trueSα

Hα
def= ¬P¬α

where true
def= p ∨ ¬p, for some p ∈ P.

Temporal operators in the set
{
X,U,X−1,S

}
have priority over Boolean

operators
{

∧, ∨
}
. Moreover, ¬ has priority over ∧ and over ∨, and ∧ has priority

over ∨. For example, the formula ¬α ∧ ¬βUγ ∨ δ requires the priorities ((¬α) ∧
((¬β)Uγ)) ∨ δ.

The PPLTL formulae are interpreted over the P-labeled linear time structures;
the semantics of PPLTL is as follows.

Definition 10. Let M = (N, <, V ) be a P-labeled linear time structure and i ∈
N. The truth of a PPLTL-formula ψ in M with respect to the time point i,
denoted as M, i |= ψ, is defined as follows:

M, i |= p iff p ∈ V (i) for p ∈ P;
M, i |= φ ∧ ψ iff M, i |= φ and M, i |= ψ;
M, i |= ¬φ iff it is not the case that M, i |= φ;
M, i |= φUψ iff M, j |= ψ for some j ≥ i and

M, k |= φ for each k such that i ≤ k < j;
M, i |= Xψ iff M, i + 1 |= ψ;
M, i |= φSψ iff M, j |= ψ for some j ≤ i and

M, k |= φ for each k such that j < k ≤ i;
M, i |= X−1ψ iff i > 0 and M, i − 1 |= ψ.
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M is a model for ψ if M, 0 |= ψ. A formula ψ is satisfiable if and only if there
exists a labeled linear time structure with propositional symbols P that is a
model of ψ; the formula ψ is valid if and only if every P-labeled linear time
structure is a model of ψ. ψ is valid if and only if ¬ψ is not satisfiable.

Example 2. Figure 7 shows the labeled linear time structure representing the
time granularity G such that G(0) = {1, 2, 3}, G(1) = {4, 5, 6}, and G(2) =
{7, 8, 9}.

1 2 3 4 5 6 7 8 9

P
G

P
G

P
G

Q
G

Q
G

Q
G

G

Fig. 7. A labeled linear time structure inducing the granularity G

4.1 Extending Granularities with Gaps

The above proposal does not consider granularities with gaps inside the granules
(only internally continuous granularities are treated): thus, it is not possible to
represent, for example, business months, which have gaps inside, corresponding
to weekends. This kind of time granularities can be described by extending the set
of propositional symbols, representing the time granularities composing a calen-
dar, with suitable symbols denoting the start and the end of a gap inside a specific
granularity [16]. Let G be a calendar and PG =

{
PG, QG, PHG , QHG

∣∣G ∈ G
}

be set of propositional symbols associated to the calendar G: symbols PG and
QG to delimit the granules of G as mentioned before while symbols PHG and
QHG bound the gaps inside the granules of G. The description of the gaps of G
is itself a granularity HG and, in particular, HG is finer than G. The notion of
G-consistency for granularities non internally continuous is extended as follows.

Definition 11. A labeled linear time structure M=(N, <, V ) is G-gap-consistent
whether:

– M is G-consistent with respect to both the granularities G and HG;
– every granule of M with respect to HG is a subset of some granule of M with

respect to G;
– no granule of M with respect to G is the union of some granules of M with

respect to HG.

5 Temporal Constraints in Smart Home Applications

Smart Homes are equipped with a set of sensors such as movement sensors,
smoke alarm and sensing devices. The core of a Smart Home is the central
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monitoring facility (CMF) which has the ability to detect all sensor and alarm
events concurrently from each apartment of the residential care institution.

In this section, we explain how it is possible to represent events occurring
in a Smart Home by means of a logical structure which allows one to describe
temporal properties related to multiple granularities. We describe some kinds
of temporal constraints related to time granularities and denote some sequences
of “normal” actions; if a temporal constraint is not satisfied, then a possible
undesirable situation may be occurring.

5.1 Representing Smart Home Events

The sensors present in a Smart Home give information about what is happening
inside the home. Every second, the CMF of the Smart Home receives the state of
the sensors; according to this assumption, the bottom granularity of our structure
is the second one, i.e., each point in the temporal axis represents a second.

Let S =
{

Coo,Tv ,Fri , . . .
}

be the symbols denoting sensors related to appli-
ances or to locations: the description of the meaning of these sensors is reported
in Tables 1 and 2, respectively. For example, Kit represents the sensor associ-
ated to the kitchen room, Coo is the sensor associated to the cooker and Tv
represents the Tv-sensor.

In order to represent the events occurring in a Smart Home, the idea is to
describe the temporal validity of the state “ON” of some sensor s ∈ S by means
of a temporal granularity s; each granule of s describes a time interval during
which the sensor s is in the state “ON”.

In particular, when at time i the state of a sensor s changes its value from
“OFF” to “ON”, then we associate the symbols son to the time point i of our
structure; in this way we can denote the fact that i is the starting point of a time
interval during which the sensor s is “ON”. Moreover, if at time j (j > i) the

Table 1. Symbols related to appliance sensors

Sensor Name Appliance
Coo Cooker
Tv TV
Fri Fridge

K-Tap Kitchen tap
BatSinkTap Bathroom sink tap

BatTap Bath tap
Bed Bed
Doo Doorbell
Pho Phone
Eme Emergency pull cord switch
Tem Temperature
Rad Radiators
Air Air conditioning
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Table 2. Symbols related to location sensors

Sensor Name Location
Kit Kitchen
Liv Livingroom
Toi Toilet
Rec Reception
BedR Bedroom
Out Outside

sensor s changes its value from “ON” to “OFF”, then we associate the symbols
soff to the time point j − 1 in order to describe the fact that during the time
interval [i, j − 1] the sensor s is “ON”.

The labeling function L associates to each time point in the structure the set
of symbols denoting the granularities related to sensors as follows:

{
s off �i s on then son ∈ L(i)
s on �i s off then soff ∈ L(i − 1)

According to the nature of these sensors, the following properties have to be
satisfied:

Property 1. It is not possible that a sensor changes its state from “ON” to “ON”.

Property 2. It is not possible that a sensor changes its state from “OFF” to
“OFF”.

Property 3. At the same time, a sensor cannot be both in the states “ON” and
“OFF”.

According to the properties reported above and related to the specific application
we are considering, in the following we require that each sensor granularity must
be internally continuous. Moreover, we denote with “no event” the fact that the
state of a sensor is not changed between time i − 1 and i:

{
s off �i s off then no event
s on �i s on then no event

Example 3. Let us now consider the possible sequence of primitive events arriv-
ing at the system starting from the initial state, reported in Table 3.

By observing the sequence of events, we can note that the sensor Kit assumes
value “ON” at time 1 and its state is changed to “OFF” only at time 8. For this
reason, we can say that the time interval describing the validity of the sensor
Kit is the interval [1,7]. The time interval related to the validity of the sensor
Coo is [2,6] while, in the portion of sequence we are observing, the time interval
related to the validity of the sensor Tv is still valid, i.e., it is in the form [3, ⊥]
because we assume that in some future time instant, there will be a change from
its state “ON” to “OFF”. The portion of the labeled linear time structure that
maps this set of events with respect to the time is reported in Figure 8.
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Table 3. A possible sequence of primitive events

Time Event State of Sensors
1 at kitchen on

�
Kit on

�

2 cooker on
�

Kit on, Coo on
�

3 tv on
�

Kit on, Coo on, Tv on
�

4 no event
�

Kit on, Coo on, Tv on
�

5 no event
�

Kit on, Coo on, Tv on
�

6 no event
�

Kit on, Coo on, Tv on
�

7 cooker off
�

Kit on, Coo off, T v on
�

8 at kitchen off
�

Kit off, Coo off, T v on
�

sec

1 2 3 4 5 6 7 8 9 10

Kiton Kitoff
Cooon Coooff

Tvon

Fig. 8. The portion of labeled linear time structure mapping the validity of some
sensors

Let PS =
{

son, soff

∣∣s ∈ S
}

be the set of propositional symbols describing the
granularities denoting the validity of each sensor s ∈ S in the structure M. Let us
also assume to have a set G =

{
lunch, dinner, . . .

}
of time granularities describing

the granularities of lunch time (i.e., the temporal interval [12:00, 2:00] of each
day), the granularity of dinner time (i.e., temporal interval [18:30, 20:30] of
each day) and other granularities related to particular time intervals (of a day)
during which it is important to observe the events occurring into the house.
The set PG =

{
Pg, Qg

∣∣ g ∈ G
}

contains the propositional symbols associated
to these granularities. Let L : N → 2PS∪PG be the labeling function mapping
the natural number set to the set of symbols denoting sensor granularities and
symbols related to time granularities.

According to the definition of consistency of a labeled structure with respect
to a granularity, the sensor-granularities of Kit, and Coo, shown in Figure 8, are
consistent, while the presence of the symbol Tvon at time 2 is not enough to
define a granule of the sensor granularity Tv. For these reasons, the granularity
Tv is not consistent in the portion of timeline reported in Figure 8.

The syntax and semantics of the formulae for the description of Smart Home
events are simple extensions of syntax and semantics proposed in Definitions 9
and 10. In particular, each propositional symbol p ∈ P, where P = PS ∪ PG, is
a PPLTL formula. A structure M satisfies the formula p at time i, denotes as
M, i |= p, if and only if p ∈ L(i) for p ∈ PS or p ∈ PG.

The proposed framework allows one to represent possibly infinite time/sensor
granularities. A single sequence may represent a calendar, by using different
pair of marking proposition symbols for any granularities. In particular, it is



Temporal Constraints with Multiple Granularities in Smart Homes 47

possible to model non-periodical finite granularities, such as the sensor granulari-
ties related to the activation of sensors during a day, and periodical granularities.
An example of a periodical granularity may be a sensor granularity describing
the fact that a sensor may be activated with a periodic temporal pattern; for
example, if a sensor is auto-activated during the first three minutes of each hour,
than the corresponding granularity is a periodical one.

5.2 Description of Temporal Constraints

In this section we describe some temporal constraints related to events which
can occur in a Smart Home.

Example 4. Let us now consider the constraint requiring that:

“the cooker cannot be on if the person is not at the kitchen”.

The logical formula describing this constraint is the following:

G(Cooon → (¬KitoffSKiton))

The formula states that, for each time point i (i.e., it must be always (G) true),
if the symbol Cooon ∈ L(i), then there exists a time point j ≤ i such that
Kiton ∈ L(j) and, for each j < k ≤ i,

{
Kiton, Kitoff

}
�∈ L(k).

The formula is satisfied when Kiton, denoting the event “the person is at
kitchen”, precedes the symbol Cooon, denoting the starting point of a time in-
terval associated to the event “the cooker is turn on”.

Example 5. Let us now describe the constraint requiring that:

“during the lunch time, the person has to go into the kitchen”.

The logical formula describing this constraint is the following:

G(PLunch → (¬QLunchU(Kiton ∧ ¬QLunch)))

The formula states that, it must be always true that if the symbol PLunch ∈ L(i),
then there exists a time point j ≥ i such that Kiton ∈ L(j), QLunch �∈ L(j) and,
for each i < k < j, QLunch �∈ L(k). Note that we have forced the fact that
QLunch �∈ L(j) to describe that during the lunch-time, the person stays in the
kitchen for at least 1 second.

If we want to describe that:

“during the lunch time, the person goes into the kitchen and
he remains there for at least 10 minutes”

then we can use the following formula:

G(PLunch → (¬QLunchU(Kiton ∧
600∧

i=0

Xi¬Kitoff)))

The formula states that the size of the overlapping between a granule of Lunch
and one of Kit is at least equal to 10 minutes (i.e., 600 seconds); in particular
X0α stands for α and, for every n > 0, Xnα stands for XXn−1α.
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Example 6. Let us now suppose to model the situation “cooker unattended” in
a strong way, i.e., this situation occurs when the person leaves the kitchen but
the cooker is still on. This situation cannot happen when each granule of the
sensor granularity Coo is included in some granule of Kit; it means that the
granularities Coo and Kit have to satisfy the finer than relationship. Figure 9
shows an example of finer than relationship between the granularities Coo and
Kit; we can note that three granules of Coo is included in the first granule of Kit.

1 2

1 2 3

Kit

Coo

Fig. 9. The finer than relationship between the granularities Coo and Kit

The relationship FinerThan(Coo, Kit) is described by means of the following
formula; in particular, it allows that more than one granule of Coo is included
in the same granule of Kit.

IntContGran(Coo) ∧ IntContGran(Kit) ∧
G(Cooon → ((¬Kiton ∧ ¬Kitoff)SKiton ∧ (¬Kiton ∧ ¬Kitoff)UCoooff ))

The formula IntContGran(Coo), reported in the following, describes that the gran-
ularities Coo is internally continuous; as just said before, these constraints are
related to the specific application we are considering. In a similar way it is pos-
sible to define the formula IntContGran(Kit).

IntContGran(Coo) = G((Cooon → α) ∧ (Coooff → β))

where

α is Coooff ∨ X(¬(Cooon ∨ Coooff )U(¬Cooon ∧ Coooff ))
β is Cooon ∨ X−1(¬(Cooon ∨ Coooff )S(Cooon ∧ ¬Coooff ))

A (too) stronger constraint could be imposed by the formula

GranuleRefinement(Coo, Kit)

which requires that each granule of Kit contains a granule of Coo: each time a
people enter the kitchen, he must use the cooker and only one time.

Example 7. Let us now suppose to model a more complex situation, we name
“cooker unattended and fridge energy conservation”: we want to exclude both that
a person leaves the kitchen but the cooker is still on or the fridge is open. Moreover,
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wewant to exclude that theperson turns onor off the cookerwhen the fridge is open.
This situation cannot happen when each granule of the sensor granularity Coo is
included in some granule of Kit and each granule of Fri is included in some granule
of Kit and each granule of Fri does not contain any event related to the cooker, i.e.,
Cooon and Coooff . The following formula represents the described constraint.

FinerThan(Coo, Kit) ∧ FinerThan(Fri, Kit) ∧
G(Frion → ¬(Cooon ∨ Coooff )UFrioff )

6 Checking Temporal Constraints

Given a labeled structure M, representing the events occurring in a Smart Home,
it is interesting to check whether some temporal constraints are satisfied: for
example, it could be useful to check whether the situation “cooker unattended”,
described in the Example 6, never happens.

This corresponds to apply the model checking problem [13] to our framework.
In the proposed example, the model checking problem allows one to check whether
the labeled structure M defined a model for the following relationship:

FinerThan(Coo, Kit)

Model checking has emerged as a promising and powerful approach to au-
tomatic verification of systems. A model checker is a procedure that decides
whether a given structure M is a model for a logical formula φ (i.e., M |= φ).
M is usually modeled as a finite automata and φ is a temporal logical formula
describing the property to check. Generally, model-checking depends on a dis-
crete model of a system and the system’s behavior is represented by means of
a graph structure where the nodes represent the states of the system while the
arcs represent the transitions between the states.

The common discrete representation of a system is based on the a Kripke
structure.

Definition 12. Let AP a set of atomic propositions. A Kripke structure (KS)
M over AP is a four tuple

M = 〈S, s0, R, L〉
where S is a finite set of states, s0 ⊆ S is the set of initial states, R ⊆ S × S is
a total transition relation (i.e. for every state s ∈ S there is a state s′ ∈ S such
that (s, s′) ∈ R), and l : S → 2AP is a function that labels each state with the
set of atomic propositions true in that state.

A path in the structure M from the state s is a finite sequence of states π =
s0s1s2 . . . such that s0 = s and R(si, si+1) holds for all i ≥ 0. An execution is
an infinite sequence of states σ = s0s1s2 . . . such that s0 is the initial state and
(si, si+1) ∈ R, for all i ≥ 0.

The KS represents the discrete state transition behavior as a direct labeled
graph. Temporal logic [20] is used to specify the allowed computation of the sys-
tem. There are two main kinds of temporal logics, linear time logics and branching
time logics. Linear-time logics (LTLs) are related to properties of paths while the
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branching time logics describe properties that depend on the branching structure
of the model; LTL can be extended with past temporal modalities, i.e., tempo-
ral operators that refer to the truth of subformulae in the past and it is usually
denoted as PLTL. The Computational Tree Logic (CTL) was the first temporal
logic for which it was proposed an efficient model-checking procedure [12].

Let us now focus our attention on a finite portion of the labeled structure M

associated to the time interval [0, n], with n ∈ N. We describe how it is possible to
derive a KS describing a finite portion of the labeled linear time structure we are
considering. We assume that the set AP =

{
son, soff , Ins

∣∣s ∈ S
}

contains the
atomic propositions denoting that the sensor s is turn on, is turn off or is just on
(by means of son, soff and Ins, respectively). Each state si ∈ S, with i ∈ [0, n],
is used to represent the state of the Smart Home sensors at the specific time i.
In particular, s0 is the initial state. The total transition relation R is composed
by the transitions (sj , sj+1), with j ∈ [0, n − 1]. The label function l : S → 2AP

is defined, with respect to the structure M, as follows:

son ∈ L(j), 0 < j ≤ n ⇒ son ∈ l(sj)
soff ∈ L(k), 0 < k ≤ n ⇒ soff ∈ l(sk)

Moreover,

son ∈ L(j), soff ∈ L(k), ∀j < h < k son, soff �∈ L(h) ⇒ ∀j < h < k Ins ∈ l(sh)

According to the above condition, when a sensor is on during the time interval
[j, k], then each state of the KS sh, with j < h < k, will be label with the atomic
proposition Ins.

Example 8. The portion of the Kripke Structure derived from labeled linear time
structure M reported in Figure 8, is shown in Figure 10.

As just said before, the situation “cooker unattended” cannot happen when
the granularities Coo and Kit satisfy the finer than relationship. We can say that
the structure M satisfies the logical formula associated to the relation

FinerThan(Coo, Kit)
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Fig. 10. The KS representing a portion of the labeled linear time structure
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if and only if, in each state of the associated Kripke Structure, the following
formula holds:

(Cooon → InKit) ∨ (InCoo → InKit) ∨ (Coooff → InKit)

Sometimes graphs alone are too weak to provide an interesting description of a
system, so they are annotated with more specific information. A very common
approach to the system’s representation is the Kripke Transition System (KTS),
where nodes are annotated with atomic propositions and arcs are annotated with
actions. Paths in KTS model computations of the system.

Definition 13. A Kripke Transition System over a set Π of atomic propositions
is a structure K = 〈Σ, Act, R, I〉, where Σ is a set of states, Act is a set of actions
(Π ∩ Σ = ∅), R ⊆ Σ × Act × Σ is a total relation, and I : Σ → ℘(Π) is an
interpretation.

In a KTS, the interpretation I defines local properties of states. Sometimes it is
important to describe global properties connected to the transitional behavior,
such as the fact that from the initial state it is possible to reach a state where
the property P holds. There are two ways in which the model-checking problem
can be specified:

Definition 14. The local model checking: given a KST K, a formula φ, and a
state s of K, verifying whether s |= φ. The global model checking: given a KST
K, and a formula φ, finding all states s of K such that s |= φ.

Both the local and global model-checking problems are usually formulated for
Σ finite. In [12] it has been proved that the global model-checking problem for
a CTL formula φ can be solved in linear running time on |φ| · (|Σ| + |R|). The
model checking problem for PLTL and LTL is PSPACE-complete [40].

Let us now focus our attention on a finite portion of the labeled structure M

associated to the time interval [0, n], with n ∈ N. We describe how it is possible
to derive a KTS representing a finite portion of the labeled linear time structure
we are considering.

Starting from the fact that, at each time point we can have more than one
symbol to denote granularity sensors, we assume that the label of each transition
may be composed by a set of actions. The set of actions Act of the Kripke
Transition System contains the symbols p ∈ PS (i.e., the symbols son and soff ,
for each sensor s) and the special action T ime denoting that there is a (time)
clock which determines the transition from a state to the next one (i.e., the label
of each transition always contains the action T ime). The KTS will be composed
by n + 1 states (a state for each time point in the interval [0, n]). The total
transition relation R ⊆ Σ × Act × Σ is defined as follows:

p ∈ L(i), p ∈ PS ⇒ (si−1, A, si) ∈ R ∧ p ∈ A

∀i ∈ [0, n − 1] ⇒ (si−1, A, si) ∈ R ∧ T ime ∈ A
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Fig. 11. The Kripke Transition System representing a portion of the labeled linear
time structure

The initial state s0 contains atomic propositions Ins = 0, for each s ∈ S; this
means that at the beginning, each sensor is in the state “OFF”.

The idea is that each state of the transition system will be labeled with atomic
proposition in the form Ins = k, where k is a natural number denoting the
duration of the state “ON” of the sensor s. By considering the label of the
transition from a state to another one1, the set of atomic propositions associated
to each state si ∈ Σ (i > 0) can be derived as follows:

(si−1, A, si) ∈ R ∧ ∃p ≡ son ∈ A ∧ (Ins = 0) ∈ I(si−1)

⇒ (Ins = 1) ∈ I(si)

(si−1, A, si) ∈ R ∧ ∃p ≡ soff ∈ A ∧ (Ins = k) ∈ I(si−1), k > 0

⇒ (Ins = 0) ∈ I(si)

(si−1, A, si) ∈ R ∧ � ∃p ≡ soff ∈ A ∧ (Ins = k) ∈ I(si−1), k > 0

⇒ (Ins = k + 1) ∈ I(si)

Example 9. The Kripke Transition System derived from the portion of the la-
beled linear time structure reported in Figure 8, is shown in Figure 11.

In this case, we can say that the structure M satisfies the logical formula
associated to the relation

FinerThan(Coo, Kit)

if and only if, in each state of the KTS, the following property holds:

InKit > InCoo

The complexity of checking the proposed property on the KTS has linear cost
with respect to the number of state.

1 Remark: we are considering a linear time system.
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7 Comparison with Related Work

In the Artificial Intelligence, the Event Calculus (EC) [28] is a frequently used
approach to representing and reasoning about events and their effects. Several
variants of EC have been proposed by different authors, but, unlike the origi-
nal version, based on time periods, most of them are based on time points [37].
From a description of events which occur in the real world and properties they
initiate or terminate, EC is used to derive the maximal validity intervals over
which properties hold. The notions of event, property, time point and time in-
terval are the primitives of the formalism: events happen at time points and
initiate and/or terminate time intervals over which some property holds, pro-
vided than some other property already holds (precondition). Properties are
assumed to persist until an event occurs that terminates them (default persis-
tence). In the application domain of Smart Homes, events model the change of
a sensor value (ON/OFF or OFF/ON) and basic properties represent the state
of sensors being ON or OFF; further properties can be defined to explicitly rep-
resent some anomalous situations, e.g. leaving the kitchen while the cooker is
on. Indeed, these properties can be defined as initiating when the corresponding
sensor event happens and some other properties hold: in the previous example,
a property anomalousS can be defined as initiated by the event Cooon provided
than the precondition outsideKit holds. The efficient implementation of a PRO-
LOG based language supporting EC is not trivial and the related computational
complexity is discussed in [10]. Cervesato et al. [7] discuss different extensions
of EC to deal with partially ordered events. Chittaro and Combi [9] propose
TGIC (Temporal Granularity and Indeterminacy event Calculus), an approach
based on the EC to represent and reason on events given either with temporal
indeterminacy or with different temporal granularities.

With respect to the above mentioned EC-based contributions, our proposal
has some limitations, as it is not possible to represent events given at multiple
granularities: indeed, we assume to have a single bottom time line, over which
sensor events are precisely located. On the other hand, temporal constraints
related to events which can occur in a Smart Home are modeled in a simple
way in our proposal, while EC-based formalisms would require the definition
of ad-hoc properties (as, in the previous example, being outside a given room).
Moreover, our approach, which is closely related to the model checking problem,
could benefit from the adoption of some general model checkers, as SPIN or
KRONOS [6, 25], to implement a real world system prototype.

8 Conclusions

In this chapter, we proposed a logic-based approach to describe temporal con-
straints with multiple time granularities related to events occurring in Smart
Homes. We identified time and sensor granularities as infinite sequences of time
points properly labeled with propositional symbols marking the starting and the
ending points of each granule. In particular, a sensor granularity describes time
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intervals during which a sensor is in the state “ON”, i.e., the time interval related
to the validity of the considered sensor. Both time and sensors granularities and
temporal constraints are expressed by means of logical PPLTL formulae. Tem-
poral constraints we modeled describe temporal relationships related to sensors
providing the right control of the environment of a Smart Home.
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Abstract. In this chapter we discuss some of the features of causal reasoning,
and present a simple formalism for handling a restricted form of such reasoning
applicable to the Smart Homes domain. The formalism handles the manner in
which certain conjunctions of independent states (i.e., readings from the sensors)
can be used to trigger a variety of dependent states, notably those which give alert
regarding potential emergency situations.

1 The Nature of Causality

Causality is a large topic, which has received extensive discussion in the philosophical
literature [7]. It is not my intention here to paraphrase or summarise this discussion;
instead, in this section I shall draw attention to a number of issues that are central to the
modelling of causal reasoning and which will play an important role in what follows.

It is generally held that causation is a relation of some kind. For example, flipping
the switch causes the light to come on: this is a relationship between two events, the
flipping of the switch and the coming on of the light. This can be expressed in several
different ways, e.g., the light came on because the switch was flipped, or, the result of
flipping the switch was that the light came on. But causal relations need not only be
between events: the water on the floor caused the floor to be slippery. This appears to
be a causal relation between the water (an object) and the floor’s being slippery (a state
of affairs). Perhaps more carefully expressed, this should be: the presence of water on
the floor caused the floor to be slippery; this now looks like a causal relation between
two states of affairs. One might express it differently again and say that the spilling of
the water onto the previously dry floor (an event) caused the floor to become slippery
(another event). Even if we take the last of these as the correct expression of the causal
relation in this case, we cannot reason correctly about the state of affairs in question
if we do not include another principle to the effect that the slipperiness of the floor
was perpetuated by the continuing presence of the water, which certainly seems to be
a relationship between two states of affairs, a relationship, moreover, with a distinctly
causal ‘flavour’.

We must distinguish between general and particular causal relations. When the flip-
ping of the switch on a particular occasion causes the light to come on, this is a par-
ticular causal relation: it is a relation between two individual occurrences (sometimes
called event tokens), namely the flipping of a particular switch at a particular time and
the coming on of a particular light almost immediately afterwards. On the other hand,
there is also a general rule to the effect that flipping a light switch causes the associated
light to come on. Of course, as stated, this rule is not strictly true: there are innumerable
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‘background conditions’ that must be satisfied for any particular switch-flipping to re-
sult in a light’s coming on. Some examples are: that the light is not already on, that the
power-supply is on, that the light circuit is in good order, that the bulb has not blown,
and so on. Thus the general causal statement has to be qualified by a disclaimer along
the lines of ‘assuming that everything is functioning normally’; this means that causal
reasoning is very often non-monotonic [5].

It is not always easy to distinguish between true causality and mere regularity. We
may infer the existence of a causal relation between events of type X and events of
type Y on the grounds that (given suitable background conditions) events of type X are
regularly followed by events of type Y. A child might observe that whenever the light
switch is flipped, the light comes on, and infer from this observation that the switch-
flipping causes the light to come on. Hume famously argued that the only empirical
access we have to causal relations must be of this sort, that is, through observation
of regularities in the pattern of events. Equally famously, there are clear cases where
the inference of causation from regular succession is not justified: during the winter
months, whenever the clock strikes six, the heating comes on, but the latter event is not
caused by the former.

It is not always clear whether a particular relationship should count as causal, and
indeed this may not matter. It is clearly an important piece of knowledge (one so funda-
mental that we generally take it for granted) that if a body is in a certain position P and
moving in a certain direction D then a little later it will be in a position P′ such that the
line PP′ is (at least approximately) in the direction D. Would it be true to say that the
body’s being in position P′ is caused by its earlier having been in position P and moving
in direction D? Possibly; but whether or not it is, we will need to be able to reason about
this kind of relation as well as the ones which are more unequivocally causal. A simi-
larly ‘anaemic’ form of causality shows up when we reason that if a state has obtained
for 10 minutes then if it does not cease to obtain over the next minute, at the end of
that minute it will have obtained for 11 minutes. We could say that the earlier fact that
the state had obtained for 10 minutes was the cause of the later fact it has obtained for
11 minutes, but again, since the best that we can suggest for a causal mechanism is the
mere passage of time, this is not same kind of full-blooded causality (involving transfer
of energy) that relates the flipping of a light-switch to the illumination of the light.

In a practical setting, we are interested in causality because we want to be able to
predict and control the future and to explain the past. Often, we want to explain the
past in order to allow us to control the future better. For example, we flip the switch
and the light does not come on, whereas causal reasoning suggests that it should have
done. We infer that one of the background conditions was absent; if we know what the
background conditions are, we may be able to determine which was at fault. By doing
so, we can then rectify the situation so that the when the switch is flipped in future the
light does indeed come on.

2 Causal Theories

Our knowledge of causal relations can, in principle, be enshrined in a causal theory,
that is, a set of rules which, when applied to any given state of affairs, will enable us
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to deduce the causal consequences of that state of affairs. This should be distinguished
from a purely logical theory, which will only give us the logical consequences. One
should be a little careful about terminology here. Given the facts that a pot of water is
placed on the gas-ring and the gas-ring is lit at full power, and that this state of affairs
is maintained over a period of ten minutes, it is a causal consequence, but not a logical
consequence, that at the end of the ten minutes the water is boiling. We can turn this into
a logical consequence if we add to the original particular facts a general rule to the effect
that whenever a pot of water is placed over a gas-ring on full power for ten minutes,
the water will boil. This general rule is a causal rule because its presence enables the
causal consequences of a situation to be established as logical consequences — not of
the situation alone but of the situation together with the rule. It is rules of this kind that
constitute a causal theory.

What form should the causal rules take? There are many possibilities, and the most
appropriate choice may vary with the kinds of situations we are modelling. In the first
place, causal theories may be classified into two broad categories, depending on whether
they contain explicit reference to the notion of cause. By explicit reference we mean the
presence of a predicate or function Cause within the formalism. A simple ‘caricature’
of a system of this kind might be something like

Cause(X, Y ) → ∀t(Occurs(X, t) → Occurs(Y, t + 1)).
Cause(DropGlass, BreakGlass).
Cause(ThrowBrick, BreakWindow).

Here the first formula provides a general rule characterising the Cause predicate: for
an event-type X to cause an event-type Y , it must be (and here the over-simple nature
of our particular formulation becomes apparent!) that whenever X occurs at a time t, Y
will occur at the succeeding time t+1. The other formulas provide specific instances of
that predicate to which the general rule can apply. This kind of theory takes causation
to be a primitive relation, which is characterised through the general axioms (such as
the first formula above) in which it features. The advantage of choosing a theory of this
kind is that it forces one to think explicitly about what causes what, and thus to attend
to the true causal structure of the domain being modelled.

Note that a Cause predicate can quite well appear under another name, and then the
question arises as to whether it is ‘really’ causal in meaning. In the Event Calculus [3],
for example, the predicate Initiates is used: the formula Initiates(e, s, t) says that
state s holds after the occurrence of event e at time t. This is neutral as between what I
earlier called ‘full-blooded’ and ‘anaemic’ notions of causality. To illustrate, the Event
Calculus formulation of the notorious Yale Shooting Problem [6], makes use of both
Initiates(load, loaded, t) and Initiates(shoot, dead, t). The former says that the ac-
tion of loading a gun initiates the state of the gun’s being loaded; this is ‘anaemic’ in
that one might reasonably claim it to be true simply by virtue of the definition of loading
as an action which results in the gun being loaded. On the other hand, shooting can be
characterised as an action independently of the fact that, under certain circumstances,
it results in someone’s being dead. Thus Initiates(shoot, dead, t) expresses a more
weighty (or, if you will, less ‘trivial’) fact than does Initiates(load, loaded, t).

