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3.1  Von Neumann computer model

 It consists of three basic parts:

 CPU (Central Processing Unit)

 Main Memory

 Input-Output (I/O) system

 It is the machine with a stored program in the main memory. 
Instructions in the program specify what the machine will do.

 The program leads the machine operation - program determines 
how the machine will work.

 CPU takes instructions from the main memory and execute them 
one after the other.
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Operation of Von Neumann computer

Von Neumann computer model 

CPU - Central Processing Unit

ALU  - Arithmetic Logic Unit



RA - 3 5 © 2021, Rozman, Škraba, FRI

 CPU reads instructions from the main memory and executes them. 

In today's computers, in addition to the main, there are even more 

processors, thus we denote main processor as the Central 

Processing Unit. It consists of three parts:

 Control Unit – fetches the instructions & operands, and activates

operations set by instructions. 

 ALU – performs arithmetic operations (addition, ...) 

and logic operations (AND, ...).

 REGISTERS - a number of connected memory cells which serve to 

store values. 

 Program Inaccessible registers - necessary for the operation of the CPU.

 Program Accessible registers (architectural registers) for storing operands -

a small and fast memory in the CPU.

Von Neumann computing model
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 Main Memory is made up of memory words (locations). Each 

memory word has its own unique address.

 It stores instructions and operands.

 Identification „main“ again serves to distinguish it from other memory

devices in today's computers (caches, virtual memory).

 I/O system serves for the transfer of information to the outside 

world or from the outside world. Information from the CPU and 

main memory is stored in a format that is not accessible to the 

outside world.

 An integral part of the I/O system are the input-output devices, which 

transform the information into another form which is suitable for the 

user or represent an auxiliary (secondary) memory. 

Von Neumann computing model
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Operation of Von Neumann computer

 Its operation is completely controlled by instructions (machine

instructions), that are read by the CPU from the main memory in a 

order one after the other.

 Machine instructions are stored in the memory one after the other 

by increasing addresses. 

 There has to be a deterministic procedure how to start: First 

instruction is usually read from certain address in memory, after

the computer is turned on or pressing the RESET button.

 The easiest way: the first or last memory location - the lowest or the highest 

address in the memory.
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For each instruction we distinguish two steps

 1. step: Read instruction from the memory (FETCH)

- instruction fetch cycle

 The CPU includes the special register - the program counter (PC - Program 
counter) that always contains a memory address of the next instruction to be 
read and executed.

 2. Step: Execution of the fetched instruction (EXECUTE)

- Execute cycle 

Operation of Von Neumann computer
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 Each instruction contains two types of information:

 information about the operation to be executed,

 information on the operands, over which the operation is executed.

 CPU executes the operation, and ensure that the PC includes the
address of the next instruction by increasing the content of the PC 
by 1.

 Rule: instructions are stored in memory by increasing addresses 
so PC  PC + 1. This rule is the result of an agreement and 
specifies the order in which the instructions are usually executed. 

Operation of Von Neumann computer
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RESET

Read the instruction

Execute the instruction
and

PC  PC + 1

Operation of Von Neumann computer

step 1

step 2

FETCH

EXECUTE
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Upon completion of Step 2, the CPU starts again with first step.

These two steps are repeated until the computer runs.

 Exception 1: Jump instructions, which can write in PC other
address thna PC+1.

 Exception 2: Interrupt or trap 

CPU after step 2 does not fetch next instruction by rule, PC  PC 
+ 1, but starts another program - Interrupt Service Program (ISP).

Operation von Neumann computer
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RESET

Read the instruction

Execute the instruction
and

PC  PC + 1

Jump to PSP

Interrupt?

No

Yes

Operation von Neumann computer

PC - the program counter

ISP - interrupt service program
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 Sequential instruction execution is slow and represents a basic

weakness of Von Neumann based computers.

 Extensions of the basic Von Neumann model are contained in the

Flynn‘s classification.

