COMPUTER

ARCHITECTURE

6 Central Processing Unit - CPU

© 2021, Skraba, Rozman, FRI

" &

6 Central Processing Unit - objectives

6 Central Processing Unit — objectives and outcomes:

m A basic understanding of:
m architecture (basic electronic circuits) and the operation of the CPU
m synchronization of circuits with clock signal

= Micro-programmed (SW) or Hard-wired (HW) implementation of the
CPU

m Understanding of parallelism :
m origins of existence
m parallelisation on the instruction level
pipeline

m Understanding the execution of instructions in CPU

RA -6 2 © 2021, Skraba, Rozman, FRI

" N o

6 Central Processing Unit - content

6 Central processing unit

Structure and operation of the CPU
ARM Processor - features

Structure of CPU — ARM case
Execution of instructions

Parallel execution of instructions
Pipelined CPU

An example of a 5-stage pipelined CPU
Multiple issue processors

O O 00004000

RA -6 3 © 2021, Skraba, Rozman, FRI

" J &

6.1 Structure and operation of the CPU

CPU (Central Processing Unit or the CPU) is a unit that executes
Instructions, so its performance largely determines the performance
of the whole computer.

In addition to the CPU, most computers have also other processors,
mainly in the input/output part of the computer.

Basic principles of operation for all types of processors are
identical.

RA

-6 4 © 2021, Skraba, Rozman, FRI

" J &

Central processing unit

m CPU is a digital system (built from digital electronic circuits) specific
types.

m Two groups of digital circuits:

Combinational digital circuits

m Status output depends only on current state of the inputs

Primer: 1-bitni seStevalnik
A

inputs outputs _ —ﬁﬁ ~ o E
Combinational B N = X Vi €S Cin
':> digital circuit :l> E i
= '000|0 O
| 00110
010(1 0
: 01101
example: negator 100l1 0
101(0 1
0 [1 - | o o '110(0 1
Eg o . - Cou.i.lll 1 1
1 0 : - SR

RA -6 5 © 2021, Skraba, Rozman, FRI

Central processing unit

Memory (sequential) digital circuits

m The state of the outputs depends on the current state of inputs and the

previous states of the inputs

m Memories remember the states

m Previous states are usually characterized as internal states, that reflect

the previous states of inputs

Example: 3-bit counter

> flip-flop 3
r CLR Q

oQ_oT; |

_ Qq, Q, Q,
inputs outputs [@H—%
———> Combinational [D™ aipTal Ip™a
— digital circuit Elipiopt | | i lpiop 2
CLR 6 CLR 6
CLK |
Information about Example: 3-bit counter - Logisim
internal state o T
SRR SR 'FI""
Memory <__ R @F @F : -
B — _
o |_[le'nl)_| : |_[len0_|' '|_Den0_|' o
RA -6 6 © 2021, Skraba, Rozman, FRI

" J &

Central processing unit

Memor ntial) circuit: inputs s
emo y (Seque ta) circurt > Combinational >
_ _ digital circuit
Flip-flop - one-bit memory cell _
. Information about

Register internal state

Counter Memory

Memory x

Clock signal

Memory (sequential) digital circuits can be:

Asynchronous - the state of the circuit is changed "Immediately" after the variation in
input signals.

Synchronous - the state of the circuit as a function of the input signals can only be
changed at the edge of the clock signal.

CPU is built from
Combinational and
Memory synchronous digital circuits.

The current state of the memory circuits presents the state of the CPU.

RA -6 7 © 2021, Skraba, Rozman, FRI

" J &

Central processing unit

m The operation of the CPU at any time depends on the current state
of the CPU inputs and the current internal state of the CPU.

m The number of possible internal states of the CPU depends on the
size (capacity) of CPU.

m The number of bits, which represent the internal state of the CPU
ranges from some 10 up to 10,000 or even more.

m Digital circuits that form a CPU today are usually on a single chip.

RA -6 8 © 2021, Skraba, Rozman, FRI

" &

Central processing unit

m The basic operation of the CPU in the Von Neumann computer was
described using two steps:

1. Taking instruction from memory (instruction-fetch cycle), the address
of the instruction is in the program counter (PC)

2. Execution of the fetched instruction (execution cycle),

m Each of these two main steps can be divided on even simpler sub-
operations ("Elementary"” steps) ->

RA -6 9 © 2021, Skraba, Rozman, FRI

" J &

Central processing unit

m The operation of the CPU in the Von Neumann computer was
described using two steps:

1. Taking instruction from memory (instruction-fetch cycle), the address
of the instruction is in the program counter (PC)

2. Execution of the fetched instruction (execution cycle), which can be
divided to more sub-operations:

Analysis (decoding) the instruction

Transfer the operands in the CPU (if not already included in the CPU
registers)

Execution of the instruction’s specific operation

PC « PC + 1 or PC « target address in branch instructions
Saving the result (if necessary)

RA -6 10 © 2021, Skraba, Rozman, FRI

" J &

Central processing unit

C RESET > Switch-on the processor

Y

The acquisition of the next
instruction

1. Instruction-fetch cycle

A
Analysis and decoding
of instruction

A

Access to operands

I — 2. Execution cycle

Execution of operation and
PC« PC+1

A

Saving the result

No

Request for
interrupt?

A

Yes

Jump to first instruction of PSP PC « PSP address

y

RA -6 11 © 2021, Skraba, Rozman, FRI

" &

Central processing unit

C RESET > Switch-on the processor

Y

The acquisition of the next
instruction

1. Instruction-fetch cycle

A
Analysis and decoding
of instruction

A

v — 2. Execution cycle
Execution of operation is _ _ _
PC « target address on branch (jump) instruction

A

No

Request for
interrupt?

A

Yes

Jump to first instruction of PSP PC « PSP address

y

RA -6 12 © 2021, Skraba, Rozman, FRI

" J &

Central processing unit

m The address of the first instruction after switching on (RESET) is
determined by a certain rule.

m Upon completion of Step 2, the CPU starts again with the first step,
which is repeated, as long as the CPU operates.

m The exception is when there is an interrupt or trap request.

m On such request, instead of fetching the next instruction, the jump
instruction is executed to the address that is determined by the
mode of interrupt or trap operation.

RA -6 13 © 2021, Skraba, Rozman, FRI

" J &

Central processing unit

m Each of these steps is composed of more elementary steps and
realization of CPU is basically the realization of these elementary

steps.

m Each elementary step is carried out in one or more periods of
clock signal - CPU clock.

Clock period
tepe . CPU

A
A

High state (1)

— Clock signal

Low state (0) —_— —

negative edge
positive edge

RA -6 14 © 2021, Skraba, Rozman, FRI

" J &

Timing diagram signal

Arbitrary (non-periodic) digital electrical signal

u (t) [V]

State 1

LT e /N

0 5 10 15 20 25 30 35 40 — t[ns]

Arbitrary (non-periodic) digital electrical signal - logical presentation

Long periods without
significant changes

State 1 / \ / \ /
State 0 T T (, (,
e time t for
example in [ns]

positive negative
edge edge

RA -6 15 © 2017, Igor Skraba, FRI

" £
Clock signal - periodic rectangular signal

T1 | T2 | | Tn

I
I

< N
w »r
I

A
. A
A
. AN

u (t) [V]

t .
Period - Cycle

I
1
1
1
1
1
1
1
[
€

1 second

(¢ !
)) g
In the case of f = 1.25 GHz in 1 second we have 1 250 000 000 periods

N G

The frequency of the periodic signal f = number of periods (cycles) in 1 second
The unit of frequency is Hertz [Hz]: 1 Hz = 1 [Period/sec] = 1 [1/s] = 1[s}]

The duration of one period T=1/1

1 1 1
f =1,25[GHz|=>t === = 10°|s|=0,8+10"°|s|=0,8
Gz f 125+10°[L/s] 125 5]=08+107s]=08ns]

RA-6 16 © 2017, Igor Skraba, FRI

" J &

Central processing unit

m The state of the CPU, such as the states of all synchronous digital
circuits, changing only at the edge of the clock signal (clock signal
transition from one state to another).

m Edge, at which the changes happen in the CPU, is called active
edge.

m CPU can also change the state at the positive and negative edges,
this means that both edges are active. In one clock cycle, two
changes of the CPU state can be performed.

Why Is the clock signal needed at all? 2 points of view ->

RA -6 17 © 2021, Skraba, Rozman, FRI

" JJE &
Central processing unit
m Clock signal -> synchronization of combinational circuits with various

Speeds
In synchronous digital memory (sequential) system clock signal (usually edge)
provides a moment of change to the internal state of the memory digital

circuit.
When the input signals in the memory circuit becomes stable, at the active
edge the change of the internal state of the memory circuit can occur.