The Event Calculus was inspired by the earlier Situation Calculus [4], in which
causality may be expressed by means of a binary function result such that result(a, s)
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is the situation resulting from performing action a in situation s.1 In this formalism,
we could write Holds(loaded, result(load, s)) and Holds(dead, result(shoot, s)),
showing that here, too, the ostensibly causal function result can be used for a range of
causal-like relations.

The other kind of causal theory encodes the causal information not by way of an ex-
plicit predicate, but implicitly by means of causal rules. Our caricature example would
come out as

∀t(Occurs(DropGlass, t) → Occurs(BreakGlass, t + 1))
∀t(Occurs(ThrowBrick, t) → Occurs(BreakWindow, t + 1))

Here we have no general characterisation of the notion of cause; instead we have a set of
individual causal rules, one for each of the instances of the Cause relation in the explicit
theory. This type of theory has the advantage of parsimony, in the sense that it shows
that it is strictly unnecessary to have an explicit cause predicate; its disadvantage is that
it becomes less easy to separate out the causal component of the theory from whatever
other rules and principles the theory embodies, and in particular one is no longer forced
to think about causal relations as such, as opposed to more general temporal relations.2

To illustrate this, consider the theory of the gas heater presented by Cervesato and
Montanari [1]. This is not presented as an explicitly causal theory, and indeed the word
‘cause’ is absent not only from the prolog clauses used to implement the theory, but also
from the explanatory text. On the other hand, since the framework employed is broadly
similar to the Event Calculus [3] the ‘initiates’ predicate init occurs frequently in
clauses which have the look and feel of causal rules. But are they really?

The scenario described is that of a gas heater. Amongst the rules used to formalise
the theory of the gas heater are the following:

init(coolDown, cold, [ ], [ ]).
init(coolDown, thermoVOpen, [ ], [ ]).
init(coolDown, burning, [ ], [pilotOn]).

These rules state that if a cooling down event occurs, this will bring about the following
states: it is cold, the thermostatic valve is open, and, so long as the pilot light was on
at the time of cooling down, the gas is burning. Indeed, this is precisely what happens
when the gas heater is functioning as it should. Although these may be thought of as
causal rules, they do not, in fact, capture the true causal sequence, which is that the event
coolDown initiates the state cold;3 this causes the state thermoVOpen, which in turn

1 A situation represents the state of the world at one time.
2 In addition, it does not allow one to express general truths about causation such as ‘An effect

cannot precede its cause’. Practical causal reasoning must make use of an extensive supply of
specific instances of this general truth, and such instances may be expressed without the use
of an explicit ‘cause’ predicate; whether we ever need to invoke the rule in its full generality,
requiring explicit reference to causation, is less clear.

3 This is an example of ‘anaemic’ causality: the state cold can be seen to follow from the event
coolDown as a matter of logical necessity, given a definition of the latter as that event which
results in the former. In the absence of such an explicit definition, of course, the connection
must be enshrined in a rule, and whether or not we wish to call such a rule causal, it certainly
has a similar form to more full-blooded causal rules.
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causes burning. Thus while it is certainly true that coolDown causes burning, it does
so only indirectly, by way of the sequence just described. As a consequence of the way
Cervesato and Montanari have modelled the gas heater, the first two rules above play
no part in inferring that burning is initiated as a result of coolDown, this inference
being instead secured by the third rule alone. This means that their model does not
correctly capture the causal structure of the gas heater’s operation. Likewise, they have
the composite event par(prLighter, prDisable) (i.e., simultaneous pressing of the
lighter switch and the safety-valve disable button) initiating both the states burning and
pilotOn, whereas the true causal sequence is that pressing the disable button causes the
safety valve to open, allowing gas to flow to the pilot, while at the same time pressing
the lighter switch causes sparking, the two conditions together ensuring that the pilot
light comes on; it is this that initiates burning.

The init predicate illustrates one form of causal rule, which states that an event,
under suitable conditions, will bring about a state. This is only one out of a number of
possible types of causal relation. As remarked above, we sometimes speak of events
causing other events, sometimes of an event causing a state, sometimes of a state caus-
ing an event, and sometimes of a state causing a state, and sometimes what is in reality
a single instance of causation may be described in several different ways. Whatever
causes the water to come to the boil (an event) is also causing the water to be boiling
(a state). In this case the cause is the initial placing of the pot of water on the gas-ring
(an event), combined with the fact that over a sufficiently long interval it is not removed
or the gas turned off (a background condition); or alternatively, it is the state which
consists of the fact that the pot has been on the gas-ring for ten minutes. The possibility
of redescribing both causes and effects in this way means that we have a considerable
amount of lee-way in choosing the form of our causal rules; it would be incorrect to sup-
pose that there is a unique ‘right’ way of doing it. Rather, the choice should be informed
by what is most convenient in relation to the particular scenario being modelled.

In the smart homes scenario, the information available is entirely in the form of
sensor readings. If the sensors are all binary, i.e., they are each capable of reporting
only two states — that the associated device is either ‘on’ or ‘off’ — then in effect
the basis for our reasoning is purely state-based. However, even if we only explicitly
refer to states, events are implicit whenever we have a change of state. For example, if
a certain sensor reports ‘off’ at time t and then ‘on’ at time t + 1, we can say that an
event, namely the switching on of the device which is being monitored by the sensor,
has taken place. We do not necessarily need to refer to this event explicitly, since any
causal consequence it may have is also a causal consequence of the state of the device
being on, given the background condition that it was off at the immediately previous
moment.

For this reason, the formalism to be developed in the next section will not refer
explicitly to events. The causal rules will only make use of states. These include both the
states that are immediately reported by the sensors and also various logical constructs
out of these, such as the state which consists of a particular device having been on for a
certain period of time. We emphasise that no claims are made for the generality of this
formalism; it is specifically designed to operate within a tightly circumscribed domain,
and in this application is used to handle only a specific aspect of that domain—namely
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the triggering of alerts in response to certain conjunctions of sensor readings. Within
that context we have aimed to produce a formalism that is as simple as possible. The
larger problem of devising a flexible formalism for causal reasoning which might be
applied universally lies outside the scope of the present treatment.

3 A Formalism for Causal Reasoning About States

We shall make use of a stratified system of states similar to that described in [2].4 We
assume we have a set of atomic states, which come in pairs, each positive atomic state
S being paired with its negation −S. We shall use S to refer to the state paired with S:
if S is positive, then S = −S, while if S = −S1 (a negative state) then S = S1. We
write S1 � S2 to denote the (non-atomic) state that holds when S1 and S2 both hold,
and at no other times.

Let S be the set of all atomic states (both positive and negative); these states are
partitioned into two classes, called dependent and independent. We use SD and SI for
the sets of dependent and independent atomic states, respectively. The idea is that an
independent state does not depend causally on other states holding at the same time,
whereas a dependent state can do so. In the smart homes scenario, the independent
states are those which are directly reported by the sensors, e.g., cooker on. Note that
because we have state-negation, we do not need a separate state cooker off; instead
we can write −cooker on. Because of this, for brevity, we shall write Cooker instead
of cooker on, and likewise with all the other sensors. We shall call S co-independent
if S is independent.

The dependent states will include various states of emergency alert which are trig-
gered by particular combinations of circumstances. These will be discussed in the
context of the smart homes scenario in the next section. Another important class of
dependent states called duration states will play an important causal role in relation to
the aforementioned alert states; these are described below.

Time is represented as a discrete series of instants, labelled by the natural numbers.
We assume that a constant time elapses between each pair of consecutive instants: for
example, they might be one second apart. In the Smart Homes scenario, for example,
these instants correspond to the times at which the readings from the sensors are sam-
pled; for simplicity we assume this will take place at regular intervals. At each instant t,
the state S either holds or does not hold; in the latter case, its negation −S holds. If both
S1 and S2 hold at t, then we say that their conjunction S1 � S2 holds at t; this is an as-
sociative operator, so we can write multiple conjunctions of the form S1 �S2 �· · ·�Sn

without the need for pairwise bracketing.
There are two kinds of causal rule. Same-time rules take the form

S1 � S2 � · · · � Sn � S,

4 In [2] this formalism is applied to the gas-heater example of [1], and to an automatic hand-
drier with a time-out mechanism. In a longer, unpublished paper, we have also applied it to an
electrical circuit, the Yale Shooting Problem, the falling of an arrangement of dominos, and
the swinging of a pendulum.
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where each Si is an atomic state and S ∈ SD . Next-time rules have the form

S1 � S2 � · · · � Sn � ©S;

here it is not required that S ∈ SD .
Same-time rules are required to be stratified. This is explained as follows.

1. A state S is called 0-dependent if and only if it is independent, i.e., S ∈ SI . (This
means it cannot appear as the consequent of a same-time rule.)

2. For k ≥ 1, a Stage k rule is a same-time rule S1 � S2 � · · · � Sn � S where each
of S1, . . . , Sn is at most (k − 1)-dependent, and at least one of them is (k − 1)-
dependent. Then S is said to be k-dependent. In this case we also say that S is
co-k-dependent.

3. A set of same-time rules is stratified so long as for every rule in the set there is a
number k such that the rule is a Stage k rule.

A same-time rule S1 � S2 � · · · � Sn � S can be applied at time t so long as S1,
S2, . . . , Sn all hold at t. The result of applying it is that we may assert that S holds at t.
Under the same condition we can also apply a next-time rule S1�S2 �· · ·�Sn � ©S,
and the result of applying it is that we may assert that S holds at t + 1. If a rule can be
applied, it is said to be live.

The rules are applied in accordance with the following algorithm for t=0, 1, 2, 3, . . .
for as many steps as required:

1. First determine the current value of each independent state (e.g., from the sensor
readings).

2. For k = 1, 2, 3, . . .,
(a) Apply any live same-time rules of Stage k (note that some rules may become

live as a result of applying others of a lower stage).
(b) If t = 0, for any positive state S whose value is not already determined, assume

that −S holds.
(c) If t > 0, then for any co-k-dependent state S, if S holds at t − 1, and S has

not already been asserted to hold at t then S may be asserted to hold at t. (This
is applying the assumption that a state S persists from one instant to the next
unless there is reason to assert the contrary.)

3. Apply any live next-time rules.

To illustrate, we shall show how the Yale Shooting Problem can be formulated in this
system.5 The scenario may be described informally as follows: at time 0, the victim is
alive, the gun is not loaded, the trigger is not being pressed, and the bullet is not being
fired. The gun (assumed to be pointing at the victim) becomes loaded at time 1, and the
trigger is pressed at time 3; no actions are specified between these times. The problem
is to formulate this scenario in such as way that the desired conclusion, that the victim

5 We do not, of course, claim that this simple formulation provides a complete solution to the
YSP, but merely that, within the context of the type of scenario we can model, YSP does not
present any problems for us. The non-monotonic persistence of the state Loaded is secured by
step 2(c) of the algorithm.
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is dead at time 4, follows. We use four positive states Alive, Loaded, Trigger, and
Bullet. The only dependent state is Bullet, which is governed by the same-time rule

1. Loaded� Trigger � Bullet.

This says that if the gun is loaded and the trigger is pressed then the bullet fires. In
addition we have three next-time rules6

2. Bullet� Alive � ©(−Alive)
3. Bullet � ©(−Loaded)
4. Bullet � ©(−Bullet)

The history can be computed as follows:

t = 0 We have Alive� −Loaded� −Trigger� −Bullet.
t = 1 From information given, we have Loaded. The co-independent states Alive

and −Trigger and the co-1-dependent state −Bullet all persist, so we have
Alive� Loaded� −Trigger� −Bullet.

t = 2 All states persist, giving Alive � Loaded� −Trigger� −Bullet again.
t = 3 We are given Trigger. The co-independent state Loaded persists, so Rule 1

becomes live, giving Bullet. The complete state is thus Alive � Loaded �
Trigger� Bullet. The next-time rules 2–4 all become live, so we have:

t = 4 −Alive from rule 2, −Loaded from rule 3, and −Bullet from rule 4. The
co-independent state Trigger persists (the trigger remains depressed since
the person holding the gun has not released it). The complete state is now
−Alive� −Loaded� Trigger� −Bullet.

This history is summarised in the following table:

0 1 2 3 4
Alive + + + + −

Loaded − + + + −
Trigger − − − + +
Bullet − − − + −

Within the system we have described we can define the duration states that were
mentioned above. Given a state S, the duration state dur(S)=n is that state which
holds when S itself has held for the previous n atomic intervals. Note that we have used
a function notation dur(S) here rather than a relation Dur(S, n). This is because at any
given time there is only one value of n for which Dur(S, n) would hold; hence we can
notate this value dur(S). Thus dur(S) is in effect a fluent, i.e., a function from times
to values; ordinary states such as S (and, indeed, dur(S) = n for any given n) may
likewise be regarded as Boolean fluents, i.e., functions from times to values from the
set {true,false}.

The causal rules governing duration states are as follows:

(dur1) S � dur(S)=0
(dur2) S � dur(S)=n � ©(dur(S)=n + 1)

6 Note that dependence, as defined for the purpose of the algorithm, is determined by same-time
rules only, so these rules do not make −Alive, −Loaded and −Bullet dependent states.
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In addition, we assume that if dur(S) cannot be determined by the rules, then its default
value is 0.

To see how these rules work, we shall apply the algorithm to a system which con-
tains a single independent state S. Assume that the sequence of sensor readings for S
is −, −, +, +, +, −, +, +, −, −, −, . . ., where ‘−’ represents ‘off’ and ‘+’ represents
‘on’. The reasoning, as determined by the algorithm, proceeds as follows:

t = 0 We have −S from the sensor. Same-time rule (dur1) gives dur(S)=0. By
default, we also have dur(−S)=0. Then, given −S � dur(−S)=0, next-time
rule (dur2) yields dur(−S)=1 at t = 1.

t = 1 We have −S from the sensor and dur(−S)=1 from t = 0. Same-time rule
(dur1) gives dur(S)=0. Given −S�dur(−S)=1, (dur2) yields dur(−S)=2
at t = 2.

t = 2 We have S from the sensor and dur(−S)=2 from t = 1. However, given
S, same-time rule (dur1) yields dur(−S)=0. This overrides the previously
determined value for dur(−S) at this time.7 The value of dur(S) has not
been determined, so it defaults to 0: dur(S)=0. We now have S � dur(S)=0
so by (dur2) we infer dur(S)=1 at t = 3.

t = 3 We have S from the sensor and dur(S)=1 from t = 2. By (dur1) we infer
dur(−S)=0. From S � dur(S)=1 and (dur2) we have dur(S)=2 at t = 4.

Continuing in this way, we generate a history which may be summarised in the follow-
ing table:

0 1 2 3 4 5 6 7 8 9 10
S − − + + + − + + − − −

dur(S) 0 0 0 1 2 0 0 1 0 0 0
dur(−S) 0 1 0 0 0 0 0 0 0 1 2

From the table we can read off that, for example, at t = 4, S has obtained for a duration
of 2 time units (i.e., over the interval [2, 4]).

Note that although −S comes to hold at t = 5, it does not persist to the next instant,
and hence it does not register a positive duration on this occasion. However, the fact
that −S held at t = 5 shows up in the fact that dur(S) is ‘reset to zero’. Thus the
fact that dur(S)=1 at t = 7 indicates that −S must have held two time intervals ago,
i.e., at t = 5. This means that we can use dur to describe complex states such as
‘S1 has not held at any time since S2 last held’. This can be represented as the state
dur(−S1) ≥ dur(−S2), which holds just when the length of time for which S1 has
failed to hold exceeds the length of time since S2 last held.

4 Application to the Smart Homes Scenario

The purpose of the sensors in the smart home is to monitor the patient’s activities and to
trigger an alert if something untoward happens. In order to handle alerts, we introduce
a set of dependent states indicating the subject and degree of urgency of an alert. For

7 Note that this shows why the ‘�’ symbol in the causal rules cannot be replaced by ‘→’: if
they were ordinary material implications, we would now have a contradiction.
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example, the state alert(bath)=1 indicates that a state of alertness exists in relation
to the bath, but its urgency is currently low. We shall assume a scale of three degrees of
urgency, namely 1 (low), 2 (medium), and 3 (high), with 0 to indicate the absence of an
alert.

In this section we shall consider the following sequence of events:

Initially, the patient is in the kitchen, where she switches the cooker on to a
high setting. She then goes (via the reception area) into the bathroom and turns
on the tap at the basin. Leaving it on, she returns to the kitchen, turns the cooker
to a low setting, and then returns to the bathroom, where, after a short delay
she turns off the tap. Finally she goes back once more to the kitchen.

It should be noted that while this could be an entirely innocuous piece of behaviour,
it does have the makings of a potential emergency and hence we should expect some
alerts to be triggered at various points during the course of it. We describe below the
causal rules needed to make this happen.

Before beginning the formalisation, we should note that the set of sensors described
in the introductory chapter will need to be expanded somewhat if we are to handle
this sequence of events adequately. ‘Switching on the cooker’ is rather vague: a typical
cooker will have a hob containing four gas or electric rings, an oven, and possibly a
grill as well. It makes a difference which of these is switched on in the above scenario:
switching on the oven and then leaving it for an extended period is normal and to be
expected; with the hob, on the other hand, it is more of a matter for concern. Similarly,
there is less to worry about if a gas-ring is on a low setting than if it is on a high
setting. Thus instead of having a single state Cooker to indicate that the cooker is on,
we will use structured states such as setting(hob)=high or setting(oven)=off.
For simplicity we shall assume four settings, abbreviated as O (off), L (low), M (medium),
H (high). It will be assumed that the sensors attached to the cooker are able to detect
and report this information.

The sequence described in words above can be represented by the following table, in
which it is assumed that the sensor readings take place at one-minute intervals.

0 1 2 3 4 5 6 7 8 9 10 11 12
InKitchen + + − − − − + + − − − − +

InReception − − + − − + − − + − − + −
InBathroom − − − + + − − − − + + − −

setting(hob) O H H H H H H L L L L L L
BathroomBasinTap − − − − + + + + + + − − −

If the hob is switched on at a high setting, we would normally expect the patient to
remain in attendance, at least for most of the time. Thus a state of alert should be
generated if, while the hob is on a high setting, the patient is absent from the kitchen
for more than, say, two minutes. The urgency level could begin at 1, and increase to 2
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after a further two minutes, and then to 3 after two minutes more.8 These results will be
secured by the following same-time rules:9

dur(setting(hob)=H � −InKitchen) ≤ 2 � alert(hob) = 0
2 < dur(setting(hob)=H � −InKitchen) ≤ 4 � alert(hob) = 1
4 < dur(setting(hob)=H � −InKitchen) ≤ 6 � alert(hob) = 2
dur(setting(hob)=H � −InKitchen) > 6 � alert(hob) = 3

Similarly, we would normally expect a tap to be switched off when the patient is out
of the room (an exception being if she is running a bath). Thus the following rules are
appropriate:

dur(BathroomBasinTap� −InBathroom) ≤ 2 � alert(bathroomBasin)=0
2 < dur(BathroomBasinTap� −InBathroom) ≤ 4 � alert(bathroomBasin)=1
4 < dur(BathroomBasinTap� −InBathroom) ≤ 6 � alert(bathroomBasin)=2
dur(BathroomBasinTap� −InBathroom) > 6 � alert(bathroomBasin)=3

Note that 2 < dur(BathroomBasinTap� −InBathroom) ≤ 4 is ‘syntactic sugar’ for
the state conjunction

dur(BathroomBasinTap) > 2
� dur(−InBathroom) > 2
� dur(BathroomBasinTap) ≤ 4
� dur(−InBathroom) ≤ 4,

and likewise with the other composite states used here.
We can now use the algorithm presented in §3, together with the rules there given

for dur and the rules just given for alert to infer the times at which alerts occur in
the scenario under consideration. To this end, we repeat the above tabulation, with extra
rows for the dependent states inferred using these rules.

0 1 2 3 4 5 6 7 8 9 10 11 12
InKitchen + + − − − − + + − − − − +

InReception − − + − − + − − + − − + −
InBathroom − − − + + − − − − + + − −

setting(hob) O H H H H H H L L L L L L
BathroomBasinTap − − − − + + + + + + − − −

dur(setting(hob)=H � −InKitchen) 0 0 0 1 2 3 0 0 0 0 0 0 0
dur(BathroomBasinTap� −InBathroom) 0 0 0 0 0 0 1 2 3 0 0 0 0

alert(hob) 0 0 0 0 0 1 0 0 0 0 0 0 0
alert(bathroomBasin) 0 0 0 0 0 1 0 0 1 0 0 0 0

We see that two low-level alerts occur, but they each persist for no more than a
minute. This is in keeping with our earlier suggestion that the sequence of events being

8 These specific figures are, of course, purely speculative and suggested for the sake of having
some definite figures to work with; in reality, it would be necessary to conduct detailed research
to determine what the most appropriate figures should be.

9 Note that although we do not explicitly use the next-time operator here, it is none the less
present implicitly, since the function dur is goverened by the next-time rule dur2.
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described is not in itself cause for major alarm, but at certain points displayed the po-
tential for developing into something more serious. Of course, the fact that two alerts
occur in quick succession may be indicative of something wrong, e.g., that the patient
is in a state of mild mental confusion which if it persists might lead her to do something
with more serious consequences. We could introduce a further layer of ‘meta-alerts’, by
which the system monitors the pattern of alerts and draws attention to cases which we
wish to regard as cause for possible intervention.

While this initial illustration is inevitably rather crude and over-simplified, it does
indicate that the kind of formalism proposed here might be usefully deployed as a way
of handling the generation of alert conditions from those patterns of sensor readings
which require it. There are a number of further observations that can be made here.

First, for each appliance, there are typical patterns of application, and there are typ-
ical relationships between applicance activation and the movements of the patient. For
example, if the doorbell or telephone rings, then this would normally be followed by
movement towards the door or telephone, an exception being if the patient is asleep
in bed, as evidenced by a sufficiently long period of inactivity following a most recent
movement detected in the bathroom. These normal or typical sequences of events are
for the most part not causal in the truest sense of the word, and we do not need to
treat them as such. However, it is important to be able to recognise when departures
from such sequences occur, as these will be precisely the conditions under which we
might wish to trigger an alert state. The rules for the hob given above in effect encap-
sulate the observation that normally, if the patient switches on the hob at a high setting,
it is expected that they will remain in the vicinity of the hob until such time as it is
switched to a lower setting. Other rules will correspond to other regularities in expected
behaviour. For example, the absence of detected movement over a long period during
the day would normally be cause for alarm.

It should be noted, however, that behavioural patterns are likely to differ from patient
to patient. One patient might typically go to the kitchen to prepare a nightcap just before
going to bed, and different patients may have different patterns of bathroom use in
relation to breakfast and other mealtimes. Normally, if the patient is in bed and gets up
in the middle of the night to go to the bathroom, they should return to bed after a few
minutes. But some individual patients might quite usually get up for fairly long periods
during the night. Deviations from the normal pattern for the patient being monitored
can be used to trigger alarms, but in order for this to happen, the system will have
to learn what the normal patterns are for that patient, so there is an important pattern
detection element here. The learning process might make use of feedback from false
alarms: if a particular conjunction of circumstances several times leads the system into
generating an alert state that proves to be unfounded, the rule should be modified so
that that conjunction of circumstances is no longer treated as cause for an alert.

In addition to normal or typical patterns of behaviour, there will also be some univer-
sals: for example, a person cannot be in two rooms at once, and a person cannot move
directly between two non-adjacent rooms (continuity of movement). If either of these
conditions is detected, it suggests the possibility of an intruder in the flat.10 Of course,
it is possible that the patient has a visitor, but if this is the case, the system should know

10 Of course, it could also be an indication of a faulty sensor!
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about it since at some stage the doorbell will have rung, followed by movement in the
vicinity of the front door. Thus we could have a state Visitor, whose default value is
false, and which becomes true only after a sequence of sensor readings characteristic of
the patient’s admitting a visitor into the flat. The first ‘possible intruder’ alarm can then
be readily handled by rules of the form

−Visitor� InKitchen� InBathroom � alert(possibleIntruder) = 2,

by which a medium-level ‘possible intruder’ alert is triggered by the simultaneous
detection of movement in two different rooms when the patient is supposedly alone.
To handle the second case, we need to enforce conditions to the effect that if, say,
InBathroomholds at t−1 and InKitchenholds at t then alert(possibleIntruder)
should be set to the value 2. However, the same-time and next-time rules as we have
them do not readily lend themselves to this. One (perhaps rather inelegant) possibility
would be to introduce a new state-forming operator prec such that prec(S) holds at
time t if and only if S holds at time t − 1. The rules governing prec are

S � ©prec(S)
prec(S) � −prec(S)

(where these need only be implemented for independent states S). We then have the
rule

InKitchen� prec(InBathroom) � alert(possibleIntruder) = 2.

5 Concluding Remarks

The Smart Home, as perceived by the array of sensors it contains, is a rather well-
defined, constrained environment in which much of what happens is likely to conform
to certain invariable, or almost invariable, patterns that can be specified in a simply-
formulated language of limited expressive power. As such, it is an excellent test bed
for various formalisms that have been developed in AI for reasoning about closed do-
mains. It seems reasonable to hope that many problems, which prove to be intractable
when they arise in the context of a wider world in which it is impossible to specify in
advance even the kinds of things that can happen, may be much more benign when they
arise in this more restricted arena. In this chapter we have examined the case of causal
reasoning; specifically, the detection of emergencies or potential emergencies from the
monitoring of activity taking place within the Smart Home. We have suggested that
for this purpose a comparatively simple formalism, devised originally for modelling
deterministic devices and protocols, might be an appropriate tool to use.

Of course, there is more scope for causal reasoning in the Smart Home environment
than what has been described here. In the introductory chapter, the example is given
of food being left too long on the cooker, causing a fire. Behind this we can discern
a causal law to the effect that, given suitable background conditions, if the cooker is
left on for too long (however ‘too long’ may be defined), then a fire will ensue. Does
the central computer system that is monitoring the Home need to ‘know’ this? Here
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we would argue not: what is needed is that the system can detect that a condition has
arisen that is cause for alarm. By generating an alert state, it draws this condition to
the attention of humans who are, we may assume, watching out for such things. At that
point, human commonsense reasoning takes over; depending on the details of the case,
it may or may not be judged necessary to call the fire brigade.

One of the goals of AI is, of course, to emulate human commonsense reasoning,
so it is natural to ask at which point we should expect humans to have to intervene in
the monitoring process. Can we, for example, build into the computer system sufficient
‘common sense’ for us to allow it to make decisions such as whether to call the fire
brigade when it detects a condition that appears to warrant it? Here it would seem
prudent to proceed with caution: the computer emulation of human common sense does
not at present appear to have advanced sufficiently to allow us to deploy such computers
outside the comparatively constrained environments in which ‘reasoning’ is reducible
to a kind of mechanical calculation. This is not common sense but perhaps provides a
foundation on which something more like true common sense can be built. Here I must
reveal my own prejudices and express a guarded scepticism as to whether any such thing
will ever be achievable. Even if it is not, the kind of system described in this chapter
can function as a useful tool, providing essential support for the decisions we humans
have to make, even if not making any such decisions itself. A parallel can be drawn with
decision-support systems in medicine. In the early days of AI there was much optimism
that expert systems could be used for completely automated diagnosis; although this
proved not to be the case, the ensuing research effort has led to a widespread acceptance
that computer-based systems can usefully support the human physician in the decision-
making process.
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Abstract. In this chapter, we review the use (and uses) of plans and planning in 
Smart Homes.  Plans have several applications within Smart Homes, including: 
sharing task execution with the home’s inhabitants, providing task guidance to 
inhabitants, and to identifying emergencies.  These plans are not necessarily 
generated automatically, nor are they always represented in a human-readable 
form.  The chapter ends with a discussion of the research issues surrounding the 
integration of plans and planning into Smart Homes. 

1   Introduction 

In this chapter, we discuss the use of plans and planning by smart homes. Plans are a 
series of steps or actions by which an activity or task (e.g., bake cookies, do the 
laundry) is completed or a goal (e.g., remain hydrated throughout the day) is achieved. 
Planning refers to the act of creating a plan. While all of the systems described in this 
chapter make use of plans, not all of these systems can generate plans on their own.   

1.1   Planning 

Planning software solves the problem of how to achieve desired goal states given an 
initial state of the world.  The classical approach to planning is to model states in the 
world with deterministic actions that define transitions between states.  Plans are built 
by searching the space of state sequences derived from this model to find a sequence 
that starts at the initial state(s) and ends with the desired goal state(s).  Scheduling 
addresses a different problem than planning. Given a set of tasks with resource and 
temporal ordering constraints, scheduling determines when to perform these tasks.  It 
applies optimization criteria to determine which of these tasks to schedule first and 
constraint satisfaction techniques to place tasks on a timeline. 

Deliberative techniques for solving the planning problem can be partitioned into 
three areas [1].  Classical planning encompasses a variety of techniques, including 
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forward and backward search and graph-based analysis like Graphplan [2]. Decision 
theoretic techniques like Markov Decision Processes [3] define functions for identifying 
actions from states. Hierarchical planning techniques (e.g., SIPE-2, [4]; O-Plan, [5]) 
pre-define hierarchical groupings of goals and associate them with constraints that are 
matched during search (i.e., goal decomposition). 

The challenges of planning for complex, real-world domains, like human activity 
planning, have been addressed by developing a variety of specialized techniques [6].  
Planning with uncertainty is addressed by modeling beliefs with non-deterministic 
or probabilistic actions that define the belief transitions. Anytime planning provides 
algorithms that don’t have to complete to determine a useful partial plan.  Temporal 
planning models actions that include duration and temporal constraints, which permits 
solving problems with concurrent and covering goals. Knowledge-based planning 
models domain specific information to speed up search (e.g., action models with 
domain-specific constraints such as action performer or agent). Problem-based 
heuristics can be used to improve search.  Examples of heuristic planning include 
progressive planning (using forward search) and regressive planning (using backward 
search).   

Reactive planning (e.g., RAPS, [7]; PRS, [8]) handles uncertainty by sensing states 
in the environment and using them to adjust the plan during execution.  Reactive 
planning uses such sensed information to guide goal decomposition during execution 
and to determine if the execution of a task has the intended effect on the environment.  
Reactive plans can be adjusted during execution in response to changing conditions in 
the environment or failure to achieve desired states. 

Mixed initiative planning [9] supports either humans or the planner in taking the 
initiative to guide the planning process.  It provides a means for incorporating human 
knowledge during plan building to revise goals and guide search, and during plan 
execution to indicate the success of activities in achieving their goals.  Mixed 
initiative planning is particularly useful when automatically building plans that 
humans must understand or follow.   Because humans participate in building the plan, 
human satisfaction with the plan can be improved significantly. 

1.2   Planning and Scheduling in Smart Homes 

There are three ways in which smart homes use plans: 

1. Provide guidance or reminders to a resident during a task; 
2. Perform actions to help the resident complete a task; 
3. Identify emergencies, because the resident isn’t doing what they’re supposed 

to be doing, or is doing something the wrong way. 

Systems that provide guidance need an explicit representation of the steps within 
each task, but this representation may be generated by a person rather than planning 
software.  For example, the COACH [10-12] has an internal representation of the 
steps involved in washing one’s hands, but this information was provided by the 
system developers rather than derived by COACH.  The advantage of this approach is 
that COACH has a much more detailed and complete representation of hand washing 
than could be generated by planning software.  However, the trade-off is that COACH 
has limited ability to re-plan in response to unforeseen events. 
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Systems that perform actions instead of the resident or monitor the resident’s 
actions to identify emergencies, on the other hand, may operate from a “plan” that 
was learned through observation of previous events rather than forward-looking 
reasoning.  For example, The Adaptive Control of Home Environments (ACHE) 
project at the University of Colorado [13, 14] uses neural networks to monitor the 
relationship between the date, the time of day, and operation of light switches and 
temperature controls.  In this case there is no step-by-step representation of a plan that 
would be recognizable to a person, but a sequence of actions is nonetheless encoded 
within the neural network. 

