
RA - 3 © 2021, Rozman, Škraba, FRI

COMPUTER

ARCHITECTURE

3 Basic principles of computing

RA - 3 2 © 2021, Rozman, Škraba, FRI

3 Basic principles of computing - content

 von Neumann computer model
 von Neumann computer model

 Operation von Neumann computer

 Flynn‘s classification

 The main memory in von Neumann computer
 Memory word (location)

 memory address

 address space

 The content of the memory word

 Princeton and Harvard memory architecture

 Access to memory

 Amdahl‘s law

 Languages, levels and virtual computers
 The computer as a series of virtual computers

 Transition from the language L2 into the language L1

 Hardware and software of the computer

 Case: Execution of the program on the computer

Basic principles of computing - content

RA - 3 3 © 2021, Rozman, Škraba, FRI

3.1 Von Neumann computer model

 It consists of three basic parts:

 CPU (Central Processing Unit)

 Main Memory

 Input-Output (I/O) system

 It is the machine with a stored program in the main memory.
Instructions in the program specify what the machine will do.

 The program leads the machine operation - program determines
how the machine will work.

 CPU takes instructions from the main memory and execute them
one after the other.

RA - 3 4 © 2021, Rozman, Škraba, FRI

Main Memory

Instructions

and

Operands

Input-Output system

Control unit

ALU

Registers

instructions

operands

CPU

Operation of Von Neumann computer

Von Neumann computer model

CPU - Central Processing Unit

ALU - Arithmetic Logic Unit

RA - 3 5 © 2021, Rozman, Škraba, FRI

 CPU reads instructions from the main memory and executes them.

In today's computers, in addition to the main, there are even more

processors, thus we denote main processor as the Central

Processing Unit. It consists of three parts:

 Control Unit – fetches the instructions & operands, and activates

operations set by instructions.

 ALU – performs arithmetic operations (addition, ...)

and logic operations (AND, ...).

 REGISTERS - a number of connected memory cells which serve to

store values.

 Program Inaccessible registers - necessary for the operation of the CPU.

 Program Accessible registers (architectural registers) for storing operands -

a small and fast memory in the CPU.

Von Neumann computing model

RA - 3 6 © 2021, Rozman, Škraba, FRI

 Main Memory is made up of memory words (locations). Each

memory word has its own unique address.

 It stores instructions and operands.

 Identification „main“ again serves to distinguish it from other memory

devices in today's computers (caches, virtual memory).

 I/O system serves for the transfer of information to the outside

world or from the outside world. Information from the CPU and

main memory is stored in a format that is not accessible to the

outside world.

 An integral part of the I/O system are the input-output devices, which

transform the information into another form which is suitable for the

user or represent an auxiliary (secondary) memory.

Von Neumann computing model

RA - 3 7 © 2021, Rozman, Škraba, FRI

Operation of Von Neumann computer

 Its operation is completely controlled by instructions (machine

instructions), that are read by the CPU from the main memory in a

order one after the other.

 Machine instructions are stored in the memory one after the other

by increasing addresses.

 There has to be a deterministic procedure how to start: First

instruction is usually read from certain address in memory, after

the computer is turned on or pressing the RESET button.

 The easiest way: the first or last memory location - the lowest or the highest

address in the memory.

RA - 3 8 © 2021, Rozman, Škraba, FRI

For each instruction we distinguish two steps

 1. step: Read instruction from the memory (FETCH)

- instruction fetch cycle

 The CPU includes the special register - the program counter (PC - Program
counter) that always contains a memory address of the next instruction to be
read and executed.

 2. Step: Execution of the fetched instruction (EXECUTE)

- Execute cycle

Operation of Von Neumann computer

RA - 3 9 © 2021, Rozman, Škraba, FRI

 Each instruction contains two types of information:

 information about the operation to be executed,

 information on the operands, over which the operation is executed.

 CPU executes the operation, and ensure that the PC includes the
address of the next instruction by increasing the content of the PC
by 1.

 Rule: instructions are stored in memory by increasing addresses
so PC  PC + 1. This rule is the result of an agreement and
specifies the order in which the instructions are usually executed.