Operation von Neumann computer
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3.2  Flynn‘s classification

 This classification of computers into four groups suggested

M.J.Flynn in year 1966. The basic criteria in this classification are:

 The number of instructions that are executed at the same time 

(instruction stream)

 The number of operands that one instruction processes (data stream).

 Acording to these criteria every computer belongs to one of four 

classes:

 1 SISD (Single Instruction Single Data)

 classic Von Neumann computers without parallelism for instructions

and operands

 Intel Pentium 4
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 2  SIMD (Single Instruction Multiple Data)

 The real vector computers (parallel computers, graphics 

processors)

 Instructions SSE (Streaming SIMD Extensions) for x86 architecture

processors

 3 MISD (Multiple Instruction Single Data)

 Unusual architecture. More instructions on single operand - can be 

used where better robustness to errors is required .

 4 MIMD (Multiple Instruction Multiple Data)

 Multiprocessor computers (parallel computers)

 This group could also include multicore superscalar computers

(e.g. Intel Core i7) although they are generally attributed to SISD 

group because of limited number of cores.

Flynn classification
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 In MIMD computers, several instructions are executed

simultaneously, each on its operands.

 MIMD computer is formed from more common Von Neumann 

computers - more CPUs that are interconnected.

 Multicore computers are commonly attributed to SISD group, although

nowadays multi-core processors could be classified laos in SIMD or

MIMD groups.

Flynn classification
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Flynn classification

Case:

 SIMD Unit (Single Instruction Multiple Data)

For example, matrix multiplication: (ARM: NEON unit as a SIMD extension):

GPU: similar philosophy, is a 

broader concept
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Flynn classification

Examples: 

 4 MIMD (Multiple Instruction multiple Data)

Multiprocessor Multicomputers

(closely connected)                               (loosely connected)
CPE

Predpomnilnik

CPE

Predpomnilnik

CPE

Predpomnilnik

Povezovalna struktura

Pomnilnik V/I sistem

Skupne 

spremenljivke

CPE

Predpomnilnik

CPE

Predpomnilnik

CPE

Predpomnilnik

Povezovalna struktura

Pomnilnik Pomnilnik Pomnilnik

CPU CPU CPU

Cache Cache Cache

Interconnection

Memory I/O System

Common

variables
Interconnection

Cache Cache Cache

CPU CPU CPU

Memory Memory Memory
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3.3 Main Memory in Von Neumann based computer

 Definition

 Main memory is a passive device and serves for storage of 
instructions and operands.

 The basic cell in the memory is a memory cell which can store 1 bit of 
information (the content of 0 or 1).

 Memory word (memory location)

 The memory word is defined as the minimum number of bits that have 
their own address. Memory word is thus the smallest addressable unit 
of memory.

 The Memory is a one-dimensional sequence of memory words.

 The Memory word comprises a number of one-bit memory cells.

 The length of the memory word: the number of one-bit memory cells 
that make up the memory word. Nowadays, the most common word 
length is 1 byte (= 8 bits).
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 Memory Address

 It is a unique label for each memory word

 Each memory word has its own unique memory address.

 Address memory word is unchangeable.

 The number of bits that comprise the address, are denoted as 

Address Length.

 Title length of the address in bits determines an Address Space.

 Address Space (also a memory space)

 it is the set of all addresses

 And also determines the maximum memory size.

The main memory of the von Neumann computer
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 The content of the memory words can change. In an 8-bit 

memory word can be stored for 28 = 256 different content.

 The Address of memory word is unchangeable.

 The number of memory words in the main memory is not 

necessarily equal to the size of the address space.

 Parts of the address space may be empty (all addresses are not 

used)  main memory is usually smaller than the maximum size.

The main memory of the von Neumann computer
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5

0

1

2

3

4

b7 b6   b5   b4   b3   b2   b1  b0

MSB LSB

8-bit memory word

Memory Address

. . . . . . . . . . . . . .. .       .