Similarly, systems that focus on identifying emergencies don’t need an explicit 
representation of plans or schedules.  In fact, these systems don’t even need to know 
when tasks have begun or ended.  Instead, these systems often use machine learning 
techniques to identify expected patterns of sensor readings, which are then compared 
against subsequent readings for deviation.  For example, the MavHome [15] uses 
Hidden Markov Models (HMMs) to cluster sequences of sensor readings to allow the 
system to predict the next action based on observations of a series of previous actions. 

Smart homes are an attractive environment for planning research because they 
offer significant advantages over assistive agents that are “embodied” in devices like 
hand-held computers [16] or mobile robots [17].  Not even a sophisticated mobile 
robot platform like the Nursebot [17] can support the number and variety of sensors 
that can be integrated within an entire home, and a smart home can use multiple 
modalities, devices and interfaces to exchange information with the user.  On a more 
practical level, a smart home can extend through all rooms of the house, including 
places a mobile robot cannot reach or fit into, and a smart home has access to much 
greater power and bandwidth. 

2   Providing Task Guidance 

There is a long history of research [18] in using technology to compensate for 
impairments in executive reasoning tasks.  Executive reasoning refers to cognitive 
activities related to planning, initiating and carrying out activities, interleaving the 
execution of multiple tasks, re-planning the steps of a task, or rescheduling tasks in 
response to external events.  These skills can be compromised by a variety of 
disabilities, and even people without such disabilities may desire assistance with such 
planning tasks.  Early technological interventions consisted of alarm clocks, paper 
“day planners” and picture books, while more recent systems (e.g., Neuropage [19]) 
have made use of pagers, cell phones and personal digital assistants (PDAs). 

A pioneering use of planning technology for cognitive assistance is the Plan 
Execution Assistant and Trainer (PEAT) [16].  PEAT uses planning software to 
present step-by-step guidance to the user, and is capable of re-scheduling activities in 
response to unanticipated events.  PEAT is, however, entirely “disembodied” and 
receives no information from the outside world other than what is provided by the 
user.  This significantly limits the amount of information at PEAT’s disposal for 
making planning and scheduling decisions and makes it impossible for PEAT to 
perform actions on the user’s behalf. 
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While PEAT functions quite well without sensor input, there are clear benefits to 
integrating sensors into a cognitive assistant.  First, knowledge of context can allow a 
device to be more specific and relevant in its prompts and cues.  If the device was 
aware of the user’s location, for example, it could give reminders relevant to that 
location.  Information about the user’s environment might also provide cues to the 
device on what reminders might be important (e.g., hand washing if the person is in 
the washroom) or unnecessary (a reminder to go to the cafeteria if the person is 
already there).  Social cues might allow the device to know when a reminder would 
be inappropriate; such as when the user is talking with another person and might not 
want to be interrupted. 

Secondly, traditional memory aides are limited to reminding the user about items 
on their daily schedule.  However, users might wish to initiate tasks on their own, and 
still receive assistance to complete those tasks.  A context-sensitive reminding system 
could potentially infer a person’s desired task based on observed activities, and be 
prepared to provide appropriate reminders for the user-selected task [20, 21].  This 
would help satisfy the desire expressed by some users for a memory aid “being 
responsive to you but not controlling you [22].” 

Third, a context-sensitive reminder could support the method of vanishing cues.  
This training technique provides as much cue information as patients need to make 
a correct response and then gradually withdraws it across learning trials [23]. A 
context-sensitive memory aid could apply this technique automatically, only 
providing those cues which are truly needed and otherwise allowing the user to 
independently perform their daily tasks.  A therapist could monitor the user’s progress 
and adjust the maximum or minimum support provided by the device, or the speed of 
response of the device, in order to promote greater independence on the part of the 
 

 

 

Fig. 1. Overview of the COACH System (adapted from [12]) 
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user. Unfortunately, a person’s abilities may decrease instead of increase.  In this 
instance as well, a context-sensitive system can detect difficulties a person is having 
and adapt as the user’s abilities change over time. 

The Cognitive Orthosis for Assisting aCtivities at Home (COACH) is an example 
of a system that uses input from sensors to provide activity guidance, in this case for 
washing one’s hands [10-12].  As shown in Fig. 1, a video camera is used to locate 
the user’s hands, which serve as input to the COACH agent software.  The agent 
software identifies which step within the activity corresponds to the input, and then 
determines which plan from a pre-existing plan library matches the observed steps.  If 
the user makes a mistake (e.g., skipping a step or performing a step out of sequence), 
a prerecorded verbal cue is provided to the user.  If the user continues to ignore the 
cues, a caregiver can be notified. 

COACH uses of a probabilistic neural network (PNN) to determine which step 
corresponds with the observed hand location.  The PNN comprises an input level, a 
pattern level, a summation level and an output level.  PNNs use the Bayes optimal 
decision rule to categorize an input pattern (X) as belonging to the population (i) 
which maximizes the value of: 

hicifi(X), 

where hi is the prior probability of an unknown sample being drawn from population 
i, ci is the cost of misclassifying an input pattern as belonging to population i, and 
fi(X) is the probability density function (PDF) for population i.  PNNs require less 
training time than other types of neural networks, but the training data must be highly 
representative of the actual task data. 

COACH uses a simple plan recognition algorithm.  The sequence of steps is first 
compared to a library of plans, to see if the observed actions match an existing plan.  
If an exact match cannot be found, the agent finds the “closest” plan by eliminating 
observed steps (beginning with the most recent) until a match is identified.  A situated 
planning agent is then used to guide the user through the remaining steps of the plan. 

3   Perform Actions for the Resident 

Instead of providing guidance, some systems take over parts or all of an activity for 
the user.  There are a number of reasons why this automation may be desirable. First, 
automation can relieve the resident of tasks that are repetitive, highly predictable or 
require little judgment (e.g., dimming lights or changing thermostat settings at 
specific times).  Second, automation can assume responsibility for tasks that would be 
too difficult for a resident to complete because of cognitive impairments that limit 
task performance accuracy or safety (e.g., turn off the stove if it has been left on too 
long). A system that is capable of both providing task guidance and performing 
independent actions might lend itself to shared performance of tasks. At the 
appropriate time, or when it senses that the user might wish to perform a task, the 
system can begin preparing for the task (e.g. turn on lights in the kitchen, preheat 
the oven) while also guiding the user through his or her part of the task (e.g. taking 
vegetables out of the refrigerator, stirring a pot).  Third, automated systems can be 
used to create task-specific user interfaces that combine multiple actions into a single 
command [24].   
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Fig. 2. Overview of the ACHE System (adapted from [13]) 

The Adaptive Control of Home Environments (ACHE) project at the University of 
Colorado [13, 14] controls the lighting within the house by using an optimal control 
framework to balance inhabitants’ comfort with energy conservation. A discomfort 
cost is calculated based on the inhabitants’ actions to manually adjust the lights, and 
an energy cost is calculated based on total energy consumption. The expected average 
cost at time t0, J(t0), is then: 
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where d(xt) is the discomfort cost for environmental state x at time t, and e(ut) is the 
energy cost of control decision u at time t.  ACHE’s goal is to find a mapping from 
environmental states to decisions that minimizes the expected average cost. 

The architecture for ACHE is shown in Fig. 2. The Q learning controller uses 
reinforcement learning to identify the mapping between the current state and desired 
lighting level. The event-trigger mechanism identifies when events have occurred that 
require a response from ACHE. The state estimator uses the activities of inhabitants 
and the current level of natural light to categorize the state of the environment.   

4   Monitoring Behavior and Identifying Emergencies 

A dilemma faced by clinicians is reconciling the fact that observations of patients 
only occur during (infrequent) face-to-face meetings in a clinic or laboratory, while 
what is really needed are assessments that reflect the patient’s capabilities in the real 
world, where distractions are present and dual-task performance is often required.  As 
such, there is a need for ecologically valid tests, that can provide information about a 
patient’s ability to function in a real-life environment [25].  Sensors integrated into 
the patient’s environment as part of a smart home can allow medical staff to obtain a 
much clearer view of the patient's condition than is available from short periods of 
monitoring in the hospital or doctor's office [26].   
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“Pervasive healthcare technology” offers the potential for continuous measure-
ment, processing and communication of physiological and physical parameters from 
patients to service providers, family and other support people [27-31]. The appro-
priate design and integration of different kinds of sensors, as well as the appropriate 
medical algorithms to process the data could offer new possibilities for preventing 
health risks [27, 29, 32], managing chronic diseases [27, 29, 30, 33-37], and providing 
support to elderly and disabled persons living independently [27, 30, 32, 36, 38, 39]. 

Continuous monitoring may allow smart homes to identify changes in health status 
more quickly [40] by detecting symptomatic performance failures or deteriorating 
behavioral patterns.  This is particularly important because these patterns often occur 
only under specific conditions that are not easily replicated in the clinic (e.g., exiting 
and returning to the kitchen too many times, in confusion, when preparing a meal, 
because of an idiosyncratic configuration of items in the refrigerator; failing to take 
medications correctly, but only when the television is on or the telephone rings).  
These types of subtle failures may be noted most during the early stages of a disease 
process, or actually remain undetected because the resident is still able to recover 
from (or mask) the failure.  In these situations, family members or other observers 
must typically serve as informants.   

Continuous monitoring may also allow smart homes to document spontaneous 
compensatory strategies.  This is particularly important for individuals who are able to 
function effectively in the home because it is familiar (e.g., avoiding falls as long as 
the furniture is never moved), but who may experience difficulty during clinical 
evaluation.  In such cases, information about the conditions under which an individual 
avoids error, may allow caregivers and clinicians to postpone more disruptive 
interventions, such as placement in a supervised setting or increasing attendant care.  
Continuous monitoring may also provide information to caregivers about changes that 
can be made in the home to promote increased use of compensatory strategies that 
might not have otherwise been considered (e.g., improving accurate medication 
compliance by disabling the television until a certain time, or changing the furniture 
pattern in a room where repeated performance errors are noted, to the pattern in a 
room where such errors never occur).  

The Independent LifeStyle Assistant (I.L.S.A.) [41, 42] passively monitors the 
behavior of inhabitants and can alert caregivers in the event of an emergency (e.g., a 
fall). I.L.S.A. is an agent-based system, with separate agents for monitoring medi-
cation use, monitoring mobility, providing scheduled reminders, and learning patterns 
of behavior.  Each agent relies on sensors and actuators, which may be shared with 
other agents, and is responsible for situation assessment within its domain area.  Each 
agent also maintains a library of domain-specific plans for (1) recognizing user intent 
and (2) choosing system responses. 

5   Example Scenario of Using Planning Within a Smart Home 

Consider the following scenario which contains elements of all three applications of 
planning within smart homes: task guidance, performing actions and monitoring 
behavior: 
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Irene is a 73 year-old women with mobility and memory 

impairments who wants to continue living in her community rather 

than a nursing home.  At noon on a given day, the system reminds 

her that it is time for lunch and, detecting that Irene is in the 

bedroom, guides her to the kitchen and turns on the lights.  Once 

Irene is in the kitchen, the system asks whether she would like a 

sandwich or soup.  Irene chooses soup, and the system guides her 

through the process of finding the soup can and pot and warming 

up the soup.  When the soup is ready, the system detects that Irene 

has left the stove on, and reminds her to turn it off.  After eating, 

Irene puts the dirty dishes in the dishwasher.  The system senses this 

and, knowing that Irene needs to take medication after lunch, 

directs her to her medication dispenser and instructs her on the 

appropriate pills to take.  When Irene fails to take her medicine, the 

system notifies Irene’s daughter, who lives nearby. 

Leading Irene through the steps involved in making soup, and instructing Irene to 
take her medication after lunch, are examples of task guidance.  To effectively lead 
Irene through each task, and present the proper information at the proper time, the 
system must have an explicit representation of each task, along with an appropriate 
means to convey instructions to Irene.  Turning on lights in the kitchen is an example 
of performing actions Irene would otherwise have to do herself.  A smart home could 
activate lights based on detection of motion, without regard to any plan.  However, a 
smart home that does reason about the user’s plans and goals can turn on the light in 
anticipation of the resident’s needs, or even use the action of turning on a light as a 
cue to the resident regarding where they should be.  Detecting when Irene has failed 
to take her medication is an example of monitoring behavior.   

Another challenge to successfully integrating planning into a smart home is 
distinguishing between events that must happen at specific times (e.g., lunch happens 
at noon) and events that must happen relative to other events (e.g., medication is 
taken half an hour after eating).  COACH represents plans as simple sequences of 
actions.  For example, the task of making soup would be represented as:  

• find the soup can;  
• find the pot;  
• open the soup can;  
• pour the soup can into the pot;  
• place the pot on the stove;  
• turn on the burner.  

Hence, COACH is well-suited for reasoning about relative events but is poorly-
suited for initiating actions at specific times. ACHE, on the other hand, explicitly 
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incorporates time into its reasoning. However, because ACHE’s representation of 
plans is diffused throughout a neural network rather than explicitly represented, 
actions carried out at an unusual time may not be correctly recognized. Of the three 
systems examined in this chapter, only I.L.S.A. has sufficient representational flexi-
bility to accommodate both absolute and relative timing of events.  The trade-off, 
however, is the need to develop separate agents for each task. 

6   Research Issues 

6.1   User Interface 

Smart homes present several challenging interface issues: 

• Who should receive information? The inhabitant of the home, family members, 
caregivers and medical professionals all may have an interest in some of the 
data collected by the sensors within a smart home. 

• What information should each person receive?  Data privacy and security, as 
well as common sense, dictate that data be distributed on a need-to-know 
basis, but who needs to know what? 

• How should information be presented?  Information to the home resident may 
best be presented using more familiar devices and interfaces, such as a 
television, radio or telephone.  Caregivers may prefer a computer-based inter-
face, but different caregivers may prefer more or less detail. 

The goal of the smart home will have a significant influence on the nature of the 
interface.  Systems that provide task guidance have the most difficult user interface 
issues, since they interact most frequently with the inhabitant across multiple 
locations and different input and output modalities may be appropriate for specific 
tasks and locations.  For example, an interface that accepts voice commands and 
provides picture and video output might be most appropriate for guidance in the 
kitchen, but a purely auditory interface might be more appropriate in the bathroom. 

Systems that perform actions for the resident may have no interface at all, or may 
be designed to provide a single, simplified, task-based interface (rather than multiple 
device-based interfaces).  For systems that focus on monitoring behavior and 
identifying emergencies, the primary user interface may not be intended for the 
resident of the home, but rather for a medical professional, family member, or other 
caregiver.  Systems that monitor for instantaneous emergency situations (e.g. a fall or 
a heart attack) may alert the appropriate emergency personnel, as well as a designated 
family member (or may try multiple family members until one responds).  Other 
systems could monitor more subtle trends in health status or activity level.  A user 
interface will be needed to report these trends to the appropriate person(s), potentially 
including the resident and one or more caregivers.  Depending on the particular 
application and the individual situation, the visualization of data must balance clear 
presentation of the important data with respect for the user’s privacy.  It is also 
important to present the most pertinent data in the most succinct fashion; so that the 
underlying trends (or important outliers) can be quickly seen without having to sort 
through hours of sensor data. 
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6.2   Plan Recognition 

Smart homes that provide task-specific assistance or monitor task-specific behaviors 
must, necessarily, know what task (or tasks) the resident of the home is engaged in at 
any given time, which implies that the system must have some way of automatically 
determining what the resident is doing.  Recognizing what a person is doing (or 
failing to do) based on observations from potentially noisy sensors is called plan 
recognition [43].  Plan recognition plays a critical role in many of the systems 
described in this chapter.   

Performing plan recognition in real world environments with imperfect sensors 
poses several challenges [43, 44]: 

• Knowledge Representation.  Many factors that affect behaviors (e.g., user 
preferences and capabilities, constraints imposed by the physical environment) 
can be difficult to represent within existing probabilistic frameworks. 

• Task and Behavior Overlap.  People often pursue more than one plan at the 
same time, or use a single action to achieve more than one goal. 

• Multi-Agent Systems. More than one person may be involved in completing a 
task, so plan recognition must be performed over multiple agents. 

• Failed Actions.  People sometimes fail to achieve a goal, either because they 
do the wrong thing or because the right thing to do didn’t work.  

• Abandoning Plans.  People sometimes give up on plans altogether, due to 
forgetfulness, distraction, or a higher priority interruption.  

• Hostile Agents.  Not everyone wants to have all their actions observed and 
will therefore try to hide some actions.  

Based on the above constraints, many smart homes rely on a probabilistic 
approach to plan recognition, such as Bayesian networks [17] or Hidden Markov 
Models [43]. A probabilistic approach allows multiple potential plans to be considered 
simultaneously, accommodates hidden or unobserved data, execution errors and task 
failures. 

6.3   Knowing When and How to Prompt the User 

Assistance that is unwanted, unneeded, or delivered at an inopportune time, can be 
worse than no assistance at all [17, 43]. Prompts for tasks that have already been 
completed, or prompts that interrupt a higher-priority task, will lead to frustration and 
possibly rejection of the system.  If frustration becomes high enough and an “off” 
button is not easily available, “system rejection” could involve a hammer.  Worse, 
actions that are simply wrong (failing to prompt someone to take medication, 
prompting someone to take an extra dose of medication, turning off the lights while 
someone is in the room) could lead to injury or health emergencies.  This is especially 
dangerous if the system works much of the time, leading to a false sense of security 
and reliance on the system.   

An over-reliance on the system may be undesirable even if the system works well.  
For many users, it is desirable to provide the minimum necessary level of task guidance.  
This allows the user to exercise their inherent cognitive capacity, and maintain a 
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maximum level of independence [17]. Poorly-delivered assistance can lead to reduced 
independence, injury, or rejection of the system.   

Furthermore, even if assistance is correctly timed, it must be delivered in a way 
that enhances, rather than interferes with, task performance.  This includes such 
considerations as the frequency of prompts, the modality (e.g. text, pictures, speech, 
non-speech audio cues), and managing interruptions.  Management of interruptions 
includes controlling how the system responds to external interruptions, controlling 
when  and how the system can interrupt other activities, and controlling when and 
how the system can coordinate competing internal tasks (e.g. the system is in the 
midst of a task when a higher priority task becomes active). 

Adding to the challenge is the fact that the timing of assistance must take into 
account previous or future activities.  For example, medication must often be timed 
with meals.  Things that the user doesn’t do can also effect the value of providing 
assistance.  For example, reminders to drink sufficient amounts of water should 
become more urgent if previous prompts to drink water have been ignored. 

6.4   Knowledge Representation 

A knowledge-based system must, necessarily, have a method of representing that 
knowledge.  In a smart home, the knowledge representation must satisfy a number of 
constraints [45]: 

1. The representation must provide a computational surrogate for real-world 
entities, such as people, sensors, projectors, lights, and appliances.  

2. The representation implies a set of ontological commitments, which define 
how the smart home looks at the world.  For example, is camera input 
interpreted as people or as blobs of color being tracked through a room?  

3. The representation defines how inferences are made, and determines what 
kinds of inferences are possible. 

4. The representation collects, organizes and links together large quantities of 
information.  

An often-overlooked aspect of implementing a knowledge-based system is the 
need to acquire the necessary knowledge.  In order for a smart home to make use of 
plans, the smart home must either be given the plans or given the knowledge 
necessary to construct the plans.  Given the variety of activities that occur in the 
home, creating a complete set of plans by hand can be a daunting task.  However, 
providing the system with enough information to generate its own plans can be even 
more difficult.  In cases where there is no explicit internal representation of plans 
(e.g., when neural networks are used) then the system must be trained, which can take 
significant effort. 

7   Conclusion 

Plans and planning have been incorporated into smart homes in a variety of ways to 
support a range of behaviors.  Plans may not be human-readable, or even explicit, and 
may be hand-generated, machine-generated or learned over time.  A knowledge of 
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what a home’s inhabitant is supposed to do, and how he or she is supposed to do it, is 
critical for sharing, guiding or monitoring task execution.  Plans also serve as 
templates for plan recognition algorithms.  Finally, only smart homes with the ability 
to plan will be able to respond to unanticipated events. 
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Abstract. Temporal data mining is a relatively new area of research in computer 
science. It can provide a large variety of different methods and techniques for 
handling and analyzing temporal data generated by smart-home environments. 
Temporal data mining in general fits into a two level architecture, where initially a 
transformation technique reduces data dimensionality in the first level and indexing 
techniques provide efficient access to the data in the second level. This infrastructure 
of temporal data mining provides the basis for high-level data mining operations 
such as clustering, classification, rule discovery and prediction. These operations can 
form the basis for developing different smart-home applications, capable of 
addressing a number of situations occurring within this environment. This paper 
outlines the main temporal data mining techniques available and provides examples 
of where they can be applied within a smart home environment. 

1   Introduction 

Temporal data mining is a reasonably new area of research in computer science. It has 
become more popular in the last decade due to the increased ability of modern 
computerised systems to store and process large quantities of complex data. It is not 
unusual for modern equipment within a real-time environment to generate megabytes of 
temporal data, through the constant monitoring of different parameters. Even a simple 
smart-home sensor can produce an enormous amount of temporal information, which is 
difficult to analyse without specifically developed temporal data mining techniques.  

Researchers have different views on how to structure temporal data types and how 
to go about temporal data mining tasks. Each individual strategy reflects an individual 
perspective on this problem. This review presents a summary of various temporal data 
mining algorithms that have been used in the past or could be applied to the smart 
home environment. 

The rest of this chapter is structured as follows. First, we describe the various 
temporal data types which can be generated by smart home equipment. Then we 
discuss the generic concept of a temporal data mining framework, which consists of 
three main components: a transformation, a similarity metric and a mining operation. 
A review of a relatively new direction, temporal cased-based reasoning, is also 
provided and its applicability to smart homes outlined. In the final section a summary 
is provided along with guidance as to which techniques would be best applied to the 
smart-home scenario. 
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2   Data Types 

Conceptually, temporal data types can be considered as belonging to one of two 
types: sequences or time series. 

2.1   Sequence  

A sequence is an ordered set of events, frequently represented by a series of nominal 
symbols [1]. The simple example in figure 1 explains how real world events can be 
represented by a sequence data type. Suppose a piece of equipment is monitoring the 
behaviour of a person in a smart-home environment. A short episode of typical 
actions on a work day morning may consist of the following: “get up”, “take a 
shower”, “drink coffee”, “get dressed” and “go to work” (refer to figure 1).  

to get up to take “a shower” to drink “coffee” to dress up to go “to work”
Event 1 Event 2 Event 3 Event 4 Event 5

Sequence:

time  

Fig. 1. Sequence Data Type (Ordered Sequence) 

All these events are ordered on a time scale and occur sequentially one after 
another. However, for some applications it is not only important to have a sequence of 
these events, but also a time when these events occur. To justify the importance of the 
time factor, consider another simple situation, which might occur in the smart-home 
environment. Suppose an elderly person switches on a cooker and then goes to the 
living room and watches TV. By itself the information contained in this sequence of 
events, does not raise concern. However with the addition of timestamp details, it can 
be inferred that a person has not returned to the kitchen within ten minutes of the first 
event, it potentially can mean that this person has simply forgotten the previous event, 
which should immediately trigger an alarm. It is obvious that detecting such situations 
is impossible by using a simple sequence of events. So, a solution is to build in time 
stamps in the sequence when each new event occurs. An example of a sequence with 
time-stamps is shown in figure 2.   

to get up to take “a shower” to drink “coffee” to dress up to go “to work”
Event 1 Event 2 Event 3 Event 4 Event 5

Sequence:

time7:00 am 7:10 am 7:30 am 7:50 am 8:15 am  

Fig. 2. Sequence Data Type (Time-stamped Sequence) 

Some researchers tend to define a time stamped sequence as an independent 
temporal data type [2], but we regard it as just an extension of the basic sequence data 
type. To avoid any confusion in terminology between these two sequence variations 
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within this chapter, we specifically refer to either ordered sequence or time stamped 
sequence to prevent any ambiguity in meaning. 

2.2   Time-Series  

Time-series is a sequence of continuous real-value elements [1]. This type of temporal 
data is usually produced by equipment which constantly monitors certain parameters 
such as temperature, brightness, vibration, pressure and so on. Each time-series is 
characterized by a set of specific properties such as its range of potential deviation 
and its sample rate. Typical time-series data is shown in figure 3. 

V

t

Time-series

. . .. . .D
e

vi
a

tio
n 

R
a

n
ge

Sample Interval  

Fig. 3. Time-series Data Type 

The important characteristic of time-series is the large number of samples (real-
value elements are taken periodically through the fix time interval) which have to be 
stored. Even a simple sensor monitoring a basic parameter such as temperature in a 
smart-home environment can easily generate megabytes of source data (for example 
data collected from the temperature sensor during 1 year with the sample rate 1 
minute can exceed size equal to 0.5 megabyte).  Practically all time series data require 
preliminary transformation before any actual data mining analysis can take place. 
Different types of transformations are discussed in section 3.1.       

3   Temporal Data Mining  

The majority of temporal data mining techniques can be described by a two stage 
workflow as represented in figure 4, where a transformation is applied to the original 
temporal data in the first stage and a mining operation in the second.  

The main goal of the transformation stage is to reduce the complexity (dimensionality) 
of the original data and represent it in a format suitable for mining operations. The 
mining operation performs an analysis on the transformed data to discover useful 
knowledge from it. Since the majority of temporal data mining techniques require a 
similarity determination between items (for example k-NN, k-means), an important 
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Fig. 4. The two stages workflow for temporal data mining 

component of this sage is choosing a suitable metric. The optimal choice of transformat-
ion, similarity metric and mining operation is determined by the temporal data type and 
the requirements of the end system.  

3.1   Transformation 

Since temporal data can be characterised as one of two main types: time-series or 
sequences, it is possible to identify transformation techniques which work equally well 
for both groups or relevant to one specifically. Six categories (“No Transformation”, 
“Jagged Time-series”, “Point in N-dimensional space”, “Language”, “Sequence” and 
“Model”) of the most common transformation techniques are presented in figure 5, 
where four (“No Transformation”, “Jagged Time-series”, “Point in N-dimensional 
space” and “Language”) are relevant to time-series and the other two (“Sequence” and 
“Model”) to both. 

Let’s look first at the categories of transformation techniques for time series data. 
The first category No Transformation simply represents situations, where no specific 
transformation is applied to the original time-series data. This is relatively unusual, 
however for some applications it might be the best choice to perform analysis in the 
original time domain instead of carrying out preliminary transformations [3], [4], [5], 
[6]. Jagged Time-series transformation combines all techniques which approximate 
the original time-series and reduce the number of fluctuations making the signal simpler 
to represent. Examples of this include [7], [8], [9], [10]. Point in N-dimensional space 
transformations include techniques which transform time-series from the time domain 
to other domains where it can be represented by N-features [11], [12], [13], [14]. An 
important aspect of using this technique is its ability to significantly reduce 
dimensionality, where even long and complex signals can be represented as a 
reasonably small set of features. Language transformations represent all techniques, 
which build language-type descriptions of the original signal, where signal changes 
are represented as a set of words like “up”, ”down” and so on [15], [16], [17]. The 
Sequence category represents techniques, which transform data into a sequence of 
values or events [18], [19], [20]. This category also includes techniques for 
transforming one sequence into another, where the transformed sequence has less 
complexity than the original. Such transformations are required when the original 
sequence is very long and its direct analysis would be inefficient and highly complex. 
Sequence transformation techniques are quite popular in the temporal data mining 
community, since they provide a better understanding of the temporal nature of the 
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Fig. 5. Different type of transformation techniques for temporal data 

source information and are suitable for rule discovery.  The last category, Model 
transformation, integrates a set of techniques which build a model based on the 
original time-series or sequential data types, which then can be used for the evaluation 
of the newly obtained temporal data [21], [22], [23], [2 4].  

3.1.1   The “No Transformation” Category  
Applying a data mining technique to an original time-series signal (such as that 
generated by a temperature sensor) without any transformation is not a common 
practice. The primary disadvantage of using such temporal signals directly in analysis is 
their potential incompatibility. Signals are defined by a number of parameters such as 
amplitude, phase (shift), and sample rate. It is obvious, that applying a mining algorithm 
or simple similarity metric to two non transformed time-series signals, each with a 
different sampling rate for example, is unlikely to produce a reasonable result. However, 
some techniques were designed to deal with time-series in the original time domain. The 
technique developed by [3] splits a time-series signal into a number of non-overlapping 
segments, it then applies a scaling and offset procedure to adjust them to enable 
sequential comparison of corresponding segments. [4] present a lazy learning algorithm. 
It is based on k-nearest neighbours, where two different similarity metrics are defined. 
One is value-distance for calculating a distance between two time-series in the time 
domain and the other is shape-distance which takes into consideration shape of 
comparing time-series. All comparisons were performed in the original time domain. [5] 
introduced a dynamic programming method for spoken word recognition, which was 
generalised and proposed to the data mining community by Berndt [1994] as Dynamic 
Time Wrapping (DTW). All these techniques are unified in their ability to operate in the 
original time domain without any transformation. They are mentioned again in 
section 3, where we discuss similarity metrics.  
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3.1.2   The “Jagged Time-Series” Category 
All transformation techniques, which try to find a piecewise linear function to 
approximate the original time-series data, fall into this category. A typical example of 
such techniques is shown in figure 6. As can be seen from this figure, the piecewise 
approximation removes high frequency fluctuations and replaces them with steady 
intervals of increasing or decreasing signals on linear segments. Techniques using this 
concept of transformation find wide recognition in the temporal data mining 
community. The main challenge in developing such techniques is to establish an 
algorithm for performing piecewise approximation.  
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Fig. 6. A typical example of “Jagged time-series” transformation 

A lot of temporal data mining techniques using piecewise approximation have been 
developed. Keogh [1997] proposed the robust segmentation technique which copes 
with one limitation of segmentation techniques, where the number of segments had to 
be specified in advance. Latter in [8] this approach was improved by introducing a 
weight vector, which defines the importance of each generated segment. Keogh 
[2000] proposed a dimensionality reduction technique called Piecewise Aggregate 
Approximation (PAA). It approximated time-series by splitting it into equal-sized 
sections and calculating the mean value for these sections. This approach was 
modified in later work [10], where adaptive piecewise constant approximation was 
proposed. Each time-series signal in it is represented as a constant number of different 
sized segments, approximated by the mean value. This approach combines advantages 
of PAA with the ability to place more segments in areas of the signal with higher 
activity and fewer segments in areas with lower activity.   

3.1.3   The “Point in N-Dimensional Space” Category 
All the main transformation techniques in this category transform the initial time-series 
data from the time domain to another domain, where it can be represented by 
N-features. The typical example of such a technique is shown in figure 7 and describes a 
transformation of time-series from the time domain to the frequency domain, where it is 
represented by the first three complex frequency coefficients. Taking into consideration 
the fact that each complex frequency coefficient consists of two parts, real and 
imaginary, the total number of dimensions required to store the given time-series in the 
frequency domain is increased to six. It would therefore be represented as a point with 
the following coordinates (r1,i1,r2,i2,r3,i3), where (r1 , i1) is the first frequency coefficient 
C1, (r2 , i2)  is the second C2, and (r3 , i3) the third C3 respectively. 
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Fig. 7. Typical example of a “Point in N-dimensional space” transformation 

Time series transformed from one domain to another becomes more manageable 
through a reduction in dimensionality, which provides increased possibilities to establish a 
meaningful similarity metric and to more effectively apply data mining operations. 

The most popular techniques for transforming time-series are Discrete Fourier 
Transformation (DFT) [12] and Discrete Wavelet Transformation (DWT) [13]. The 
former approach transforms time-series data from the time domain to the frequency 
domain. An important observation with this technique is that for the majority of real 
world signals its main energy is concentrated within the first few frequencies, which 
makes this particularly useful for dimensionality reduction purposes. As a 
consequence of Parseval’s theorem [12], the Euclidian distance is preserved in the 
frequency domain as well as in the time domain. These observations were utilised in 
[11], where the extracting and storing of the k - first few complex frequency 
coefficients was proposed in conjunction with their continuous indexing in k-
dimensional space. Using the last few Fourier coefficients in a distance computation 
was proposed in [12], due to an important observation, which nearly doubled the 
efficiency of the algorithm. This observation showed that coefficients at the end are 
conjugates of coefficients at the beginning, which allows their use with the same level 
of confidence. Mörchen [2003] proposed, instead of using the first few frequency 
coefficients, to choose the best coefficient from the set of time series by using Fourier 
or wavelet transformations. Haar wavelet decomposition was proposed for use in [14] 
for selecting appropriate features for the classification of time-series.    