Operation of Von Neumann computer

RA - 3 10 © 2021, Rozman, Škraba, FRI

RESET

Read the instruction

Execute the instruction
and

PC  PC + 1

Operation of Von Neumann computer

step 1

step 2

FETCH

EXECUTE

RA - 3 11 © Igor Škraba, FRI

Upon completion of Step 2, the CPU starts again with first step.

These two steps are repeated until the computer runs.

 Exception 1: Jump instructions, which can write in PC other
address thna PC+1.

 Exception 2: Interrupt or trap

CPU after step 2 does not fetch next instruction by rule, PC  PC
+ 1, but starts another program - Interrupt Service Program (ISP).

Operation von Neumann computer

RA - 3 12 © 2021, Rozman, Škraba, FRI

RESET

Read the instruction

Execute the instruction
and

PC  PC + 1

Jump to PSP

Interrupt?

No

Yes

Operation von Neumann computer

PC - the program counter

ISP - interrupt service program

RA - 3 13 © 2021, Rozman, Škraba, FRI

 Sequential instruction execution is slow and represents a basic

weakness of Von Neumann based computers.

 Extensions of the basic Von Neumann model are contained in the

Flynn‘s classification.

Operation von Neumann computer

RA - 3 14 © 2021, Rozman, Škraba, FRI

3.2 Flynn‘s classification

 This classification of computers into four groups suggested

M.J.Flynn in year 1966. The basic criteria in this classification are:

 The number of instructions that are executed at the same time

(instruction stream)

 The number of operands that one instruction processes (data stream).

 Acording to these criteria every computer belongs to one of four

classes:

 1 SISD (Single Instruction Single Data)

 classic Von Neumann computers without parallelism for instructions

and operands

 Intel Pentium 4

RA - 3 15 © 2021, Rozman, Škraba, FRI

 2 SIMD (Single Instruction Multiple Data)

 The real vector computers (parallel computers, graphics

processors)

 Instructions SSE (Streaming SIMD Extensions) for x86 architecture

processors

 3 MISD (Multiple Instruction Single Data)

 Unusual architecture. More instructions on single operand - can be

used where better robustness to errors is required .

 4 MIMD (Multiple Instruction Multiple Data)

 Multiprocessor computers (parallel computers)

 This group could also include multicore superscalar computers

(e.g. Intel Core i7) although they are generally attributed to SISD

group because of limited number of cores.

Flynn classification

RA - 3 16 © 2021, Rozman, Škraba, FRI

 In MIMD computers, several instructions are executed

simultaneously, each on its operands.

 MIMD computer is formed from more common Von Neumann

computers - more CPUs that are interconnected.

 Multicore computers are commonly attributed to SISD group, although

nowadays multi-core processors could be classified laos in SIMD or

MIMD groups.

Flynn classification

RA - 3 17 © 2021, Rozman, Škraba, FRI

Flynn classification

Case:

 SIMD Unit (Single Instruction Multiple Data)

For example, matrix multiplication: (ARM: NEON unit as a SIMD extension):

GPU: similar philosophy, is a

broader concept

RA - 3 18 © 2021, Rozman, Škraba, FRI

Flynn classification

Examples:

 4 MIMD (Multiple Instruction multiple Data)

Multiprocessor Multicomputers

(closely connected) (loosely connected)
CPE

Predpomnilnik

CPE

Predpomnilnik

CPE

Predpomnilnik

Povezovalna struktura

Pomnilnik V/I sistem

Skupne

spremenljivke

CPE

Predpomnilnik

CPE

Predpomnilnik

CPE

Predpomnilnik

Povezovalna struktura

Pomnilnik Pomnilnik Pomnilnik

CPU CPU CPU

Cache Cache Cache

Interconnection

Memory I/O System

Common

variables
Interconnection

Cache Cache Cache

CPU CPU CPU

Memory Memory Memory

RA - 3 19 © 2021, Rozman, Škraba, FRI

3.3 Main Memory in Von Neumann based computer

 Definition

 Main memory is a passive device and serves for storage of
instructions and operands.

 The basic cell in the memory is a memory cell which can store 1 bit of
information (the content of 0 or 1).