0000 0000 0000 0000

0000 0000 0000 0001

0000 0000 0000 0010

0000 0000 0000 0011

0000 0000 0000 0100

0000 0000 0000 0101
.
.
.

Memory words

The main memory of the Von Neumann computer

16-bit memory address Decimal

8 bits
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main memory

0005

0000

0001

0002
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.
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memory words

Memory Address

. . . . . . . . . . . . . . . . . .. . .     

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .      . . . .      

Binary (16-bit address)         Hex Decimal

0000 0000 0000 0000

0000 0000 0000 0001

0000 0000 0000 0010

0000 0000 0000 0011

0000 0000 0000 0100

0000 0000 0000 0101

FFFF

FFFB

FFFC

FFFD

FFFE

1111 1111 1111 1011

1111 1111 1111 1100

1111 1111 1111 1101

1111 1111 1111 1110

1111 1111 1111 1111

.
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The prefixes kilo, mega, giga et al. are only in memory size

related to powers of 2!

 1K (kilo) = 210 = 1024 (1 KB = 1024 B)

 1M (mega) = 220 = 1,048,576 (1 MB = 1048576 B)

 1G (giga) = 230 = 1073741824 (1 GB = 1024 * 1024 * 1024 = 1073741 824 B)

 The reason is technological: eg. 10-bit memory address allows 210 = 1024 different 
addresses and not 1000 !

 Proposal of IEC 1998: KiB = 210 B, MiB = 220 B GiB = 230 B

 Other areas (frequency, transfer capacity ...)

 1k (kilo) = 103 = 1000 (1 km = 1000 m)

 1M (mega) = 106 = 1 000 000 (100 Mb / s = 100 000 000 b/ S)

 1G (giga) = 109 = 1,000,000,000 (1 GHz = 1000000000 Hz)
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For example, the image of memory (memory map) the processor 68HC11 - the processor has a 16-bit 

memory address

$0000

$00FF

$2000

$3FFF

$B600

$B7FF

$E000

$FFFF

0

255

8192

16383

256B

8KB

46592

47,03
512B

57344

65535

8KB

Address space:

216 = 64K addresses
The white parts of 

the address area 

are not used.

RAM 1

RAM 2

I / O registers

EPROM

The 16-bit memory address

1011 0110 0000 0000 =

1011 0111 1111 1111 =

1110 0000 0000 0000 = 

1111 1111 1111 1111 =

0000 0000 0000 0000 =

0000 0000 1111 1111 =

0010 0000 0000 0000 =

0011 1111 1111 1111 =

RAM - Random 

Access

memory

EPROM – read-only

memory
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An example of the memory on the processor ARM AT91SAM9260 (32-bit memory address)

256MB

2048MB

256MB

Address space:

232 = 4G titles

internal memory

32-bit address - 8 hex characters

Circuits and devices 

on the external bus

Internal I / O devices

0x00000000 0

0x0FFFFFFF 268435455

0x10000000 268435456

0x8FFFFFFF
2415919103

Offline address 

space

(Trap Abort)

1536MB

0x90000000
2415919104

0xEFFFFFFF
4026531839

0xF0000000 4026531840

0xFFFFFFFF 4294967295
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Picture of the internal memory (the first 256 MB) of AT91SAM9260

0x00504000

0x0FFFFFFF

32kB

4kB

16KB

256M Addresses =

262144K

Loadable memory 1MB 

= 1024KB

internal memory

Reserved 250,98MB

= 257008KB

0x00000000

10485760x00100000

0x00201000

1081344

2097152

0x00300000

0x00500000

2101248

5242880

5259264

32KB ROM

Reserved 992KB

4KB SRAM 0

Reserved 1020KB

4KB SRAM 1

Reserved 2044KB

UHP 16KB

0x00108000

0x00200000

0x00301000 3149824

3145728

4kB

SRAM - Random Access

UHP memory

ROM - Read Only 

Memory

Memory word

Is 1B (Byte)

SRAM - static RAM

UHP - USB Host Port
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Von Neumann bottleneck

 Transfers CPU  Main Memory – produce a lot of traffic

 Von Neumann‘s bottleneck – is the connection between the CPU 
and the main memory. All instructions are transferred from the
main memory to the CPU, and all operands are transferred in both
directions - from memory or in the memory.