Internal Combinational Internal
state 1 digitally circuit 1,2,3, ... state 2
Clock
signal

» time't
18 © 2017, Igor Skraba, FRI

RA-6

" &

Central processing unit

m Clock signal -> synchronization of multi-speed operations in computer

For example, access to memory in one clock cycle (read operation):

CPU determines f ‘\ CPU reads

(1
buses‘ content e

(a;lrcll cr{es;; gztsr)o | Memory reads the content of data bus
buses
and performs the read
operation
(provides memory content
placed on the data bus)

RA -6 19 © 2017, Igor Skraba, FRI

" J &

Central processing unit

State of CPU changes on the edges of the internal clock. Shorter
clock period (higher frequency) means faster performance of CPU.

Shortening the clock period (increasing frequency) is determined by
the speed of the digital circuits and the number of circuits (length of
links) through which the signal propagates.

The minimum duration of the elementary step in the CPU is one
clock period (or even half-period, if both edges are active, but this
requires more complex circuit).

Fetch and execution cycles’ duration is always an integer number
of periods.

Number of periods for the execution of the instruction can vary
greatly.

RA

-6 21 © 2021, Skraba, Rozman, FRI

o MiMo - Microprogrammed CPU Model wa4aorz01s

Clock Reset
W

Address BUS

AR

Model of
CPU: = ﬂﬂﬂﬂ

L 2= A 1BKE RAn D
MiMo e

|Ii
[Raid] [ELA]

Model of CPU

imed)
[akrout}

Ins.Reg.

LY

. IR
Instruction:

-tregs -sregs
Address, Data Bus
Address Data x16 |

|

New CMD

i m p I e_m ented W Ith Microcode Control Unit
|Og|C gates N Control ROM

Address of first uinstruction is "opcode+32"

Micro Instruction

ucounter
. .
Logisim ;]D’“ [2
g MicroPC A 256B ROM oY
.
sel

O
xs] cycles x5 |

ICycles x4

— MicroPC [xz {MicropC] Micramnstr. [a2 (crom] Nextinstr. |_x15_—{OROM|

pesel

[crowm]

MiMo —
Microprogrammed
Model of CPU

Decision ROM

2568 ROM

RA -6

irlnad
imload) e .
Baszed on: htpiiminnie tuhs.arg/ProgramsiUcodeCPUSindex himl
fegsre wi4: Tidying up model, FE, TTY
cand %03h: Fixz cond code
indexsel
datasel Quick tips:
Swtite Use ctrl+ to manually toggle giobal clock signal

Use Simulate-=Ticks Enabled for automatic clock sighal
2:aluop=add op2sel=treg dwrite=1 regsrc=aluout, goto fetch # ALU operations on Rd,Rs,Rt
2a[42]addrsel=pc imload=1 # JNEZ Rs,mmed

41 [65Faddrsel=pc dwrite=1 regsrc=databus # Load immediate Rd, immed
43 [67)addrsel=pc imload=1 # Store Rd into address from immed

84 [132]: pcincr: peload=1 pcsel=pc, goto fetch
85[133]: jump: pcload=1 pcsel=immed, goto fetch

Cycles Cnt Instr Cycles CGnt

e
'I‘I’Y(d rows, 16 cols)

peload swritgplatasel{indexselfcond | regsrffmioad]inoad | dwrite}pcload | peselfaddrs efjdatawriteJop2sel{aluop
dhite ok @ B B o@ @ w oW ke bk @ ok H-za

Frame Buffer LED 16x16

File Edit Project Simulate Window Help

[&]x» A|l® @ D >

+ 1 8% O : :
mimo_vw04h Address BUS Z ._-

MiMo_vO04a
MOdél Of g et i T ‘Barietare -Address, DataBus-
{f e | E] Registers : WE i
o L aw ; : o
CPU: o el
{1 showHexa
M T M B Frame Buffer 16x16
I 0 {1} Address Decoder
\Wiring
Gates
Plexers
Arithmetic
Memory
Model of i
CPU Base
implemente
d with logic
gates In
Logisim NNEs e bontrol Uit S
Button ~Control ROM ' Wicro instruction ;
Fadi East i " padress of first uinstrustion is opodes2” s }
o = T e ey eror BH{RETPE] oo ot +—GRon] o
M‘M = — :
I 0 - Label Location Morth
LabelFont SansseriFad 28 0 O/ g, SRR S E NS e 3
M ICfOpngr Label Colar 2000000 - ‘Based an: hitpiminnia tuhs. org.l’Progmms.l’UcodeCPU.ﬂndex it -Frame Buffer LED 16x16 .

T'dylng p rnodel

ammed
Model of
CPU

DecisonROM

FELED .

Video

GABCTIEFGHI THLMHG
AECTEFGHI JHLANO

B E3] jump:pels

RA -6 75% =

" A &
MiMo — Microprogrammed Model of CPU
FPGA implementation

wkt@lenny: ~/Vivado

"

Holcome Lo mintcom 2./

OPTIONS: 118n ;
[Compiled on Jon 1 2014, 1/:13: 19.
Port Zdev/utylssl, 10:37:40

Proas CIRL A 2 Tor help on special Keyn

Hora orcll

ey o R Serial output
4 g N\ dispiay

3 Q0 3Nv
o R

'avr v TR
1E0
SRR L D £

RA -6 24 © 2021, Skraba, Rozman, FRI

" J &

6.2 ARM Processor - features Much more related details

explained on LAB sessions
RISC architecture

3-operand register-register (load/store) computer
Access to the memory operands is only by using the LOAD and STORE

32-bit computer (FRI-SMS, ARM9, architecture ARMv5)
32-bit memory address
32-bit data bus,
32-bit registers
32-bit ALE

16 general purpose 32-bit registers
Length of the memory operand 8, 16 and 32 bits
Signed numbers are represented in two’'s complement

Real numbers in accordance with standard IEEE-754 (in case of FP-unit)

RA

-6 25 © 2021, Skraba, Rozman, FRI

" J &

ARM - features

m Composed memory operands are stored under the rule of little
endian.

m The instructions and operands must be aligned in memory (stored
on the natural addresses).

m All of the instructions are 32 bits long (4 bytes).

m ARM uses all three general addressing modes:
Immediate ADD R1, R1, #1
Direct (register) ADDr1,rl, r2
Indirect (reqgister) - LOAD/STORE LDR r1, [rO]

RA -6 26 © 2021, Skraba, Rozman, FRI

ARM - features

m |nstructions for conditional branches use PC-relative addressing.

m Example of format for ALU instruction:

b31

2019

16 15

12 11

3 b0

Operation code

Rsl

Rd

Rs2

RA -

27

© 2021, Skraba, Rozman, FRI

" N

6.3 Structure of the CPU (example of ARM CPU)

m 6.3.1 Data path (unit)

1 ALU

1 software accessible registers

m 6.3.2 Control unit

1 Realization
m Micro-programmed (SW) or
s Hardwired (HW)

RA -6 28

© 2021, Skraba, Rozman, FRI

" A &
Central processing unit - structure

6.3.1 Data path (unit)

The simplified structure of the CPU data paths including instruction and operand
memories

4 —»
> +
A
i_’
g »| address
) Registri
—»PC »| address instruction >ALE >
RO - R14
>
> operand
instruction *> operand
memory memory

All data paths are M-bit, arrows indicate the direction of transfer

RA -6 © 2021, Skraba, Rozman, FRI

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

" J &

Central processing unit - structure

m MUX - multiplexer: the digital circuit, that selects one from multiple
Input signals and connects it to the output.

m Selection of the input signal is determined by control signal.