 Memory word (memory location)

 The memory word is defined as the minimum number of bits that have
their own address. Memory word is thus the smallest addressable unit
of memory.

 The Memory is a one-dimensional sequence of memory words.

 The Memory word comprises a number of one-bit memory cells.

 The length of the memory word: the number of one-bit memory cells
that make up the memory word. Nowadays, the most common word
length is 1 byte (= 8 bits).

RA - 3 20 © 2021, Rozman, Škraba, FRI

 Memory Address

 It is a unique label for each memory word

 Each memory word has its own unique memory address.

 Address memory word is unchangeable.

 The number of bits that comprise the address, are denoted as

Address Length.

 Title length of the address in bits determines an Address Space.

 Address Space (also a memory space)

 it is the set of all addresses

 And also determines the maximum memory size.

The main memory of the von Neumann computer

RA - 3 21 © 2021, Rozman, Škraba, FRI

 The content of the memory words can change. In an 8-bit

memory word can be stored for 28 = 256 different content.

 The Address of memory word is unchangeable.

 The number of memory words in the main memory is not

necessarily equal to the size of the address space.

 Parts of the address space may be empty (all addresses are not

used)  main memory is usually smaller than the maximum size.

The main memory of the von Neumann computer

RA - 3 22 © 2021, Rozman, Škraba, FRI

5

0

1

2

3

4

b7 b6 b5 b4 b3 b2 b1 b0

MSB LSB

8-bit memory word

Memory Address

.

0000 0000 0000 0000

0000 0000 0000 0001

0000 0000 0000 0010

0000 0000 0000 0011

0000 0000 0000 0100

0000 0000 0000 0101
.
.
.

Memory words

The main memory of the Von Neumann computer

16-bit memory address Decimal

8 bits

RA - 3 23 © 2021, Rozman, Škraba, FRI

main memory

0005

0000

0001

0002

0003

0004

.

.

.

memory words

Memory Address

.

. .

.

Binary (16-bit address) Hex Decimal

0000 0000 0000 0000

0000 0000 0000 0001

0000 0000 0000 0010

0000 0000 0000 0011

0000 0000 0000 0100

0000 0000 0000 0101

FFFF

FFFB

FFFC

FFFD

FFFE

1111 1111 1111 1011

1111 1111 1111 1100

1111 1111 1111 1101

1111 1111 1111 1110

1111 1111 1111 1111

.

5

0

1

2

3

4

65531

65532

65533

65534

65535

6
4
 K

 (
=

 2
1
6
)

o
f

M
e
m

o
ry

w
o
rd

s

RA - 3 24 © 2021, Rozman, Škraba, FRI

The prefixes kilo, mega, giga et al. are only in memory size

related to powers of 2!

 1K (kilo) = 210 = 1024 (1 KB = 1024 B)

 1M (mega) = 220 = 1,048,576 (1 MB = 1048576 B)

 1G (giga) = 230 = 1073741824 (1 GB = 1024 * 1024 * 1024 = 1073741 824 B)

 The reason is technological: eg. 10-bit memory address allows 210 = 1024 different
addresses and not 1000 !

 Proposal of IEC 1998: KiB = 210 B, MiB = 220 B GiB = 230 B

 Other areas (frequency, transfer capacity ...)

 1k (kilo) = 103 = 1000 (1 km = 1000 m)

 1M (mega) = 106 = 1 000 000 (100 Mb / s = 100 000 000 b/ S)

 1G (giga) = 109 = 1,000,000,000 (1 GHz = 1000000000 Hz)

RA - 3 25 © 2021, Rozman, Škraba, FRI

For example, the image of memory (memory map) the processor 68HC11 - the processor has a 16-bit

memory address

$0000

$00FF

$2000

$3FFF

$B600

$B7FF

$E000

$FFFF

0

255

8192

16383

256B

8KB

46592

47,03
512B

57344

65535

8KB

Address space:

216 = 64K addresses
The white parts of

the address area

are not used.