3.1.4   The “Language” Category 
All techniques transforming time-series to a language representation format belong to 
this category. A typical illustration of such a process is shown in Figure 8.  

This approach provides the possibility to represent the time-series by a set of 
definitions, which describe changes in its shape. For example if the value of the time-
series constantly increases in a particular segment, the general curve behaviour can be 
expressed by the term “up”. In the opposite scenario when the value decreases, the 
curve can be described by term “down” and so on. Use of language representation 
opens the possibility of matching the general behavior of time series without any time 
consuming preprocessing steps.   
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Fig. 8. A typical example of “Language” transformation 

A number of techniques were proposed to perform language-like transformations. 
A Shape Definition Language was proposed in [16]. It retrieves objects based on their 
shapes by using a reasonably easy but quite powerful language, which allows the 
creation of a large variety of different queries. A significant feature of this language is 
the performing of a “blurry” match, which focuses on matching overall shape without 
taking into consideration small details.  Transforming time–series into a sequence of 
symbols was proposed in [16]. The transformation is performed by applying sliding 
windows, which traverse the whole time-series and divide it into segments. Resulting 
segments are clustered and each cluster is specified by a letter or a combination of 
letters. Then the segments in the original time-series are replaced by cluster 
identifiers. Using this representation creates the possibility of deploying different 
techniques for rule discovery. Another transformation approach, IMPACT, was 
proposed in [17]. It transforms a time-series into a string of symbols by mapping the 
original signal onto a grid type structure, where a letter identifier is associated with 
each grid cell. 

3.1.5   The “Sequence” Category 
Techniques, which transform time-series data into a sequence format are described in 
this section. A typical example of such a transformation is shown in figure 9.  

In most cases, the task of transforming time-series into a sequence depends on the 
identification of significant elements (episodes) and their representation in sequential 
formats: such as an ordered sequence or a timestamp sequence. A general approach 
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Fig. 9. A typical example of a “Sequence” transformation 
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for change-points detection, implemented in batch and incremental versions was 
proposed and evaluated on synthetic and real world data in [18]. Keogh et al. [19] 
introduced a domain independent algorithm for detecting unexpected patterns in time 
series databases. A new framework for anomaly detection was proposed in [20] which 
include a mechanism for associating a defined anomaly with a confidence value. An 
important advantage of episodic discovery on time-series is the significant reduction 
in data volume. Episodes also provide the possibility to map them on other sequences 
obtained from different time-series channels for discovering inter-channel relations. 

3.1.6   The “Model” Category 
Techniques belonging to this category transform a collection of original time series 
data into a model structure (see figure 10).     
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Fig. 10. Typical example of “Model” transformation 

One advantage of a model representing time-series and sequential data types can be 
clearly seen during the knowledge discovery process. In general, the model structure 
tends to extract important elements from temporal data and establishes relations 
between them, which enables more complex analysis, whereby hidden relationships 
and interactions can be discovered. A novel approach proposed in [21]  built Markov-
based Models for time-series data and used a Viterbi-like algorithm [25] for the 
detection of time-series patterns. A Markov-based module was also proposed to be 
used as a similarity/distance measure for different sized time-series data in [26].  

Another popular model-based approach is  the use of Artificial Neural Networks 
(ANNs). It can be successfully applied to a broad range of different data mining tasks 
including those, which address temporal data. The use of ANNs was proposed in [23] 
for forecasting time series data. Since, the neural network does not require a lot of 
information about the original data, the focus was on selecting optimal parameters for 
the back-propagation algorithm. A single hidden layer feed-forward neural network 
was also proposed in [24] for modeling and forecasting using time series data.         

Building complex episode models based on single or multiple entry inputs of 
events is another possibility for structuring temporal data. An approach for 
recognizing and structuring the frequent episodes in a defined collection of events 
occurring in specified time intervals was proposed in [27]. A method for finding 
particular orders for describing relationships between events belonging to a collection 
of sequences was proposed in [28]. 
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Constructing an inference grammar [29], [30], [31] for temporal data is a promising 
approach for temporal data analysis. It provides for the possibility to construct a 
complex grammar model by applying discrete search algorithms to temporal data 
collections. However, despite increased research attention, it still remains more a 
theoretical than a practical approach. 

3.2   Similarity Metrics  

Measuring the similarity between two temporal sequences is an important aspect of 
data mining. During clustering for example some notion of distance is used to identify 
which cluster a particular time series or temporal sequence belongs to. In classification 
similarity is used for identifying the closest time-series or temporal sequence to a 
predefined query, in order to make a prediction. Taking into consideration the variety of 
temporal data representations, it is possible to identify four main similarity metrics for 
the following representations: time domain representation, N-point space representation, 
discrete space representation and model representation (see figure 11). 
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N-dimensional space
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Model
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Distance metrics more applicable for time-
series data types
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Fig. 11. Classification of similarity metrics 

3.2.1   The “Time-Domain” Similarity Metrics 
Measuring distance between two time-series in the time domain is not a particularly 
efficient and accurate way of defining similarity. This approach often has a number of 
significant disadvantages such as:  comparing time-series of different lengths, scale 
and shift incompatibility, differences in sampling rates and dimensionality problems. 

However, in some situations, it is possible to apply a direct comparison in the 
original time domain [4]. The most simplistic measure is the Manhattan distance 
defined by (1):    
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where ix  and iy  are the samples of two time-series x and y  and N the number of 

samples. 
Euclidian distance is another popular similarity metric, which also can be used for 

comparing time-series [4]. Its formal definition is specified by expression (2).  
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Both Manhattan and Euclidean measurements suffer from the drawbacks outlined 
above. 

Another approach was proposed in [32]. It consists of finding a linear function, 
which can map one time series onto another. This approach is advantageous in that it 
takes into consideration outliers, different scales and sampling rates and thus 
addresses some of the disadvantages of the previous measures.  

A probabilistic approach was proposed in [7], where the main idea was to use the 
prior probability distribution for transforming a prototype template into the form of a 
time-series based query. The global time-series shape can be reconstructed by local 
features, which support some degree of deformation. At the same time stretching and 
amplitude adjustments are applied to the global time-series.   

DTW provides a very robust distance computation [33]. It constructs a distance 
matrix based on two evaluated time-series. Each cell of this matrix stores a distance 
between (two sample values for different time series) the i-sample value of time-
series x and the j-sample value of time-series y . A search algorithm is then used to 

identify a path in the matrix, which satisfies certain constraints. One of the disadvant-
ages of this approach is the computational cost required for calculating distances. 
However, some researchers try to combat this limitation by applying jagged 
transformations to the original time-series, before deploying DTW calculations [9].  

 3.2.2   The “N-Dimensional Space” Similarity Metrics 
Defining similarity between time-series transformed into n-dimensional space is the 
most exploited area of temporal data mining. This is a consequence of the fact that 
many techniques which have been developed for conventional (non temporal) data 
mining domains, can be reused. A lot of similarity metrics try to accurately calculate 
distance measures between two entities in a high-dimensional space [34], which 
makes them nearly impossible to be used for time-series data directly.  However, 
nearly every time-series after a transformation becomes a point in n-dimensional 
space, whose dimensionality is significantly less in comparison to the original data. 
This enables the direct application of similarity metrics such as Euclidean or 
Manhattan in the reduced space. 

Consider a simple example. After DFT transformation a time-series is trans-formed 
from the time-domain to the frequency domain, where it is represented by a set of 
complex frequency coefficients. Give an example of the original feature space size.  If 
the number of frequency coefficients taken into consideration is 5, it is easy to see 
that the total space required to store this time series, is reduced to 10 (since each 
complex coefficient is defined by real and imaginary parts). Distance measures like 
Euclidian or Manhattan can then be effectively applied to this transformed space of 
frequency coefficients.   

3.2.3   The “Discrete Space” Similarity Metrics 
Similarity measurements with respect to discrete features has received a lot of 
attention over the last decade, mainly due to significant research intensification in two 
separate areas, namely that of bioinformatics and internet personalization. Both of 
these areas focus heavily on sequences of discrete elements, with the objective of 
defining the degree of similarity between two discrete sequences.  
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The concept of similarity is based on the sequence alignment concept, where 
alignment is the correspondence between two sequences. A correspondence is a 
relation, where an element of one sequence can be mapped to the element of another 
sequence and where an order of elements in both sequences is maintained.  

An important aspect of designing or using discrete similarity measures is to 
identify an objective function. This provides a practical justification of the similarity. 
Consider the simple example of two sequences as shown in figure 12.  

Seq. 1: A B B A  Seq. 1: A B B A - 
Seq. 2: B B A B  Seq. 2: - B B A A 

Fig. 12. Sequence similarity 

Both of these sequences have an equal number of elements (A and B). If we 
directly compare these sequences the number of matching elements is 1. However, if 
we shift the elements in sequence two by 1, the number of matching elements is 3. 
The question therefore is, is this shift meaningful or is this operation completely 
inappropriate for this domain? 

A Blurry match is used for retrieving similar sequences, which are represented by a 
Shape Definition Language [35]. Blurry matches consider sequences as similar 
according to their overall shape, and where small fluctuations are not considered 
significant. The performance of Blurry match was achieved due to defining a set of 
operations like: nomore, noless, precisely etc., which provide for the possibility to 
enrich the query language and as a consequence to facilitate an execution of a 
complex query. 

In the IMPACTS method [17], which transforms time-series into symbol strings, 
similarity is identified by using a suffix tree, where each element of the target string 
matches against tree nodes during a downwards scanning process.    

3.2.4   The “Model” Similarity Metrics 
In general, a distance measurement for the model representation can be defined by 
how closely a sequence or time-series fits into the model. For graph-based and 
deterministic grammar models the similarity is usually characterized by a binary 
criterion (yes or no), where “yes” defines situations where the tested sequence or 
time-series matches a given model, “no” defines the opposite scenario.    

For stochastic and mixture models the similarity is defined as a probabilistic 
measure, which shows the possibility that a sequence or time-series can be generated 
by a given model [28].   

3.3   Mining Operation  

Temporal data mining, like conventional data mining, encompasses many different 
techniques and algorithms, that focus on intelligent data analysis and knowledge 
discovery. From figure 13 it can be seen that these techniques can be categorized into 
four main groups: classification, clustering, association and prediction. We will 
consider each briefly  in turn. 
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Fig. 13. Categories of mining operations 

3.3.1   Classification 
Classification techniques represent the most common temporal data mining operation. 
The main focus of classification operations is to classify an unknown instance into 
one of a number of fixed class values [36]. A number of different models have been 
developed to perform classification. Examples of these include: Perceptrons, 
developed as a simple artificial neural network model, which tried to identify a linear 
decision boundary surface. Linear descriminat models focus on searching a linear 
combination of parameters for the best class separation. Tree models provide a 
partitioning of the instances space to maximize a class purity in each of created 
branches. Nearest neighbor models are the most simplistic and straightforward way of 
classification, where the k-closest points are defined by a specified distance metric 
and used for assigning a class to the query. Logistic discriminate analysis focuses on 
solving primarily a binary classification problem by apply regression function, where 
a probability value obtains from the regression defines belonging of tested instance to 
the one class or another. Naive Bayes models focus on the class-condition distribution 
and use Bayes theorem for defining classification [36]. 

The term classification here refers to the situation where a record is assigned a 
class value based on a finite discrete set of values In the case where the assigned field 
is defined by a real value, classification is referred to as regression. There is a large 
overlap in the methods used for regression with those of classification. The biggest 
challenge in the temporal domain is to modify or develop new techniques, which are 
able to effectively cope with the high dimensionality of temporal instances.  

As was mentioned before nearly all time-series and sequential data types require 
preliminary transformation. This significantly reduces their dimensionality and 
complexity, and as a result makes it possible to deploy classification techniques like 
nearest neighbours or decision trees, ID3, C4.5/C5.0 [36] from the conventional data 
mining background. 

The following is a typical example of using a classification technique for temporal 
data in the smart-home context. Suppose a blood pressure sensor is attached to a 
patient to constantly monitor their health. All measurements are continuously 
transferred from the attached device to a database, which is integrated into the smart-
home environment. Over a fixed period of time (time-window) measurements are 
evaluated, and classified into two classes: “normal state” and “alarming state”. Using 
the DFT transformation method, described in section 3.1.3, the obtained time-series 
measurements contained in the observation time- window are transformed into a set 
of complex frequency coefficients. These coefficients can be passed into a classifier 
such as C5, which will make the appropriate classification. 

Taking into consideration the fact that a number of different transformations and 
similarity metrics can be applied to the original temporal data, a large variety of different 
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classification approaches can be synthesized. The selection of the most appropriate 
transformation and similarity metric is usually made by considering a combination of 
several factors such as the format of the input temporal data, its complexity, the number 
of input channels, the expected level of accuracy and efficiency and so on.  

Often, even after transformation the data can still contain quite a high number of 
dimensions, which can prohibit the direct use of some classification techniques. In 
this situation, feature selection process can be applied in conjunction with 
transformation, to reduce the number of features further. Typical examples of such 
techniques are described in [37].   

3.3.2   The “Clustering” category 
Techniques which group items together, based on some form of distance measure 
generally belong to this category. There are 2 types of clustering – supervised and 
unsupervised. In supervised clustering the algorithm is given examples (training set) 
of the different types of classes found in the data. It then uses this information to 
segment the unseen data into the appropriate classes. This has drawbacks in that if the 
training data is poor, for example if a class was omitted from the training data, then 
the clustering process will be poor. In unsupervised clustering no examples are 
provided and the algorithm naturally discovers or learns the classes or groups based 
on the features of the data only. Often the only input to this type of algorithm is the 
number of groups to form. Both forms rely heavily on the distance metric used to 
segment the data. Semi-supervised clustering involves a mixture of instances with 
known and unknown class labels. 

The result of using clustering techniques usually provides a better understanding of 
a dataset structure and gives useful information for further analysis. K-Means [38], 
CLUSTER/2 [39], COBWEB [40] are typical representatives of clustering techniques. 

There are two main approaches for clustering data: partitional and hierarchical. The 
partitional clustering approach [36] tries to split all entities in the dataset into K 
disjoint segments (clusters), where entities within a segment are as homogeneous as 
possible. The number of segments (clusters) K can either be identified automatically 
or specified by an expert. Homogeneity of entities within a cluster is defined by a 
score function, which aims to minimize the distance between entities assigned to the 
cluster and its centroid. The centroid is the representative point of the cluster, which is 
usually defined as the average of all entities belonging to it. The most typical example 
of a partitioning clustering algorithm is K-means [38]. It splits the dataset into K 
clusters using a recursive algorithm. In the first stage all entities are randomly 
distributed across K clusters and centroids are calculated. Then each entity is 
re-evaluated, by calculating the distance between itself and each centroid. Finally the 
entity moves to the cluster whose centroid it is closest to. The whole process is 
repeated until no more moves are possible (equilibrium) or acceptable homogeneity is 
reached as defined by a score function. 

The hierarchical clustering approach [36] uses a different strategy in that it forms 
clusters recursively based on the data. This can be either done agglomeratively or 
divisively.  In agglomerative clustering data points that are most similar are joined 
into a larger cluster. These clusters are then joined together into larger clusters and so 
on until one large cluster remains. With divisive clustering the opposite occurs in that 
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the data is split into clusters, each of which is themselves split into sub-clusters and so 
on (see figure 14). In this way all entities are gradually grouped into a hierarchical tree 
structure. Similar to classification techniques, it is important to identify appropriate trans-
formation and similarity techniques, as these have a direct impact on the performance 
of the clustering algorithm.  
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Fig. 14. Agglomerative and divisive clustering strategies 

Clustering techniques have received some attention in smart home research. An 
example of using clustering was presented in [41], where a Task-based Markov 
Model was proposed (TMM) and integrated with k-means clustering to discover 
higher level activities. The clustering algorithm takes many parameters into 
consideration for the clustering process, such as, the number of actions involved in the 
individual task, the time-length of the task performance, and the number of devices 
used during the task. This method was used to provide a prediction of the next high–
level task-type. 

Another example of how clustering could be used is in the identification of the 
different life styles of the different inhabitants within the smart-home environment. 
This task is highly important since the smart-home has to adapt and react differently 
to the behavioral patterns of its inhabitances. A typical task in this context could be 
the clustering of inhabitants into different activity groups. Clustering can be done by 
observing motion sensor data over time. For some inhabitants the level of activity will 
be higher than for others and clustering could be used identify distinct groups. Then 
the smart-home could use the profile for each of these groups for making further 
decisions.   

3.3.3   The “Pattern and Rule Discovery” Category  
These techniques have been widely used in commercial environments in order to 
discover buyer patterns and customer behaviors in supermarkets and on-line. 
However, these techniques have shown a clear applicability to other areas such as the 
discovery of behavior patterns in smart home environments.    

Association rule or pattern discovery techniques [36] are usually applied to trans-
actions where each transaction consists of a set of items. The aim is to discover all 
associations among the items where the presence of one set of items in a transaction 
implies the presence of some other items.  
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Approaches related to pattern analysis quite often are based on the apriori-algorithm. 
The main idea behind this algorithm is to generate candidate item-sets from a 
sequence of actions or events and then to identify frequent item-sets by using a 
support factor, which has to be greater than the user defined minimum. Typical 
approaches which use apriori-algorithm are Parallel Apriori [42], DIC [43], DHP 
[44], Q2 [45] , Itemset Clustering [46] and Hybrid Distribution [47]. 

A simplistic rule discovered can be presented as: if event A occurs then event B 
occurs (support 75%). This means that when A is observed B is also observed 75% of 
the time. However, taking into consideration a temporal aspect in the rule discovery, 
the previous example can be presented as: if event A occurs then event B occurs 
within time T (support 75%). Temporal rules contain information, which not only 
identify the consequent action or event for a predefined condition, but also have the 
time within this action or event occurs.  The process of discovering these temporal 
rules is sometimes referred to as sequence discovery. 

An example of applying pattern analysis can be in Episode Discovery (ED), 
proposed in [41] for identifying significant episodes in event histories. By a 
significant episode here we mean an ordered, partially ordered or unordered set of 
events occurring within a regular interval or as a response to spatial triggering event. 
The process of ED uses a sliding window to split event histories into segments. Then 
an analyzing algorithm evaluates events within the sliding window by using a 
minimum description length (MDL) approach [48]. 

3.3.4   The “Prediction” Category 
This category includes all techniques, which focus on the reconstruction of a time-series 
pattern. Originally these techniques were developed to facilitate research in two main 
areas: a financial prediction [49] and weather forecasting [50].  However, with the 
rapid development of areas such as smart-homes and health care, the need for such 
techniques has increased.  

The workflow of prediction techniques can be split into two stages. A number of 
time-series which are similar to the query are retrieved in the first stage. The retrieval 
process may also utilize elements of techniques from other data mining categories 
such as clustering and classification, which can help identify similar time-series. In 
the second stage a spatial algorithm analyses the retrieved temporal entities and 
generates a summary shape from them. The task of generating time-series based on 
retrieved samples is not straightforward. It has received a lot of attention in the past, 
and still remains a high priority for the temporal data mining community, due to the 
large number of open issues.  

An example of where prediction can be used in the smart home is in movement 
tracing. Previous research has shown the possibility of creating a smart-floor [51].  
This smart-floor receives information about a person’s movement through specially 
designed sensitive tiles. Let’s suppose that an elderly person gets up from the sofa in 
the living room and starts to move. Each step is continuously monitored through the 
intelligent environment. Using information obtained from their initial steps, the 
algorithm identifies similar examples in the history database. These patterns are used 
to predict the potential courses for the person within their environment. This 
information can then be used by other equipment, for example turning on lights, or 
music in another room. 
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4   Temporal Case-Based Reasoning 

Taking into consideration the variety of different scenarios, which can occur in a 
smart-home, it is practically impossible to specify beforehand a set of fixed rules that 
cover even the most probable situations. This is why the data mining techniques 
described so far are so important especially when considering that circumstances 
change over time and that old rules may become invalid and new ones need to be 
discovered. This leads to the classical problems associated with rule based systems in 
terms of their brittleness and maintenance. Additionally all rules need to be verified 
before they are used, which is an enormous overhead on designated experts. 

Case-Based Reasoning [52], [53], which is described in more detail in chapter 
(Cases, Context, and Comfort: Opportunities for Case-Based Reasoning in Smart 
Environments), may provide a reasonable solution for these drawbacks within the 
smart-home environment as its knowledge engineering overheads are widely regarded 
to be lower.  

Temporal CBR (TCBR) is a topical subject at present in CBR circles as evidenced 
by the fact that the number of publications in this area have increased in the last two 
years (Two entire workshops were dedicated to this new field at the International 
Conference on CBR in 2003 and the European Conference on CBR in 2004, entitled 
“Applying case-based reasoning to time series prediction”). Despite the increased 
affordability and the importance of utilising temporal data in problem solving, there 
has been very little work done in TCBR to date. Some research has been carried out 
on initial work in the area by Jaczymski [54], who proposed a framework for the 
design of CBR systems, to enable retrieval of cases with time-oriented features, 
Malek [55], who designed the COBRA approach for predicting user actions on the 
WEB based on previous navigation experiences and Anamodt [56], who used 
temporally enabled cases to predict problems that are likely to occur in oil drilling 
platforms based on a history of previous events that led to problems. No work has 
been done for applying TCBR to the smart-home up to now.  

The main drawback of applying the conventional CBR methodology to the temporal 
domain is the lack of a reliable TCBR methodology within the time dimension. 
Traditionally a case in CBR is characterized by a set of static (non temporal) values. In 
a dynamic environment such as the smart-home, a case can be defined as a combination 
of static values, sequences and time-series data types.  

Ultimately to enable CBR systems to operate optimally in a temporal environment 
changes in the CBR methodology [57] are required, where processes and knowledge 
containers can be adapted to cope with temporal cases. A potential modification to the 
conventional CBR methodology is shown in figure 15.  

Three preprocessing steps are required to be integrated into a TCBR methodology: 
transformation, episode discovery and case association. The transformation simplifies 
input information in a format suitable for the episode discovery. This step is also 
necessary to reduce data dimensionality. Then the episode discovery step performs an 
analysis on the simplified data to produce a set of episodes or scenarios. The case 
association module constantly monitors all existing cases and defines either the 
discovered episode as part of an already existing case or as a newly emerging one. If 
the episode is part of an existing ongoing case, the association module updates it and 
passes it on for further processing. Conversely, if the discovered episode is a new 
entity, the association module creates a new case.    
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Fig. 15. One of the potential modifications to the CBR cycle for handling temporal cases 

An updated or newly created case is used by the retrieval process to search for 
similar temporal cases in the past, where the important feature of the retrieval process in 
the real–time system is the search time. Since data dimensionality is significantly 
reduced during the transformation step, it is often possible to use indexing techniques 
from conventional CBR background such as k-d-tree, Grid File, BT-tree, R-tree [58],  
D-HS [59] to speed up the retrieval process. In the next step the reuse process generates 
a solution for the new problem by analyzing retrieved temporal cases. Taking into 
consideration the large variety of different data types and prediction tasks it is difficult 
to specify an adaptation strategy in advance. As with conventional CBR this may have 
ultimately to be carried out manually. However, in general the adaptation algorithms 
focus on two main prediction products: the sequence of oncoming events (actions) or 
the shape of the time-series. The evaluation step is performed by the revise process. 
During this step the CBR system deploys the solution and evaluates the performance. 
Depending on the result of this, the retain process updates the case-base and other 
knowledge containers or sends it for further repair. 

5   The Smart-Home Scenario 

A possible use of temporal data mining techniques within a smart-home environment 
is described in this section. Let’s assume that the smart home data analysis 
environment has been operational for some time and useful information has already 
been mined and stored by the system. 
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The smart-home layout is shown in the Figure 16, which consists of four main 
spaces: a living room, a kitchen, a bedroom and a bathroom. Each of these spaces has 
a motion sensor, according to the plan presented above. Taking into consideration that 
only three spaces (a living room, a kitchen and a bedroom) are used in this scenario, 
only three motion sensors are considered: ML – a motion sensor in the living room, 
MK – a motion sensor in the kitchen and MB – a motion sensor in the bedroom. Also 
two other sensors take part in the scenario, where KS is a cooker “switch on/off” 
sensor and BP is a pressure sensor, which measures if anybody is lying in bed.   

All showing sensors constantly monitor the surround environment and generate 
nominal values “on”/“off” through the fix time interval tΔ (which in this case is 
equal to 1 minute). The time diagram in Figure 17 shows the changing of sensor 
values during the observation period, which lasts 34 minutes.   
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Fig. 16. The smart-home layout 
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Fig. 17. Time diagram of the observation period 
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This diagram represents the following scenario. A person P came from a hospital 
and the system started to monitor P movements. On the 3rd minute of the observation 
P entered the living room and spent 6 minutes there. Then P entered the kitchen and 
on the 12th minute P switched on the cooker. After staying in the kitchen 4 minutes P 
came back to the living room, where they spent 3 minutes and returned to the kitchen 
again for a quick look. Staying in the kitchen no more than 1 minute, person P 
returned to the living room and straight after went to the bedroom. Person P lay down 
on the bed at the 26th minute, and spent 8 minutes there, until the last observation 
point. 

Obviously, the scenario presented shows reasonably normal behavior for an 
average person. However, a potential alarming situation lays in the fact that person P 
switches on the cooker and goes to bed. If person P in the next few minutes comes 
back and checks the cooker no alarm needs to be raised. Otherwise if the person 
forgets about the cooker and stays in bed the alarm should be initiated. 

Consider the following possible design of an intelligent system for handling this 
scenario. The first consideration requires defining an appropriate data type (see 
section 2). All five input channels (ML, MK, MB, KS and BP) generate nominal 
values (on/off) every minute. It means that the most appropriate data type for this 
scenario is the stamped sequence (see section 2.1). A justification for using this 
particular data type is a requirement to not only be able to order events, but also to 
store the time when events occur and their duration.  

The next step is to define a suitable transformation (see section 3.1). This 
particular example is very simple and all information obtained during the observation 
can be easily stored directly in the database, but for a real smart-home system the 
volume of information generated can easily exceed the storage limit. It means a 
transformation is required for a real system. Despite the fact of using a very simplified 
example it is possible to apply a transformation technique to it. The frequent episode 
discovery (see section 3.1.5) is one example of a transformation approach which can 
be used in this scenario. Consider the sequence of events, where the person 
continuously moves between the living room and the kitchen. It is clearly seen that 
the episode (living room -> kitchen) can be classified as being frequent and replaced 
by a spatial marker. This trivial discovery can dramatically simplify further data 
mining processes and save a lot of storage space.  

After transforming data the next step is to identify data mining operations (see 
section 3.3), which have been carried out on the data and an appropriate similarity 
metric (see section 3.2). One possible solution is to deploy the Task-based Markov 
Model (see section 3.2.2) to identify general tasks, which the person P performs and 
then to use a Temporal Case-based Reasoning (see section 4) approach to form a 
solution. A justification for using TMM is that information about the person’s 
movement does not say anything about the person’s objective (task). However 
knowledge about the task being performed can contribute considerable weight to the 
prediction process. Suppose P cooks a dinner. This information can be identified by 
using TMM. This may involve the following sequence of events, P puts a meal on the 
cooker, spends a little time to watch it, and then checks it again before going for a 
little rest. The important information to be mined out of this sequence is that the 
person is preparing dinner and the meal is cooking at the same time that the person is 
lying on the bed. Now, the important issue, which has to be addressed is how the 
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smart-home environment reacts to this situation, whether this is normal behaviour for 
the person cooking dinner or whether it is not and should cause concern.  

One possible solution is to deploy TCBR. The great advantage of using TCBR is 
the flexibility to obtain an intelligent adaptation to the ongoing situation, instead of 
using hard coded rules. TCBR can extract a set of similar cases from the past and 
compare them against the current situation. If in the past person P displayed a similar 
behavior type, where finally they came to the kitchen and switched off the cooker, no 
alarm is required. In the opposite scenario, if the person has previously forgotten 
about cooking, an alarm has to be raised. 

This example shows the potential of temporal data mining techniques to the smart 
home environment. It is up to an engineer to determine the combination of trans-
formations, similarity metrics and mining operations, which satisfy the requirements 
of the designed system. 

6   Conclusion 

Temporal data mining is one of the major building blocks for creating robust, 
intelligent and efficient smart-home applications. Despite a large variety of different 
perspectives on how to present and classify temporal data mining, it is possible to 
identify two main aspects, data and methods.  

In this paper we propose three main data types are used for handling temporal 
information namely: an ordered sequence, a time-stamp sequence and time-series. The 
first two data types represent sequences of discrete events which are either independent 
or dependent from time. The third data type represents continuously changing values 
over a fixed period of time.  

A two levels architecture is proposed for handling temporal data, where trans-
formations are applied in the first level and indexing in the second. Transformation 
reduces the dimensionality of the original data and indexing facilitates efficient access 
to it.  

These transformation and indexing methods provide infrastructural support for 
high-level mining operations such as clustering, classification, rule discovery and 
prediction. All these operations are the building blocks for developing a sophisticated 
smart home environment, which is capable of quickly and intelligently reacting to the 
majority of real-world situations. 
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Abstract. Artificial intelligence (AI) methods have the potential for broad im-
pact in smart homes. Different AI methods offer different contributions for this
domain, with different design goals, tasks, and circumstances dictating where
each type of method best applies. In this chapter, we describe motivations and
opportunities for applying case-based reasoning (CBR) to a human-centered ap-
proach to the capture, sharing, and revision of knowledge for smart homes. Start-
ing from the CBR cognitive model of reasoning and learning, we illustrate how
CBR could provide useful capabilities for problem detection and response, pro-
vide a basis for personalization and learning, and provide a paradigm for home-
human communication to cooperatively guide performance improvement. After
sketching how these capabilities could be served by case-based reasoning, we
discuss some design issues for applying CBR within smart homes and case-based
reasoning research challenges for realizing the vision.

1 Introduction

Smart home environments have the potential for extensive impact on occupant comfort,
convenience, and safety. Serious accidents can occur in the home because residents are
distracted or overwhelmed by ongoing events, and natural age-related declines in mo-
bility and cognitive abilities may exacerbate problems, with occupants requiring mon-
itoring and assistance [1]. For eldercare, smart home technology offers the prospect
of a more independent life style in a private home compared to high-cost assisted liv-
ing alternatives, or increased support and efficiency in group settings. Consequently,
smart home technology may help alleviate the looming health-care crisis resulting from
steady increases in health care cost and a rapidly aging population [2, 3, 4]. Even for
those who do not need special assistance, smart homes can facilitate daily tasks and
provide an added measure of security by detecting and responding to emergencies.

Artificial intelligence (AI) methods for smart homes may provide both the flexibility
to adapt to changing circumstances and the reasoning capabilities required to interpret
events within the home and to make the right choices at the right times. In the introduc-
tory chapter to this volume, Augusto and Nugent argue for the promise of smart homes
as an AI domain, both because of the potential payoff for AI methods and because the
constrained task environment of smart homes facilitates application of AI solutions [5].
This chapter focuses on the use of case-based reasoning as an approach to enable smart
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homes to learn from observation of and direct interaction with their residents, to be
adaptable to new tasks and to particular individuals’ needs.