Control signal Control signal

O """""""""" : 1 """""""""" :
Input 1 \ Input 1 \
1 1
i v Output l | Output
e > /*c >
Input 2 Input 2

\ 4
\
\ 4
\

RA -6 30 © 2021, Skraba, Rozman, FRI

" EEE——— M

ALU — datapath and control signals

CONTROL
SIGNALS

32 bits
FIRST OPERAND—X£

32 hits
SECOND OPERAND //

—~“—» RESULT

» CARRY, OVERFLOW

RA -6 31 © 2021, Skraba, Rozman, FRI

" J &
ALU — datapath and control signals
Case of MiMo CPU

A O]

FIRSTOPERAND ALU

 Fsooooos
OP1 sReg| 01004l
. [pooooooo]
opz | beasoiidf”
......... 00000000 -
s T

SECOND OPERAND [immed)-

RA -6 32 © 2021, Skraba, Rozman, FRI

fa

Recapitulation from before

32-bit register D31 [bag | byg b, | by
D3, D9 Do
Register R . R - - > S :
Write flip-flop flip-flop flip-flop o flip-flop
Clock signaIJ D31 bg by
> > > > —D
v v v
Q31 Q29 Q0
D. Timing diagram Truth Table
l' g Clock RegW D;| Q
Register Clock : |
Write —] fIIp-fIOp Register I : T 0 0 Q
Clock S b write ———, ! | 1 0 1 8
o i A I Lo
Flip-flop switches P! 0 1 111
on positive edge Qi Q, ! /i

I
\

RA -6

© 2021, Skraba, Rozman, FRI

" J 2
CPU - Datapath and control signals LDR r0,mem[0]

Case of Micro MiMo CPU LDR r1,mem[1]
ADD r2,r0,r1

STR r2,mem|2]

NP

fIVI'lc':'r'o'MlMo Mlcroprogrammed CPU Model RA wa Clock Reset I
___:::'__:__CL'K': .' :::::::::::::::

SR CHN I
S 000.001.of VeSS

............. . CCydles ORt

0007
| - -
_____________ o peres] [DRey SReg TReg
- Operands - -

S TR Destination Operands |

T f ||:
Il |'_| Il :_;l'::l'_(m:: .
: i ek [

" A £
Central processing unit - structure

6.3.2 Control Unit (CU)

Is digital circuit (memory + combinational), that on the basis of the
content in the instruction (register) determines control signals.

Control signals trigger elementary steps in the datapath and
consequently the execution of this instruction.

IR register = 32-bit instruction register in which the instruction is
transferred during the instruction-fetch cycle: machine instruction is
read from the memory.

m IR ... "Instruction Register "

2 possible ways of CU implementation:
m Micro programmed (SW: simple, slower)
= Hard wired (HW: complex, faster)

RA -6 35 © 2021, Skraba, Rozman, FRI

" J &

CPU: datapath, control unit, and control signals

/— Conditional jump instruction

CONDITION TRUE

Jump address

[\

=
A A

Type of ALE operatipn
Instruction Operand
memory Ly ~ memory
g mg address
~Pe > address instructior-» | Re0IIers T >ALE 0 operand |—
RO - R14 J.
> R
7',@’ > operand
) Register Write -
Memory R/W

A 32-bit connection A~

for instruction transfer |

Control
unit

32-bit data
link

linstruction registerf
Control signal >l]

(usually 1 bit)

RA -0 A simplified version of the ARMVS (Source: [Patt] Sec. 4) © 202 Skraba Rozman, R

" J &

Control unit (Micro-programmed implementation — e.g. MiMo model)

Machine instruction XXX Fo ________________ > g
1. Micro S >» =
. Micro- N~ — — — — -~ ———— - — 14— - =
_ mico = &L _______ 1 __ R %
2. Micro- instruction 7 Q
. _)
3. Micro micro PROGRAM &~ | --—-—---—-"2————-—-- > &
memory
N. Micro
instruction
address
Ar 1
+
micro PC
CPU clock 7
/ MUX \7
© V') A

RA -6 37 © 2021, Skraba, Rozman, FRI

Control unit (Micro-programmed implementation —MiMo model)

Machine instruction XXX

1. Micro-
2. Micro- i . :
- Micro program for instruction :
3. Micro
_ JNEZ Rs,immed
N. Micro
instruction
: jnez Rs,immed (40)
JNEZ Rs,immed: if Rs 1= 0, PC <- immed else PC <- PC +2
fetch: addrsel=pc irload=1 # Address=PC, Load IR register
pcload=1 pcsel=pc, opcode jump # PC=PC+1, jump to 2+0OPC
40: addrsel=pc imload=1 # Read Immediate operand -> IMReaister
aluop=sub op2sel=constO, if z then pcincr else jump # ALU: Rs-0, If z then pcincr else jump
PCINCT; pcload=1 pcsel=pc, goto fetch # Increment PC and goto new command,
jump: pcload=1 pcsel=immed, goto feich # Set address to immed and goto new command

RA -6 38 © 2021, Skraba, Rozman, FRI

Control unit (Hard-wired)

Machine instruction XXX
1. Control. signals
2. Control. signals

3. Control. signals

N. Control. signals

Combinational

LOGIC

INPUTS

no

SlNndl

I
I
I
I
I
1
I
I
v
speuBis |011U02

instruction

A

REGISTER |

A

OP.CODE | Info. on operand

state register

CPU clock /\
N

instruction

A A A

A

L

RA -6

39

© 2021, Skraba, Rozman, FRI

CU Implementation approaches - Comparison

Control unit (Micro-programmed)

Control unit (Hard-wired)

ITVNDIS INTOHLNOM

- a.n
strojniukazxxx | oo L_ CHERUTEECUSE - - - - - - -
3 . I e R I
e R B 3 1. Kontr. signali
1. Mikro UKAZ Miko UkAZ< ©| [e ; S L ____L_
2. Mikro UKAZ p 2. Kontr. signali
3. Mikro UKAZ Mikro PROGRAMSKI Fmmmm e Ee - % 3. Kontr. signali KOMBINATORIENA T
£ LOGIKA 2
Pomnilnik 9
N. Mikro UKAZ N. Kontr. signali
Naslov VHODI
T 1 A 4 A
E 4 -t
UKAZNI
Mikro PC REGISTER [
Ura CPE | OP.KODAl Info. 0 operandihl | REGISTER STANJA |
ImEm MUX Ura CPE A ‘A 2 A 4 4 I

UKAZ

RA -6 40 © 2021, Skraba, Rozman, FRI

" J &

CPU: datapath, control unit, and control signals

CU constantly controls operations] Condiional jup nstruton
Jump address N—
x CONDITION TRUE
LS8
4
= |«
L e
Type of ALE operatipn
Instruction _ Operand
memory Ly \ memory
»| TP address
—> Reqi
—»PC »| address instructiof¢—» egisters I >ALE o operand |—»
RO - R14
P _
7| g > operand
) Register Write _—
Memory R/W
for instruction transfer | \
(Control
unit I
32-bit data |
link I
I linstruction registerf
Control signal X N | |

(usually 1 bit)

) e e e e e e e e e e e o o 7

RA O A simplified version of the ARMVS (Source: [Patt] Sec. 4) © 202 Skraba Rozman, R

" J)

CPU: datapath, control unit, and control signals

(= ===

Elements for access to instructions /| Sondiional jump instrucfor

, - _; Jump address I¥ I
&

CONDITION TRUE
= , E—— \ - o - - -

I I
| 4 I
I

, aam = -

\l || || K :
L e
\ Type of ALE operatipn
{ Instruction I _ Operand
r — memory Ly \ memory
I I I p ol address
[N
—» PCH l address instructio L’ Registers > o operand |—»
I rrl‘ RO - R14 -—L ALE
11 N S
I I 7| g > operand
— J I I) Register Write _—
\ Memory R/W
y 4
A 32-bit connection A e
for instruction transfer 4 i |
Control
unit 1
32-bit data I
link l
I linstruction registerf -
Control signal N]
(usually 1 bit) |
am = =

RA O A simplified version of the ARMVS (Source: [Patt] Sec. 4) © 202 Skraba Rozman, R

" J &

CPU: datapath, control unit, and control signals

Execution of ALU instructions (eg. ADD) /| Sondiional jump instruction
Jump address N—
x CONDITION TRUE
s
4
L e \
Type of ALE operatipn
Instruction _ Operand
memory \ memory
| © > address
> Reqi I
—»| PCl——»{ address instructig) egisters I >ALE) operand |—»
RO - R14 I
» | -
7| g > I operand
I Register Write _—
\ / Memory R/W
. i v _— - e s s o
A 32-bit connection A —_ e
for instruction transfer [i |
I Control
unit 1
32-bit data |
link l
I linstruction registerf
Control signal o 1 H
(usually 1 bit) |

- == =

RA O A simplified version of the ARMVS (Source: [Patt] Sec. 4) © 202 Skraba Rozman, R

CPU: datapath, control unit, and control signals
Execution of LOAD / STORE instructions

Conditional jump instruction

=

Jump address

=

A 32-bit connection A
for instruction transfer

Instruction
memory

address instructi

—
|

CONDITION TRUE

32-bit data

link

Control signal
(usually 1 bit)

l [[¢
L&« |
I Type of ALE operatipn Operand I
I ™ memory I
I p| w —>\ address
J—’ Registers I > operand > I
IL.|Rro-R14 ALE© P I
I ;I >§< > operand
Register Write _— I
Memory R/W /
/ || | || | | || | | || | | || | ’
I, Control
unit
I |
|
L]
I linstruction registerf -
| > L
s mmm =