RAM 1

RAM 2

I / O registers

EPROM

The 16-bit memory address

1011 0110 0000 0000 =

1011 0111 1111 1111 =

1110 0000 0000 0000 =

1111 1111 1111 1111 =

0000 0000 0000 0000 =

0000 0000 1111 1111 =

0010 0000 0000 0000 =

0011 1111 1111 1111 =

RAM - Random

Access

memory

EPROM – read-only

memory

RA - 3 26 © 2021, Rozman, Škraba, FRI

An example of the memory on the processor ARM AT91SAM9260 (32-bit memory address)

256MB

2048MB

256MB

Address space:

232 = 4G titles

internal memory

32-bit address - 8 hex characters

Circuits and devices

on the external bus

Internal I / O devices

0x00000000 0

0x0FFFFFFF 268435455

0x10000000 268435456

0x8FFFFFFF
2415919103

Offline address

space

(Trap Abort)

1536MB

0x90000000
2415919104

0xEFFFFFFF
4026531839

0xF0000000 4026531840

0xFFFFFFFF 4294967295

RA - 3 27 © 2021, Rozman, Škraba, FRI

Picture of the internal memory (the first 256 MB) of AT91SAM9260

0x00504000

0x0FFFFFFF

32kB

4kB

16KB

256M Addresses =

262144K

Loadable memory 1MB

= 1024KB

internal memory

Reserved 250,98MB

= 257008KB

0x00000000

10485760x00100000

0x00201000

1081344

2097152

0x00300000

0x00500000

2101248

5242880

5259264

32KB ROM

Reserved 992KB

4KB SRAM 0

Reserved 1020KB

4KB SRAM 1

Reserved 2044KB

UHP 16KB

0x00108000

0x00200000

0x00301000 3149824

3145728

4kB

SRAM - Random Access

UHP memory

ROM - Read Only

Memory

Memory word

Is 1B (Byte)

SRAM - static RAM

UHP - USB Host Port

RA - 3 28 © 2021, Rozman, Škraba, FRI

Von Neumann bottleneck

 Transfers CPU  Main Memory – produce a lot of traffic

 Von Neumann‘s bottleneck – is the connection between the CPU
and the main memory. All instructions are transferred from the
main memory to the CPU, and all operands are transferred in both
directions - from memory or in the memory.

 One way to extend this bottleneck, is the split of the main memory
into two parts.

RA - 3 29 © 2021, Rozman, Škraba, FRI

Extension of the Von Neumann bottleneck

CPU

instruction memory operand memory

operands

CPU

Memory

instructions and operands

instructions

and

operands

Princeton memory

architecture

Harvard memory architecture

von Neumann

bottleneck

instructions
solution

RA - 3 30 © 2021, Rozman, Škraba, FRI

 Memory in the Harvard architecture is divided into two separate

memories.

 In one only operands are stored – „operand memory“, second only

includes instructions – „instruction memory“.

 Instruction and operand memories can operate simultaneously.

Thus we can achieve double speed.

 Harvard architecture is used nowadays in cache memories at the

lowest level (separate operand and instruction L1 caches), but the

main memory of most computers is usually uniform (Princeton

architecture).

Princeton and Harvard architecture

RA - 3 31 © 2021, Rozman, Škraba, FRI

Access to memory

 CPU accesses to memory word by first sending its address to the
memory and the signal that determines the direction of transfer.

 The direction of transfer - type of access

 CPU  main memory - reading (read access)

 CPU  main memory - write (write access)

RA - 3 32 © 2021, Rozman, Škraba, FRI

Interconnection CPU <-> main memory?

Bus = group of lines

(Address, Data, Control

buses)

Main memory

CPU

Control
signals

Program
counter/add

ress reg.

Instruction/da
ta register

Control unit

Data
signals

Address
signals

Line = physical connection
Signal = content transferred over the line (1bit)

RA - 3 33 © 2021, Rozman, Škraba, FRI

The connection between the CPU and main memory

- read access

Data

signals

Data register

CPE

address registerAddress register Data register

Control unit

Control signal -

- read

0 1 0 1 0 1 0 1

Main memory

Address

signals

0 1 0 1 0 1 0 1

RA - 3 34 © 2021, Rozman, Škraba, FRI

The connection between the CPU and main memory

- write access

Data

signals

CPE

address registerAddress register Data register

Control unit

Control signal -

- write

Main memory

Address

signals

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

Data register

RA - 3 35 © 2021, Rozman, Škraba, FRI

 Memory is one-dimensional and organized as a sequence of
words. Each word has its own, unique address.

