Topological Data Analysis Lab work, 2nd week

- 1. Let $X_n = S^n \setminus \{(0, \dots, 0, 1), (0, \dots, 0, -1)\} \subset \mathbb{R}^{n+1}$ and $Y_n = S^{n-1} \times (-1, 1) \subset \mathbb{R}^{n+1}$. Draw X_n and Y_n for n = 0, 1, 2. Prove that X_2 and Y_2 are homeomorphic.
- 2. Draw $X_n = S^{n-1}$ and $Y_n = \mathbb{R}^n \setminus \{0\}$ for n = 1, 2. Show that X_2 and Y_2 are homotopy equivalent.
- 3. Let $S = \{A(0,0), B(5,-1), C(7,-5), D(9,4), E(3,9)\} \subset \mathbb{R}^2$.
 - (a) Construct the triangulations \mathcal{T}_1 and \mathcal{T}_2 of S using vertical line sweep from left to right and the horizontal line sweep upwards.
 - (b) We can get the Delaunay triangulation on S by flipping certain edges. How many edge flips are necessary to produce a Delaunay triangulation from \mathcal{T}_1 ? From \mathcal{T}_2 ?
 - (c) Draw the corresponding Voronoi diagram. Is it unique?

4. Hermes messenger service, Ltd. has distribution centres placed at A(0,0), B(1,1), C(3,0) and D(2,4). Divide the $[-5,5] \times [-5,5]$ square into service areas that ensure the fastest packet delivery.

Their competition, *Mercury post*, has the distribution centres located at E(-4, -4), F(4, -4) and G(-2, 4), but the center at E can only deliver within a 7 unit radius and the center at G only within a 6 unit radius. The center at F has more employees and uses bike messengers so they can deliver within an 10 unit radius. How should they split the service area?

