Computational topology
 Lab work, $11^{\text {th }}$ week

1. Two different monotonic functions are given on the simplicial complex X :

$$
\begin{aligned}
f & =\{(A, 1),(B, 0),(C, 2),(A B, 3),(A C, 4),(B C, 5),(A B C, 6)\} \\
g & =\{(A, 0),(B, 1),(C, 2),(A B, 5),(A C, 4),(B C, 3),(A B C, 6)\} .
\end{aligned}
$$

(a) Create the corresponding filtrations of subcomplexes.
(b) Draw the barcode diagrams and the persistence diagrams in dimensions 0 and 1 .
(c) Construct the boundary matrices D_{f} and D_{g} from the two filtrations.
(d) Use the matrix reduction to calculate persistence.

R = D
R = D
for j = 1 to m:
for j = 1 to m:
while there exists }\mp@subsup{j}{0}{}<j\mathrm{ with low (j0) = low (j):
while there exists }\mp@subsup{j}{0}{}<j\mathrm{ with low (j0) = low (j):
add column R[:, jo] to column R[:, j]
add column R[:, jo] to column R[:, j]
2. Let $A=(1,3), B=(2,4), C=(1,2) D=(2,5)$ and $E=(1, \infty)$. For each of the pairs X_{i}, Y_{i} of persistent diagrams given below

- find all bijections $\eta: X_{i} \rightarrow Y_{i}$,
- determine $\|x-\eta(x)\|_{\infty}$ for each bijection and for all $x \in X_{i}$ and
- calculate the bottleneck distances $W_{\infty}\left(X_{i}, Y_{i}\right)$ and Wasserstein distances $W_{q}\left(X_{i}, Y_{i}\right)$ for $q=1,2$.
(a) $X_{1}=\Delta \cup\{A\}, Y_{1}=\Delta \cup\{B\}$,
(b) $X_{2}=\Delta \cup\{A, B\}, Y_{2}=\Delta \cup\{C\}$,
(c) $X_{3}=\Delta \cup\{A, B\}, Y_{3}=\Delta \cup\{C, D\}$,
(d) $X_{4}=\Delta \cup\{A, E\}, Y_{4}=\Delta \cup\{C\}$.

The bottleneck distance between persistence diagrams X and Y :

$$
W_{\infty}(X, Y)=\inf _{\eta: X \rightarrow Y}\left(\sup _{x \in X}\|x-\eta(x)\|_{\infty}\right)
$$

The Wasserstein distance for all $q \in \mathbb{R}$:

$$
W_{q}(X, Y)=\left(\inf _{\eta: X \rightarrow Y} \sum_{x \in X}\|x-\eta(x)\|_{\infty}^{q}\right)^{\frac{1}{q}}
$$