 There is no difference between instructions and operands in
memory.

 Type or description is not included in operands.

 More read than write accesses,

 Ratio: approximately 80% are read (R),

20% are write accesses (W)

 Why?

Summary of the memory properties in Von Neumann

computer

PROGRAM

LDR R1,STEV1

LDR R2,STEV2

ADD R3,R2,R1

STR R3,REZ

2R

2R

1R

1R1W

example

program

RA - 3 36 © 2021, Rozman, Škraba, FRI

The combination of 8 bits in the memory,

eg. 1000 1011, can represent:

 Unsigned: 139 (decimal)
or

 number with sign: - 11 (decimal)
or

 Extended ASCII character : <
or

 Hardware instruction: ADDA (op.code of the machine instruction

for processor 68HC11)
or

 memory address 139 (decimal)
or

 combination of bits
or

 point in image (pixel), audio sample, . . .

RA - 3 37 © 2021, Rozman, Škraba, FRI

3.4 Amdahl‘s law (1967)

 G.M. Amdahl was one of the architects of the famous family of
computers IBM 370

 If the computer speeds up all operations by a factor N (N-times),
except the relative f-part of all operations, then increase in the
speed of entire computer S(N) is

S (N) = Increase in the speed of the entire system

N = a scaling factor of the speed of (1 - f) portion of operations

f = portion of operations, which are not accelerated

1 - f = fraction of operations that are N times accelerated

fN

N

N

f
f

NS








)1(11

1
)(

f - the portion of operations that are not accelerated !

RA - 3 38 © 2021, Rozman, Škraba, FRI

Case 1:

 Implementation of programs on a computer would like to be

accelerated so that the single-core processor is replaced with eight-

core CPU (8 CPUs operating in parallel).

 How much faster will software run, if only 60% of the programs can

be performed in parallel?

Amdahlov law

RA - 3 39 © 2021, Rozman, Škraba, FRI

 N = 8 (part of the programs can be performed eight times faster)

 1 - f = 0.6, the proportion of the programs that have 8-fold speed up;

 f = 0.4, the proportion of the programs which are not sped up (40% of the programs

can not be executed in parrallel)

 S (N) speed up the whole SW (all programs)

 The speed of all programs will be increased by a factor of 2.1

(2.1 times).

 If the programs were executed before the replacement 100 seconds, will

be then executed in 47.6 seconds (100 / 2.1 = 47.6) on 8-core CPU.

Amdahlov law

1,2
8,21

8

4,0)18(1

8
)(





NS

f = 0.4 1-f = 0.6

acceleration by 8x (0.6/8=0.075)

before

after f = 0.4

RA - 3 40 © 2021, Rozman, Škraba, FRI

Case 2:

 Execution of the program on a computer would like to accelerated so

that the 90% of all instructions will be executed two times faster.

 How many times faster will run the program on this computer?

S(N)=?

Amdahlov law

f = 0.1

f = 0.1

1-f = 0.9

acceleration by 2x (half-time)

before

then

RA - 3 41 © 2021, Rozman, Škraba, FRI

Case 2:

 Execution of the program on a computer would like to accelerated so

that the 90% of all instructions will be executed two times faster.

 How many times faster will run the program on this computer?

𝑆 𝑁 =
1

0.1 +
0.9
2

=
1

0.1 + 0.45
=

1

0.55
= 1.818181

 Speed of the program execution is increased by a factor of 1.82.

Amdahlov law

f = 0.1

f = 0.1

1-f = 0.9

acceleration by 2x (half-time)

before

then

RA - 3 42 © 2021, Rozman, Škraba, FRI

Case/Amdahl‘s rules

 Resulting in the development of the IBM 370. Computer is well
designed (balanced), if they meet the requirements of two rules:

 First Case/Amdahl‘s rule: the size of main memory in bytes must be
at least equal to the number of instructions that the CPU can execute in
one second.

