
Lab 5 - Signal Sampling from Wearable Device
(Fitpolo Wristband)
Fitpolo develops wristbands equipped with sensors. The wristbands can be used as standalone
devices or in combination with Fitpolo smartphone application. Additionally, Fitpolo provides
SDK for Andorid (and IOS) devices (https://www.fitpolo.net/fitpolo-h701-sdk-android/) which
supports development of smartphone applications.

In this exercise we will develop a smartphone application which will:
● ask for Bluetooth permissions
● establish Bluetooth connectivity with the wristband
● read data from the wristband
● adjust the sampling frequency based on the user’s activity
● update UI based on the user’s activity

To shortcut the development process, you can download starting code from
https://bitbucket.org/msfrita/lab_5 This code is based on the Fitpolo Android SDK App source
code (available here). Since this app is written in Java, we will also work in Java for this lab
assignment.

Download and import your project. During the import or the first build, you might be prompted to
upgrade your Android Gradle Plugin. Please do not upgrade it! It will cause compatibility
issues and the app might not build anymore.

The code contains the Fitpolo SDK which has several components. The most important are:
- Several Android Activities (example usage of the SDK).
- Two Adapter classes (e.g., contain specialized Fitpolo ListAdapter interfaces)
- Four Service classes. Service is an application component that can perform

long-running operations in the background (e.g., communication with the wristband), and
it doesn't provide a user interface.

Bluetooth permissions
First, check if the manifest contains the necessary Bluetooth permissions. If not add them:
<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

In the OnCreate() of the myMainActivity, the function calls checkBluetoothConnection().
This checks whether the smartphone Bluetooth is enabled. If it is, it should call
startNextActivity(). If it is not, it should prompt the user to enable the Bluetooth. The following
code does that. Copy it in the function checkBluetoothConnection().

https://www.fitpolo.net/fitpolo-h701-sdk-android/
https://bitbucket.org/msfrita/lab_5
https://github.com/Fitpolo/FitpoloDemo_H701_Android
https://developer.android.com/reference/android/widget/ListAdapter.html

if (!MokoSupport.getInstance().isBluetoothOpen()) {
Intent enableBtIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(enableBtIntent, AppConstants.REQUEST_CODE_ENABLE_BT);
return;

}
startNextActivity();

The results of the user’s action (e.g., whether she enables the Bluetooth or not) will be visible in
the function: onActivityResult(). Update this function so that it calls startNextActivity() if the
user has enabled the Bluetooth.

if (requestCode == AppConstants.REQUEST_CODE_ENABLE_BT) {
startNextActivity();

}

Finally, you need to edit the function startNextActivity(). It should:
- start the service MokoService. This will start the wristband’s main service.
- start the Activity BtScanActivity. This will start the Activity for scanning Bluetooth

devices.

Establish Bluetooth connectivity with the wristband
The activity BtScanActivity contains only one button “Scan”, which activates the Bluetooth
scanning. The discovered devices are shown in the list below the button. Once the user selects
a device from the list, the function onItemClick() is called. In the function, we need to inform the
user that the app is trying to connect and we need to initiate the connection. Add the following
code to do that:

mDialog.setMessage("Connect...");
mDialog.show();
BleDevice device = (BleDevice) parent.getItemAtPosition(position);
saveToSharedPreferences(device);
initiateConnection(device);

The result of the initiateConnection() call will be visible in the onReceive() function of the
BroadcastReciever mReciever.
If the app has successfully connected to the Bluetooth device we need to call the next Activity,
SmartSensing. To do that, add the following code after the line:
Toast.makeText(BtScanActivity.this, "Connect success", Toast.LENGTH_SHORT).show();

Intent orderIntent = new Intent(BtScanActivity.this, SmartSensing.class);
orderIntent.putExtra("device", mDevice);
startActivity(orderIntent);

Smart sampling
In the Activity SmartSensing, there is a service mServiceConnection through which we will
communicate with the wristband. Additionally, the SmartSensing activity will receive the data
from the service through the BroadcastReceiver mReciever.

To make sure that you are connected to the right wristband, program the button “shakeMyBand”
from the layout mReciever to call the function:
MokoSupport.getInstance().sendDirectOrder(new ZWriteShakeTask(mService));

This function will cause the wristband to vibrate for a few seconds.

Infer user’s activity and adjust sampling frequency
The wristband can send updates to a paired android application on a step-count change. To
register our application for the step-count change updates, we need to register a specific
listener. The listener should be registered once the mService is created and connected. Thus, in
the function onServiceConnected() add the code that registers the step-count change listener.
MokoSupport.getInstance().sendOrder(new ZOpenStepListenerTask(mService));

The step-count updates will be received through the onReceive function BroadcastReceiver
mReciever. The specific part of the code that provides the updates is:
case Z_STEPS_CHANGES_LISTENER:

Toast.makeText(getApplicationContext(),"Steps changed",Toast.LENGTH_SHORT).show();

Thus, if you start the application now, it should send a message "Steps changed" upon each
step-count change. Try it!

The specific step count can be read from the wristband using:
DailyStep dailyStep = MokoSupport.getInstance().getDailyStep();

Update the code, so that after the Toast.makeText() performs the following:
- get current daily steps and save the info in the variable DAILY_STEPS
- save the current time in the variable DAILY_STEPS_TIME
- call UpdateSensing() to refresh the app

The function UpdateSensing() performs the following:
- if the user is sleeping, it sets the sampling frequency to SLEEP_SENSING
- if the user is sedentary, it sets the sampling frequency to NORMAL_SENSING
- if the user is active, it sets the sampling frequency to SPORTS_SENSING
- finally, it updates the smartphone UI and the bandUI (if needed)

Next, you need to update the function CalculateCardioZone() which calculates the intensity of
the user’s activity. For the purpose of simplicity, the intensity is calculated as the number of

steps per second. You need to calculate the number of steps per second using the equation
below and save it in the variable STEPS_PER_SECOND.
STEPS_PER_SECOND= DAILY_STEPS-PREV_DAILY_STEPS/time_passed_sesconds
Time_passed_sesconds = (DAILY_STEPS_TIME-PREV_DAILY_STEPS_TIME)/1000.0;

Check the rest of the code in the function CalculateCardioZone() and try to understand it. Why
do we need the handler? Try to remove it and see what happens with the app.

Update UI based on the user’s activity

Finally, once we have the user’s activity and the intensity of the activity, we need to update the
smartphone UI and the band UI.

In the function UpdateUI() update the code so that it changes the color of the screen to
GREEN, if the application is in SPORTS_SENSING mode, otherwise it should be white.

Update the function UpdateBand(), so that it sends a notification to the user every 30-35
seconds. Hints:
- currently, the application sends only one notification (the first one) to the band .
- the variable BAND_UPDATE_LAST keeps the time (in milliseconds) about when was the last
notification sent to the user

The solutions should be committed to a private Bitbucket repository named FRIMS2021-LAB-5
and a user pbdfrita (pbdfrita@gmail.com) should be added as a read-only member. The
solutions will be pulled from your repository on Sunday, April 10, 23:59.

HAPPY CODING!

mailto:pbdfrita@gmail.com