 One way to extend this bottleneck, is the split of the main memory 
into two parts. 
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Extension of the Von Neumann bottleneck

CPU

instruction memory operand memory

operands

CPU

Memory

instructions and operands

instructions

and

operands

Princeton memory

architecture

Harvard memory architecture

von Neumann

bottleneck

instructions
solution
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 Memory in the Harvard architecture is divided into two separate 

memories.

 In one only operands are stored – „operand memory“, second only

includes instructions – „instruction memory“.

 Instruction and operand memories can operate simultaneously. 

Thus we can achieve double speed.

 Harvard architecture is used nowadays in cache memories at the 

lowest level (separate operand and instruction L1 caches), but the 

main memory of most computers is usually uniform (Princeton

architecture).

Princeton and Harvard architecture
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Access to memory

 CPU accesses to memory word by first sending its address to the
memory and the signal that determines the direction of transfer.

 The direction of transfer - type of access

 CPU  main memory - reading (read access)

 CPU  main memory - write (write access)
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Interconnection CPU <-> main memory?

Bus = group of lines

(Address, Data, Control

buses)

Main memory

CPU

Control 
signals

Program 
counter/add

ress reg.

Instruction/da
ta register

Control unit

Data 
signals

Address 
signals

Line = physical connection
Signal = content transferred over the line (1bit)
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The connection between the CPU and main memory

- read access

Data

signals

Data register

CPE

address registerAddress register Data register

Control unit

Control signal -

- read

0 1 0 1 0 1 0 1

Main memory

Address

signals

0 1 0 1 0 1 0 1
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The connection between the CPU and main memory

- write access

Data

signals

CPE

address registerAddress register Data register

Control unit

Control signal -

- write

Main memory

Address

signals

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

Data register
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 Memory is one-dimensional and organized as a sequence of 
words. Each word has its own, unique address.

 There is no difference between instructions and operands in 
memory.

 Type or description is not included in operands.

 More read than write accesses,

 Ratio: approximately 80% are read (R), 

20% are write accesses (W)

 Why?

Summary of the memory properties in Von Neumann 

computer

PROGRAM

LDR R1,STEV1

LDR R2,STEV2

ADD R3,R2,R1

STR R3,REZ

2R

2R

1R

1R1W

example 

program
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The combination of 8 bits in the memory,

eg. 1000 1011, can represent:

 Unsigned: 139 (decimal)
or

 number with sign: - 11 (decimal)
or

 Extended ASCII character :       <
or

 Hardware instruction: ADDA (op.code of the machine instruction

for processor 68HC11)
or

 memory address 139 (decimal)
or

 combination of bits
or

 point in image (pixel), audio sample,  . . .
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3.4 Amdahl‘s law (1967)

 G.M. Amdahl was one of the architects of the famous family of 
computers IBM 370

 If the computer speeds up all operations by a factor N (N-times), 
except the relative f-part of all operations, then increase in the
speed of entire computer S(N) is

S (N) = Increase in the speed of the entire system

N = a scaling factor of the speed of (1 - f) portion of operations

f = portion of operations, which are not accelerated

1 - f = fraction of operations that are N times accelerated

fN

N

N

f
f

NS








)1(11

1
)(

f - the portion of operations that are not accelerated !
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Case 1:

 Implementation of programs on a computer would like to be 

accelerated so that the single-core processor is replaced with eight-

core CPU (8 CPUs operating in parallel).

 How much faster will software run, if only 60% of the programs can

be performed in parallel?