RA -6

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

© 2021, Skraba, Rozman, FRI

" £
CPU: datapath, control unit, and control signals
Execution of branch instructions

/— Conditional jump instruction

4
I Jump address
I x CI)NDITION TRUE
LS
[4 I
I [
' rels '
I e :
I Instruction Type of ALE operatipn I Operand
memory Lp|] memory
I a —>\ I address
—» : |
! > PCl——»| address instructiopr¢-»{ | Registers I >ALE operand [—
RO - R14
7| g > operand
I) Register Write _—
‘ Memory R/W
]] L]] |)

A 32-bit connection

for instruction transfer 4 — i|
Control
unit 1
32-bit data I
link i
I linstruction registerf
Control signal >] l
(usually 1 bit) |
- == =

RA O A simplified version of the ARMVS (Source: [Patt] Sec. 4) © 202 Skraba Rozman, R

" o

6.4 Execution of instructions

An example of execution of a typical instruction for ALU operation:

s ADD R10, R1, R3 @ R10 «~ R1 +R3

Instruction Format:

b31 2019 16 15 1211 4 3 b0
. Source |Destination Source
Operation code register 1| Register unused register 2
Machine instruction:
b31 2019 16 15 1211 4 3 b0

_00011 010000000000011

RA -6 46 © 2021, Skraba, Rozman, FRI

"

Execution of the instruction ADD: 1. elementary step (T1) = 1 Tcpe (Clock period)

Rozman, FRI

CLOCK T1: Accessing instructions in the instruction memory
- I —— ADD RI10, R1, R3
—u 1 12 e 13 :I: 14 :I: 15 -t
P Fetching instruction |, Execution of instruction |
I/,-— &mdl‘.mulm insiruction
Jurmp addrass IL\"‘-_
CONDITION TRUE
- . . L‘"""--
) ‘ Type af ALE aparatipa
{ Instruction Operand
~ 2 mernory I] Memory
I I I addrass
— .
-r- F’CTi:bl address LQEUEJ;,,JI > %%ﬂ:'%ﬁ?a?_ pperand [—s
L
I I I I operand
— I 1 Regisier Write —
I R Memony R
o e ==
A 32-bit connection A" | e e —
for instruction fransfer (1J
I IJF‘IiE =
32-hit data]
link I
RA -6 Jinstruction n:gr:-‘.erli
Control signal 1 .l 1
(usually 1 bit) !)]

-~ ... - ¢

Execution of the instruction ADD: 2. elementary step (Tw) = n Tcpe (Clock period)

fa

CLOCK n Tw: On instruction fetch maybe wait clock cycles are needed
— — —— ADD R10, R1, R3
P T1 [tw B T2 . T3 ~I< T4 «T5 :—)t
< Fetching instruction >l Execution of instruction >
I/,-— Dundl‘.mnulm instruchon
Jurmp addrass IL\"‘-_
CONDITION TRUE
irnstrsciion I}_EEUU[ALE-:pemlim D'FIEF-EI'Id
mmemcry L,] M0y
addrass
; - ™ Repgisters 4
L P #| address instructio—4-» 'ﬁ%ﬂfﬁ'ﬁ' pperand |—
L
operand
™ Regisier Write
Memony R
A 32-bit connection .1
for instruction fransfer J
IJF‘IiE
32-bit data
link
RA -6 linstruction regster

Control signal ol 1
(uzually 1 bit)

Rozman, FRI

"

Execution of the instruction ADD: 2. elementary step (T2) = 1 Tcpe (Clock period)

CLOCI

T1 . J: T2 L

T4

L|A

A

PN >

Ll |

Execution of instruction

A

Jurmp addrass

In=struction
memaory

K T2: Transfer of instruction from memory into the instruction register

il

ADD R10, R1, R3

address instruct

uuuuuuuuuu

& 32-bit connection
minstmcﬁnn fran=fer

32-bit data
link:

RA -6 .
Control signal
(uzually 1 bit)

5 —t
I/,-— &mdl‘.mulm ingirucion
CONDTION TRUE
I
Type af ALE aparatipa Operand
— MEMory
addrass
opsrand [—
operand
Memony R

- FRepisters
RO-R14
-
™ Regisier Write
Conitrol
I IJF‘IiE =
|

: 3
linstruction regster |

M=y

-~ ... - ¢

Rozman, FRI

" J &

Execution of the instruction ADD

CLOCK

| I —— ADD R10, R1, R3

Te I

T3 ‘L T4 ;|A 15 —1

Ll] Ll |

Y
A 4

A

Fetching instruction Execution of instruction

[

A
A

A
) 4

m Execution of the instruction ADD lasts for example 5 periods (CPl, = 5)
T1: Read instruction from memory

T2: Transfer of instruction from memory into the instruction register

RA -6 50 © 2021, Skraba, Rozman, FRI

"

Execution of the instruction ADD: 3. elementary step (T3) = 1 Tcpe (Clock period)

fa

T3: Decode the instruction and access operands in reg. R1, R3

—

CLOCK
« TL e 2L s), 1 =L T5 —t
P Fetching instruction |, Execution of instruction |
I/,-— &mdl‘.mulm instruchon
Jurmp addrass IL\"‘-_
\ CONDITION TRUE
T f ALE apalib
Insinuction Trmeof ALE oy Operand
MEmory Memory
I v addrezs
- i b+ | Registers operand
e address instrection [B0 - R4 ps
I E —* operand
ﬁﬁﬁﬁﬁ Mamery RIW
_ — | /
A 32-bit connection .4 — o —
for instruction fransfer (
I IJF‘IiE =
32-bit data 1
link I
RA -6 Jinstruction n:gr:-‘.erli
Control signal 1 .l 1
(usually 1 bit) !)]

e

v

—— ADDRI10, R1, R3

Rozman, FRI

"

Execution of the instruction ADD: 4. elementary step (T4) = 1 Tcpe (Clock period)

CLOCK T4: Execution of the operation (addition)
—T1 e 2 e 1IN Ll: 15 1
P Fetching instruction |, Execution of instruction |
I{J-— &mdl‘.mulm ingirucion
Jurmp addrass IL\"‘-_
CONDITION TRUE
Inziruction MUEE -:imlibn_ — Cperand
“memory \ MEmory
sddress
N [
Ll PO address instructioh—s-»{ | Refisters - pperand [—s
vvvvvvvvvv Ly RO-F4 [
operand
1 Regisier Write ,l_.
Memony R
A 32-bit connection 7 |, e e —
for instruction fransfer (1J
I IJF‘IiE =
32-hit data]
link I
RA -6 Jinstruction n:gr:-‘.erli

Control signal
(uzually 1 bit)

']

-~ ... - ¢

ADD R10, R1, R3

Rozman, FRI

"

Execution of the instruction ADD: 5. elementary step (T5) = 1 Tcpe (Clock period)

fa

CLOCK T5: Saving the result in the register R10
- I — ADD R10, R1, R3
< 1 e 12 e 13 :I: T4 :I‘[12 —t
P Fetching instruction |, Execution of instruction |
I{J-— &mdl‘.mulm ingirucion
Jurmp addrass IL\"‘-_
CONDITION TRUE
nstruction Type af ALE aperati Operand
memoary | e
I sddress
N FRepisters 4
L i N operand |—s
L P address instrection ‘ B0 - R4 I ps
operand
1 Regisier Write
- = =@ Memory RIW
A 32-bit connection 7 |, e e —
for instruction fransfer (1J
I IJF‘IiE =
32-bit data |
link I
RA -6 Jinstruction n:gr:-‘.erli Rozman, FRI

Control signal
(uzually 1 bit)

P —-—

" J &

Execution of the instruction ADD: Summary

CLOCK

ADD R10, R1, R3

=

‘ — —t

T1 T2 L T3 T4

1~
»

A 4

Fetching instruction Execution of instruction

< [
< »

< [
< »

m Execution of the instruction ADD lasts for example 5 periods (CPl,, ,= 5)

T1: Read instruction from memory

T2: Transfer of instruction from memory into the instruction register

T3: Decode the instruction and access to the operands in registers R1, R3
T4: Execution of the operation (addition)

T5: Saving the result in the register R10 (writeback)

RA -

54 © 2021, Skraba, Rozman, FRI

" &

6.5 Parallel execution of instructions

m Typical CPU arch. — execution of machine instructions takes at
least 3 or 4 clock periods, usually even more.

m The average number of instructions executed by the CPU in one
second (IPS - Instructions Per Second):