One of the inspirations for a CBR-based approach to smart homes comes from
human-centered computing (HCC), which focuses on the computer-human team. HCC
dictates going beyond simply requiring that the home attempt to “do the right thing”
to requiring that the home can interact effectively with its residents, sharing the bur-
den with them in whatever ways will maximize overall performance. When the home
can provide capabilities that the human lacks, or can increase efficiency, it should do
so; when the human has unique capabilities or prefers to act independently, the home
should defer and support the human’s preference. This suggests that smart homes should
support the explanation of their decisions, (1) to help an informed and capable occupant
trust the home enough to accept its judgments and determine when to relinquish con-
trol, and (2) as background for an informed and capable resident to directly adjust the
home—reducing the burden of autonomous-only learning, and making it feasible to re-
fine system behavior more rapidly and reliably. To further explanation and adjustment,
the home should support a simple and transparent learning process, making it easy to
revise system behaviors. These desiderata suggest exploring methods which learn in
a way that people find understandable and offer simple processes for capturing new
information.

One of the inspirations for case-based reasoning comes from cognitive modeling of
human reasoning and learning (e.g., [6, 7]). Experience with fielded CBR systems sug-
gests that humans are comfortable receiving information in the form of cases, and ex-
periments show the usefulness of cases for explaining system reasoning [8]. Likewise,
CBR provides a simple, easily comprehensible learning process. This chapter sketches
how CBR could support smart homes tasks such as responding to and learning from
expectation failures, helping residents, caregivers and relatives to identify problems,
and interacting with residents/caregivers through examples, to explain and adjust the
homes’ behaviors.

The chapter begins with a synopsis of case-based reasoning, including the role of
cases in human understanding, reasoning, and learning, the pragmatic motivations for
applying case-based reasoning, and a sketch of a formalization of CBR foundations.
As observed by Watson [9], case-based reasoning is a general approach, rather than
a single technology; it provides an overarching framework which can be instantiated
in multiple ways, drawing on technologies as needed for a specific problem. Conse-
quently, rather than focusing on specific underlying technologies, the chapter focuses
on identifying types of smart homes tasks for which the CBR approach has special
promise and sketching how CBR could be applied to them. It closes by discussing spe-
cial CBR challenges for realizing this vision of smart homes which reason and learn
from experiences.

2 A Synopsis of CBR: Cases for Understanding, Learning, and
Problem-Solving

One of the early foundations for case-based reasoning was Schank’s study of human
reminding during understanding, which gave rise to Schank’s Dynamic Memory Theory
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([10]; summarized in [11]). Dynamic Memory Theory addresses the relationship of
human understanding, learning, and memory, with a central focus on how knowledge
is structured, organized and revised based on experience. This approach is of interest to
smart home development for three reasons. First, a fundamental need for smart homes
is recognizing events and predicting following steps. Second, no smart home can be
perfect: Smart homes will need to adapt to experience. Third, the use of human-like
learning methods may help residents to understand and interact with the smart home,
increasing its acceptance.

In Dynamic Memory Theory, standard event sequences (such as the events involved
in hosting a party—sending invitations, preparing food, welcoming guests, offering
them food, etc.) are characterized by sequences of basic components, called scenes,
which normally describe events which take place in a single location, with a single pur-
pose, and in a single time interval. These sequences are captured in knowledge struc-
tures called Memory Organization Packages, or “MOPs”. They are hierarchical, with
shared structure enabling lower-level components to be shared by a number of MOPs.

A central focus of Dynamic Memory is the process by which an understander refines
its knowledge structures, to improve future predictive power—a process of great impor-
tance to smart homes as well—and the role of remindings in that process. Each MOP
provides certain expectations, which provide top-down guidance for understanding. If
these expectations are not borne out, an expectation failure occurs. For example, with
RFID tags, a smart house might detect an impaired resident picking up a toothbrush,
leading to the expectation for toothpaste to be picked up next. If, instead, the resident
picked up a tube of shoe polish, an expectation failure would occur—and would require
a warning.

A tenet of Dynamic Memory Theory is that failure episodes are stored under the
processing structures in effect at the time of the failure, making them accessible as re-
mindings when another similar failure occurs. Dynamic Memory Theory and later work
in its tradition (e.g., [12, 13, 14]) developed indexing vocabularies aimed at capturing
the features needed for computer models to generate the types of remindings observed
in humans. If we accept the general ability of people to generate useful remindings, we
can expect that analogous remindings may be pragmatically useful for a smart home to
generate, as a surrogate memory for the home’s residents. These remindings provide a
starting point for case-based reasoning by either the human or the home.

Beyond the immediate usefulness of remindings to aid current tasks (e.g., by warning
of a possible mistake or suggesting a useful past solution), such remindings can provide
data for future generalization to generate new schemas. For example, the first time a
patient confuses shoe polish with toothpaste, a warning may be sufficient, but if this
happens often, the smart house may determine that the patient will reach for anything
available, and might need to guide a visiting nurse to remove any potentially dangerous
objects when preparing the house for the night. Likewise, case data may be useful to
refine responses such as warnings (e.g., whether a nurse should be called or an audible
warning generated with a speech synthesizer is sufficient, and what volume warning is
needed).

For a system trying to explain a resident’s behavior, having access to cases for prior
experiences provides a number of potential benefits. First, the cases focus attention
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on scenarios which actually have happened for the particular subject. Second, cases
augment the system’s built-in knowledge. Third, remindings can carry solutions or pre-
dictions which applied in the past, and which may be useful again. If the last time a
subject overslept, he skipped breakfast, the home might not turn on the coffee maker,
but instead could start warming up the car. If the heat is on, but the home does not
become warm, a reminding that the same problem occurred when a door was left ajar,
and was fixed by closing it, might provide a solution. Third, the case provided by the
reminding may contain lessons from both successes and failures.

This process provides a first-pass suggestion of a framework for how smart homes
may combine general schemas with cases to understand actions, predict the actions to
follow—in order to support them—and note deviations in order to explain, react, and
learn. For example, the schema for a daily routine might include getting up, dressing,
eating breakfast, and so on. If a home’s resident fails to get up when the alarm goes
off one morning, the anomaly might prompt remindings of other similar instances, for
example, a case of prior illness.

In general, a case-based reasoning system exploits remindings to help interpret new
situations or to solve new problems. When faced with a new problem, a CBR system
retrieves prior cases for similar problems and adapts their solutions to fit new circum-
stances. When faced with a new situation to interpret, a CBR system retrieves prior
cases for similar situations and compares and contrasts them to the current situation to
form a new interpretation. The steps of the CBR process include situation assessment,
to describe a situation in a vocabulary commensurate with the indices used in memory,
then retrieval and similarity assessment of candidate cases, then adaptation to fit the
case to the new situation and evaluation of the results (first by internal reasoning and
then by application of the case to the new problem, providing real-world feedback). If
problems are detected, the adaptation/evaluation cycle may be continued, until the final
result is stored in the case base. Figure 1 sketches this process. Additional variations
and extensions are possible—for example, drawing on multiple cases to provide parts
of a solution. For a more in-depth overview, see, for example, [15, 16, 17].

Flexible processes for situation assessment, similarity assessment, and case adapta-
tion enable cases to be applied in new contexts and despite imperfect matches to past

Evaluation 

Case Base 
Storage Adaptation 

Retrieval / Similarity
Assessment

failed 
solution 

proposed 
solution 

successful 
solution 

problem 

new
case 

Fig. 1. The CBR cycle
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events. In smart homes, it might seldom be true that two tasks were performed exactly
the same way and in the same context. To realize the full potential of CBR, a CBR
system must generalize its indices—even as it keeps the cases themselves specific—
to enable potentially relevant cases to be retrieved, must be able to assess similarity
of differing situations, and must be able to adapt solutions to new needs. In practice,
CBR applications will address these to different levels. Depending on the granularity
of sensor information, for example, different amounts of indexing information will be
needed.

The CBR literature presents a number of practical motivations for using CBR (see
[17] for one more detailed treatment):

1. Knowledge acquisition by example: Providing knowledge in the form of cases
can seem more natural to subjects than attempting to distill knowledge into general
rules. Cases only need to be captured for situations that actually arise in practice,
and the system can be fielded with a small set of “seed cases,” acquiring more
cases as needed. However, more traditional knowledge acquisition problems may
arise in case engineering or capturing supporting knowledge such as similarity or
adaptation knowledge.

2. Learning from both successes and failures: Case acquisition not only accumu-
lates successful cases as future guidance, but also failure cases which can serve as
warnings of problems.

3. Inertia-free learning: Cases provided to the system may immediately be applied,
without any need for re-training of the system or learning period during which the
system responds incorrectly until more evidence is acquired.

4. Simple and lazy learning: Case acquisition to cover new problems can improve
system coverage with a very simple learning process, and small initial cost. Effort
to generalize cases, etc., need only be applied if similar circumstances arise in the
future, only need to be done to the extent required by the new situation, and can
immediately be tested with the feedback of that situation.

5. Ability to draw on multiple types of knowledge: What domain knowledge is
available can be integrated into many parts of the CBR process, to improve indexing
or ease adaptation.

6. Problem-solving efficiency: Case-based reasoning can be combined with other
methods, such as rule-based or model-based reasoning, to provide speedup learning
by reusing results of past reasoning rather than requiring them to be derived from
scratch.

7. Ability to function in poorly-understood domains: When a domain is poorly
understood, cases that have worked in similar situations may implicitly capture im-
portant factors that would not be captured in rules reflecting current understanding.

8. Ability to provide operational and contextualized guidance: Because cases are
kept at an operational level rather than generalized, they may be easier to apply
(e.g., a cooking plan could be stored including the specific places to look for an
ingredient in a household, etc.).

9. User acceptance: Cases capturing similar prior situations can provide effective
explanations for why a system performed as it did [8].
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3 Requirements for CBR

Whether case-based reasoning is appropriate for a particular task domain depends both
on characteristics of the problem domain and the ability to endow the system with
knowledge to guide the CBR process. To clarify the issues involved, this section
sketches a formalization adapted from our work in [18]. Its description simplifies the
process by omitting some issues and refinements; a detailed survey of current ap-
proaches is available in [19].

Formalizing the basic CBR process: We can describe a case-based problem-solving
system as processing problems presented to the system from a problem space P , whose
solutions are elements of a solution space S. Cases are pairs (p, s) ∈ C = P × S, the
set of all possible cases. The system begins with a finite “seed” case base B0 ⊆ C. As
the system is used, it processes a sequence of problems Q = p1, p2, ... , pj , where each
pk ∈ P for k = 1, ..., j.

In the basic CBR process, learning occurs after each problem is processed and the
resulting solution has been evaluated, with a case reflecting the new problem and solu-
tion added to the case base. Each problem pk is processed using the case base Bk−1.
This results in a sequence of case bases, with Bk = Bk−1 ∪ (pk, sk), for k = 1, ..., j. If
the system cannot correctly solve a problem itself, it may store an externally-provided
solution or a record of the failed solution and its outcome. When a failure case is re-
trieved, it serves as a warning which can be used to anticipate potential difficulties.

How problem distance guides retrieval: To predict which case or cases will be most
relevant to the input problem, a CBR system may use a “problem distance” function
PDist : P × C → [0, ∞) to measure the distance between a new problem and the
problem description of a stored case. PDist(p, c) is zero if p is the same problem
solved by c. Given a new problem, the CBR system may retrieve the case closest to that
problem according to PDist. (CBR functions for problem closeness may be either “dis-
tance functions” or “similarity functions;” similarity increases as distance decreases.)
In the simplest retrieval approach, nearest neighbor retrieval, the PDist distances from
the current problem are computed for all stored cases to identify the most similar cases.
In large-scale applications, other methods are used to enable retrieving promising can-
didates more efficiently (e.g., by organizing cases in discrimination trees according to
their feature values).

Part of the effectiveness of the CBR system depends on whether the distance function
accurately reflects the usefulness of retrieved solutions. For example, if the adaptation
time required to generate a new solution is important, “real distance” might be measured
in terms of estimated adaptation time [20, 21] (and the distance function might not
be symmetric); if reliability of adaptation is an issue, “distance” could estimate how
reliably a case could be adapted to a new problem, regardless of adaptation time.

Problem-solution regularity: In an ideal CBR system, PDist would always select the
most appropriate case; in practice, PDist is generally an approximation. The extent
to which PDist has this property is formalized as problem-solution regularity, which
calculates the probability that a case returned as optimal by the similarity function will
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actually be within a non-negative ε of an optimal case. Problem-solution regularity re-
lates to the information retrieval notion of precision (note that for CBR systems which
reason from a single most similar case, the IR notion of recall is not relevant). One
requirement for high problem-solution regularity is that the task domain is regular, i.e.,
that the lessons of similar prior experiences are likely to be useful. Everyday experi-
ence leads us to expect that this will hold for the smart homes domain. The ability to
exploit this regularity with CBR involves knowledge engineering: it must be possible
to engineer an appropriate distance function for the domain.

Problem-distribution regularity: The benefit a CBR system accrues from learning de-
pends on whether new problems will tend to resemble the problems addressed in previ-
ous cases (either in the seed case base, or in cases learned during prior processing). This
property is problem-distribution regularity. If it is possible to define a distance func-
tion providing high problem-solution regularity, retrieved cases will be useful; when
problem-distribution-regularity is high, the CBR system will either be able to cover a
sufficient set of problems based on the initial case base, or by learning when addressing
similar problems.

4 Opportunities for CBR in Smart Homes

Case-based reasoning has been widely applied to advisory tasks, including the selection
of assistive technology for smart homes [22]. However, to our knowledge the direct
application of CBR to the internal function of smart homes remains unexplored. As
many strands of CBR research have potential applications to smart homes, this section
will outline the reasons for applying CBR to this domain and avenues for its application.

The characteristics of CBR suggest four motivations for applying CBR as an AI
methodology within smart homes. First, case learning provides a simple method for
refining and personalizing a smart home over time by storing cases for new event se-
quences, to be generalized into new schemas, and for learning appropriate responses.
Second, CBR’s ability to reuse prior reasoning—regardless of the original reasoning
process—can increase efficiency for expensive reasoning tasks within smart homes,
such as generating abductive explanation of observed anomalies [23]. Third, the use
of CBR can facilitate human-system interactions by enabling humans to provide unan-
alyzed examples (or provide feedback on examples) as a means of training the smart
home. Fourth, references to cases provide an intuitive way for smart homes to explain
their behaviors to people [8, 24, 25].

In the remainder of this section, we illustrate the potential usefulness of CBR to
support selected smart home tasks. In this discussion, we will assume that the smart
home is equipped with the array of sensors described in the introduction to this volume,
providing capabilities to monitor properties such as the locations of residents, on/off
states of appliances, and vital signs of residents. We also assume that raw sensor data
will be transformed and mined to provide information in a more summarized form
suitable for use by a CBR component (for example, using techniques such as discussed
by [26] in this volume).
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4.1 Monitoring, Problem Detection and Response

An essential capability for smart homes is the ability to monitor household events and
resident state. This monitoring may serve two purposes. One is to recognize instances
of routine patterns, to enable the home to anticipate and satisfy standard needs (e.g., to
turn on the coffee maker after the occupant gets up, or to guide an impaired resident
through normal steps of daily life). Another is to recognize unusual and potentially
hazardous situations and respond. Case-based methods can be useful for both.

Comparison to past cases can help to detect situations which require action, and
to suggest responses. For example, cases from prior emergencies could be indexed by
predictive features, in order to warn of problems and suggest responses when they are
retrieved. A case indexed by “resident falls to the floor” (as determined by the change in
location of a sensor worn by the patient), could identify falling as a potential emergency
condition. That case could contain the prior response (e.g., making an urgent call to a
nursing station, broadcasting to the resident that help has been requested, and turning
on house lights), for potential reuse. If the case was captured in highly similar circum-
stances (e.g., at the same nursing home), the response could provide not only a general
outline, but a rich set of useful details (e.g., telephone numbers).

Likewise, cases associated with particular residents can be useful to personalized
monitoring. Cases captured during routine activities may provide a vehicle for assess-
ing whether a situation is routine (e.g., by comparing heart rate while climbing stairs),
for making predictions in order to provide aid (e.g., to turn on the bedroom light if
the resident is preparing for bed), and for forming generalized schemas for routine
events.

Cases could also be used for proactive aid in less critical situations. For example,
a smart home might be equipped with RFID readers enabling it to monitor which in-
gredient packages are removed from the refrigerator and cabinets. If the ingredients
flour, sugar, butter, eggs, vanilla and chocolate chips are gathered, those ingredients
might be used as indices to retrieve a stored case, captured from a cookbook, for mak-
ing chocolate chip cookies. Based on the recipe, the home could set the oven to the

Problem description: Anomaly: Oven cannot hold temperature

Additional features: – Oven status (on)
– Recency of last on/off status change
– Oven door status (open)
– Recency of last door status change
– Oven temperature setting
– Recency of temperature setting
– Actual oven temperature

Solution: Warn resident with audible message; turn off oven if no action
within time limit.

Fig. 2. Sample features and solution for case for oven door left open
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proper temperature, broadcasting an audible message to inform the resident that it was
preheating the oven to the temperature for the chocolate chip cookie recipe.

Figure 2 illustrates some components of a sample case for kitchen monitoring and
response. The case captures an episode in which an impaired resident has left the oven
door open with the oven turned on after removing an item from the oven. Cases for
problem-solving tasks, such as response to anomalies, include a problem description
describing the problem to address, which serves the primary index for retrieving the
case. They may also include additional features—for this example, oven attributes, at-
tributes of the oven contents, and external sensor readings—which may be relevant to
assessing similarity between cases for similar problems. Such features may be drawn
from any of the data captured by smart home sensors, as well as any derived features.
However, not every feature is relevant to the indexing of every case. For example, while
the readings of indoor room sensors that measure room temperature or identify hot spots
in the room may be useful for retrieving a fire-response case, such sensor readings might
be ignored in determining the applicability of cases for other tasks.

CBR for anytime response: For problem response, a useful characteristic of CBR is its
potential for tailoring problem response speed to problem urgency. When emergency
conditions require very rapid response (e.g., when a heat sensor detects a fire), it may
be crucial to begin actions without extensive reasoning, suggesting the use of anytime
algorithms [27], which can be terminated at any time while still providing a meaningful
answer, and which can return answers whose quality improves with increased process-
ing time. Riesbeck points out that CBR has “anytime” properties, because the solution
of a prior case provides a basis for immediate action even while the system continues to
search for possibly more on-point cases and possible adaptations as time permits [28].
Different types and levels of alarms could suggest different points at which to harvest
the intermediate results of CBR.

For example, given a fire, the system might immediately find a case for another fire
involving turning on sprinklers, turning off room power and calling for emergency ser-
vices, all of which can be applied directly from a prior case. Other aspects of the case,
such as how to notify the resident’s relatives, would require adaptation, perhaps depend-
ing on time-consuming additional effort. Applying anytime CBR requires methods for
rapidly estimating the severity of the situation and the applicability of the current case
without adaptation.

4.2 Personalizing Smart Home Responses

A smart home guided by standard schemas can provide stereotyped responses, but will
not reflect the differing needs of different users. Building up personalized sets of cases
for different users addresses that problem. For example, suppose that a window was left
open on a cool summer night, with the air conditioner left on, but not running because
the house was cool. If, the next morning, the house becomes warm enough for the air
conditioner to start, two different residents might favor different courses of action. One
person might close the window (favoring maintaining a pleasant temperature), while
another might turn off the air conditioner (favoring fresh air). A case supporting the
second resident’s preferences is sketched in Figure 3.
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Problem description: Window open and house temperature exceeds air conditioner set-
ting.

Additional features: Inside temperature, outside temperature, window sensor status
(open/shut), resident

Solution: Turn off air conditioner and notify resident with audible message.

Fig. 3. Sample features and solution for case for turning off air conditioner rather than closing
window, reflecting resident preference

Differences Context Adaptation to solution

Asleep Non-emergency Replace case’s audible notifications with a
stored summary to be presented at rising
time.

Asleep Emergency Trigger strobe light and audible alarm as
first step of the response.

Hearing-impaired All Increase warning volume.

Absent Non-emergency Delete requests for user response before
system action, immediately perform auto-
matic fallback actions, and save summary
to present upon resident return.

Absent Emergency Replace notifications to resident by notifi-
cations to central monitor.

Immediately perform automatic actions.

Present Non-emergency Add notifications before automatic actions.

Fig. 4. Sample adaptations for warning messages, based on differences between the resident in
the retrieved case and the current situation

Adaptation may help to adjust cases to individual preferences and needs. Figure 4
illustrates a set of possible adaptations for cases which warn a resident of problems.
The first column of the table describes the difference between new situation and prior
cases necessitating adaptation to the case’s proposed solution (e.g., the resident is asleep
rather than awake). The second summarizes contextual features affecting the selection
of adaptations. For example, when the resident is sleeping and a non-urgent situation
arises, it is reasonable to adapt the prior response to suppress notifications untill the
resident awakens, but in a dangerous situation, the system should add steps to awaken
the resident.

Developing personalized CBR systems requires replacing the task-centric view—
that there is a single solution for each problem—with a user centric view that supports
multiple solutions, based on the user as well as the problem situation [29]. This can
be addressed by modeling the user as well as the task, and using both types of infor-
mation to guide CBR at many levels. Routine adaptations, such as the adaptation for
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hearing-impaired occupants from Figure 4, provide a first basic step, but much richer
adaptations can be performed.

Again, different CBR processes can play different roles. For example, a secondary
CBR process can be used to directly support the personalization process [30], to classify
a new individual based on individuals already classified; this can be an index provided to
the main CBR process to reflect different users during retrieval, adaptation, evaluation
and storage. Augmenting case descriptions with user properties can improve the system
ability to identify useful solutions.

4.3 Enabling Personalized Levels of Smart Home Autonomy

Not all advice is useful, and not all aid is desired; different individuals have varying
needs and tolerances. Likewise, it may be desirable for a system to balance user pref-
erences against general policies (e.g., comfort vs. energy costs [31]). Consequently,
a smart home should provide adjustable autonomy [32], furnishing different levels of
support depending on its own capabilities, user preferences, user needs, and general
policies. Thus another useful type of personalization would consider potential actions
and decide which should actually be performed for a particular resident, or how to adapt
them to make them more acceptable.

Decisions about whether to act depend on many factors, such as the user’s physi-
cal and mental condition, the user’s tolerance of system intervention, system’s confi-
dence in its assessment of a situation, the cost of action, the potential risk of failure
to act, and so on. Because of the complexity of weighing these conflicting factors,
it may be desirable either to rely on experience, using CBR to asking what this user
or similar users have favored in similar situations, or to exploit CBR to retrieve and
adapt the results of prior calculations performed by other AI methods for similar prior
problems.

4.4 Personalization of Information Presentation

In addition to deciding when to present information, a smart home must decide how
to present it, choosing from a plethora of interface options. For example, one direct
presentation approach is implemented in the REA system [33], a virtually embodied
interface agent that advises customers on real-estate purchases and uses a variety of
verbal and non-verbal input modalities when interacting with its customers. Alterna-
tively, ambient display technologies exist in the periphery of subjects’ perception and
only appear if subjects choose to interact, thereby contributing to a calm environment
[34]. Examples of such technologies include Hello.Wall, which facilitates communi-
cation by presenting unobtrusive digital light patterns to individuals as they walk by,
to alert them of new messages which can be accessed through a PDA if desired [35].
Ambient display technologies remove restrictions of traditional keyboard-mouse-based
human-computer interaction, which require users to be located in a single spot and to
explicitly initiate each interaction. Likewise, spoken-dialogue systems with a variety of
input and output modalities allow for spontaneous interaction between humans and the
system. Cases may be used to capture the presentation preferences of particular users,
for particular types of information.
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4.5 Explanation of System Decisions

It has long been recognized that increased user understanding of system reasoning may
increase user confidence in an intelligent system’s decisions (e.g., [36]). The ability of
a system to explain its decisions may also be helpful to support user-assisted refinement
of system function.

CBR systems’ cases provide a natural vehicle for explanation. Unlike more opaque
methods such as neural networks, CBR outputs can be explained in an intuitive way, by
presenting the specific prior cases on which decisions are based. Users can then compare
the current situation to the prior cases, to assess their applicability. If the resident of a
smart home considers the system’s case choice incorrect, the resident could manually
override (e.g., by setting the oven to a lower temperature if making chocolate chip
bars instead of cookies), and—based on sensor input—the system could capture the
changes, to store a new variant case labeled by the user (e.g., as “chocolate chip bars”).
If more than one case might apply, given current information, a query proposing the
alternative cases may enable the resident to provide guidance (e.g., “It appears you
are making chocolate chip cookies or chocolate chip bars. Which preheat temperature
should I set?”).

Early CBR work sometimes considered the case alone to be a sufficient explanation;
recent work is developing a richer view (for a sampling of recent work, see [25]). In
addition to providing arguments for the relevance of a case and a conclusion (e.g., in the
form of comparisons and contrasts [37]), current research is examining how to explain
other facets affecting system conclusions, such as how features of a case contribute to
similarity calculations [38]. Each of these explanations in turn provides a point to which
a user might provide feedback accounting for an erroneous conclusion and enabling
system refinement.

4.6 Providing Task-Relevant Reminders from Captured Cases

Elderly or infirm patients may have difficulty following normal task sequences. Con-
sequently, the ability to capture and provide task guidance could be valuable. More
generally, memory augmentation, in the form of environment-aware systems which can
use context to disambiguate requests for information, could provide valuable services
in smart homes—from guiding tasks to providing recipes to more general questions.

Considerable research has already been done on intelligent reminder systems, and
many tools have been developed to augment human memory through context-based
proactive assistance in homogeneous and regulated environments. Much of this work
centers on the desktop paradigm, where tasks are often limited to editing, searching,
entertainment and communication [39, 40, 41, 42]. Within this paradigm, case-based
systems have already been applied to tutoring systems which monitor an individual’s
progress in a simulated environment, tracking behavior to detect potential problems
and present video clips of cases with “remindings,” warning about potential pitfalls
[43]. While smart home environments would present many challenges beyond simu-
lated ones, this work provides a general outline for the approach. An additional issue
will be the need to aid more general tasks and provide smooth integration, by being
delivered using the right modality, at the right time, and at the right location. In gen-
eral, making this determination may be a daunting task, making it appealing to gather
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examples, which may be combined with general rules for deciding where and when to
provide guidance.

Systems that offer guidance as the individual completes daily activities have been
developed primarily to assist the cognitively impaired. Some of these systems, such as
Autominder [44], are general purpose tools. They operate by monitoring the individual’s
task and perform schedule management functions that otherwise would require human
assistance. Others have as a goal to assist more specific tasks. An example of such a
system is COACH [45], a tool developed to assist in the hand washing process by pro-
viding needed reminders. A primary motivation for exploring CBR for these tasks would
be their capability for simple and lazy learning, and their ability to function in new do-
mains by providing them with additional examples, making them especially suitable to
adapt to diverse situations, without the need for a predefined plan of daily activities.

4.7 Enabling User Instruction of Smart Homes

No smart home will be perfect; the home must learn. One form of learning is simply for
the system to observe the user’s actions. If the system mis-sets the morning temperature
and the user adjusts it, the system can adapt the outcome of its stored case, replacing its
initial choice with the user’s corrected one. Observing and learning from user settings
alone is a promising vision, but also has limitations in that few cues may be directly
available to the system [31]. In addition, if the smart home learns by methods requiring
much training data, the system may continue in its old behavior for some time after the
user’s behavior changes, prompting user frustration.

The more sophisticated inferences a home requires, the more it may be difficult for
a system to autonomously select appropriate behaviors and learn from the limited in-
formation that may be available by observation. Consequently, it may be desirable to
enable users to choose to share some of the burden in exchange for faster learning or
better performance. CBR provides a potential avenue for this. If cases are captured in a
comprehensible form and made available to users for interactive case adaptation, users
can refine cases to directly reflect the conclusions they find appropriate. Numerous av-
enues for interaction with CBR systems have been explored [46], and this continues to
be an active research area.

An interesting extension of these approaches would be to provide new paradigms
for interacting with cases, such as monitoring user actions in the home to automatically
gather case information (e.g., using RFID tags to track ingredients used in a recipe).
Because cases encode episodes, which may be presentable in an intuitive way, case
presentation and editing interfaces might provide general-purpose methods to enable
sophisticated users to adjust system behavior themselves through case editing. For ex-
ample, some CBR research has pursued using concept maps [47] as the basis for brows-
able and editable cases [48, 49].

5 Putting it into Practice: Tasks for Case Generation and Access
for Smart Homes

Building any CBR application requires developing methods for the core CBR tasks of
Section 2, as described in sources such as [50, 51]. This section focuses on the key tasks
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of generating the system’s initial case base and developing methods for accessing the
cases based on information available from the home.

5.1 Generating Case Bases

CBR systems are only as good as their cases. Consequently, case capture and engi-
neering are central issues in fielding CBR applications, and a first step is determining
the case representation. As discussed by Kolodner and Leake [16], a case is a contex-
tualized piece of knowledge representing an experience that teaches a lesson funda-
mental to achieving the goals of the reasoner. Cases must contain a problem/situation
description, describing the state of the world when the episode recorded in the case
occurred, a solution or interpretation; and the outcome of applying the solution. The
solutions/interpretations that cases provide may take different forms, ranging from sim-
ple textual advice to a resident (e.g., “Are you forgetting to take out the garbage?”) to
rich structured representations (e.g., the plan for a recipe). The preferred representation
will depend on the task, in light of a tradeoff between easy generation (e.g., for textual
cases) and the ability for cases to support further reasoning (e.g., for a recipe, for which
the home might suggest how to revise the recipe when substituting for an unavailable
ingredient).

In order for a CBR-based system to be useful as soon as it is fielded, developers
must “jump start” the system with initial knowledge capturing the events, actions, and
behaviors of individuals in the home relevant to system tasks. For a CBR system which
monitors and predicts behaviors, one option would be to base initial processing on gen-
eralized schemas; another would be for developers to manually identify prototypical or
critical events and activities for the system to handle, such as common, regular activities
and behaviors (e.g. when people get up in the morning, when they leave the house, etc.),
or to analyze automatically generated cases to determine which to store. For example,
plans generated by a planner for standard tasks could be evaluated by hand and stored
for future use, or plans generated on the fly and their effects in practice could be stored
for future use, for speedup learning and to anticipate and avoid plan failures. A detailed
description of planning for smart homes is provided in this volume [52].

Cases may be useful if their history suggests that they would be frequently used in
the home, if they would help solve critical problems (e.g., for emergencies), if they
would fill gaps in the system problem coverage, or if they would be easily adaptable,
increasing system flexibility. The result is an initial case base with a representative
set of cases capable of adapting to the specific requirements. Given the range of CBR
processes that may apply within a smart home, multiple case bases may be needed, e.g.,
for monitoring resident vital signs, monitoring home conditions, etc.

5.2 Information Sources and Situation Assessment

Accessing the right cases requires methods for retrieving relevant cases, based on infor-
mation from the smart home. Work on pervasive computing for smart homes has devel-
oped sensor technologies and smart appliances to monitor individuals and their physical
environment, and has built middleware to provide services and facilitate communica-
tion among the different components. A number of research projects have focused on
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developing an infrastructure to deal with context in smart home environments (e.g., the
Aware Home Research Initiative [53, 54]), providing a foundation on which case-based
smart home applications could build.

Generally, a pervasive computing architecture for smart homes can be broken down
into a physical layer, a middleware service layer, and an application layer, which to-
gether provide a platform delivering high-level information abstracted from the sensors,
detectors, actuators, smart appliances and wired or wireless communication devices to
integrate new technologies and services in smart homes (examples include the Gator
Tech Smart House [55] and MavHome [56]). The CBR layer, like other AI methods for
smart homes, can be integrated into the pervasive computing architecture, to process a
comparatively high-level information stream.

Existing projects address many component issues for deriving a number of types of
information which might be useful for a CBR system to generate indices for retrieval.
For example, the Pfinder project studies tracking individuals in a smart room [57], and
the Sociometer project studies how to track people’s interaction with others [58], po-
tentially providing a basis for generating more abstract indices.