Amdahlov law
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 N = 8  (part of the programs can be performed eight times faster)

 1 - f = 0.6, the proportion of the programs that have 8-fold speed up;   

 f = 0.4, the proportion of the programs which are not sped up (40% of the programs

can not be executed in parrallel)

 S (N) speed up the whole SW (all programs)

 The speed of all programs will be increased by a factor of 2.1

(2.1 times).

 If the programs were executed before the replacement 100 seconds, will 

be then executed in 47.6 seconds (100 / 2.1 = 47.6) on 8-core CPU.

Amdahlov law

1,2
8,21

8

4,0)18(1

8
)( 





NS

f = 0.4 1-f = 0.6

acceleration by 8x (0.6/8=0.075)

before

after f = 0.4
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Case 2:

 Execution of the program on a computer would like to accelerated so 

that the 90% of all instructions will be executed two times faster. 

 How many times faster will run the program on this computer?

S(N)=?

Amdahlov law

f = 0.1

f = 0.1

1-f = 0.9

acceleration by 2x (half-time)

before

then
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Case 2:

 Execution of the program on a computer would like to accelerated so 

that the 90% of all instructions will be executed two times faster. 

 How many times faster will run the program on this computer?

𝑆 𝑁 =
1

0.1 +
0.9
2

=
1

0.1 + 0.45
=

1

0.55
= 1.818181

 Speed of the program execution is increased by a factor of 1.82.

Amdahlov law

f = 0.1

f = 0.1

1-f = 0.9

acceleration by 2x (half-time)

before

then
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Case/Amdahl‘s rules

 Resulting in the development of the IBM 370. Computer is well 
designed (balanced), if they meet the requirements of two rules:

 First Case/Amdahl‘s rule: the size of main memory in bytes must be 
at least equal to the number of instructions that the CPU can execute in 
one second.

 Second Case/Amdahl‘s rule: Performance of the I/O system in bits 
per second must be at least equal to the number of instructions that the 
CPU can execute in one second.
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3.5 Languages, Levels and Virtual computers

 For the vast majority of users, the details of the structure and 
operation of computers are insignificant.

 Computer and its features are seen mostly through the features of 
the programming language that you use.

 A programming language can be realized in a wide variety of 
computers, this means that different computers for a user who uses 
the same programming language look more or less the same.
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The computer as a series of virtual computers

 The vast majority of today's computers have 6 levels.

 At each level we see a computer through a different computer 
programming language. 

 This programming language can be represented as the „machine
language of a certain virtual machine“.

 At the lowest level (level 0) Electronics (logic gates and flip-flops)  
directly executes the simplest (machine) instructions. 
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A computer with six levels

Assembly language

(assembler)

Operating system

Usual Machine lang. (ISA)

Digital electronics

Micro-program language

Higher programming languagelevel 5

level 4

level 3

level 2

level 1

level 0

The usual boundaries between

the physical and software part 

of the computer

(between hardware and software)

ISA = Instruction Set Architecture
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 Level 1 can be seen in many of today's computers. RISC 

computers don‘t have first level.

 Each instruction of „usual“ machine language is executed as a 

sequence of micro instructions - computer, which operate in this

manner (with level 1) are denoted as micro-programmed.

 For these computers, micro-program language is actually the real 

machine language.

 Since at the beginning of the computers, this level was invisible to the 

user, the term „machine language“ is usually used for the level 2.

 Micro-program on level 1 is written by the manufacturer of the CPU and

actually defines the usual machine language. Usually, it can not be 

changed by the user.

Language levels and virtual computers
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 The user sees the computer on the level 2 through the use of 

conventional machine instructions, which form the conventional 

machine language.

 Computer architecture is determined by the structure and properties of 

the computer, as seen by the programmer at this level.

 Therefore, the name of the ISA - Instruction Set Architecture.

 With the conventional machine language programmer has full control 

over all parts of the computer.

 At early stages of evolution, the computers didn‘t have higher levels, 

and programming took place only in the normal machine language.