 Second Case/Amdahl‘s rule: Performance of the I/O system in bits
per second must be at least equal to the number of instructions that the
CPU can execute in one second.

RA - 3 43 © 2021, Rozman, Škraba, FRI

3.5 Languages, Levels and Virtual computers

 For the vast majority of users, the details of the structure and
operation of computers are insignificant.

 Computer and its features are seen mostly through the features of
the programming language that you use.

 A programming language can be realized in a wide variety of
computers, this means that different computers for a user who uses
the same programming language look more or less the same.

RA - 3 44 © 2021, Rozman, Škraba, FRI

The computer as a series of virtual computers

 The vast majority of today's computers have 6 levels.

 At each level we see a computer through a different computer
programming language.

 This programming language can be represented as the „machine
language of a certain virtual machine“.

 At the lowest level (level 0) Electronics (logic gates and flip-flops)
directly executes the simplest (machine) instructions.

RA - 3 45 © 2021, Rozman, Škraba, FRI

A computer with six levels

Assembly language

(assembler)

Operating system

Usual Machine lang. (ISA)

Digital electronics

Micro-program language

Higher programming languagelevel 5

level 4

level 3

level 2

level 1

level 0

The usual boundaries between

the physical and software part

of the computer

(between hardware and software)

ISA = Instruction Set Architecture

RA - 3 46 © 2021, Rozman, Škraba, FRI

 Level 1 can be seen in many of today's computers. RISC

computers don‘t have first level.

 Each instruction of „usual“ machine language is executed as a

sequence of micro instructions - computer, which operate in this

manner (with level 1) are denoted as micro-programmed.

 For these computers, micro-program language is actually the real

machine language.

 Since at the beginning of the computers, this level was invisible to the

user, the term „machine language“ is usually used for the level 2.

 Micro-program on level 1 is written by the manufacturer of the CPU and

actually defines the usual machine language. Usually, it can not be

changed by the user.

Language levels and virtual computers

RA - 3 47 © 2021, Rozman, Škraba, FRI

 The user sees the computer on the level 2 through the use of

conventional machine instructions, which form the conventional

machine language.

 Computer architecture is determined by the structure and properties of

the computer, as seen by the programmer at this level.

 Therefore, the name of the ISA - Instruction Set Architecture.

 With the conventional machine language programmer has full control

over all parts of the computer.

 At early stages of evolution, the computers didn‘t have higher levels,

and programming took place only in the normal machine language.

Language levels and virtual computers

RA - 3 48 © 2021, Rozman, Škraba, FRI

 Level 3 is the level of the operating system.

 Language at this level contains all the instructions of Level 2, with the

addition of new instructions to better control the computer (eg.

operations with I/O devices, parallel execution of programs, diagnostic

instructions).

 The operating system is a program that facilitates computer work and

serves as an interface between the user and the computer hardware.

 With operating system we want to achieve:

 easier work

 better utilization of hardware capabilities of the computer (do more work in

given time).

Language levels and virtual computers

RA - 3 49 © 2021, Rozman, Škraba, FRI

 The functions of the operating system could be implemented in the

hardware Level 2, but is currently more economical to do it in

software (multiple operating systems, upgrade...).

 At this level, we usually divide users with different rights to use the

instructions.

 Some instructions in Level 2 are in level 3 inaccessible (available only

to system programmers) to normal users .

 For most of today's programmers is level 3 the lowest level at which

they can work.

Language levels and virtual computers

RA - 3 50 © 2021, Rozman, Škraba, FRI

 At level 4 user can see the computer through the assembly

language.

 Assembly language is only symbolic form, closer to humans, of

language on Level 3 (and thus the Level 2).

 Programs in assembly language must be translated before the

execution to the language on Level 3 (or 2).

 Level 5 is formed of higher programming languages, which are

designed to majority of computer programmers.

 This are, for example, C, C#, C++, Java, Python, BASIC, FORTRAN,

COBOL, and many others.

 Programs written in these languages ​​must be translated to the

language on Level 4 or Level 3.