To facilitate humans interactively providing the system with supplementary infor-
mation (e.g., by a resident simply telling the system that he or she wants to bake a
cake), information provided to situation assessment could also be based on human-like
input and output modalities such as speech, body postures, eye movements and other
non-verbal gestures. All such interactions must be able to feed into the CBR system,
and their interpretation may itself require considerable AI processing to provide the
information used in indexing. For example, the Trips system [59], a spoken-dialogue
computer system for planning, parses human language into practical dialogues that cap-
ture what the user meant by an utterance, applies domain-independent problem-solving
models, and domain-specific task models and is capable of recognizing user intentions,
which could then become part of the context used by CBR retrieval.

5.3 Capturing Context and Context-Based Indexing

In order to access the right cases, cases must be organized; the indexing problem is the
problem of assuring that a case is accessed whenever appropriate [16]. The CBR sys-
tem’s situation assessment process must be able to generate suitable indices. A number
of general indexing vocabularies have been developed for tasks such as indexing expla-
nations of anomalies [13], and could be exploited in the smart homes setting. However,
for smart homes, contextual factors will play a key role in indexing as well, and the
range of potential information is extensive. For example, Dey proposes that “Context is
any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and
an application, including the user and applications themselves” [60]. Capturing context
for reasoning in smart environments is challenging because of the need to determine
relevant classes of features and how they can be recognized based on numerous hetero-
geneous sources. If sensors only provide on/off device information, the informativeness
of each individual sensor’s information may be fairly small—determining useful infor-
mation may depend on the context of other sensor readings and sensor changes over
time.
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It is difficult to determine in advance which aspects of a situation are important to in-
clude in context-based indices, because feature relevance will change from situation to
situation. However, general vocabularies can be developed to capture fundamental prop-
erties. For example, Gross and Specht [61] propose including dimensions for identity
(information about user’s short and long term needs, interests, preferences, knowledge,
etc.) as also discussed in Section 4.2, location, time (while tracking time is simple, us-
ing temporal information for planning and decision-making poses several challenges;
see the discussion of temporal reasoning in smart homes in this volume [26], and en-
vironment and activity, describing the artifacts and the physical location of the current
situation. Awareness of the environment beyond the house could be relevant to issue
recommendations or alerts. For example, during a rainy day a smart home could remind
the resident to carry an umbrella. Efforts to develop suitable vocabularies can draw on
considerable active research on context modeling (for a sampling, see [62]).

A smart home system makes predictions from its observations based on current
system knowledge and the current state of the environment. A discrepancy between
a prediction and the actual outcome may suggest the need for updates to system knowl-
edge, to learn from a new situation. A difficult problem for both prediction and learning
is that effects may depend on hidden context, causing smart home systems to make
incorrect recommendations or to generate false alerts due to incomplete information.
Thus an important goal for smart home systems is to detect context changes without
being explicitly informed about them and to quickly recover from context changes, ad-
justing their hypotheses to fit the new context. Approaches to this problem as it relates
to concept learning may also be valuable for smart home systems [63].

The situation assessment and indexing problems are open-ended. Developing
vocabularies for describing fairly specific features, such as patient vital signs, will be
straightforward. Developing principled methods to derive highly abstract features is still
an open challenge for long-term research (e.g., to recognize that an occupant is having
a bad day).

6 Some Research and Practical Issues for Realizing the Vision

While CBR provides an appealing methodology for smart homes, many specific issues
must be addressed to fully realize its promise. This section highlights a few which may
be especially salient for the smart homes domain.

Case Engineering: In broad outline, CBR simplifies knowledge acquisition by allevi-
ating the need to develop rules (for a rule-based system) or to acquire extensive training
data (e.g., for neural network approaches). However, CBR requires its own knowledge
sources, such as indexing and similarity knowledge and knowledge to adapt cases to fit
new needs. While it may be possible to develop, e.g., standardized types of indices for
the smart homes domain (following the example of standardized indexing vocabular-
ies of [12, 13, 14]), enabling multiple projects to leverage this research, a major effort
would be required to develop indices or similarity criteria covering a wide range of
scenarios.
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Integrating similarity judgments with additional information sources: In the basic CBR
model, each problem is addressed by identifying the most similar case and adapting
its solution to the new situation. However, in problem detection tasks, it may not be
desirable to predict problems whenever the most similar case was a problem case, due
to the risk of false alarms. Addressing this issue may require combining case-based
prediction with other reasoning methods. For example, CBR could provide candidate
predictions which could then be further scrutinized by Bayesian methods (e.g., based
on patient history, probabilities of particular events, etc.) as part of the case evaluation
process.

Case adaptation: Automated case adaptation has long been recognized as a key chal-
lenge for case-based reasoning [17, 64, 65]. Although many methods exist, building on
methods such as rule-based reasoning or constraints (see [19] for a recent survey), it can
still be difficult to capture the needed case adaptation knowledge. A number of systems
have explored interactive adaptation methods (e.g., [66]), including methods in which
system adaptation is augmented by the user as needed (e.g., [67]). With appropriate in-
terfaces, such methods might enable competent residents and care-givers to guide the
application of prior cases as needed, in conjunction with methods to allow traces of
their adaptations to themselves be captured and reused by CBR, as in (e.g., [68]).

Case-base maintenance: As CBR systems have received extended use, maintenance
of CBR systems has become an active CBR research area (e.g., [69]). In smart homes,
changes in the home and residents (e.g., during the course of a terminal disease) would
require methods to address both the volume of new cases and the changing circum-
stances which might render old cases or similarity functions obsolete [18, 70].

Event mining for case generation: The monitoring processes of smart homes will pro-
vide a rich stream of information to mine for cases. However, distilling and segmenting
these into meaningful cases—both indices and responses—may be difficult to auto-
mate. Some CBR research has considered mining cases from sources such as database
records (e.g., [71]) and has considered issues in capturing and controlling continuous
phenomena through CBR [72]. However, this area remains largely unexplored.

Exploiting multiple case sources: As already mentioned, CBR systems for smart homes
must function even during early use, when little experience is available. If the smart
home system begins with an initial set of standard schemas, those schemas will provide
a basis for initial processing, but will not reflect special individual needs.

An interesting alternative is case-based experience sharing. Many opportunities to
support human decision making can come from other people’s experiences. When an
individual encounters a situation that is novel to him or her, but potentially successful
solutions can be collected from the experiences of other individuals, CBR can empower
the individual with the ability to make more informed decisions. Collective case mem-
ories provide the knowledge that a single individual may lack.

Approaches such as multi-case-base reasoning (MCBR) [73] are designed to address
gaps in a single reasoner’s case base by drawing on external case bases and adapting
externally provided cases to reflect differences in task and user characteristics. Applying
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MCBR requires developing adaptation methods not only for particular tasks, but also
for differences in user characteristics. In the smart homes domain, MCBR approaches
might also need to address instances of cases which simply conflict, by choosing be-
tween a range of alternatives for handling a particular situation.

It may also require addressing potential differences in the vocabularies in which
cases are captured. Otherwise, cases and events may fail to match simply due to differ-
ences in terminology between case descriptions and event descriptions. For example, an
event stove-turned-on cannot trigger the selection of a case describing the same event
as range-turned-on. This vocabulary issue is well known in AI, and can be overcome by
using ontologies [74] to provide standardized representations (e.g., an ontology could
simply specify that stove-turned-on and range-turned-on are equivalent). In addition,
ontologies may capture the information required to facilitate further reasoning about
cases or to enable their adaptation to new circumstances.

Internal system confidence: The smart homes domain has a marked difference from
many CBR applications. Many CBR systems are advisory to an expert, who makes the
final decisions; autonomous systems making judgments about health and safety ques-
tions must address substantial risk issues. Recent research examines how CBR systems
can assign confidence levels to their solutions [75]. However, this is only a first step
towards assuring the needed system reliability.

Trust: Related to internal confidence is external trust in the quality of system decisions.
Regardless of the objective performance of a CBR system, its practical use depends
on those with authority over the smart home having sufficient trust to place certain
tasks under system control. As mentioned previously, presentation of cases may itself
constitute a useful form of explanation, helping to build user trust in a recommendation.
Current CBR research is augmenting this type of explanation with new methods (see
[25] for a collection of this work). Special challenges for building trust may arise if CBR
systems are fielded with a limited set of cases, to be augmented as needed in response
to failures. In that case, a certain level of failure will be expected during the learning
process.

Privacy, security, and control: For smart home technology to gain wide acceptance,
issues of privacy, security, and control are of great importance. Occupants must feel
in control of the information collected—they must be assured that their privacy is pro-
tected, that information is secure from illegal access, and that it is shared and dissemi-
nated only to appropriate parties, for the occupants benefit. For example, for eldercare,
any abnormalities in a person’s behavior that may indicate a serious change in health
or well being may need to be shared with relatives and caretakers, while daily rou-
tines and more personal choices need to be private. Thus, the smart home environment
must provide a flexible security system to adapt to the privacy and security needs of
its residents. One strategy for alleviating privacy issues as cases are shared might be to
aggregate cases from a number of users before distribution [76].

In agent-based systems, issues of privacy and security control have been addressed
by the use of policies [77, 78]. These may restrict what agents can do, and may deter-
mine what they must do, allowing system developers to specify a “legal” framework
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within which agents operate. Applying a CBR approach to control privacy and secu-
rity has the advantage of not requiring a full “legal” framework to fully function. For
example, an initial case base may include the most important restrictions and obliga-
tions that the system must follow for privacy and security protection. Subsequently, the
CBR system may acquire additional cases derived from interactions with residents that
model exceptions to an initially more restrictive and generic framework. However, the
use of such cases raises additional issues—for example, security of case sources and
reliability of case selection procedures.

7 Conclusion

The previous sections have discussed three main areas in which the use of case-based
reasoning may provide benefits for smart homes: supporting personalization, supporting
interactive adjustment of the system by the user, and facilitating customization and
knowledge acquisition by the developer. The connections of CBR to human reasoning
make cases a promising way to communicate knowledge and to explain system actions,
potentially increasing trust. This is important because the success of smart homes will
rest not only on their ability to fulfill human needs, but on the willingness of residents
or caregivers to entrust themselves or their charges to the home’s care.

Case-based methods promise to be applicable to many different processes within
smart homes, and case-based methods can be combined with other approaches to ex-
ploit their strengths and capture their results for efficient reuse. Likewise, case-based
smart home installations may be designed to share experiences with other smart homes,
to assure their competence not only for common cases, but for rarely-occurring emer-
gencies. Thus smart homes offer a rich potential area for the application of CBR.
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Abstract. This chapter aims to illustrate a possible way of using decision trees 
to make Smart Homes smarter. Decision trees are popular modelling technique, 
and the corresponding models are both predictive and descriptive. We formulate 
the modelling problem by defining the generic question “Is the undergoing ac-
tivity or event in the Smart Home usual?” Then we explain how it is possible to 
gather appropriate data from the sensors and pre-process these data to form ap-
propriate input for a decision tree algorithm. We further explain the mainstream 
approaches in decision trees algorithms rather then analysing them in detail, and 
we give short overview of available software. Finally, we explain some meas-
ures for quantitative and qualitative evaluation of the induced decision tree 
models (e.g. expert opinion, cross-validation, statistical tests etc.). 

1   Introduction 

Decision trees, similarly to other approaches in Artificial Intelligence, may be consid-
ered as tools for classifying instances in groups [1]. They provide an effective struc-
ture within which it is possible to define attributes of an instance. Then it is possible 
to investigate the possible outcomes when these attributes are assigned specific val-
ues. Decision trees may be also helpful in forming a balanced picture of the positive 
and negative outcomes associated with possible courses of action.  

When a piece of software needs to make a decision automatically, based on several 
factors (attributes), a decision tree could help identify which factors to consider and 
how each factor has historically been associated with different outcomes of the deci-
sion. It is generally considered that decision trees provide an effective method of 
decision making because they: 

• Provide a framework to quantify the values of outcomes and the probabilities of 
achieving them. 

• Clearly describe the problem so that all possible outcomes can be investigated. 
• Allow humans to analyze the possible consequences of a decision. 

Decision trees are considered helpful when trying to make the best decisions on the 
basis of existing information and best guesses. 

Could decision trees be also helpful to create an environment, which is capable to 
react ‘intelligently’ by anticipating, predicting and taking decisions with signs of 
autonomy? The answer will be provided by investigating the applicability of decision 
trees to Smart Homes. 
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In our Smart Home case study, we collect data describing the whereabouts of the per-
son, her/his interaction with appliances, and the duration of specific events. A decision 
tree algorithm is then used to create a model as either a graphical tree or a set of text 
rules that can define the ‘normal’ setting leading to a particular event in the Smart 
Home. Any event occuring outside the normal setting should lead to various degrees of 
awareness/alarm/alert in the system or to some sort of automatic behaviour. 

1.1   Decision Trees as a Modelling Technique 

A decision tree is a model which is developed through a learning process, based on 
data collected for the domain of investigation. The model is called a decision tree 
because it is presented in the form of a tree structure (see Figure 1.). Obviously, deci-
sion tree is both predictive and descriptive model.  

 

Fig. 1. Tree structure of a decision tree model 

The visual presentation makes the decision tree model easy to understand, so, it is 
suitable for human inspection as well as for making automated decisions. Conse-
quently, the decision tree approach is frequently used data mining technique. Decision 
trees are commonly used for classification (predicting what group an instance belongs 
to), but can also be used for regression (predicting a specific real value).  

The outcome of a decision tree algorithm is a decision tree model, or shortly decision 
tree. The training process that creates the decision tree is called induction. Induction 
requires a certain number of passes through the training dataset. This makes the algo-
rithm less efficient than Naive-Bayes algorithms [2], which require only one pass, but 
significantly more efficient than neural networks, which typically require a large num-
ber of passes through the learning set of examples [3]. More precisely, the number of 
passes required to build a decision tree is no more than the number of levels in the tree.  

The number of levels in the decision tree is not predetermined or limited. The 
complexity of the tree is measured by the depth and breadth of the tree, and it gener-
ally increases with the number of independent variables (also called attributes) [3]. 

A decision tree can be viewed as an arrangement of tests [4]. The first test is pre-
scribed at the root of the tree, the next test is prescribed at the first lower level, and so 
on until a leaf of the tree is reached. Decision trees classify instances by sorting them 
beginning from the root node to some leaf node. The leaf provides the classification 
of the instance. Each node in the tree specifies a test of some attribute of the instance, 
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and each branch descending from that node corresponds to one of the possible values 
for this attribute.  

An instance is classified by starting at the root node of the decision tree, testing the 
attribute specified by this node, then moving down the tree branch corresponding to 
the value of the attribute. This process is then repeated at the node on this branch and 
so on until a leaf node is reached. A nonleaf node of the tree could have more than 
two branches. This usually depends on the algorithm used and on the set of values 
which are allowed for the specific attribute that is tested.  

The result of the induction process (i.e. the decision tree model) can be easily visu-
alized and interpreted by human experts (see Figure 1). This is particularly important 
in the healthcare domain, where rationale for the automatic response is usually ex-
pected. Visual inspection of the induced model(s) may reveal inconsistencies with 
previous experience and/or exisiting knowledge.  

Decision trees have been applied mostly to data that is void of any explicit notion 
of time. This covers many application areas where the data is about populations of the 
same entities, but may not always be suitable for cases where there is a temporal rela-
tion among the data. Temporal decision trees are particularly interesting in the area of 
Smart Homes, when we are gathering data about a single system over time. A recent 
research report shows that it could be possible to modify existing decision tree algo-
rithms to make time explicit and generate temporal rules and decision trees [5].  

2   Research Agenda in Smart Homes 

Research in Smart Homes is actually a part of a broader area of research called Ambi-
ent Intelligence. This is one of the hottest buzzwords in multiple research disciplines 
at the moment. See for example the public deliverables of the ongoing project 
AMIGO: Ambient intelligence for the networked home environment [6]. The vision 
of the AMIGO project is to calmly and unobtrusively support human-to-human or 
human-to-information interaction without having to deal with typical user interfaces. 
The vision is that the computer as we know it, will disappear into the environment, 
still being proactive, sensing how it could serve us. However, for a Smart Home Sys-
tem to effectively support us in our home environments, we must take great care to 
build trusted platforms that protect our intimate data, and still allow easy access to it. 
Also, people might be hesitant to accept services that an intelligent ambient home 
environment offers, if issues of control or privacy are involved [6]. 

The partners in the AMIGO project consider use-cases from three general domains: 

• Home Care and Safety  
o Voice command based home, Software component based household appli-

ances domotic controller, A Multimedia Telemedicine Home Platform 
• Home Information and Entertainment  

o Interactive Background Portal, EasyLiving: Technologies for Intelligent 
Environments, Gemini: Accumulating Context for Play Applications, Con-
text Aware Information Retrieval in the Home, Context Aware Multimedia 
Browsing 

• Extended Home Environments 
o Design Meeting, Tele Worker, Mirror Space and other application areas. 
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The technical requirements are prompting a wide range of new research and devel-
opment problems. The work in progress may be classified in the following areas:    

• Context collection, aggregation, and prediction 
• Adaptive methodologies 
• User modelling and profiling 
• Awareness and notification 
• Content provision, selection and retrieval 
• User interfaces 
• Security and privacy 

Decision trees modelling techniques may prove applicable in few of the above men-
tioned research areas. This chapter focuses on context aware homes rather than context 
aware appliances. The decision trees example that we follow in this chapter would gen-
erally fit in the context collection, aggregation, and prediction research area. 

In order to be successful in the modelling process, we need to carefully follow 
some general methodology, which is suitable for the decision trees approach, e.g. [9], 
[10]. The propsed methodology has several distinctive phases: ‘Smart Homes’ use 
case problem formulation, data gathering , data pre-processing, hypotheses genera-
tion by induction of decision trees, and quantitative and qualitative evaluation. The 
proposed methodology is illustrated in detail in the following sections. 

3   Problem Formulation and Data Gathering from the Sensors  

Let us assume that the subject of our investigation, a person living in a Smart Home, 
has currently entered the bedroom and is about to get in bed. The question is whether 
this is a ‘common’ and ‘normal’ activity? After lying in bed for 3.5 hours, our subject 
gets up and goes to the kitchen. We are interested to find out if s/he stayed in bed for 
‘too long’?  

Actually, we would like our computer system to constantly ask questions whether 
the activities or events that we explicitely measure from the sensoring system (e.g. in 
bed for 3 hours, cooker on for 4 hours etc.) are normal in given circumstances (in 
relation to other measured attributes describing the present state of the Smart Home). 
In case the undergoing activity is not normal then the system has to raise some level 
of alarm or initiate automatic activity. For instance, if the person turned on the cooker 
before going to bed and he stayed in bed for more than 2 hours time, s/he could be 
automatically alarmed and if this is not successful then the cooker should be auto-
matically switched off.  

In order to formulate our problem more precisely we assume that data from the 
sensors are automatically collected and stored in a local information system. These 
data are then pre-processed to get information about the (i) whereabouts of the person 
(ii) her/his interaction with appliances and (iii) the duration of events. 

The decision trees approach requires that the attributes (describing the state of the 
Smart Home) have finite value sets. For example, the attribute “cooker” can get a 
finite number of values (e.g. on for 30 minutes, on for 40 minutes, and on for more 
than 50 minutes). Some activities which are longer than 24 hours should clearly be 
handled as exceptions in the system. E.g. the light in the living room remains on for 
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more than 24 hours, or the cooker is on for more than 24 hours or the person remains 
in bed for more than 24 hours. For practical reasons, it might also prove helpful to 
include some attributes such as the ‘day of week’ in the learning process. In such 
case, the system should be able to induce that an alarm should not be raised, if the 
cooker is turned on for more than 3 hours on Saturday, because, this is the usual time 
when the person is cooking a cake for a Sunday party.  

Let us now consider the following example: When the person entered the kitchen, 
he turned the light on, he stayed there for 30 minutes and then left the kitchen forget-
ting to turn the light off. So, the light remains on for more than 2 hours.  

This could be mapped to the following sequence of events: 

at living on 
at living off 
at reception on 
at reception off 
at kitchen on 
Kitchen light on 
cooker on 
at kitchen off 
at reception on 
at reception off 
at bedroom on 
inbed on 
... 

The current state would correspond to the following attribute-value pairs: 

Attribute         Value 
at living on         false 
at reception on         false 
at kitchen on  false 
kitchen light on         true for 2 hours 
cooker on         true for 2 hours 
at reception on        false 
at bedroom on true for 1.5 hours 
inbed on         true for 1.5 hours 

Following is the new state in two hours time: 

Attribute         Value 
at living on    false 
at reception on         false 
at kitchen on false 
kitchen light on        true for 4 hours 
cooker on         true for 4 hours 
at reception on        false 
at bedroom on       true for 3.5 hours 
inbed on         true for 3.5 hours 

The system should obviously raise an exception, as the cooker is on for 4 hours, 
and this is not normal (for the particular user!). Additional useful information could 
be encompassed by introducing the ‘time from end of event’ concept. So, instead of 
noting that the lights in the living room are off, we also note that they are off for 4 
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hours already. For simplicity, we use only real values here. So, the number “2” corre-
sponds to the following definition “the event is taking place already for 2 hours”. The 
number “-2” means that “the event/action ended before 2 hours”. Consider the follow-
ing table, which forms a complete learning example: 

Attribute       Value 
at living on            - 4 

(meaning: false, already 
for 4 hours) 

at reception on       - 4 
at kitchen on           - 4 
kitchen light on       4 

(meaning: true, already 
for 4 hours) 

cooker on         4 
at reception on      - 3.5 
at bedroom on 3.5 
inbed on       3.5 

Let us now reconsider the the prediction problem that we posed in the beginning of 
this section. For someone it would be logical to ask if it is normal that the person is in 
bed for 3.5 hours, and for another person, it would be more logical thing to ask, if it is 
normal that the cooker is on for more than 4 hours? For a third person it would seem 
strange that the lights in the living room have not been on for more than 4 hours. So, 
all of these undergoing actions or expired events could be normal or problematic! 
That is why we have to reformulate the prediction problem by asking a more generic 
question: “When do the specific events expire or end?”  

Decision trees could help us analyze whether certain actions are happening too 
long and what is the usual duration of the events, given the specific circumstances.  

This could be based on the assumption that all events that usually happen in the 
Smart Home may be considered as ‘normal events’. So, the training data set describes 
large amount of ‘normal events’. The induced decision tree(s) will therefore describe 
the normal state of the Smart Home. Each new event in the Smart Home may be ana-
lyzed by inspecting the corresponding decision tree. The decision tree may reveal that 
the event is not usual or typical, and will therefore raise some degree of awareness, 
alert or alarm.  

Let us reiterate at this point that the decision tree approach is generally best suited 
to problems with the following characteristics:  

• Instances are represented by attribute-value pairs.  
• Instances are described by a definite set of attributes (e.g., ‘at living on’), but 

their values could also be continuous.  
• The typical situation for decision tree learning is when each attribute takes on a 

smaller number of possible values that are disjoint.  
• Modifications of the basic learning algorithm allow for handling real-valued at-

tributes as well (e.g., a real value for the time), and handling temporal data.  
• The decision tree has discrete values in the leaves, but it could also have real 

values in case a modification of the basic algorithm is used.  
• By using a decision tree it is possible to classify instances. 
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• The training data may contain errors. Decision tree learning methods are robust 
to errors - both errors in classifications of the training examples and errors in the 
attribute values that describe these examples (i.e. can handle noise data).  

• The training data may contain missing attribute values, which is not typical for 
the Smart Home. Such a situation could arise if a sensor is broken and thus not 
capable of supplying relevant data.   

4   Data Pre-processing 

Next step of our process is to define a table containing the learning examples i.e. 
instances (see Table 1). Basically, we define one table as input for the induction proc-
ess of one decision tree. The table has the form (xB1B, xB2 B, …, xBMB, y), where xBiB are the 
values of M independent variables (that could be discrete or real), which we call 
attributes and y is the value of the dependent variable, which we also call a class.   

Table 1. Illustration: pre-processed data ready for the induction process 

xB1B (kitchen light on) xB2B (in bed on) … y (cooker on) 
4 3 … 3.5 (yes) 

4.5 3.5 … 4 (yes) 
… … … … 
5 0 … -0.5 (no) 

In our particular case, y is the value of the ‘outcome’ that we would like to model 
with a decision tree, e.g. we shall try to model the ‘normal’ circumstances under 
which the cooker is on and predict the value of this attribute. For simplicity, we may 
assume that the dependent variable has only two possible values {yes, no}. Later, we 
shall see that it is also possible to use the regression trees approach that assumes real 
values of the dependent variable.  

Basically, our aim is to model an arbitrary number of events or actions happening 
in the Smart Home. Each time, we select one attribute and make it a dependent vari-
able and we consider all remaining variables as independent. Then our aim is to in-
duce many decision tree models – each model defines the values of the selected 
dependent variable under the given circumstances (i.e. given values of the independ-
ent variables). Computer storage and processing power are much cheaper now then 
they were several years ago, so, there are no technological limitations preventing us 
from inducing a forest of decision tree models. In other words, we may decide to 
induce one decision tree model for each particular event monitored by the sensoring 
system. Even if the number of possible events is in the degree of hundreds this does 
not pose computational problems. Also, the Smart Home environment may evolve 
with time, therefore, the decision trees induction process should be frequently re-
peated to adapt to the changing environment. Thus, an attempt to address all 
possible scenarios within the Smart Home environment obviously involves increasing 
complexity. 

Later, when we have actually induced a forest of decision tree models based on the 
learning examples, we may constantly ask the generic question: “Is the undergoing 
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activity/event normal?” The context for answering this question shall be given by the 
instance vector (i.e. vector of current values of independent variables) and the answer 
to the question shall be given by the decision tree corresponding to the particular 
dependent variable that is under investigation (e.g. ‘cooker on’). For example, another 
typical question that the decision tree model should help us answer is: “Which are the 
usual i.e. normal cases when the cooker is on for more than 3 hours?” 

Further complexity in the system may be introduced if two or more presons are liv-
ing in the same Smart Home environment. Obviously, the automated system will need 
to accommodate for the widely different needs and habits people may have. This may 
be achieved by applying techniques for user modelling and profiling [6], and also use 
these information in the decision trees induction process.  

5   Induction of Decision Trees 

There are a number of algorithms that can be exploited to induce decision tree models 
from data. Our aim here is not to make an extensive coverage, but to explain a possi-
ble (mainstream) approach.  

5.1   Top-Down Induction of Decision Trees (TDIDT/ID3) Algorithms 

One of the most popular algorithms for induction of decision trees is the TDIDT/ID3 
algorithm [7]. There is some gowing evidence that this algorithm may be suitable for the 
application area of Smart Homes [8], however, there is still a lack of comprehensive stud-
ies in real-world settings. Following is a brief description of the TDIDT/ID3 algorithm. 

In order to induce a decision tree, the set of learning examples is divided according to 
the values of a chosen attribute into subsets and further at lower levels of the tree into 
smaller subsets until a stopping criterion is reached. In general terms, the stopping crite-
rion holds when the examples in the current subset have sufficiently similar class values. 
For example, if we follow the Smart Home example from the previous section, the stop-
ping criterion could be reached when all learning examples have exactly the same or a 
predominant value for the ‘cooker on’ class.  Then a leaf is created and the class value at 
that leaf is defined to be the predominant value of the class of the examples falling in 
the leaf. In our Smart Home use case we have only two possible values of the class, 
therefore, the value of the leaf can be either ‘yes’ or ‘no’. 

Each node of the decision tree could also be viewed as a hypothesis about the ob-
served data [9], [10] (see Figure 2). Given the specific circumstances that are defined 
in upper levels of the decision tree, the value of the attribute ‘kitchen light on’ (spe-
cifically 0.2 hours) can be used to split the data set in two subsets. The predicted class 
value in the left leaf is ‘no’ and in the right leaf is ‘yes’.  

The following approach offers a possibility to evaluate the statistical significance 
of the generated hypothesis. First, the set of all examples is divided into two disjoint 
(independent) subsets, where each of the subsets has approximately 50% of the exam-
ples (training and test sets). The training set (consisting of 35 examples) is used to 
generate the decision tree, and the test set (also consisting of 35 examples) is used to 
statistically test the generated hypothesis. For the Smart Homes domain it could be 
possible to employ different statistical tests such as the Student t-test, one-way 
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analysis of variance and other tests as appropriate. We tested the statistical signifi-
cance of the generated hypothesis by using the Student t-test (p≤0,05). This actually 
means that the split into two subsets based on the value of the attribute ‘kitchen light 
on’ is statistically significant.  
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Fig. 2. A part of a decision tree induced from 35 examples (training set) and tested on 35 
previously not used examples (test set) 

It should be noted that it would be a mistake to use the same data for hypothesis 
induction as for statistical testing of induced hypotheses, since we need ain independ-
ent data set for statistical testing. The point of splitting the available data 50:50 into 
the training and the test set, is precisely the independence of these two sets. 

ID3 maintains only a single current hypothesis as it searches through the space of 
decision trees. However, by determining only a single hypothesis, ID3 loses the capa-
bilities that follow from explicitly representing all consistent hypotheses. For exam-
ple, it does not have the ability to determine how many alternative decision trees are 
consistent with the available training data, or to pose new instance queries that opti-
mally resolve among these competing hypotheses.  

ID3, in its pure form, performs no backtracking in its search (it is a so called 
greedy algorithm). Once it selects an attribute to test at a particular level in the tree, it 
never backtracks to reconsider this choice; it is susceptible to the usual risks of hill-
climbing search without backtracking. ID3 converges to locally optimal solutions that 
are not globally optimal. In the case of ID3, a locally optimal solution corresponds to 
the decision tree it selects along the single search path it explores. However, this 
locally optimal solution may be less desirable than trees that would have been en-
countered along a different branch of the search.  

ID3 uses all training examples at each step in the search to make statistically based 
decisions regarding how to refine its current hypothesis. This contrasts with methods 
that make decisions incrementally, based on individual training examples. One advan-
tage of using statistical properties of all the examples is that the resulting search is 
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much less sensitive to errors in individual training examples. ID3 can be easily 
extended to handle noisy training data by modifying its termination criterion to accept 
hypotheses that imperfectly fit the training data. However, reduced sensitivity to 
errors as well as possibility to handle noisy training data may not prove useful for the 
Smart Homes domain. In the Smart Homes use case (see Section 3) the information 
collected from the sensors is exact i.e. noisy input from the sensors is not anticipated 
and at the same time, we would like to achieve greater best fit with the training data.  

To recapitulate, ID3 algorithms: 

• perform complete search of the hypotheses space. 
• search incompletely through the space of all possibilities; initially, the tree has 

only one leaf-node, then it is developed from simple to complex hypotheses, un-
til its termination condition is met (eg. until it finds a hypothesis fully consistent 
with the data).  

• their inductive bias is based on the ordering of hypotheses by its search strategy 
(ie. it follows from its search strategy).  

• trees that place high information gain attributes close to the root of the decision 
tree are preferred by the ID3 algorithm over those that do not. Approximate in-
ductive bias of ID3 is that shorter trees are preferred over larger trees. 

5.2   Pre- and Post-pruning Techniques 

Exploring a decision tree model may reveal nodes or subtrees that are undesirable 
because of overfitting, or the decision tree may contain rules that we might feel are 
inappropriate. Pruning is a common technique used to make a tree more general. 
Pruning changes nodes into leafs of the tree, and it deletes the corresponding subtrees. 
With such algorithms, users will want to experiment to see which pruning rule pa-
rameters result in a tree that predicts best on a test dataset. Usually, algorithms that 
build trees to maximum depth will automatically invoke pruning (pre-pruning). Some 
software products allow the users to prune the tree interactively.  

Given that some pruning is usually a good idea, how does the pruning algorithm 
determine where to prune the tree? For example, a possible parameter that could be 
used is the computed difference between the resulting nodes, which may fall below a 
threshold and is threfore considered insignificant. There are also several other algo-
rithms, but one that some researchers find interesting is to use a control sample with 
known and verified relationships between the independent and dependent variables 
[8,9,10,11]. By comparing the performance of each node (as measured by its accu-
racy) to its subtree, it will be obvious which splits need to be pruned to attain the 
highest overall accuracy on the control sample.  

