
Lab 6 - Geofencing
Geofence is a virtual area, corresponding to the actual geographic area. Detecting a user's entrance,
exit or dwelling within a geofence enables a number of interesting location-based mobile applications.
For example, geofences can be used to issue location-based reminders, we can use geofences to post
location-based information, and we can also set geofences dynamically, thus detect when a person is
close to one of her friends.

In Android, geofences are supported directly by Google Play Services - you simply have to define where
the center of the monitored area is, the radius of the circular area that you want to monitor, and the
transition (enter, exit, dwell) that you want to monitor. This lab we are going to build an app with
location-based reminders. The app will remind its users to:

This lab we are going to build an app with location-based reminders. The app will remind its users to:
1. go to the gym after work;
2. once in the gym for some time (dwell), synchronize their smart wristbands;
3. remotely turn the heating on, as they are getting closer to home. Three geofences, at work, gym,

and home, will be used.

Application Scaffolding
We are going to implement a rather advanced application in a short
period of time, thus, we won’t start from zero. In Android Studio
open a new project from Version Control and type in
https://github.com/vpejovic/GeofencingApp/

Our app is going to rely on Google Map tiles. Using this requires a
Google Maps API key. Follow the instructions described here and
set google_maps_key parameter in google_maps_api.xml
file in res directory of your project to the value of your key.

Ensure that the project compiles and runs on your emulator or
phone. You should see a map (the actual location will depend on
what you set in the emulator) similar to the one on the right. Three
movable icons, for work, home, and gym, should be on the map.
Test whether moving the icons works.

To test our app we are not going to run around the city to trigger
geofences, but will use the emulator and mock locations provided
through a pre-collected trace. First, download the gpx trace from
here. Then, open the extended controls of the emulator (three dots)
and put 46.05178 for latitude and 14.49968 for longitude and
click Send. Then, open Google Maps on the emulator and click on
the My Location icon. This should set the emulator's location to
Ljubljana. Next, back in the extended controls load the gpx trace you previously downloaded. Finally,
open our Geofencing App and using the extended controls play the gpx trace. You should see the user's
location moving through Ljubljana.

https://github.com/vpejovic/GeofencingApp/
https://developers.google.com/maps/documentation/android-sdk/start
https://github.com/vpejovic/GeofencingApp/blob/master/traces/ljubljana.gpx


Brief Tutorial on Geofencing in Android
Geofences are set through GeofencingClient. This class has a method addGeofences that takes the
following arguments:

● An instance of GeofencingRequest - representing the definition of the geofence (e.g. it’s
location, transition type monitored, etc.);

● An instance of PendingIntent - referring to the Intent that will be called when the right transition
to/from a geofence happens;

We want our app to send notifications when a user is entering/exiting a geofence defined by the location
of the icons on the map. Thus, setting the GeofenceRequest should happen when a user moves an
icon on the map. Further, the notification should be fired when the right event happens. We don’t know
whether the user will have our application open at the time when this happens, thus, we should be
prepared to send the notifications from the background. We can do that via JobIntentService. This
UI-less class enables us to perform short actions from the background. However, we will not call this
class directly, but have a BroadcastReceiver that will be triggered by GooglePlayServices when the
geofence-related transition happens. Then, this receiver is going to forward the request to
JobIntentService, which will then issue a notification to the user. In a nutshell:

MapsActivity:
● Instantiate GeofencingClient;
● Set GeofencingRequest to define the geofences
● Set PendingIntent to call BroadcastReceiver when a geofencing-related transition happens;

BroadcastReceiver:
● Call JobIntentService when GooglePlayServices detect geofencing-related events;

JobIntentService:
● Fire a notification with the appropriate text, depending on which geofence was triggered;

Make sure you understand the above before you proceed with programming.

Programming the App
Open MapsActivity and instantiate mGeofencingClient in onCreate:

mGeofencingClient = LocationServices.getGeofencingClient(this)

Create geofencing request

Implement a private function getGeofencingRequest that takes a marker type (home, work, fitness)
and the coordinates (latitude and longitude) of a marker, and returns a request for a specific geofence.
The function should check which marker triggered the method and if the type equals to:

● R.string.map_marker_home: set a geofence with a circular region of 200m, with a transition type
Geofence.GEOFENCE_TRANSITION_ENTER

● R.string.map_marker_work: set a geofence with a circular region of 300m, with a transition type
Geofence.GEOFENCE_TRANSITION_EXIT

● R.string.map_marker_fitness: set a geofence with a circular region of 300m, with a transition
type Geofence.GEOFENCE_TRANSITION_DWELL

To build the Geofences you should use something like (example for home):



geofence = with(Geofence.Builder()){
setRequestId(type)
setCircularRegion(lat, lon, 200F)
setExpirationDuration(Geofence.NEVER_EXPIRE)
setTransitionTypes(Geofence.GEOFENCE_TRANSITION_ENTER)
build()

}

Exceptionally, for the dwell transition you should also set the delay before the action is triggered. This
ensures that the notification is not triggered if a user simply passes by the gym. Use:
setLoiteringDelay(1000);

To build and return the GeofenceRequest, you just need to put the Geofence in a list and call the
request builder:

return with(GeofencingRequest.Builder()){
setInitialTrigger(GeofencingRequest.INITIAL_TRIGGER_ENTER)
addGeofences(listOf(geofence))
build()

Defining PendingIntent to be activated when geofence-transition happens

We will now create mGeofencePendingIntent property that refers to a PendingIntent set it to call a
broadcast to GeofenceBroadcastReceiver. This property is initialized lazily, i.e. only once we first time
need it:

private val mGeofencePendingIntent: PendingIntent by lazy {
val intent = Intent(this,
GeofenceBroadcastReceiver::class.java)
PendingIntent.getBroadcast(this, 0, intent,
PendingIntent.FLAG_UPDATE_CURRENT)

}

Adding the geofence through the client

With the Intent prepared and geofences specified, we can tell our GeofencingClient to start observing
the location and firing our Intent in case the geofence conditions are satisfied. In addGeofence function
add:

mGeofencingClient.addGeofences(request, mGeofencePendingIntent)
.addOnCompleteListener(this)

Finally, uncomment the code in setOnMarkerDragListener to enable geofence setting when a marker is
moved.

Sending notifications

Open GeofenceJobIntentService. This is a service that will be called when a geofencing-related event
is detected. Check its onHandleWork method. Here we handle Intents that have triggered the service.
We should check which geofence was triggered and what was the event. We should then send a



different notification depending on what has happened. The whole class is already written, but make
sure you understand what each of the lines is for.

What is missing, though, is a means to fire the GeofenceJobIntentService one the geofence transition
is detected. Remember that GeofenceBroadcastReceiver is called using the Intent we supplied in
MapsActivity. Open GeofenceBroadcastReceiver and in onReceive add the following line to make
sure that GeofenceJobIntentService is called:

GeofenceJobIntentService.enqueueWork(context, intent)

Testing

Your app is now completed. Testing it will require you to move the markers around the map of Ljubljana
and run the trace. If you set the work icon somewhere close to the Faculty of Computer and Information
Science on Večna pot, the home icon close to Kolodvor, and the fitness icon on Bleiweisova cesta you
should see all three notifications, for leaving work, dwelling at the gym, and arriving home, triggered by
the app.

If you did not attend the lab slot in-person at FRI, you should commit your solution to a private Bitbucket
repository named FRIMS2021-LAB-6 and a user pbdfrita (pbdfrita@gmail.com) should be added as
a read-only member. The solutions will be pulled from your repository on Sunday, April 17, 23:59.

Happy coding!

mailto:pbdfrita@gmail.com