Language levels and virtual computers

RA - 3 51 © 2021, Rozman, Škraba, FRI

 Regarding computers, we can establish also higher levels, e.g.

programs for AI, databases, …

 Each level can be thought of as a virtual computer that has own

„machine language“ as the language of this level. Therefore, a

typical user at higher levels doesn‘t need to know the details

about actual „machine level“.

 However, it is mandatory that programs written in any higher level

language (for coresponding virtual machine) are converted into a

sequence of machine language instructions.

 Users don‘t need to be fully aware of this translation, providers of

HW and SW products must ensure the tools for translation from

one language to another.

Language levels and virtual computers

RA - 3 52 © 2021, Rozman, Škraba, FRI

 The mechanism of transition from one language to another can be

realized in two ways:

 Translation (or compilation)

 Interpretation.

 After 1990, an intermediate solution emerged:

 partial translation (compilation).

 The main difference between translation (compilation) and

interpretation is that in interpretation, the translated (compiled)

program does not exist.

Language levels and virtual computers

RA - 3 53 © 2021, Rozman, Škraba, FRI

Transition from the language L2 into the language L1

Program in

L2 language

Translate

L2 → L1

Program in

language L1
Execution

Translation (compilation)

Program in

L2 language

Interpreter

L2 → L1

Source program

Interpretation

Source program

Each instruction of the language L2 is

simultaneously translated into the

instructions in language L1

and executed

(No translated program!)

Language levels and virtual computers

Translated program

RA - 3 54 © 2021, Rozman, Škraba, FRI

 Compiled programs work only on the computer with machine language

in which they were translated.

 Before transferring to another computer (using a different machine

language L1a) we should recompile the source code of a program.

 By integrating a large number of different computers on the

network, the portability of programs enabled by interpretation, has

become very important.

 Partial translation is an intermediate solution between the
interpretation and translation, which enables faster interpretation
on target machine.

Language levels and virtual computers

RA - 3 55 © 2021, Rozman, Škraba, FRI

 Partial translation: Source language program in L2 is translated

into an intermediate language program in L1, and then L1 program

is interpreted on a target machine.

 Partial translation in the intermediate language L1 allows faster

interpretation, but is still typically 10 times slower than full

implementation of the program translation (compilation).

 Despite this, it still allows portability of programs at a significantly

lower loss of speed than if we used the interpretation only.

Language levels and virtual computers

RA - 3 56 © 2021, Rozman, Škraba, FRI

 Practical case of virtual machine: JVM (Java Virtual Machine)

 Virtual Machine - VM (Virtual Machine) is a software implementation of
the machine (computer), operating (running programs) like a real
machine (computer).

 Java programs are executed so, that they are first translated (partial
translation) in an intermediate language (Java byte code), which is
interpreted by the program JVM on a target machine.

Language levels and virtual computers

RA - 3 57 © 2021, Rozman, Škraba, FRI

Computer with six levels (Micro-programmed)

Assembly language

(assembler)

Operating system

Usual machine language (ISA)

Digital electronics

Micro-program language

Translation (compiler)

Translation (Assembler)

Partial interpretation (operating system)

Interpretation (Micro-program)

Interpretation

Higher programming lang.Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

RA - 3 58 © 2021, Rozman, Škraba, FRI

Assembly language

(assembler)

Operating system

Usual machine language (ISA)

Digital electronics

Translation (compiler)

Translation (Assembler)

Partial interpretation (operating system)

Interpretation

Higher programming lang.Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

Computer with five levels (RISC computer)

Instructions execution in HW

RA - 3 59 © 2021, Rozman, Škraba, FRI

Hardware and software on computer

 The boundary between hardware and software of the computer is
not solid - it can be moved.

 Each of the levels can be realized in both hardware and software
way.

 Level 2 for example: It can be realized with a program running on
another computer.

Hardware and software are logically equivalent.

RA - 3 60 © 2021, Rozman, Škraba, FRI

 Each operation carried out by the software can be realized as

hardware directly.

 Also, each machine instruction, executed by hardware, can also be

simulated with the program.

