Topological Data Analysis
 Lab work, $2^{\text {nd }}$ week

1. Let $X_{n}=S^{n} \backslash\{(0, \ldots, 0,1),(0, \ldots, 0,-1)\} \subset \mathbb{R}^{n+1}$ and $Y_{n}=S^{n-1} \times(-1,1) \subset \mathbb{R}^{n+1}$. Draw X_{n} and Y_{n} for $n=0,1,2$. Prove that X_{2} and Y_{2} are homeomorphic.
2. Draw $X_{n}=S^{n-1}$ and $Y_{n}=\mathbb{R}^{n} \backslash\{0\}$ for $n=1,2$. Show that X_{2} and Y_{2} are homotopy equivalent.
3. Let $S=\{A(0,0), B(5,-1), C(7,-5), D(9,4), E(3,9)\} \subset \mathbb{R}^{2}$.
(a) Construct the triangulations \mathcal{T}_{1} and \mathcal{T}_{2} of S using vertical line sweep from left to right and the horizontal line sweep upwards.
(b) We can get the Delaunay triangulation on S by flipping certain edges. How many edge flips are necessary to produce a Delaunay triangulation from \mathcal{T}_{1} ? From \mathcal{T}_{2} ?
(c) Draw the corresponding Voronoi diagram. Is it unique?

4. Hermes messenger service, Ltd. has distribution centres placed at $A(0,0), B(1,1), C(3,0)$ and $D(2,4)$. Divide the $[-5,5] \times[-5,5]$ square into service areas that ensure the fastest packet delivery.

Their competition, Mercury post, has the distribution centres located at $E(-4,-4), F(4,-4)$ and $G(-2,4)$, but the center at E can only deliver within a 7 unit radius and the center at G only within a 6 unit radius. The center at F has more employees and uses bike messengers so they can deliver within an 10 unit radius. How should they split the service area?