After generating a tree to maximum depth, it is possible to generate a large number 
of subtrees in the pruning phase and then automatically compute the accuracy of each 
on a test dataset. So, we should be able to choose a subtree that contains fewer num-
ber of nodes, yet has the highest accuracy. This approach is an effective way to elimi-
nate overfitting with a decision tree.  

Pre- and post-pruning techniques are used to generalize the decision tree model, 
however, in our Smart Homes use case this shall almost certainly reduce the ability of 
the induced decision tree to detect unusual events happening in the Smart Home. 
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Depending on the application scenario, it might prove useful to use pruning tech-
niques only to a limited extent and aim at minimizing the prediction error only, which 
is discussed in the following sub-section.  

5.3   Quantitative Evaluation: Analysis of Prediction Error 

In order to evaluate the accuracy of the induced models, the k-fold cross-validation 
method can be used. It is possible to choose k=10, 30 or similar, as it is usual in ma-
chine learning experiments. This means that the set of all available examples (i.e. 
instances) is divided into 10 (or 30) disjoint subsets and induction/testing cycle is 
repeated, say, 10 or 30 times. Each time a different subset is selected as a test set, all 
the remaining subsets are used for the induction of a decision or regression tree and 
the induced tree is evaluated on the test set. So, the prediction error is computed 10 
(or 30) times. An average of the errors obtained in this process is reported as the final 
estimate of the prediction error on new data.  

5.4   Qualitative Evaluation: Understanding the Output 

The distinctive output from a decision tree algorithm makes it easy to recognize its 
descriptive or exploratory value. In an exploratory mode the user is interested in out-
puts that facilitate insight about relationships between the independent variables and 
the dependent variable. 

One of the inherent benefits of a decision tree model is its ability to be understood 
by human experts. Graphical presentation of a decision tree model, along with the 
ability to interactively explore the model, have become standard features supported by 
many decision tree software vendors. For instance, the popular Weka toolkit includes 
a decision tree visualizer. 

Decision tree output may also be presented as a set of rules, which are concise and, 
particularly when the tree is large, are often easier to understand. Decision trees have 
obvious value as both descriptive and predictive models. We have seen that prediction 
can be done on an instance-by-instance basis by navigating the generated trees. More 
often, prediction is accomplished by processing multiple new instances through the 
tree or set of rules automatically and generating an output file with the predicted value 
or class appended to the record for each instance. Many implementations offer the 
option of exporting the rules to be used externally or embedded in other applications.  

5.5   Other Modelling Approaches 

Decision trees graphically display the relationships found in data. Certain software 
products are also able to translate the tree-model to text rules such as If ‘in bed’ 
= -4 and ‘kitchen light on’ > 1 Then ‘cooker on’ = yes. Actually, 
decision tree algorithms are similar to rule induction algorithms which produce rule 
sets without a decision tree. Once a decision tree has been constructed, it is a simple 
matter to convert it into an equivalent set of rules. 

Another possibility is to place a regression function in the leaves of the tree instead 
of the predicted value [10]. In such case, the induced decision tree is called a 
“regression tree.  
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There are many modalities of the basic decision trees algorithm, which have been 
studied in detail elsewhere [1], [4], [5], [7], [11]. In the following sub-section we outline 
some of the key differences between algorithms for induction of decision trees. 

5.6   Overview of Available Software 

While all decision tree algorithms have basic elements in common, they have some 
important differences as well. Given the same training data all algorithms will not 
necessarily produce the same decision tree. The distinguishing features between algo-
rithms include [1]:  

• Dependent (Class) Variables: Most decision trees algorithms require that the 
dependent variable is categorical. An exception to this is the CART algo-
rithm, which directly handles continuous dependent variables.  

• Splits: Many algorithms support only binary splits, that is, each parent node 
can be split into at most two child nodes. Others generate more than two 
splits and produce a branch for each value of a categorical variable.  

• Rule Generation: Some software includes methods to generalize rules associ-
ated with a tree; by doing so, it is possible to remove redundancies. Yet, an-
other software simply accumulates all the tests between the root node and the 
leaf node to produce the rules.  

• Split measures: Different algorithms support different and sometimes multi-
ple measures for selecting which variable to use to split at a particular node. 
Common split measures include gain criterion, gain ratio criterion, gini crite-
rion, chi-squared, and entropy [8][9][10].  

Beyond the basic algorithmic differences, users will find that different implementa-
tions of the same algorithm provide additional useful features which are too numerous 
to mention here.  

Decision tree algorithms and products are rapidly evolving. Within the last years, 
C5.0 was released by RuleQuest Research [12]. Algorithm C5.0 implements ‘boost-
ing’, a technique that combines multiple decision trees into a single classifier. Silicon 
Graphics, in the 2.0 release of MineSet, has an Option Tree algorithm, in which mul-
tiple trees (or subtrees) coexist as ‘options’ [16]. Each option makes a prediction, and 
then the options vote for a consensual prediction. The C5.0 algorithm is also used in 
the latest release of Clementine [17]. Boosting and option trees are techniques to get 
around sub-optimization problems resulting from the ‘greedy’ aspect of the decision 
tree algorithm. Weka [1] and Orange [18] are open source solutions for various data 
mining approaches. For example, Weka contains the following decision trees algo-
rithms: ADTree, DecisionStump, ID3, J48, LMT, MSP, NBTree, RandomForest, 
RandomTree, and few others. Most recent efforts in this area are towards execution of 
these kind of algorithms in grid computing environments [19].  

7   Conclusion 

Although there is some experimental evidence that decision tree algorithms, like 
TDIDT/ID3, may be particularly suitable for Smart Homes [8], we should be cautious 
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in drawing premature conclusions. Only when we witness a number of experimental 
and real-world Smart Homes settings, where decision trees are used, we may be able 
to provide assessment of the decision trees approach and comparison with other 
existing techniques.  

We showed that decision trees, as both predictive and descriptive models, could be 
used to satisfy some of the key technical requirements (section 2) posed by various 
Smart Homes use cases. However, decision trees may never be successful in the mod-
elling process, if some appropriate methodology is not used [9], [10]. The methodol-
ogy proposed here has several distinctive phases: Smart Homes use case problem 
formulation, data gathering , data pre-processing, hypotheses generation by induction 
of decision trees, and quantitative and qualitative evaluation. 

In the attempt to illustrate a possible way of using decision trees in the area of 
Smart Homes, we formulate the modelling problem by defining a generic question “Is 
the undergoing activity or event in the Smart Home usual?” This could help us iden-
tify unusual events and raise certain level of awareness, alert or automatic activity in 
the Smart Home setting.  

The Smart Home can not function properly without a human-controlled monitoring 
centre. In case an exception is raised in the system caused by unusual events or 
activities in the Smart Home this should be brought to the attention of the specialized 
personnel working in such centre. Specialists could then visualize the decision tree 
corresponding to the event and try to identify whether the event is “slightly unusual” 
or “very unusual” and in the later case they could react accordingly. 
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Abstract. Many wonderful technological developments in recent years have 
opened up the possibility of using smart or intelligent homes for a number of 
important applications. Typical applications range from overall lifestyle 
improvement to helping people with special needs such as the elderly and the 
disabled to improve their independence, safety and security at home. Research 
in the area has looked into ways of making the home environment automatic 
and automated devices have been designed to help the disabled people. Also, 
possibilities of automated health monitoring systems and usage of automatic 
controlled devices to replace caregiver and housekeeper have received significant 
attention. Most of the models require acquisition of useful information from the 
environment, identification of the significant features and finally usage of some 
sort of machine learning techniques for decision making and planning for the 
next action to be undertaken. This chapter specifically focuses on neural 
networks applications in building a smart home environment. 

1   Introduction 

Home automation has been the topic of interest for researchers since the 1940s. The 
major aim has been to automate control of the appliances and systems within the home 
environment that can work independently [1]. Home automation can be useful, 
especially for people living alone at home and also for those who need constant 
monitoring. Advances in technology have facilitated the usages of an increased number 
of automated devices in our home environment to make the daily tasks easier [2]. 
However, as more and more devices are used in the home, the problem of controlling 
and managing these devices increases exponentially. Unlike humans, devices do not 
have the inherent understanding of the environmental condition and also do not know 
what actions are to be selected under which situations [3]. Automated control of these 
devices is, therefore, a demanding research domain and is receiving significant attentions.  

An intelligent environment or smart space can be thought of having many highly 
interactive and embedded devices, and is able to control these devices automatically in 
order to meet the demands of the environment or space [4]. Another key objective in a 
smart home environment is to be able to control and manage the home devices (e.g., AC 
system, TV, fan, security system, cooking devices, etc) from a distance or even over the 
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internet [5]. Such an environment would apparently carry out tasks that are commonly 
done typically by a housekeeper and through other support services. Several protocols 
and architectures have been proposed in the literature that could potentially offer similar 
benefits to the inhabitants of a smart home. Furthermore, with the elderly populations 
growing fast around the globe [6, 7], smart homes environment could potentially 
provide a better alternative for our elders, and also for the disabled people to enjoy the 
comfort and independence of their own homes without the need to go to the nursing 
homes. It has been estimated that about 43% of the Americans over the age of 65 years 
need to enter a nursing home for at least one year [8].  

Recently, there have been many fresh interests into building smart homes.  For 
example in 2002, Intel launched the proactive health research project [9], while in 
2000, Sun Microsystems and Invensys announced the development of "smart home" 
infrastructure to accelerate the delivery of services to wired appliances in the home 
[10]. Also, C.P. Technology [11] has used IBM’s web sphere and developed the high 
tech “smart home” for marketing from the year 2004 [12]. All these initiatives are 
directed at building smart home spaces for people to live independently at home and 
to allow for remote surveillance of the well-being and healthcare needs of the people. 
Various computational intelligence techniques have been proposed and tried to 
support the needs of the smart homes such as, neural networks [30, 31], Fuzzy logic 
[13], Hidden Markov Models [14, 15], Bayes Classifier [16], etc.  

All of these techniques have their own merits and limitations when applied to a 
smart home premise. For example, before using a Fuzzy logic appropriate rules and 
membership functions have to be defined based on prior expert knowledge about the 
solution of a problem. This might be a quite challenging task, especially when the 
prior expert knowledge is either limited or not available [17]. Although a Bayes 
Classifier model might seem simple and fast, it’s performance depends on the 
independence of the input features and the selection of the initial distribution for the 
model. Hence, the Bayes classifier might not be suitable for devices in smart home 
that would require an automated crisp and perfect solution [18]. Hidden Markov 
Models (HMM) can result into very complex networks, and although a HMM can be 
quite useful for situations such as behavioral monitoring [19], its application would be 
limited in a smart home due to its inefficiency while dealing with a large number of 
sensors [36]. 

In contrast, an Artificial Neural Network (ANN) is relatively simple to apply to 
most problems in the real world environment. In addition, its better adaptability with 
the problem makes it more suitable to be used in controlling and automating the smart 
home devices. Despite some obvious limitations (e.g., optimal architecture for a 
problem, local minima), the ANN has been used successfully for several problems in 
smart homes. The reader is referred to Section 4 that specifically deals with some of 
these applications. 

In this chapter, following a brief description of the ANNs, we provide an overview 
of the major applications involving ANNs in a smart home environment. Finally, we 
discuss how an ANN based model may be used to address some of the important 
issues and needs in a smart home environment. 
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2   Artificial Neural Networks 

2.1   Overview 

An Artificial Neural Network (ANN) or alternatively known as Neural Network is a 
computational tool, which follows the activities of a biological brain. The basic 
processing unit of ANNs is a neuron [20], which has similarity with a biological neuron, 
first described by Cajal in 1911 [21]. ANNs learn relationships between the inputs and 
outputs from examples presented to the networks without any prior knowledge about the 
underlying relationships that exist within the data sets. This important ‘adaptive’ 
attribute of the ANNs makes it suitable for many applications where there is very little 
or no information available regarding the input-output relationships or the underlying 
transfer function among the data [22].  

There are many standard texts [cf. 23 & 24] that describe the history of ANNs and 
the links that exist between the operations of the biological and artificial neurons. An 
ANN is usually characterized by: i) the way the neurons are connected to each other, 
ii) the method that is used for the determination of the connection strengths or weights 
and iii) the activation function that is used to process the data. Some basic features of 
ANNs are briefly described below: 

2.2   Model of a Neuron 

As already stated a neuron is the fundamental unit of the ANN. A neuron takes a 
number of inputs and after some mathematical processing it produces an output. Each 
neuron is connected to the other neurons by means of links that have weights, which 
represent strengths of the connections. Figure 1 compares a computational (artificial) 
neuron and a biological neuron. The inputs to the neuron signify activities of the 

Fig. 1. Activity similarities between (a) a computational neuron and (b) a biological neuron 
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dendrites of a biological neuron. The weights on the edges represent the activities of 
synapses, the mathematical equation shown in the circle is a representation of the 
soma, and the calculation of the output of each neuron signifies the axon.  

Generally, a neuron in an ANN has more than one input nodes but only one output. 
The weights shown on each connection line represent information to be used in 
processing the input signals to build the ANN model of the problem. The mathematical 
function used by each neuron to calculate the output is called the activation function. 
There are different types of activation functions used for processing the incoming 
signals, some of which are briefly discussed in section 2.6. 

2.3   Network Architecture 

The way the neurons are connected to each other can be visualized using the network 
architecture. Depending on the position of the neurons in an ANN three layers are 
defined: input layer, hidden layer and the output layer. There may be none or more than 
one hidden layer in an ANN which primarily depends on the complexity of the problem. 
Researchers have proposed different types of network architectures that are suitable for 
solving their own particular problem. However, the most popular and widely used 
network architectures include: feed-forward fully connected neural network, recurrent 
neural network and time-delay neural networks. 

2.3.1   Feed-Forward Architecture 
In a feed-forward neural network (Figure 2(a)), the neurons of each layer are connected 
to the next layer only in the forward direction, i.e., neurons are connected in 
unidirectional way and there is no backward connection among the neurons. Figure 2(a) 
illustrates the structure of a three layer feed-forward fully connected neural network. 
Feed-Forward ANN has a relatively simple architecture to map the input-output 
relationship to automate devices (e.g., face recognition, temperature control, fire alarm, 
etc), which can be applied in a smart home environment. 

2.3.2   Recurrent Neural Network 
The structure of a recurrent neural network (RNN) is the same as the feed-forward 
ANN except that, there is connection between neurons that feeds back the output of 
that neuron to the input of the previous neuron. Figure 2(b) illustrates the structure of 
a RNN. Here the outputs are fed back into the hidden layer, thus the structure 
representing a RNN. A RNN is normally efficient for dealing with sequential problem 
where the current state depends on past states of the same variable (e.g., human 
behavior prediction in a smart home).  

2.3.3   Time-Delay Neural Network 
A time delay neural network (TDNN) or also known as Tapped Delay Line (TDL) is a 
temporal network where the input pattern is fed into the network by introducing a 
delay in time. The successive representation of input data sequences facilitates the 
network to adapt to the temporal behavior of the problem (e.g., daily activities of 
smart home inhabitant). TDNN can be quite useful for those problems where both the 
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Fig. 2. Structure of a (a) Feed-Forward neural network (b) Recurrent neural network, RNN (c) 
Time-Delay neural network, TDNN 

temporal information and the relationship between the input/output data sequences are 
important. Figure 2(c) illustrates the architecture of a TDNN, here the successive 
inputs have been delayed by λ . 

2.4   Learning Process 

One of the main characteristics that make ANNs unique from other mathematical 
processing methods is that it can learn from the characteristics of the data and adapt 
parameters of the network according to the underlying structures in the training 
dataset. The process is known as learning. As defined by Haykin [20], “Learning is a 
process by which the free parameters of a neural network are adapted through a 
continuing process of stimulation by the environment in which the networks is 
embedded. The type of learning is determined by the manner in which the parameter 
changes take place”.  

Depending on the learning environment there can be fundamentally two different 
learning paradigms: supervised learning and unsupervised or self-organized learning. 
As the name suggests, in a supervised learning paradigm the ANN is trained under 
some guided supervision, i.e., there is target output(s) that the ANN aims to achieve 
during the learning/training process. On the contrary, in unsupervised learning there is 
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no external supervisor to facilitate ANN’s learning: the distribution of the data and the 
structural similarities amongst the dataset are used as the basis for learning.  

Over the years researchers have proposed many rules for training the ANNs that 
follow the learning technique. Some of the widely used supervised learning rules 
include: 

1. Perceptron Learning rule 
2. Error-Correction/ Delta rule 
3. Hebbian Rule [27] 

Among these rules, the Delta rule is the most widely used one, and a brief 
description of it is provided below: 

2.5   Error Correction (Delta) Rule 

In error correction rule, the weights that connect the nodes are modified by 
calculating the difference between the desired output and that produced by the node as 
shown in Figure 1(a). 

Error at the node= 
2

1
 * (Desired Output, O - Produced Output, P)2 

The modified weight at edge connecting from input xi  

= weightoldxnodetheaterrorratelearning i +**   

Mathematically, the error (E) for each input vector is calculated as follows: 

∑=
s

sEE  (1) 

where, ∑ −=
i

iis POE 2)(
2

1
, 

Where, Oi is the desired output vector in response to the input vector representing the 
input sequences x1, x2 , … , xn; and w1, w2 , …. , wn are the weights connecting the 
input to the node/neuron. Therefore, the initial output, Pi created by the neuron is 
given by (Figure 1a). 

P= )(
1
∑

=

n

i
ii xwf  (2) 

Where, (.)f =activation function which we discuss later 

According to the delta rule the modified weight at each edge is obtained using the 
following equation: 

iii woldwneww ∂+= )()(  (3) 

where, iii xEw η=∂  ( rateLearning=η ) 
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These steps are executed iteratively until a minimum acceptable error between the 
desired and generated output is found. The technique of minimizing the above error 
with respect to the network parameters is known as gradient descent method [25][26].  

2.6   Activation Function 

The output of a neuron in the ANN architecture is generated using a mathematical 
function, which is known as activation function. Most often a nonlinear function is 
used as activation function so that the ANN structure becomes suitable to adapt to 
nonlinear problems. Two of the most popular nonlinear activation functions are: 

• Sigmoidal function 
• Signum function 

Details of these functions can be found in [20]. Now we proceed to the algorithms 
that employ learning rules described in sections 2.4 and 2.5 in order to train the ANN. 

2.7   Learning Algorithms 

There are several learning algorithms proposed in the literature that can be used to 
determine the appropriate weights of the ANNs. Some well known learning 
algorithms include: 

• Back propagation 
• Radial Basis Function 
• Hopfield Algorithm 

Among the many learning algorithms, the back-propagation algorithm is widely 
used involving majority of the applications in a smart home environment (refer to 
Table 1). In a back propagation algorithm, the weights are modified first by 
calculating the error via some suitable error function. If a differentiable function is 
chosen as an error function, gradient descent on such a function will naturally lead to 
a learning rule. Historically, several researchers have proposed this idea [e.g., 28]. 
Eventually, Rumelhart et al. [29] developed practical techniques that gave us a 
powerful engineering tool. The back-propagation technique follows the delta rule 
while modifying the network weights.   

3   Applications of Neural Networks in Smart Home Environment 

In the above sections we have briefly discussed the operation and algorithms of 
ANNs. In the context of smart homes, ANN has been used for classification, control 
and automated home appliances, next step/action prediction, etc.  In the following, we 
review some of the significant applications involving ANNs approaches in smart 
home environment. A chronological list of the major developments in the area is 
presented in Table 1.  

Chan et al. [30] appear to be the first to use ANN to help develop a smart home 
automation system for use by the elderly and disabled people. Altogether twelve 
rooms were included as part of the system where sensors were deployed in the rooms 
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to collect information representative of the behaviors of the inhabitants. ANNs were 
trained using the acquired data to classify normal and abnormal behaviors.   

The first comprehensive application involving ANNs in smart home environment 
was undertaken by Mozer [31] in 1998. It was named ACHE which stands for 
Adaptive Control of Home Environments. The system was able to alter the 
environmental system (e.g., air heating, lighting, ventilation, water heating) in line 
with the residential needs and comfort levels. Thus the home environment was in tune 
with the lifestyle and requirements of the residents. ACHE had two main goals. It was 
able to anticipate the inhabitants’ needs such as lighting, air temperature, hot water, 
and ventilation by studying the patterns of adjustments made by the inhabitants. These 
settings acted as training signals for ACHE so that after some time it was able to 
anticipate the needs of the resident. The second objective was to conserve energy, i.e., 
meeting the inhabitant’s demand with less energy consumption. To satisfy these two 
objectives the author introduced a cost function to optimize the comfort level of the 
resident with least possible amount of energy being consumed. Feed-forward ANNs 
trained with back propagation algorithm were reported for data analysis and 
controlling the home appliances. 

Jorge and Goncalves [32] focused on automated health monitoring of elder 
citizens’ everyday life using artificial intelligence tool. They used ubiquitous 
computing devices to collect data from the elderly relating to neurological disorders 
(e.g., loss of motor, sensorial and cognitive problems). The authors emphasized the 
usage of artificial intelligence to learn patterns from data produced by ubiquitous 
computing devices and then to use them to predict next activities. For instance, for 
patients requiring constant medical monitoring should be considered differently as 
they might need special needs and care. So, the challenge for the system is to take a 
decision whether someone should be classified under this group or not based on the 
available information. For such a problem, the rules and patterns that are inferred by 
the system should be unique and individual-specific, and in this regard an artificial 
intelligence tool like the ANN technique could potentially play a significant role in 
decision-making. 

Pigot et al. [33] proposed a theoretical as well a practical framework with a view to 
minimizing risks that may arise due to the actions undertaken by the elderly in a 
physical environment. In this framework, the computer infrastructure of the smart 
home system consisted of three layers: The application layer, the middleware layer 
and the hardware layer. The hardware layer included electrical equipment, e.g. 
sensors [34]. The middleware connected the devices in the hardware layer with the 
application layer. The application layer was the decision making layer which took 
decision about the action to be undertaken in the next step. Tele-monitoring module 
was one of the application modules in the decision-making process to detect abnormal 
behaviors of the monitored person. The authors emphasized the advantage of applying 
ANNs along with other mathematical models to help in the detection of patterns 
associated with a risk.  

Cook et al. [35] developed a project called MavHome. This project focuses on the 
creation of an environment that acted as an intelligent agent. The main operations of 
MavHome included the control of temperature, electric appliances, TV, video, robot, 
etc. The MavHome was organized into an architecture, which connected the agent and 
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the technologies within each agent. The decision layer was one of these four layers. This 
layer selected actions for the agent to be executed based on information supplied from 
the other layers. MavHome has been defined as a unique agent, which combined 
technologies from artificial intelligence, machine learning, databases, mobile 
computing, robotics, and multimedia computing. To acquire and recognize the activities 
of the inhabitants within the MavHome a number of prediction algorithms were 
employed in parallel: the SHIP prediction algorithm, Active LeZi (ALZ) online 
algorithm, and  a data-mining algorithm known as Episode Discovery. In the final 
decision phase the MavHome developed a metapredictor called Predict to select one of 
the predicted actions obtained from the aforementioned predictors. In predict algorithm, 
a back propagation ANN was applied to learn the confidence value for each of the 
prediction algorithms based on the gathered data, the accuracy strength of each of the 
predictors and the meta features (i.e., amount of data, number of devices, etc). 

R-Illengworth et al. [36] presented a novel connectionist embedded agent 
architecture to recognize daily life behaviors. A number of unobtrusive and relatively 
simple sensors were used in this architecture. Different high-level daily routine 
activities (e.g., sleeping, eating) were recognized with the help of a constructive 
algorithm with temporal capabilities. Consequently, abnormal behaviors were also 
identified using this algorithm. The focus of the task was the development of some 
connectionist approach which would overcome the difficulties of adapting neural 
network to the continuous changes in the smart home, and eliminate the requirement 
of retraining the ANN to take into consideration the newly added input/output nodes 
(if any). The authors used adaptive neural architecture, first proposed by Kasabov 
[37], known as EcoS (Evolving Connectionist System), which was found suitable for 
the environmental data. A memory layer was added to the model to handle temporal 
component i.e., to detect abnormalities in the sequence, frequency and duration of the 
activities. Being RNN in nature, there were feedback connections between the two 
layers (memory and hidden layers) that followed the architecture proposed in [38]. 
The authors applied this model, in conjunction with 18 sensors, for activity 
recognition and to identify abnormalities inside a dormitory room at the University of 
Essex (see Table 1).  

4   ANNs for the Control of Smart Home Devices and Appliances 

People have defined smart homes from different contexts. Smart homes have been 
designed with the primary aim of helping people with special needs, adapt to meet the 
user’s limitation and also to improve the general lifestyle of the inhabitants. 
Accordingly, the use of devices within the home environment and the associated 
models vary. Some application examples of smart homes might be for people with 
movement disabilities that may require assistance with mobility [39-42], for elderly 
people to help with balance problem [40-44,46,47], and for people with low hearing 
and vision requiring specialized communication and lighting devices [45]. 
Furthermore, smart homes are designed with a focus towards minimizing caregiver 
support for the people who would like to live independently at home. Table 2 lists 
some of the main items that might require automation and control in a smart home. 
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Table 2. List of some of the main devices that require automation in smart home  

Major Areas Items that need automation  
Entertainment TV on/off, Channel/ movie selection, Daily exercise 
Security and Safety Intruder detection, Fire alarm, Automatic door lock, 

Kitchen equipment control, etc. 
Caregiver  Eating, Taking bath, Cooking, Shopping, Cleaning, 

Washing, Housekeeping, Bill payment, etc. 
Health Monitoring Medication, Falls and balance, ECG/Heart beat, 

Blood pressure monitoring, Body temperature 
monitoring, Pressure sores, Dementia, Alcohol use, 
etc. 

Behavior monitoring Inconsistency in sleeping pattern detection, etc 
Environment AC Control, Heating control, Water temp control, 

Light control, etc 

4.1   Entertainment 

There are different kinds of equipment that may need automation to provide 
entertainment to the inhabitants in a smart home. Examples include the provision of 
an automated TV control that may need turning on and off according to the daily 
routine of the inhabitant. A trained ANN can be utilized to make this action 
automated via information collected from various sources (e.g., time/day and activity 
of the inhabitant such as morning exercise, etc). Chan et al. [30] has already 
demonstrated the usefulness of ANNs in the control of TV in their smart home. ANNs 
can also be programmed to expand the controls of TV/Video/DVD during any time of 
the day by feeding the requisite information relating to the behavior and activities of 
the inhabitant. Similarly, ANNs can be employed for automated control of daily 
exercises. For example, it can be used to activate reminder notes for exercise, and to 
regulate the air temperature of the exercise room (e.g., using a TDNN).  

4.2   Safety and Security  

One of the major aims of smart homes is to provide a secure and safe environment for 
their inhabitants. This may include intruder or unwanted person detection and automatic 
activation of, for example, fire alarm for 24 hours. With regard to the previous task, 
computerized technique involving face detection, person and object identification can 
play a vital role. Recently, many research projects have been undertaken pertaining to 
the use of ANNs for face detection and recognition, see for example [48] - [51]. In some 
research [cf. 50], it has been shown that ANNs are able to recognize face with very high 
success rate (82% to 100%), which suggests their suitability for application in smart 
home environment for intruder detection, and subsequent activation of appropriate 
security services such as the police or security guard.  

ANNs may also be used to assess fire hazards in the home by studying smoke 
alarm signals from various parts in the house. In [52], the researchers have developed 
satellite-based remote sensing techniques for identifying smoke from forest fires. It 
seems that with little modification, this concept could be applied in smart homes to 
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detect and assess fire hazards using a dedicated ANN system for intelligent decision 
making as to whether to activate or not the fire alarm system [52, 53].  

4.3   Caregiver 

In this category, issues are discussed to help the inhabitants of smart homes to do his 
or her daily routine activities, such as eating, house keeping, cleaning, etc. Already 
significant progress has been made in this area, especially with the help of indoor 
robots. In [55], the authors have employed ANNs to control a robot within the indoor 
environment as a personal assistant for indoor service applications such as surface 
cleaning, distribution of meals, etc. Such type of controlled robot has the potential to 
be employed in smart home environment to carry out various tasks, e.g. to deliver 
meal according to the daily routine of the inhabitant. ANNs have played a substantial 
role in many such control applications, for example, helping the robots to navigate 
using sensor signals taken from the surrounding environment [58, 59] or monitoring 
the time of taking meal [54]. 

Besides robots, ANNs have been valuable for doing many other household duties 
and tasks. For example, for automated control of bathtub water temperature within a 
comfortable level, both back propagation ANNs [56] and hybrid systems (neuro-fuzzy 
inference network) have been proposed [57]. ANNs, with the help of speech 
recognition techniques [61-64], could also potentially provide assistance with the 
online shopping activities undertaken from within the home environment. 

4.4   Health Monitoring 

Continuous health monitoring capability offers enormous benefits to individuals 
living in smart homes, especially for older persons and individuals with chronic 
diseases (heart, neurological disorders, etc) to have a better quality of life [60]. Here 
the idea is to have sensor devices that would constantly deliver information about the 
health status of the inhabitants [65-68]. ANNs or other artificial intelligence tools 
might be used for processing medical and physiological data, and to take intelligent 
decision about the overall health condition of the subject. ANNs could also facilitate 
information transfer to medical and health professionals in case of detected 
abnormality in recorded signals that would warrant urgent medical attention. Some of 
the examples include routine medication surveillance, falls event detection in older 
adults, heartbeat and ECG monitoring, blood pressure monitoring, EEG monitoring in 
dementia patients, etc. Already a substantial body of literature is available describing 
various issues related to health monitoring and using sensors placed in smart homes 
(e.g., bed, bath, toilet, etc) to obtain various physiological and health information data 
[69-71]. ANNs can play a vital role in this context for processing various biomedical 
signals and assisting to diagnose diseases from the acquired biosignals [72] and also, 
for example, to develop ANN-based medical decision support system [73]. 

5   An Integrated Framework for Smart Home 

An architecture integrating the potential applications of ANNs involving the various 
aspects of smart homes is presented in Figure 3. 
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Fig. 3. An integrated framework for ANN-based smart home 

In previous sections, we have discussed various events and devices in smart homes – 
we now briefly describe how these devices could be controlled centrally. In Figure 3, 
we have employed a central computer to operate a number of ANN models in parallel. 
The data bus is responsible for collecting raw data from different modules i.e., 
caregiver, entertainment etc. The middleware section extracts and selects the important 
features from the acquired data, and then passes these features on to the relevant ANNs 
in the computer. Therefore, essentially the middleware performs two tasks: 1) selects 
significant features and 2) acts like a ‘postman’ to deliver information to the specific 
ANN and vice versa. Details are described below: 

In this model, each individual module connected to the data bus is self-contained, 
i.e., these modules have their own ANNs to take the necessary steps for the current 
data sequences. For example, the health-monitoring module has its own ANN to 
decide locally as well as its own sensor networks to acquire data from the 
environment. This action along with the collected data is passed to the middleware 
through the data bus. The middleware analyzes these data and decides whether there 
exits any dependencies with other module(s). For instance, there needs to be a linkage 
between the health-monitoring module and the behavior-monitoring module as a 
change in one of these modules may affect the decision-making process of the other 
one.  One possible scenario might be that taking medication could affect the behavior 
of the inhabitant. This interacting information exchange could be managed via the 
middle-ware, however, the central server would undertake the final decision regarding 
any next action to be undertaken taking into consideration of all the associated data 
and their interdependencies. The central computer contains a number of ANNs 
dedicated to various specialized tasks and database relating to previous information. 
The middleware controls the flow of information to the relevant ANNs present in the 
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central unit. The different modules might be designed to take care of the controls 
related to minor events by responding locally, and in this regard, a small IC could be 
built to serve the purpose as has been demonstrated in [51] for the case of face 
detection task.  