IPS = CPE IPS is a very large number, so we divide it by 10° and get MIPS

MIPS = Million Instructions Per Second

MJ’PS — fCPE fope = Frequency of the CPU clock

CP.[. 106 CPI = Cycles Per Instruction

(average number of clock periods
for the execution of one instruction)

RA -6 55 © 2021, Skraba, Rozman, FRI

" J &

Parallel execution of instructions

m MIPS - the number of instructions executed by the CPU in one
second, can be increased in two ways: to increase f-pg and/or
reduce the CPI:

t mips - Lo -
V CPI -10

Using faster electronic elements (increase f-pg = more periods in
one second)

With the use of a larger number of elements we can reduce the CPI
(less clock cycles per instruction) where more instructions are
executed in one clock cycle

Use of faster electronic components does not allow larger increase

In speed: It also causes other problems.
RA -6 56 © 2021, Skraba, Rozman, FRI

" o

General trends in Computing Evolution

48 Years of Microprocessor Trend Data

| | | p
7L o
10 ad 4 **] Transistors
108 | NV | (thousands)
a Ald, o .
10° | .ﬁh..‘ Single-Thread
N 3 L Performance
4| A .'“ F A | (SpecINT x 10%)
10 AiAt o
3 R ¥ . [Wial g'g"s Frequency (MHz)
10 | | Aa Al ..cih'ﬂ n [m_
, . 4 = .H_. . %;% Levvy Typical Power
07T Sop B M v SITIRINF TS beel] (Watls)
1 : - BTV VT et Number of
0r + .. A A ca3e 7| Logical Cores
o A m v v v v?Y vy PP 3
107 F ‘ L 4 * o ‘ GO & W SUNNE LN ¢ ¢ 1
|]]]
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Source: https://qgithub.com/karlrupp/microprocessor-trend-data/blob/master/48yrs/48-years-processor-trend.png/

RA -6 57 © 2021, Skraba, Rozman, FRI

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

" A £
Moore's law

Increasing the number of transistors - Moore's Law

m Electronic Magazine has published an article in 1965 by Gordon E.
Moore in which he predicted that the number of transistors that
producers are able to produce on a chip doubles every year.

m In 1975, the prediction was adjusted to the period ob two years
(number of transistors doubling every two years).

m As it was then intended as experimental rule should apply the next
few years, it is still valid today and is known as Moore's Law.

RA -6 58 © 2021, Skraba, Rozman, FRI

Moore's Law - increasing the number of transistors

intgl. Moore’s Law

5

-
iy Gt fon Conpresn ™
=
3
] ‘

-
Y
T

oY
T

)
~
o

_‘
=
T

:n ':‘ 1 I:: 1 ‘1;'- 1'0? 1;;‘) | /;-(

relative Manufacturing cost per Component
[

25 |

In 1965, Gordo NUMbeEr of components per IC . . . of

silicon technology. Decades later, Moore’s Law remains true,
driven largely by Intel’s unparalleled silicon expertise.

According to Moore's Law, the number of transistors on a chip roughly doubles
every two years. As a result the scale gets smaller and smaller. For decades,
Intel has met this formidable challenge through investments in technology and
manufacturing resulting in the unparalleled silicon expertise that has made
Moore’s Law a reality.

RA -6 59 © 2021, Skraba, Rozman, FRI

" J &

Moore's law

Gordon E. Moore is now honorary president of Intel, in 1968 he
was co-founder and executive vice president of Intel.

With the same technology in the last 20 years, the maximum speed
of logic elements increased by about 10 times.

At the same time, the maximum number of elements on a single
chip increased by about 500 to as much as 5000-times in the
memory chips.

RA

-6 60 © 2021, Skraba, Rozman, FRI

"

Moore's law

Microprocessor ;':ft‘:; ;’J ction | Transistors
4004 1971 2,300

8008 1972 2,500

8080 1974 4,500

8086 1978 29,000
Intal286 1982 134,000
Intel386™ processor 1985 275,000
Intel486™ processor 1989 1,200,000
Intel® Pentium® processor 1993 3,100,000
Intal® Pentium® |l processor 1997 7,500,000
Intel® Pentium® Il processor 1999 9,500,000
Intel® Pentium® 4 processor 2000 42,000,000
Intel® Itanium® processor 2001 25,000,000
Intel® ltanium® 2 processor 2003 220,000,000
Intel® Itanium® 2 processor (9MB cache) | 2004 592,000,000

Intel Core i7 (Haswell - 2013) 1.4 billion (= 1 400 000 000) transistors
Core i7 BROADWELL -2016) 3.2 billion (= 3 200 000 000) transistors

RA -6

61

© 2021, Skraba, Rozman, FRI

. L2 "‘ I 0."\\»1;) é»t"‘ Rome
) re Xeon Phi Centng 24(0 0“\\..’ Grav
CDAD™T AT N ~

rage Controller ”" e X Bionic

4

Haswell-ES « 0\-\ 'h\lln w1 Kir 990 !
) m : X \ Y A (‘, 2 Phone M } Drey
Moore’s Law: The number of transistors on microchips doubles « mon 0 w0 @ 8 8 g AP hon !
11'

y AMI) R n73700%
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approxit "_'\'\ ,[' '“ 3 }‘ rin 710
This advancement is important for other aspects of technological progress in computing - such as processing speed ' OVVERG -

10-core Core i7 .‘:lr yadwell-|

Transistor count 'IIAI_I“:;TI ipdragon 835

50,000,000,000

10,000,000,000 b3 Quad-core + GPU Core i7 Haswe
5,000,000,000 Kbox(Apple A7 (dual-core ARMA&4 "mobile SoC

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000

5,000,000 Pentun Prog,
m:o ‘”‘ﬁl..‘:.
1,000,000 nelB0sty By
500,000 Fupiorers 2.t o
e e @
100,000 o L 9
50.000 TN e ARM,
p L Qi ? y
10,000 1161000 . ziogza0 "B o
5000 ¢«
™ ; ‘04»
b

1,000
Q AV b o A O &] b o Q & e b O O '\z v H O 9 B o D O
RASCHECA AR SRR SIS O L L L S q,OQ S S S S

AN S S S S
Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year n Wthh the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world'’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

RA -6 62 © 2021, Skraba, Rozman, FRI

"J Iris Core 17 Broadwell-U
ore + GPU GT2 Core i7 Skylake K

Parallel execution of instructions

How to effectively utilize multiple items?

m Efficient increase in speed of CPU:

CPU performs parallel more operations, which means an increase in the
number of needed logic elements.

Parallelism can be exploited on several levels:
m Parallelism at the level of instructions:

Some instructions in the program can be carried out simultaneously — in
parallel

CPU in the form of pipeline:

m Exploitation of parallelism at the level of instructions

s An important advantage: the programs stay the same !!!
m Limited, so we are looking for other options

RA -6

63 © 2021, Skraba, Rozman, FRI

" o

Parallel execution of instructions

m The first higher-level parallelism is called parallelism at the level
of threads.

1 Multithreading
1 Multi-core processors

m Parallelism at the level of CPU (MIMD - multiprocessors,
multicomputers)

m Data-level Parallelism (GPU, SIMD, Vector units)

RA -6 64 © 2021, Skraba, Rozman, FRI

" &

Example parallelism level instructions, threads and cores Intel 80x86

m Intel Core i7 Haswell

Feature size 22 nm (= 22 * 10° m)

The number of transistors 1.6 billion (= 1600000000)
The size of the chip 160 mm?2 (From 10x to 26x mm?2)
The clock frequency from 2.0 GHz to 4.4 GHz

The number of cores (CPU) 4

graphics processor

Socket LGA 1150

TDP (Thermal design Power) from 11.5 W to 84 W
Price ~ 300-400 $

RA -6 65 © 2021, Skraba, Rozman, FRI

" N M

Intel 80x86

Structure of 4-core processor Intel Core i7 (Haswell)

DDR3 memory controller

________ S E—

2x8B @ 1.6GT/s=256GB/s 4x20b @ 6,4GT /s

RA -6 66 © 2021, Skraba, Rozman, FRI

" o

Example parallelism level instructions, threads and cores Intel 80x86

Simultaneous Multi Threading
(SMT) Thread 1 v

,2Hyperthreading® on Core i7 Thresd 4 W
1 core supports 2 threads —
(two ,virtual” cores) Thread

T ~—PC

e
=

VY

l-cache and Fetch Allocate/ Reorder Scheduler Registers Execution D-cache Register Retirement
micro-op cache queue renaming buffer write queue

RA -6 67 © 2021, Skraba, Rozman, FRI

" o

Intel 80x86

CPU chip|on the socket with the contacts (LGA775)