Language levels and virtual computers
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 Level 3 is the level of the operating system.

 Language at this level contains all the instructions of Level 2, with the 

addition of new instructions to better control the computer (eg. 

operations with I/O devices, parallel execution of programs, diagnostic

instructions).

 The operating system is a program that facilitates computer work and 

serves as an interface between the user and the computer hardware.

 With operating system we want to achieve:

 easier work

 better utilization of hardware capabilities of the computer (do more work in  

given time).

Language levels and virtual computers
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 The functions of the operating system could be implemented in the

hardware Level 2, but is currently more economical to do it in 

software (multiple operating systems, upgrade...).

 At this level, we usually divide users with different rights to use the

instructions.

 Some instructions in Level 2 are in level 3 inaccessible (available only 

to system programmers) to normal users .

 For most of today's programmers is level 3 the lowest level at which 

they can work. 

Language levels and virtual computers
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 At level 4 user can see the computer through the assembly

language.

 Assembly language is only symbolic form, closer to humans, of 

language on Level 3 (and thus the Level 2).

 Programs in assembly language must be translated before the

execution to the language on Level 3 (or 2).

 Level 5 is formed of higher programming languages, which are 

designed to majority of computer programmers.

 This are, for example, C, C#, C++, Java, Python, BASIC, FORTRAN, 

COBOL, and many others.

 Programs written in these languages ​​must be translated to the 

language on Level 4 or Level 3.

Language levels and virtual computers
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 Regarding computers, we can establish also higher levels, e.g. 

programs for AI, databases, …

 Each level can be thought of as a virtual computer that has own

„machine language“ as the language of this level. Therefore, a 

typical user at higher levels doesn‘t need to know the details

about actual „machine level“. 

 However, it is mandatory that programs written in any higher level

language (for coresponding virtual machine) are converted into a 

sequence of machine language instructions.

 Users don‘t need to be fully aware of this translation, providers of 

HW and SW products must ensure the tools for translation from

one language to another. 

Language levels and virtual computers
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 The mechanism of transition from one language to another can be 

realized in two ways:

 Translation (or compilation)

 Interpretation.

 After 1990, an intermediate solution emerged:

 partial translation (compilation).

 The main difference between translation (compilation) and

interpretation is that in interpretation, the translated (compiled) 

program does not exist.

Language levels and virtual computers
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Transition from the language L2 into the language L1

Program in 

L2 language

Translate

L2 → L1

Program in 

language L1
Execution

Translation (compilation)

Program in

L2 language

Interpreter

L2 → L1

Source program

Interpretation

Source program

Each instruction of the language L2 is 

simultaneously translated into the

instructions in language L1 

and executed

(No translated program!)

Language levels and virtual computers

Translated program
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 Compiled programs work only on the computer with machine language 

in which they were translated.

 Before transferring to another computer (using a different machine 

language L1a) we should recompile the source code of a program.

 By integrating a large number of different computers on the

network, the portability of programs enabled by interpretation, has

become very important.

 Partial translation is an intermediate solution between the
interpretation and translation, which enables faster interpretation
on target machine.

Language levels and virtual computers
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 Partial translation: Source language program in L2 is translated 

into an intermediate language program in L1, and then L1 program 

is interpreted on a target machine. 

 Partial translation in the intermediate language L1 allows faster

interpretation, but is still typically 10 times slower than full

implementation of the program translation (compilation).

 Despite this, it still allows portability of programs at a significantly 

lower loss of speed than if we used the interpretation only.

Language levels and virtual computers
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 Practical case of virtual machine: JVM (Java Virtual Machine)

 Virtual Machine - VM (Virtual Machine) is a software implementation of 
the machine (computer), operating (running programs) like a real 
machine (computer).

 Java programs are executed so, that they are first translated (partial 
translation) in an intermediate language (Java byte code), which is 
interpreted by the program JVM on a target machine.