 Evolution of multi-level computing machines

 Invention of Micro-programming (1951)

 Invention of Operating system (OS) (around 1960)

 Moving functionality in Micro-programs (around 1970)

 Abandonment of Micro-programming (after 1984)

 Today usually the combination of:

 the complex instructions at normal machine level are realized in

micro-program (software), simpler instructions are realized in

hardware.

Hardware and software

RA - 3 61 © 2021, Rozman, Škraba, FRI

An example of adding two numbers:

rez: = stev1 + stev2

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

3.6 Example of program execution on the computer

RA - 3 62 © 2021, Rozman, Škraba, FRI

Case execution of program

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

#0

Instruction STEP Comment

Initial state

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

REGISTER CONTENT

R0

R1

R2

R3

...

R15 PC = 0x2C

RA - 3 63 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

LDR R1, STEV1 FETCH Reading 1 instruction

#1

0x2C

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0xE51F1014

Read ->

REGISTER CONTENT

R0

R1

R2

R3

...

R15 PC = 0x2C

PC

IR

Case execution of program

RA - 3 64 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

REGISTER CONTENT

R0

R1 0x00000040

R2

R3

...

R15 PC = 0x30

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

LDR R1, STEV1 EXECUTE Reading operand STEV1 in R1

#2

0x20

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0x00000040

Read ->

STEV1

R1

Case execution of program

RA - 3 65 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

LDR R2, STEV2 FETCH Reading 2. instruction

#3

0x30

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0xE51F2014

Read ->

REGISTER CONTENT

R0

R1 0x00000040

R2

R3

...

R15 PC = 0x30

PC

IR

Case execution of program

RA - 3 66 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

LDR R2, STEV2 EXECUTE Reading operand STEV2 in R2

#4

0x24

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0x00000010

Read ->

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3

...

R15 PC = 0x34

STEV2

R2

Case execution of program

RA - 3 67 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

ADD R3, R2, R1 FETCH Reading 3. instruction

#5

0x34

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0xE0823001

Read ->

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3

...

R15 PC = 0x34

PC

IR

Case execution of program

RA - 3 68 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

ADD R3, R2, R1 EXECUTE ALU: R3 <- R2 + R1 (sum)

#6
Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3 0x00000050

...

R15 PC = 0x38

R1

R2
+ R3

Case execution of program

RA - 3 69 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

STR R3, REZ FETCH Reading 4. instruction

#7

0x38

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

<- 0xE50F3018

Read ->

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3 0x00000050

...

R15 PC = 0x38

PC

IR

Case execution of program

RA - 3 70 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0x50 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

STR R3, REZ EXECUTE Storing R3 in M​[REZ]

#8

0x28

Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

0x00000050 ->

Write ->

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3 0x00000050

...

R15 PC = 0x3C

REZ

R3

Case execution of program

RA - 3 71 © 2021, Rozman, Škraba, FRI

WORD TITLE MARK

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0x50 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1, STEV1

0x10 0x2D

0x1FE 0x2E

0xE5 0x2F

0x14 0x30 LDR R2, STEV2

0x20 0x31

0x1FE 0x32

0xE5 0x33

0x01 0x34 ADD R3, R2, R1

...

0x18 0x38 STR R3, REZ

...

Control

unit

ALU unit

PROGRAM

LDR R1, STEV1

LDR R2, STEV2

ADD R3, R2, R1

STR R3, REZ

address bus

data bus

control bus

Instruction STEP Comment

? FETCH Final state?

#9
Zbirni jezik Opis ukaza Strojni jezik

ldr r1, stev1 R1 M[0x20] 0xE51F1014

ldr r2, stev2 R2 M[0x24] 0xE51F2014

add r3, r2, r1 R3  R1 + R2 0xE0823001

str r3, rez M[0x28]  R3 0xE50F3018

Zbirnik

„assembler“

REGISTER CONTENT

R0

R1 0x00000040

R2 0x00000010

R3 0x00000050

...

R15 PC = 0x3C

Case execution of program

RA - 3 72 © 2021, Rozman, Škraba, FRI

CPU BUSes MEMORY

Descripti

on

CPU Address Data Control Memory Descripti

on

Comment

Case execution of program: Execution table (fill in for exercise)