Contacts to connect
chip to the motherboard

The upper side Lower side with the contacts and the capacitors

RA -6 68 © 2021, Skraba, Rozman, FRI

Intel 80x86

Core (dig) Tim Thermally conductive interface
Integrated cooler |HS
g —

Substrate CPU chip with the base
T and the housing

—cCr ion
. _ Cross sectio

L
SLO0OO0CORO0ACCOO00D0OO0000D OO0y
[eretuiwlululnlatate tulnlelnlulete et inlulnlelatate o tnlolnlele}
OO0 I00000S0000 000000
fereiuinlulaleta ate e lnlelnlelata e ainlnlnlalalase e nlelnlelel
[eteinlnlnlaleletatetelnlnlalaleto atalnlalnlalale e atnlnlne]
QOODOOOOOOOO00O0 nnnnnnaaﬁannnn
peieiaininlalelelase e lulelelele) DO 0D000
gggggﬂﬂﬂﬂ Gﬂﬂﬂﬂﬂﬂ-ﬁ-ﬂ}ﬂﬁﬂﬂﬂﬂﬂi}ﬁﬂﬂﬂﬂﬂﬂ

o

DD I CGDUUUUU
- SOO00Q 00D COOo0000
aa D0 D00
N SOOOOQCO0 [ke T i T o [=
fetatnlnlalnlelele [atatetulnlniele] = S
ocket LGA775 -
— j—-—1—-—Gimeases
AL ICT I ACI] 1
OOO000800 SOOo0000 view from below
fecate e lw lnle e le [etaeinle minle)
SOOOOOGO0 SO O0O000
SoDOOOo00 g - : D00 000
=] | ooonaacs SOOODOO0E
[t tnlnlnlalaiolatetnlnlnialalatataintnlalnlelatetateinln]nlele]

pedetelnlnlalalotaselelnlnolnlotestotel alolalotetiosie olnle)
farntnlnlululnlatatetn e lnlels OoOQOOOODD0000

[ase Jein e balasele lwle e lele DD 00000 Fq
Gﬁﬂﬂnﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬁ&ﬁﬂﬂﬂﬂﬂﬂﬁﬁﬂﬂﬂﬂﬂ]
jalalaletate e le] SoDDOD00000 jmlals]

L

BOBO0000000000086R0000000000000 f
ENEHEHTREEHOHE) BHD THEEEHHEHE B RS- — B

; Y T

E}= =

=3

=

RA -6 69 © 2021, Skraba, Rozman, FRI

" N &

Intel 80x86

Intel chip Core i7 (Haswell)

v- —~ N‘_ -
System | °

lr” Agent &/

Core 4 Memory

= Controllet

Processor} v IR TN TR cding
Graphics 35 i i e o.‘i;';,y

N 'and Misc. | -
I[)

Lared L3 Cache*u @

- us xz_.

RA -6 70 © 2021, Skraba, Rozman, FRI

" EEE——— o

Example parallelism level instructions, threads and cores Intel 80x86

System Agent il

Intel Core i7

(Ice Lake 1.2019) Cip

LPDDR4Xx

RA -6 71 © 2021, Skraba, Rozman, FRI

" &

Case: CPU-level parallelism: MIMD Computers

Examples: MIMD (Multiple Instruction multiple Data)

Multiprocessor Multicomputers
(closely connected) (loosely connected)
CPU CPU CPU CPU CPU CPU
Cache Cache Cache Cache Cache Cache
Interconnection Memory Memory Memory
Common v v I 2 4
variables Memory IO System Interconnection

" o

Case: CPU-level parallelism: GPU, SIMD, Vector units

m Parallel processing of data

O woire

RA -6 73 © 2021, Skraba, Rozman, FRI

" N &
6.6 Pipelined CPU (data unit)

m |tis the realization of the CPU, where several instructions are
executed simultaneously, so that the elementary steps of the
instructions overlap.

m |n a pipelined CPU, instructions are executed similar to industrial
assembly line production (eg. cars) or laundry processing facilities:

fime | T |
Task
order

| [@EE O
: o m) - 9=
B - @3=l
) =
o=@ |: 9550
D 0 o=l

m Execution of the instruction can be divided into smaller elementary
steps, sub-operations. Each sub-operation takes only fraction of
the total time required to execute a instruction.

RA -6 74 © 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU

CPU is divided into stages or pipeline segments, that
correspond to sub-operations of instruction.

each sub-operation is executed by a certain stage or segment of
the pipeline.

The stages are interconnected, on the one side instructions enter,
then they travel through the stages, where sub-operations are
executed, and they exit on on the other side of the pipeline.

At the same time, there are as many instructions executed in
parallel as many stages is there in the pipeline.

RA

-6 75 © 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU

Case: operation of 5-stage pipelined CPU

At the start of 1. clock period
1. instruction enters the pipeline

RA -6 76 © 2021, Skraba, Rozman, FRI

" _
Pipelined CPU
Case: operation of 5-stage pipelined CPU
1. clock period
IF ID EX MA WR
—| 1. instr. > > —> > —

RA -

e

© 2021, Skraba, Rozman, FRI

" _
Pipelined CPU
Case: operation of 5-stage pipelined CPU
2. clock period
IF ID EX MA WR
—| 2. Instr. > 1. instr. > —> > N

RA -

78

© 2021, Skraba, Rozman, FRI

Pipelined CPU

1=

3. instr.

ID

3. clock period

EX

Case: operation of 5-stage pipelined CPU

WR

v

2. Instr.

\ 4

1. instr.

\ 4

RA -

79

© 2021, Skraba, Rozman, FRI

" o

Pipelined CPU
Case: operation of 5-stage pipelined CPU
4. clock period
IF ID EX MA WR

l

2. instr. —| 1. instr.

A\ 4

l 3. inStr-

RA -6 80 © 2021, Skraba, Rozman, FRI

" N o

Pipelined CPU
Case: operation of 5-stage pipelined CPU
5. clock period
IF ID EX MA WR

1.instr. —

A\ 4

3. instr. —| 2. instr.

RA -6 81 © 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU
Case: operation of 5-stage pipelined CPU
6. clock period
IF ID EX MA WR

\ 4

3. instr. 2.instr. —

After the end of the 5th clock
period, the first instruction
Completes execution (leaves
the pipeline)

RA -6 82 © 2021, Skraba, Rozman, FRI

" £
Comparison of non-pipelined and 5-stage pipelined CPU

<

s |

¢—» address
] Registri -
PC address instructio >ALE
RO - R14
'_’ »
—» operand
instruction] operand
memory memory
4 . : :
+ intermediate registers
—>
address
address
instruction operand
cache sache
. . operand
instruction [
d Rd
RA -6

stage IF stage ID stage EX stage MA stage WR

T1: Read instruction from memory

T2: Transfer of instruction from memory into the

instruction register

Conditional jump instruction

Jump address

CONDITION TRUE

|

Registers
RO - R14

A 32Z-bitc

for instructionfgransfer
Control

32-bit data

link

Type of ALE operat

Operand
memory

address

e

operand

Memory RW

Control signal

(usually 1 bit)

address

instruction
cache

instruction

T3: Decode the instruction and access to the operands in R1 and R3

Instruction
memory

addressii

Type of ALE operatipn

A 32-bit connection
for instruction transfer

address

operand
cache

operand

(=

CONDITION TRUE

Operand
memory

address
operand

operand

Memory RIW

A 32-bit connection =

for instruction transfer

32-bit data
link

Control
unit

-

Control signal L
(usually 1 bit)

Jurp address

/

stage IF stage ID

stage EX

stage MA

Rd
A 32-bit connection
for instruction transfer
32-bit data
link:
stage WR Control signal
(usually 1 bit)

a=

T5: Save the result in the register R10

Candisional jumg instrisction

FRI

CONDITION TRUE
L
|
-— Type of ALE aperatitn -
h memory
L address
Repisters o ‘operand
Rewisters || ALE pe
i '§ = operand
nrw-h:’
=-1= Mamnony R
-—
{ Control ‘IJ
| unit
1
I, L
insiruction e
"
-H 1
L —

" J &

Central processing unit - execute instructions

m The execution of the instructions can be divided into for example to 5
general elementary steps (5-stage pipeline):

Reading instruction (IF - Instruction Fetch)

Decoding instruction and access to registers (ID - Instruction decode)

Execution of instruction (EX — Execute)

Memory access (MA - Memory Access)
m (Only for the LOAD instruction and STORE)

Saving the result in the register (WR - Write Register)

m |f we can unify all the instructions to these common elementary steps,we
can also speed up the execution of the instructions:

more instructions can be executed at the same time (each in its own
elementary step) -> pipeline

RA -6 85 © 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU

m Performance of the pipelined CPU is determined by the rate of exit
from the instruction pipeline.

m Since stages are linked together, the shifts of instructions from one
stage to another has to be excecuted at the same time.

m The shifts typically occur each clock cycle.

m Duration of one clock period t-p¢ can not be shorter than the time
required to execute the slowest sub-operation in the pipeline.