Language levels and virtual computers
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Computer with six levels (Micro-programmed)

Assembly language

(assembler)

Operating system

Usual machine language (ISA)

Digital electronics

Micro-program language

Translation (compiler)

Translation (Assembler)

Partial interpretation (operating system)

Interpretation (Micro-program)

Interpretation

Higher programming lang.Level 5

Level 4

Level 3

Level 2

Level 1

Level 0
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Assembly language

(assembler)

Operating system

Usual machine language (ISA)

Digital electronics

Translation (compiler)

Translation (Assembler)

Partial interpretation (operating system)

Interpretation

Higher programming lang.Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

Computer with five levels (RISC computer)

Instructions execution in HW
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Hardware and software on computer

 The boundary between hardware and software of the computer is 
not solid - it can be moved.

 Each of the levels can be realized in both hardware and software 
way.

 Level 2 for example: It can be realized with a program running on 
another computer.

Hardware and software are logically equivalent.
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 Each operation carried out by the software can be realized as 

hardware directly.

 Also, each machine instruction, executed by hardware, can also be 

simulated with the program.

 Evolution of multi-level computing machines

 Invention of Micro-programming (1951)

 Invention of Operating system (OS) (around 1960)

 Moving functionality in Micro-programs (around 1970)

 Abandonment of Micro-programming (after 1984)

 Today usually the combination of: 

 the complex instructions at normal machine level are realized in 

micro-program (software), simpler instructions are realized in 

hardware.

Hardware and software
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An example of adding two numbers:

rez: = stev1 + stev2

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

3.6 Example of program execution on the computer
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Case execution of program

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

#0

Instruction STEP Comment

Initial state

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

REGISTER CONTENT

R0

R1

R2

R3

...

R15 PC = 0x2C
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WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

LDR R1, STEV1 FETCH Reading 1 instruction

#1

0x2C

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0xE51F1014

Read ->

REGISTER CONTENT

R0

R1

R2

R3

...

R15 PC = 0x2C

PC

IR

Case execution of program
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WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

REGISTER CONTENT

R0

R1 0x00000040

R2

R3

...

R15 PC = 0x30

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

LDR R1, STEV1 EXECUTE Reading operand STEV1 in R1

#2

0x20

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0x00000040

Read ->

STEV1

R1

Case execution of program
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WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

LDR R2, STEV2 FETCH Reading 2. instruction

#3

0x30

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0xE51F2014

Read ->

REGISTER CONTENT

R0

R1 0x00000040

R2

R3

...

R15 PC = 0x30

PC

IR

Case execution of program
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WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

LDR R2, STEV2 EXECUTE Reading operand STEV2 in R2

#4

0x24

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0x00000010

Read ->

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3

...

R15 PC = 0x34

STEV2

R2

Case execution of program
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WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

ADD R3, R2, R1 FETCH Reading 3. instruction

#5

0x34

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0xE0823001

Read ->

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3

...

R15 PC = 0x34

PC

IR

Case execution of program
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WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

ADD R3, R2, R1 EXECUTE ALU: R3 <- R2 + R1 (sum)

#6
Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3 0x00000050

...

R15 PC = 0x38

R1

R2
+ R3

Case execution of program
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WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

STR R3, REZ FETCH Reading 4. instruction

#7

0x38

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0xE50F3018

Read ->

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3 0x00000050

...

R15 PC = 0x38

PC

IR

Case execution of program



RA - 3 70 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0x50 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

STR R3, REZ EXECUTE Storing R3 in M​[REZ]

#8

0x28

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

0x00000050 ->

Write ->

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3 0x00000050

...

R15 PC = 0x3C

REZ

R3

Case execution of program
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WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0x50 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

? FETCH Final state?

#9
Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3 0x00000050

...

R15 PC = 0x3C

Case execution of program
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CPU BUSes MEMORY

Descripti

on

CPU Address Data Control Memory Descripti

on

Comment

Case execution of program: Execution table (fill in for exercise) 