As already stated, for major events, the overall situation has to be analyzed and 
should be studied in conjunction with information from other devices, and this might 
involve eventually calling on an appropriate emergency service. In such a situation, a 
central ANN could be used to analyze the overall situation and for decision-making. 
The proposed architecture in Figure 3 shows the overall structure of such a smart 
home automation system based on ANNs. The function of the central ANN is to work 
in the central server and thus, directly connects to the middleware.   

6   Conclusion 

Smart homes offer many benefits to its inhabitants and people with special needs. 
ANN technology appears to have much potential, especially in the automated 
monitoring and control of the smart home devices and the relevant space as well as 
the well being of the inhabitants. With rapid advances in technology, especially in 
wireless sensors and sensor networks, it is expected that it is not far when many of the 
dreams of the smart homes will be realized. 
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Abstract. The goal of the MavHome (Managing An Intelligent Versa-
tile Home) project is to create a home that acts as a rational agent.
The agent seeks to maximize inhabitant comfort and minimize opera-
tion cost. In order to achieve these goals, the agent must be able to
predict the mobility patterns and device usages of the inhabitants. Be-
cause of the size of the problem, controlling a smart environment can
be effectively approached as a multi-agent task. Individual agents can
address a portion of the problem but must coordinate their actions to
accomplish the overall goals of the system. In this chapter, we discuss the
application of multi-agent systems to the challenge of controlling a smart
environment and describe its implementation in the MavHome project.

1 Introduction

The MavHome smart home project is a multi-disciplinary research project at
the University of Texas at Arlington focused on the creation of an intelligent and
versatile home environment. We define an intelligent environment as one that is
able to acquire and apply knowledge about its inhabitants and their surroundings
in order to adapt to the inhabitants and meet the goals of comfort and efficiency.
Our goal is to create a home that acts as a rational agent, perceiving the state
of the home through sensors and acting upon the environment through effectors
(in this case, device controllers). The agent acts in a way to maximize its goal,
which is a function that maximizes comfort of its inhabitants and minimizes
operation cost.

With these capabilities, the home can adaptively control many aspects of
the environment such as climate, water, lighting, maintenance, and multimedia
entertainment. Intelligent automation of these activities can reduce the amount
of interaction required by inhabitants, reduce energy consumption and other
potential wastages, and provide a mechanism for ensuring the health and safety
of the environment occupants [1].

In order to achieve these goals, the house must be able to reason about and
adapt to its inhabitants. In particular, a smart home agent must be able to
accurately predict mobility and other activities of its inhabitants. Using these
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predictions the home can accurately route messages and can automate activities
that would otherwise be manually performed by the inhabitants.

MavHome operations can be characterized by the following scenario. At 6:45
am, MavHome turns up the heat because it has learned that the home needs
15 minutes to warm to optimal temperature for waking. The alarm goes off at
7:00, which signals the bedroom light to go on as well as the coffee maker in the
kitchen. Bob steps into the bathroom and turns on the light. MavHome records
this interaction, displays the morning news on the bathroom video screen, and
turns on the shower. While Bob is shaving MavHome senses that Bob has gained
two pounds over the last week. MavHome informs Bob that this has been a trend
over the last two months and offers suggestions for changing his lifestyle. When
Bob finishes grooming, the bathroom light turns off while the blinds in the
kitchen and living room open (an energy-efficient alternative to Bob’s normal
approach of turning on the living room, kitchen, and hallway lights). When
Bob leaves for work, MavHome secures the home, lowers the temperature, starts
the robot vaccuum, and turns on the lawn sprinklers despite the fact that the
Internet forecast predicts a 40% chance of rain. MavHome tracks Bob’s activities
while he is away from home in order to inform him of problems at home and to
have the house temperature and hot tub prepared for his return at 6:00.

A number of capabilities are required for this scenario to occur. For a house
to be able to record inhabitant interaction and trigger sequences of events such
as the bedroom light / coffee maker sequence, advances in active database tech-
niques are needed. Machine learning techniques are required to predict inhab-
itant movement patterns and typical activities, and to use that information in
automating house decisions and optimizing inhabitant comfort, security, and
productivity. In order for MavHome to find him away from the home, mobile
computing capabilities must be present.

As can be observed from the scenario, MavHome automates the control of
numerous devices within the home. To scale to this size problem, the MavHome
agent needs to be decomposed into lower-level agents responsible for subtasks
within the home, including robot and sensor agents, and this organization should
be dynamically composable. Finally, these capabilities must be organized into
a multi-agent architecture that seamlessly connects these components while al-
lowing improvement in any of the underlying technologies.

2 Related Research

As the need for automating these personal environments grows, so does the
number of researchers investigating this topic. Some, like the MIT AIRE group
[2] and the Stanford Interactive Workspaces Project [3], design conference rooms,
kiosks, and offices with seamless integration between heterogeneous devices and
multiple user applications in order to facilitate collaborate work environments.
The Gaia project [4] adds operating system functionality to these spaces, so
that the applications do not rely upon hardware or software configurations, and
ultimately so that both physical and virtual devices can seamlessly interact.
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Abowd and Mynatt’s work focuses on ease of interaction with a smart space [5],
and work such as the Gator Tech Smart House [6] customizes devices for elder
care. The problem has become so recognized that NIST has identified integration
of mobile components into smart spaces as a target area for standardization [7].

Mozer’s Adaptive Home uses a neural network and reinforcement learning
to control lighting, HVAC, and water temperature to reduce operating cost [8],
although this may occur at the sacrifice of inhabitant comfort. In contrast, the
approach taken by the iDorm project [9] is to use a fuzzy expert system to learn
rules that replicate inhabitant interactions with devices, but will not necessarily
find an alternative control strategy that improves upon manual control for con-
siderations such as energy expenditure. The interest of industrial labs in smart
home and networked appliance technologies is evidenced by the creation of Jini,
Bluetooth, and SIP (Session Initiation Protocol) standards, and by support-
ing technologies such as Xerox PARC’s Zombie Board, Microsoft’s Easy Living
project, the Cisco Internet Home, and the Verizon Connected Family project.

These projects have laid a foundation for our work. However, unlike related
projects, we learn a decision policy to control an environment in a way that op-
timizes a variety of possible criteria, including minimizing manual interactions,
improving operating efficiency, and ensuring inhabitant health and safety. We
also ensure that our software need not be redesigned as new devices are reg-
istered, new spaces are tested, or new inhabitants move into the environment.
To accomplish this goal, our intelligent environment must harness the features
of multiple heterogeneous learning algorithms in order to identify repeatable
behaviors, predict inhabitant activity, and learn a control strategy for a large,
complex environment.

3 MavHome Architecture

The MavHome architecture is a hierarchy of rational agents which cooperate to
meet the goals of the overall home. Figure 1 shows the architecture of a MavHome
agent. The technologies within each agent are separated into four cooperating
layers. The Decision layer selects actions for the agent to execute based on
information supplied from other layers. The Information layer gathers, stores,
and generates knowledge useful for decision making. The Communication layer
includes software to format and route information between agents, between users
and the house, and between the house and external resources. The Physical
layer contains the basic hardware within the house including individual devices,
transducers, and network hardware. Because the architecture is hierarchical, the
Physical layer may actually represent another agent in the hierarchy.

Perception is a bottom-up process. Sensors monitor the environment (e.g.,
lawn moisture level) and, if necessary, transmit the information to another agent
through the Communication layer. The database stores this information while
other information components process the raw information into more useful
knowledge (e.g., patterns, predictions). New information is presented to the De-
cision layer upon request or by prior arrangement. Action execution information
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Fig. 1. MavHome abstract architecture

flows top down. The Decision layer selects an action (e.g., run the sprinklers)
and relates the decision to the Information layer. After updating the database,
the Communication layer routes the action to the appropriate effector to ex-
ecute (e.g., powerline controller). If the effector is actually another agent, the
agent receives the command through its effector as perceived information and
must decide upon the best method of executing the desired action. A specialized
interface agent provides interaction capabilities with users and with external
resources such as the Internet. As shown in Figure 2, agents can communicate
with parent/child agents or with other agents at the same level in the hierarchy.

The abstract layers of the MavHome architecture are realized through a set
of concrete functional layers. These concrete layers are shown with some ex-
ample components in Figure 3. The base layer is the Physical Components
layer which consists of all real devices utilized in the system. These devices
include powerline control interface hardware, touch screens, gesture input de-
vices, cameras, and so forth, with the exception of the computer with which
equipment is interfaced. The physical computer(s) and associated network this
system resides on is considered the host of all layers above the physical. The
Computer Interface layer contains the hardware interfaces to physical devices
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Fig. 2. MavHome multi-agent configuration

Fig. 3. MavHome concrete architecture
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(e.g., PCI card interfaces, USB, firewire), device drivers to utilize the hardware,
the operating system of the computer, and all software interfaces that provide
services or APIs for hardware access. Note that since all components of above
layers reside and utilize operating system services, these services are shown to
extend to all layers.

In the Logical Interface layer, the hardware device services and APIs are
utilized to create simple, light-weight programs that create a series of atomic
services around each sensor and effector in the system. These logical proxies
provide information and control via socket and shared memory based interfaces
in a modular design. All of the lower layers are based on simple single application
components, but in higher layers the components become more complex. The
Middleware layer provides valuable services to the upper layers of the architec-
ture to facilitate communication, process mobility, and service discovery. The
MavHome architecture specifies middleware that provides both point-to-point
and publish-subscribe types of communication, naming/service discovery provi-
sions, and a mechanism to move system components between physical comput-
ing hardware devices. The Services layer utilizes the middleware layer to gather
information from lower layers and provide information to system applications
above. Services either store information, generate knowledge, aggregate lower
level components, or provide some value-added non-decision making computa-
tional function or feature (e.g., user interfaces). The Applications layer is where
learning and decision-making components operate.

4 Cooperation of Multiple Agent Components in
MavHome

Automation of large, real-world, complex tasks is a pervasive goal of AI algo-
rithms. Researchers develop innovative ideas and test them in simulation. Often,
however, these researchers find that the ideas do not scale well or accurately to
the larger problem that was initially targeted.

Smart environments represent one such large, real-world problem. Our ap-
proach to this problem is to combine the benefits of diverse, heterogeneous
machine learning algorithms into a multi-agent system for controlling the en-
vironment. We have found that the combination of these algorithms performs
better than each algorithm alone, and that the combined whole is effective for
automating a complex, real-world home environment.

To automate our smart environment, we collect observations of manual inhab-
itant activities and interactions with the environment. We then mine sequential
patterns from this data using a sequence mining algorithm. Next, we predict the
inhabitant’s upcoming actions using observed historical data. Finally, a hierar-
chical Markov model is created using low-level state information and high-level
sequential patterns, and is used to learn an action policy for the environment.
Figure 4 shows how these components work together to improve the overall per-
formance of the smart environment.
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Fig. 4. Integration of AI techniques into MavHome architecture

Multi-agent technologies pervade artificial intelligence research [10, 11]. Their
benefit to smart environments has been found primarily in unifying the diverse
technologies that comprise a working smart environment [12, 13].

In order to create a cooperating multi-agent environment, we need to define a
methodology for the agents to share information. MavHome uses the Common
Object Request Broker Architecture (CORBA) to communicate between agents
because of its clarity of interface design, ease of integration, and object-oriented
design. In addition, all agent components register their presence using zero con-
figuration (ZeroConf) technologies, which allows new agents to be dynamically
introduced without redesigning the system architecture. Here we describe the
learning algorithms that currently comprise the learning agents in MavHome.

4.1 Mining Sequential Patterns Using ED

In order to minimize resource usage, maximize comfort, and adapt to inhabitants,
we rely upon machine learning techniques for automated discovery, prediction,
and decision making. A smart home inhabitant typically interacts with various
devices as part of his routine activities. These interactions may be considered
as a sequence of events, with some inherent pattern of recurrence. Agrawal and
Srikant [14] pioneered work in mining sequential patterns from time-ordered
transactions, and our work is loosely modeled on this approach.

Typically, each inhabitant-home interaction event is characterized as a triple
consisting of the device manipulated, the resulting change that occurred in that
device, and the time of interaction. We move a window in a single pass through
the history of events or inhabitant actions, looking for episodes (sequences)
within the window that merit attention. Candidate episodes are collected within
the window together with frequency information for each candidate. Candidate
episodes are evaluated and the episodes with values above a minimum acceptable
compression amount are reported. The window size can be selected automati-
cally using the size that achieves the best compression performance over a sample
of the input data.
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When evaluating candidate episodes, the Episode Discovery (ED) algorithm
[15] looks for patterns that minimize the description length of the input stream,
O, using the Minimum Description Length (MDL) principle [16]. The MDL
principle targets patterns that can be used to minimize the description length
of a database by replacing each instance of the pattern with a pointer to the
pattern definition.

Our MDL-based evaluation measure thus identifies patterns that balance fre-
quency and length. Periodicity (daily, every other day, weekly occurrence) of
episodes is detected using autocorrelation and included in the episode descript-
ion. If the instances of a pattern are highly periodic (occur at predictable
intervals), the exact timings do not need to be encoded (just the pattern definit-
ion with periodicity information) and the resulting pattern yields even greater
compression. Although event sequences with minor deviations from the pattern
definition can be included as pattern instances, the deviations need to be en-
coded and the result thus increases the overall description length. ED reports
the patterns and encodings that yield the greatest MDL value.

Deviations from the pattern definition in terms of missing events, extra events,
or changes in the regularity of the occurrence add to the description length because
extra bits must be used to encode the change, thus lowering the value of the pat-
tern. The larger the potential amount of description length compression a pattern
provides, the more representative the pattern is of the history as a whole, and thus
the potential impact that results from automating the pattern is greater.

In this way, ED identifies patterns of events that can be used to better un-
derstand the nature of inhabitant activity in the environment. Once the data is
compressed using discovered results, ED can be run again to find an abstrac-
tion hierarchy of patterns within the event data. As the following sections show,
the results can also be used to enhance performance of predictors and decision
makers that automate the environment.

4.2 Predicting Activities Using ALZ

To predict inhabitant activities, we borrow ideas from text compression, in this
case the LZ78 compression algorithm [17]. By predicting inhabitant actions, the
home can automate or improve upon anticipated events that inhabitants would
normally perform in the home. Well-investigated text compression methods have
established that good compression algorithms also make good predictors. Ac-
cording to information theory, a predictor with an order (size of history used)
that grows at a rate approximating the entropy rate of the source is an optimal
predictor. Other approaches to prediction or inferring activities often use a fixed
context size to build the model or focus on one attribute such as motion [18, 19].

LZ78 incrementally processes an input string of characters, which in our case
is a string representing the history of device interactions, and stores them in a
trie. The algorithm parses the string x1, x2, . . . , xi into substrings w1, w2, wc(i)
such that for all j > 0, the prefix of the substring wj is equal to some wi for
1 < i < j. Thus when parsing the sequence of symbols aaababbbbbaabccddcbaaaa,
the substring a is created, followed by aa, b, ab, bb, bba, and so forth.



A Multi-agent Approach to Controlling a Smart Environment 173

Our Active LeZi (ALZ) algorithm enhances the LZ78 algorithm by recapturing
information lost across phrase boundaries. Frequency of symbols is stored along
with phrase information in a trie, and information from multiple context sizes
are combined to provide the probability for each potential symbol, or inhabitant
action, as being the next one to occur. In effect, ALZ gradually changes the
order of the corresponding model that is used to predict the next symbol in the
sequence. As a result, we gain a better convergence rate to optimal predictability
as well as achieve greater predictive accuracy. Figure 5 shows the trie formed by
the Active-LeZi parsing of the input sequence aaababbbbbaabccddcbaaaa.

c(1)a(2) d(1)d(1)a(1)c(1)a(1)a(2)c(1)b(1)

a(5) d(1)c(1)d(1)c(1)b(1)c(1)b(4)a(3)b(3)

b(8) d(2)c(3)a(10)

b(1)

Fig. 5. Trie formed by ALZ parsing

To perform prediction, ALZ calculates the probability of each symbol (in-
habitant action) occurring in the parsed sequence, and predicts the action with
the highest probability. To achieve optimal predictability, we use a mixture of
all possible higher-order models (phrase sizes) when determining the probability
estimate. Specifically, we incorporate the Prediction by Partial Match strategy of
exclusion [20] to gather information from all available context sizes in assigning
the next symbol its probability value.

We initially evaluated the ability of ALZ to perform inhabitant action pre-
diction on synthetic data based on six embedded tasks with 20% noise. In this
case the predictive accuracy converges to 86%. Real data collected based on six
students in the MavLab for one month was much more chaotic, and on this data
ALZ reached a predictive performance of 30% (although it outperformed other
methods). However, when we combine ALZ and ED by only performing predic-
tions when the current activity is part of a sequential pattern identified by ED,
ALZ performance increases by 14% [21].

4.3 Decision Making Using ProPHeT

In our final learning step, we employ reinforcement learning to generate an au-
tomation strategy for the intelligent environment. To apply reinforcement learn-
ing, the underlying system (i.e., the house and its inhabitants) could be modeled
as a Markov Decision Process (MDP). This can be described by a four-tuple
< S, A, Pr, R >, where S is a set of system states, A is the set of available
actions, and R : S → R is the reward that the learning agent receives for
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Fig. 6. Hierarchical model constructed from static (left) and dynamic (right) smart
home data

being in a given state. The behavior of the MDP is described by the transition
function, Pr : S ×A×S → [0, 1], representing the probability with which action
at executed in state st leads to state st+1.

With the increasing complexity of tasks being addressed, recent work in deci-
sion making under uncertainty has popularized the use of Partially Observable
Markov Decision Processes (POMDPs). Recently, there have been many pub-
lished hierarchical extensions that allow for the partitioning of large domains
into a tree of manageable POMDPs [22, 23]. Research has shown that strategies
for new tasks can be learned faster if policies for subtasks are already avail-
able [24]. Although a Hierarchical POMDP (HPOMDP) is appropriate for an
intelligent environment domain, current approaches generally require a priori
construction of the hierarchical model. Unlike other approaches to creating a
hierarchical model, our decision learner, ProPHeT, actually automates model
creation by using the ED-mined sequences to represent the nodes in the higher
levels of the model hierarchy.

The lowest-level nodes in our model represent a single event observed by ED.
Next, ED is run multiple iterations on this data until no more patterns can
be identified, and the corresponding abstract patterns comprise the higher-level
nodes in the Markov model. The higher-level task nodes point to the first event
node for each permutation of the sequence that is found in the environment
history. Vertical transition values are labeled with the fraction of occurrences for
the corresponding pattern permutation, and horizontal transitions are seeded
using the relative frequency of transitions from one event to the next in the
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observed history. As a result, the n-tier hierarchical model is thus learned from
collected data. An example hierarchical model constructed from MavHome test
data is shown on the left in Figure 6.

Given the current event state and recent history, ED supplies membership
probabilities of the state in each of the identified patterns. Using this information
along with the ALZ-predicted next action, ProPHeT maintains a belief state and
selects the highest-utility action.

To learn an automation strategy, the agent explores the effects of its decisions
over time and uses this experience within a temporal-difference reinforcement
learning framework [25] to form control policies which optimize the expected
future reward. The current version of MavHome receives negative reinforcement
(observes a negative reward) when the inhabitant immediately reverses an au-
tomation decision (e.g., turns the light back off) or an automation decision con-
tradicts Arbiter-supplied safety and comfort constraints.

Before an action is executed it is checked against the policies in the policy
engine, Arbiter. These policies contain designed safety and security knowledge
and inhabitant standing rules. Through the policy engine the system is prevented
from engaging in erroneous actions that may perform actions such as turning the
heater to 120oF or from violating the inhabitant’s stated wishes (e.g., a standing
rule to never turn off the inhabitant’s night light).

5 Initial Case Study

All of the MavHome components are implemented and are being tested in two
physical environments, the MavLab workplace environment and an on-campus
apartment, the MavPad (portions of the environments are shown in Figure 7.
Powerline control automates all lights and appliances, as well as HVAC, fans,
and miniblinds. Perception of light, humidity, temperature, smoke, gas, motion,
and switch settings is performed through a sensor network developed in-house.
Inhabitant localization is performed using passive infrared sensors yielding a
detection rate of 95% accuracy [26].

Fig. 7. The MavLab (left) and MavPad (right) environments
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Fig. 8. MavLab sensor layout

Fig. 9. MavLab actuator layout
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Fig. 10. MavPad sensor layout

The MavLab environment contains work areas, cubicles, a break area, a
lounge, and a conference room. MavLab is automated using 54 X-10 controllers
and the current state is determined using light, temperature, humidity, motion,
and door/seat status sensors (see Figures 8 and 9). The MavPad is an on-campus
apartment hosting a full-time student occupant. MavPad is automated using 25
controllers and provides sensing for light, temperature, humidity, leak detection,
vent position, smoke detection, CO detection, motion, and door/window/seat
status sensors. Figures 10 and 11 show the MavPad sensor and actuator layout.
MavHome is designed to optimize a number of alternative functions, but for this
evaluation we focus on minimization of manual interactions with devices.

As an illustration of the above techniques, we have evaluated a week in an
inhabitant’s life with the goal of reducing the manual interactions in the MavLab.
The data was generated from a virtual inhabitant based on captured data from
the MavLab and was restricted to just motion and lighting interactions which
account for an average of 1400 events per day.

ALZ processed the data and converged to 99.99% accuracy after 10 iterations
through the training data. When automation decisions were made using ALZ
alone, interactions were reduced by 9.7% on average. Next, ED processed the
data and found three episodes to use as abstract nodes in the HPOMDP. Living



178 D.J. Cook, M. Youngblood, and S.K. Das

Fig. 11. MavPad actuator layout

room patterns consisted of lab entry and exit patterns with light interactions, and
the office also reflected entry and exit patterns. The other patterns occurred over
the remaining 8 areas and usually involved light interactions at desks and some
equipment upkeep activity patterns. The hierarchical Markov model with no
abstract nodes reduced interactions by 38.3%, and the combined-learning system
(ProPHeT bootstrapped using ED and ALZ) was able to reduce interactions by
76%, as shown in Figure 12 (left).

Experimentation in the MavPad using real inhabitant data has yielded similar
results. In this case, ALZ alone reduced interactions from 18 to 17 events, the
HPOMDP with no abstract nodes reduced interactions by 33.3% to 12 events,
while the bootstrapped HPOMDP reduced interactions by 72.2% to 5 events.
These results are graphed in Figure 12 (right).
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Fig. 12. Interaction reduction

6 Using a Multi-agent Smart Home to Assist Elderly and
Disabled

An important application of the multi-agent technologies available in MavHome
is to provide health care assistance in living environments. Specifically, models
can be constructed of inhabitant activities and used to learn activity trends,
detect anomalies, intelligently predict possible problems and make health care
decisions, and provide automation assistance for inhabitants with special needs.

A variety of approaches have been investigated in recent years to automate
caregiver services. Many of the efforts offer supporting technologies in spe-
cialized areas, such as using computer vision techniques to track inhabitants
through the environment and specialized sensors to detect falls or other crises.
Some special-purpose prediction algorithms have been implemented using factors
such as measurement of stand-sit and sit-stand transitions and medical history
[27, 28, 29], but are limited in terms of what they predict and how they use
the results. Remote monitoring systems have been designed with the common
motivation that learning and predicting inhabitant activities is key for health
monitoring, but very little work has combined the remote monitoring capabil-
ities with prediction for the purpose of health monitoring. Some work has also
progressed toward using typical behavior patterns to provide reminders, particu-
larly useful for the elderly and patients suffering from various types of dementia
[30, 31].

Our smart environment can identify patterns indicating or predicting a change
in health status and can provide inhabitants with needed automation assistance.
Collected data includes movement patterns of the individual, periodic vital signs
(blood pressure, pulse, body temperature), water and device usage, use of food
items in the kitchen, exercise regimen, medicine intake (prescribed and actual),
and sleep patterns [32, 1]. Given this data, models can be constructed of inhab-
itant activities and use to learn lifestyle trends, detect anomalies, and provide
reminder and automation assistance.
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6.1 Capability 1: Identify Lifestyle Trends

Our ED algorithm is designed to process data as it arrives. Because of this
feature, trends in the data including increasing / decreasing pattern frequency,
introduction of patterns, and change in pattern details can be automatically
detected [33]. When changing patterns include health-specific events (vital signs,
medication intake, or events targeted by the caregiver), a report will be given to
the inhabitant and caregiver of these trends.

6.2 Capability 2: Detect Anomalies in Current Data

The ED data mining algorithm and ALZ predictor can work together to detect
anomalies in event data. ED identifies the most significant and frequent pat-
terns of inhabitant behavior, as well as the likelihood that the current state is a
member of one of these patterns. Whenever the current state falls within one of
these patterns, ALZ can determine the probability distribution of next events.
As a result, when the next event has a low probability of occurrence, or when the
expected next event does not occur at the expected time, the result is considered
an anomaly.

When an anomaly occurs, the home will first try to contact the inhabitant
(through the interactive display for a lesser critical anomaly, or through the
sound system for a more critical anomaly). If the inhabitant does not respond
and the criticality of the anomaly is high, the caregiver will be

6.3 Capability 3: Design Reminder Assistance System

Reminders can be triggered by two situations. First, if the inhabitant queries the
home for his next routine activity, the activity with the highest probability will
be given based on the ALZ prediction. Second, if a critical anomaly is detected,
the environment will initiate contact with the inhabitant and remind him of the
next typical activity. Such a reminder service will be particularly beneficial for
individuals suffering from dementia.

As described in the initial MavHome design, automation assistance is always
available for inhabitants, which is beneficial if some activities are difficult to per-
form. A useful feature of the architecture is that safety constraints are embedded
in the Arbiter rule engine. If the inhabitant or the environment is about to
conflict with these constraints, a preventative action is taken and the inhabitant
notified. This can prevent accidents such as forgetting to turn off the water in
the bathtub or leaving the house with doors unlocked.

7 Conclusion

The MavHome software architecture has successfully monitored and provided
automation assistance for volunteers living in the MavPad site. We are currently
collecting health-specific data and in the MavHome sites and will be testing in
recruited residents of the C.C. Young Retirement Community in Dallas, Texas.



A Multi-agent Approach to Controlling a Smart Environment 181

Acknowledgements

This work is supported by US National Science Foundation under ITR grant
IIS–0121297.

References

1. Das, S.K., Cook, D.J.: Health monitoring in an agent-based smart home by activity
predition. In Zhang, D., Mokhari, M., eds.: Toward a Human-Friendly Assistive
Environment. IOS Press (2004) 3–14

2. AIRE Group: MIT Project AIRE – About Us (2004) http://www.ai.mit.edu/
projects/aire.

3. Fox, A., Johanson, B., Hanrahan, P., Winograd, T.: Integrating information ap-
pliances into an interactive space. IEEE Computer Graphics and Applications 20
(2000) 54–65

4. Romn, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrst-
edt, K.: Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive
Computing (2002) 74–83

5. Abowd, G.D., Mynatt, E.D.: Designing for the human experience in smart environ-
ments. In Cook, D.J., Das, S.K., eds.: Smart Environments: Technology, Protocols,
and Applications. Wiley (2005) 153–174

6. Helal, A., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The
gator tech smart house: A programmable pervasive space. IEEE Computer 38
(2005) 50–60

7. NIST: Smart space NIST laboratory. http://www.nist.gov/smartspace/ (2005)
8. Mozer, M.C.: Lessons from an adaptive home. In Cook, D.J., Das, S.K., eds.: Smart

Environments: Technology, Protocols, and Applications. Wiley (2005) 273–298
9. Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman,

H.: Creating an ambient-intelligence environment using embedded agents. IEEE
Intelligent Systems 19 (2004)

10. Adams, J.A.: Multiagent systems: A modern approach to distributed artificial
intelligence. AI Magazine 22 (2001) 105–108

11. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots 8 (2000) 345–383

12. CSIRO: Intelligent interactive technology. http://www.cmis.csiro.au/iit/ (2005)
13. Haigh, K.Z., Phelps, J., Geib, C.W.: An open agent architecture for assisting

elder independence. In: Proceedings of the First International Joint Conference on
autonomous Agents and Multiagent Systems. (2002) 578–586

14. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the 11th
International Conference on Data Engineering. (1995) 3–14

15. Heierman, E.O., Cook, D.J.: Improving home automation by discovering regularly
occurring device usage patterns. In: Proceedings of the International Conference
on Data Mining. (2003)

16. Rissanen, J.: Stochastic Complexity in Statistical inquiry. World Scientific Pub-
lishing Company (1989)

17. Ziv, J., Lempel, A.: Compression of individual sequences via variable rate coding.
IEEE Transactions on Information Theory IT-24 (1978) 530–536

18. Cielniak, G., Bennewitz, M., Burgard, W.: Where is ...? learning and utilizing
motion patterns of persons with mobile robots. In: Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence. (2003) 909–914



182 D.J. Cook, M. Youngblood, and S.K. Das

19. Philipose, M., Fishkin, K., Perkowitz, M., Patterson, D., Fox, D., Kautz, H., Hah-
nel, D.: Inferring activities from interactions with objects. Pervasive Computing
3 (2004) 50–56

20. Bell, T.C., Cleary, J.G., Witten, I.H.: Text compression. Prentice Hall (1990)
21. Gopalratnam, K., Cook, D.J.: Online sequential prediction via incremental parsing:

The Active LeZi algorithm. IEEE Intelligent Systems (2005)
22. Pineau, J., Roy, N., Thrun, S.: A Hierarchical Approach to POMDP Planning and

Execution (2001) Workshop on Hierarchy and Memory in Reinforcement Learning
(ICML).

23. Theocharous, G., Rohanimanesh, K., Mahadevan, S.: Learning Hierarchical Par-
tially Observable Markov Decision Processes for Robot Navigation (2001) IEEE
Conference on Robotics and Automation.

24. Precup, D., Sutton, R.S.: Multi-time models for temporally abstract planning.
Advances in Neural Information Processing Systems 10 (1997) 1050–1056

25. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

26. Youngblood, G.M., Holder, L.B., Cook, D.J.: A learning architecture for automat-
ing the intelligent environment. In: to appear in Proceedings of the Conference on
Innovative Applications of Artificial Intelligence. (2005)

27. Cameron, K., Hughes, K., Doughty, K.: Reducing fall incidence in community
elders by telecare using predictive systems. In: Proceedings of the International
IEEE-EMBS Conference. (1997) 1036–1039

28. Najafi, B., Aminian, K., Loew, F., Blanc, Y., Robert, P.: Measurement of stand-sit
and sit-stand transitions using a miniature gyroscope and its application in fall risk
evaluation in the elderly. IEEE Transactions on Biomedical Engineering 49 (2002)
843–851

29. Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C., Robert, P.:
Ambulatory system for human motion analysis using a kinematic sensor: Moni-
toring of daily physical activity in the elderly. IEEE Transactions on Biomedical
Engineering 50 (2003) 711–723

30. Kautz, H., Arnstein, L., Borriello, G., Etzioni, O., Fox, D.: An overview of the
assisted cognition project. In: Proceedings of the AAAI workshop on automation
as caregiver. (2002)

31. Pollack, M.E., Brown, L., Colbry, D., McCarthy, C.E., Orosz, C., Peintner, B.,
Ramakrishnan, S., Tsamardinos, I.: Autoreminder: An intelligent cognitive orthotic
system for people with memory impairment. Robotics and Autonomous Systems
44 (2003) 273–282

32. Das, S.K., Cook, D.J.: Health monitoring in an agent-based smart home. In: Pro-
ceedings of the International Conference on Smart Homes and Health Telematics
(ICOST). (2004)

33. Heierman, E.O.: Using information-theoretic principles to discover interesting
episodes in a time-ordered sequence. PhD thesis, The University of Texas at
Arlington (2004)



Author Index

Augusto, Juan C. 1

Begg, Rezaul 146

Combi, Carlo 35
Cook, Diane J. 165

Das, Sajal K. 165

Galton, Antony 57
Galushka, Mykola 85
Gottfried, Björn 16
Guesgen, Hans W. 16

Hassan, Rafiul 146
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