RA -6 86 © 2021, Skraba, Rozman, FRI

" J o
pipelined CPU Case: 5-stage pipelined CPU
vmesni registri
»PC »PC| | C »|C
—
naslov | |] : B
RSE. L >l A > > <EC »| naslov
e mtre | [SAEF | e
Rs1 L ,lg > QD: R
. ’: > = "| operand
_|’__ "1] odmik [F []
IR » IR » IR »|IR -
stopnja ID stopnja EX stopnja MA stopnja WR
Reading instruction
IF = Instruction Fetch
1. Clock period
RA -6 87 © 2021, Skraba, Rozman, FRI

" J)

Case: 5-stage pipelined CPU

Pipelined CPU
4 vmesni registri
_’
C »PC »PC —>(C > C
—»
—»| naslov x
RSE' L | A » | <C »| naslov
> =
ukazni registri - i
predpomniinik RO Rex >ALE | T
Rs1 > o0
—B . =) > operand
ukaz =
B 7 S | | N
odmik
IR » IR > IR »IR -

stopnja IF é stopnja EX stopnja MA stopnja WR

Decode instruction and
access operands in

the registers

ID = Instruction Decode

RA -6 2. Clock period 88 © 2021, Skraba, Rozman, FRI

" N £
Pipelined CPU Case: 5-stage pipelined CPU
4 vmesni registri
—
—»| naslov
naslov
ukazni_ P operandni
predpomniinik predpomnilnik
. operand
> Rd
stopnja IF stopnja ID stopnja EX stopnja MA stopnja WR
Execution of operation
EX = Execute
3. Clock period
RA - 89

© 2021, Skraba, Rozman, FRI

Case: 5-stage pipelined CPU

Pipelined CPU

4 vmesni registri
»PC »PC —>(C »|C
—>
—»| naslov
x
RSE. | A > | <C »| naslov
> =
ukazni istri || ;
predpomniinik RO Rex >ALE | T
Rs1 > o
1B a » operand
ukaz =
_|’__ y Y Y | | [|
odmik
IR »IR > IR »|IR o
/,
stopnja IF stopnja ID stopnja EX stopnja WR

Access to operands in
memory (LOAD / STORE)
MA = Memory Access

4. Clock period

RA -

90

© 2021, Skraba, Rozman, FRI

Case: 5-stage pipelined CPU

Pipelined CPU

vmesni registri

»PC »PC| | C »|C
—
—»| naslov] e : B
> > A > > CEC »| naslov
o moore |] OAER | e
Rs1 L ,lg > QD:
. = "| operand
_|’__ 7 S Y | | F [|
odmik
IR » IR »IR "Rl
stopnja IF stopnja ID stopnja EX stopnja MA
Saving result to
register
WR = Write Register
5. Clock period
RA - 91 © 2021, Skraba, Rozman, FRI

" EEE——— M

Execution of instructions in non-pipelined and pipelined CPU

Non-pipelined CPE

tCPE

time ’<—>‘
Tl T2 T3 T4 T5 T6 T7 T8 T9 TlO

1.instr.
2.instr.

Pipelined CPU
_ t
time riw
T, T, T, T, T, Te T, Te T, Tio

1.instr.

2.instr.

RA -6 92 © 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU

Today, all more powerful processors are designed as a pipelined
processors.

In developing the pipelined CPU, it is important that executions of
all sub-operations take about the same time - balanced pipeline.

With an ideally balanced CPU with N stages or segments, the
performance is N times greater than non-pipelined CPU.

Each individual instruction is not executed any faster, but there are
N instructions in the pipeline executed at the same time.

RA

-6 93 © 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU

m At the output of the pipeline, we get N times more executed
Instructions than in non-pipelined CPU.

m The average number of clock cycles for the instruction (CPI) Is
ideally N times lower than at the non-pipelined CPU.

m The duration of the execution of each instruction (latency) is equal
to N X t-pg, that is, at the same clock period, the same in the non-
pipelined CPU.

RA -6 94 © 2021, Skraba, Rozman, FRI

" &

Pipelined CPU

m Can we at a sufficiently large number of stages N make CPU
much faster (N times faster)?

No. Instructions, that are in the pipeline at the same time (each in its

stage), can depend on each other in some way dependent and
therefore a certain instruction can not be always executed in next clock

period.

m These events are called pipeline hazards.

RA -6 95 © 2021, Skraba, Rozman, FRI

" &

Pipelined CPU

m There are three types of pipeline hazards:

structural hazards — when several stages of the pipeline in the same
clock period requires the same unit,

data hazards - where some instruction needs the result of the
previous instruction, but is not yet available

control hazards — at the instructions that change the value of the PC
(control instructions: jumps, branches, calls, ...)

RA -6 96 © 2021, Skraba, Rozman, FRI

"

Pipelined CPU - types of pipeline hazards: ADD

LDR/STR

m structural hazards

] access to the same unit
(eg. cache)

m data hazards

ADD rl1,r2, r3
1 operand dependence ADD 15. 13 11
between instructions Y
m hazard control LOOP:

1 branch instructions

operands

(filling the pipeline) 'BNE LOOP (1.) Q;m'gtr_ » 1. instr.
’ADD}:,/'(Z'.)
MOV T 3) 7 Mmov ADD BNE LOOP
RA -6 97 © 2021, Skraba, Rozman, FRI

" N

Pipelined CPU - pipeline hazards: common solutions

m Structural hazards

O

Solution -> separation
of caches (instructions,
operands - Harvard
Arch.

m data hazards

O

m control hazards

O

Solution -> operand
forwarding between the
stages

Solution -> predict the
condition and branch
address

RA -

ADD rl1,r2, r3
ADD rSZE‘, rl
LOOP:
LDR 2.)
STR (3)) 3. instr. —| 2. instr. » 1. instr.
BNE LOOP (1.)
ADD STR LDR BNE LOOP

MOV

© 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU

m Due to the risk of pipeline hazards, part of the pipeline at least has
to stop until hazard is resolved (the pipeline at that time does not
accept new instructions).

m The increase in speed, therefore, is not N - times.

m By increasing the number of stages N, the pipeline hazards occur
more frequently and the pipeline is no longer as effective as with
lower number of stages.

Performance

RA -6 N number of stages © 2021, Skraba, Rozman, FRI

"

6.7 Cases of 5-stage pipelined CPU

m General 5-stage pipeline

m FRISMS Atmel 9260 ARMv5

RA -6 100

© 2021, Skraba, Rozman, FRI

" J &

General 5-stage pipeline

m The base should be the execution of instructions in five steps, as
we described in the previous section.

m Execution of the instruction is divided into 5 sub-operations in
accordance with the steps from the previous section, and CPU
divided in five stages or segments:

Stage IF (Instruction Fetch) - read instruction

Stage ID (Instruction decode) — decode the instruction and access to
registers

Stage EX (Execute) - the execution of the operation
Stage MA (Memory Access) - access memory

Stage WR (Write Register) - save the result

RA -6 101 © 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU

m Each stage of the pipeline must execute its sub-oepration in single
clock cycle (period).

m The IF and MA stages can simultaneously access memory (in
same clock period) - a structural hazard happens.

m To eliminate this kind of structural hazards, we must divide the
cache into separate instruction and operand caches (Harvard
architecture principle).

RA -6 102 © 2021, Skraba, Rozman, FRI

 EE———— @

Pipelined CPU

instructions operands

For the simultaneous access to instruction (stage IF) and operand in cache
(stage MA), the structural hazard occurs in the pipeline

RA -6 103 © 2017, Igor Skraba, FRI

" #

Pipelined CPU

instructions operands

Structural hazard, that would occur due to simultaneous access of stages IF and MA
to memory, is eliminated by using Harvard architecture on caches

RA -6 104 © 2017, Igor Skraba, FRI

" J &

Pipelined CPU

m In the IF stage of pipelined CPU, the access to the instruction
cache happens each clock period, however, in the non-pipelined
CPU access happens only every five clock periods (in case of 5
clock periods instructions).

m The speed of information transfer between the cache and the CPU
must be in case of pipelined CPU, five times higher than in non-
pipelined CPU.

m \When designing the pipelined CPU, it is important to ensure that
CPU units (registers, ALU, ...) are not required to do two different
operations.

RA -6 105 © 2021, Skraba, Rozman, FRI

Case: structure of 5-stage pipelined CPU
(ALU instruction: e.g. ADD R1,R2,R3)

vmesnl registri
> +
|| | | || | | || | | | | \
| | | | — | J
—»| naslov
naslov
ukazni. _ operandni
PIEHECHIRIS predpomnilnik
operand
ukaz P
stage IF stage ID stage EX stage MA stage WR
RA - 106 © 2021, Skraba, Rozman, FRI

Case: structure of 5-stage pipelined CPU
(LOAD/STORE instruction: Calculation of address in EX, access in MA)

= -
80=M
4 = vmesni registri
> +
|
I PCl »PC »PC | —{C |I »C l
\ — e s m o e aw G| e e] smE shm| o IH I I
—»| naslov I
0 d
RSZ: » A > "—r <§E : I »| naslov I
. " |
ukazni registri i
predpomnilnik ROg RXX >ALE I I I prgsggﬂ]girl]rllik I
Rsl _ > @
"B |—> _l g i | Vg operand l
ukaz J. /
r_—_ — T T — --Ir — = el . |_-“_
|| odmik I
IR » IR » IR » IR .
\
v I | L] L]] —] |] | I |] |] || | -'
stage IF stage ID stage EX stage MA stage WR
RA -6 107 © 2021, Skraba, Rozman, FRI

" J
Case: structure of 5-stage pipelined CPU
(BRANCH instructions: e.g. B, BNE LABEL in ALU in stage EX)

,_—_—_—_—_—_—_—__\

= -
| 80=M
4 = vmesni registri I
> +
PC »PC »PC : illc | C
- - naSigy === == | _— :]
RS% » A EE: » naslov
L Ll I : E v
ukazni registri > operandni
predpomnilnik RO — Rxx I ALE predpomnilnik
Rsl B > DD:
kg ||—> S ”| operand
— — I s L S ‘v
r || A A
|| odmik
IR » IR » IR » IR
Rd
t- - s e s (s e e s _‘
stage IF stage ID stage EX stage MA stage WR
RA -6 108 © 2021, Skraba, Rozman, FRI

" J &

Case: structure of 5-stage pipelined CPU

m The pipeline has 5 stages; between them there are intermediate
registers in which the results of sub-operations in each level are
stored and all data that is needed in following stages.

m In stage IF, the instruction is read and transferred to the instruction
register, and the content of the program counter PC is increased
by 4 (instructions are 4 bytes long).

m Program Counter is necessary to be increased in stage IF because
usually in each clock period, one instruction is fetched from
Instruction cache.

RA -6 110 © 2021, Skraba, Rozman, FRI

" J &

Pipelined CPU

m The instruction currently executed (pointed by PC content) is stored
In the intermediate registers (IR) because it is needed for branch
Instructions in the EX stage.

m Branch instructions usually write new address into PC (branch or
target address), which is calculated by ALU in stage EX.

m Address for operands in instructions LOAD/STORE (indirect
addressing) is also calculated by ALU in stage EX.

m Each stage executes its own instructions, therefore the
Intermediate registers IR in all stages always store the instructions
that are read from instruction cache every clock period.

RA -6 111 © 2021, Skraba, Rozman, FRI

Case: Structure of nedt
5-stage pipelined stage IF fetch
C P U . PC + 4
FRI SMS - Atmel 9260,
: pc+8 | decod
ARMV5 architecture cooTe
{} rs instruction
decode
Stage ID register read
Immediate
B fields
reg
shift
Stage EX _ Execute
forwarding
paths
B, BL
MOV pc
SUBS pc
> D-cache buffer /
stage MA data
Ty
LDR pc < """"
stage WR o

RA -6

" J &

6.8 Multiple issue processors

m With pipelined CPU and solving the pipeline hazards, we can
achieve CPI values close to 1.

m |f we want to reduce the CPI below 1, we must fetch and issue
several instructions in in each clock period (and also executed
them).

m Such processors are denoted as multiple-issue processors and can
be divided into two groups:

superscalar processors — instructions, that are executed in parallel, are
determined by a logic in a processor — dynamic decision

VLIW processors - instructions, that are executed in parallel, are
determined by a program (compiler) — static decision

RA -6 113 © 2021, Skraba, Rozman, FRI

" J &

Superscalar processor

Superscalar processor is a pipelined processor which is capable of
simultaneous fetching, decoding and executing several instructions.

m The number of fetched and issued instructions in one clock period
Is dinamically adjusted during the program execution and
determined by processor's logic.

m Processor, that can issue a maximum of n instructions is denoted
as n-issue superscalar processor.

m Parallel (superscalar) performance requires additional interfaces
and additional stages for determining interdependencies,
validation and eventual retrieval of results ->

RA -6 114 © 2021, Skraba, Rozman, FRI

"

Superscalar processor

LOAD _ ...
ADD — >

simplified scheme of superscalar processor
based on 5-stage pipeline

m One of the functional units in the EX stage is also stage MA
(combined functional unit LOAD/STORE or separate functional
units for LOAD and STORE).

RA -6 115 © 2021, Skraba, Rozman, FRI

1.Instruction Fetch (16byt

2.Predecode Stage
(bytes->x86 instr.)

3.u-op decode (x86 instr. -> p-op)

4.Loop Stream Detection

5.Issue of y-op -> ROB and RP

6.Execute p-op

7 .Retire

Intel Core i7

Example of Superscalar
— CPU

Scheduler Scheduler

HOp Queue

4 instruction

6 LOps dispatched

U
INTEGER

Integer Rename

¥ ¥ T ! '

Scheduler Scheduler Scheduler Scheduler “-haduler

Integer Physica ister File
¥ i + 4 1 +

ALU ALL AGU AGU

ALU - ALU

FLOATING POINT

Floating Point Rename
+

Scheduler

MLIL ADD MUL ADD

512KL2 (+D)

AMD Zen 2

Case of superscalar
processor

© 2021, Skraba, Rozman, FRI

"

VLIW processor

fa

VLIW (Very Long Instruction Word) Processors are executing long
Instructions, which consist of several ordinary machine instructions

that are executed in parallel by a processor using variety of functional
units.

In the long instruction, each unit executes its own instruction.

VLIW instruction consists of instructions for each functional unit

Instruction for 1.
functional unit

Instruction for 2.
functional unit

Instruction for 3.
functional unit

((

Instruction for n-th
functional unit

Case of VLIW instruction composition:

ALU

ALU

FPU

LOAD

STORE

RA -

118

© 2021, Skraba, Rozman, FRI

" J &

VLIW processor

m Compiler is looking in program for mutually independent
Instructions, that can be executed in parallel in functional units, and
merges them in long instructions.

m Number of instructions, which are fetched and issued in one clock
period is determined by the compiler and is not changed during the
execution (static decision).

m If the compiler can not find enough instructions for all functional
units in long instruction, missing instructions are replaced by the
Instruction NOP (No OPeration).

RA -6 119 © 2021, Skraba, Rozman, FRI

" EEE——— o

VLIW processor Compiler finds independent instructions coresponding to functional units and creates ,long instructions
VVUIdb“.
Program If coresponding and independent instruction is not found,
NOP is inserted
LOAD

I (,-“ in VLIW instructions below).

Dependent: Independent:
FPADD ... ADD R1,R2,R3 ADD R1,R2,R3

LOAD SUB R7,R8,R1 SUB R7,R5,R9
“;A__[_)_ b’ """"""""" (can't exec. in parallel (can exec. in parallel)

Example sequence of
long VLIW instructions

---L- A;FL- A-FL- AAFLS -A-L- 2
" \ A =ALU instruction
VLIW - NOP instruction F = FPU instruction
instruction L = LOAD instruction

S = STORE instruction

RA -6 120 © 2021, Skraba, Rozman, FRI

" N &
Comparison: Superscalar vs. VLIW processor

Superscalar processor

m Dynamic acquisition of several instructions (CPU decides during the execution)

m Complex realization

more ADD. s

\\
. . FPADD—
instructions (oap —
ADD ...
at once FPADD ...
LOAD ...
ADD
ADD ...
FPADD ...
LOAD

VLIW processor swre .. CPU — dynamical decisions
m Static schedule in long instructions (compiler decides before the execution)

m Simpler realization

Ukaz LOAD | Ukaz STORE
Ukaz LOAD | Ukaz STORE

VLong Instr. Word APD

FPADD
(several shorter | 5a5

instr.) ADD

Ukaz FPE
Ukaz FPE

Ukaz ALE
Ukaz ALE

Ukaz ALE
Ukaz ALE

RA -6 © 2021, Skraba, Rozman, FRI

Compiler decides™”

