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Abstract—Vital signs, such as respiration and heartbeat,
are useful to health monitoring since such signals provide
important clues of medical conditions. Effective solutions are
needed to provide contact-free, easy deployment, low-cost, and
long-term vital sign monitoring. In this paper, we present
PhaseBeat to exploit channel state information (CSI) phase
difference data to monitor breathing and heartbeat with
commodity WiFi devices. We provide a rigorous analysis of
the CSI phase difference data with respect to its stability and
periodicity. Based on the analysis, we design and implement the
PhaseBeat system with off-the-shelf WiFi devices, and conduct
an extensive experimental study to validate its performance.
Our experimental results demonstrate the superior perfor-
mance of PhaseBeat over existing approaches in various indoor
environments.

Keywords-Channel State Information; commodity 5GHz
WiFi; health sensing; vital sign monitoring.

I. INTRODUCTION

It is estimated that over 100 million Americans have
chronic health conditions, such as lung disorders and heart
diseases. Three-fourths of the total US healthcare cost are
spent to treat these conditions [1], leading to an increasing
demand for long-term health monitoring in indoor envi-
ronments. Vital signs, such as respiration and heartbeat,
are useful to physical health monitoring since such signals
provide important clues of medical problems, such as sleep
disorders or anomalies, and sudden infant death syndrome
(SIDS) of sleeping infants [2]. Most traditional methods for
vital sign monitoring require a person to wear special devices
such as a capnometer [3] or a pulse oximeter [4]. These
technologies are inconvenient to use and uncomfortable.
Alternative solutions of contact-free, easy deployment, low-
cost, and long-term vital sign monitoring would be highly
appealing.

Recently, radio frequency (RF) based vital sign moni-
toring systems have attracted great interest, which exploits
wireless signals to detect breathing-induced chest movement.
For example, the Vital-Radio system uses a frequency mod-
ulated continuous wave (FMCW) radar to estimate breathing
and heart rates [5]. It works for multiple subjects in parallel,
but requires a customized hardware with a large bandwidth
from 5.46 GHz to 7.25 GHz. Other techniques, such as the
Doppler radar [6], [7] and the ultra-wideband radar [8], are
also incorporated to monitor vital signs, which also require

dedicated hardware with large bandwidth and high cost.
The mmVital system [9] uses the received signal strength
(RSS) of 60 GHz millimeter wave (mmWave) signals for
breathing and heart rates estimation with a larger bandwidth
about 7GHz, which also requires customized hardware and a
mechanical rotator. A recent work UbiBreathe monitors the
breathing signal using WiFi RSS, which is coarse channel
information [10]. UbiBreathe requires a line of sight (LOS)
path between the transmitter and receiver, which limits the
RF monitoring range in the deployment environment.

Unlike RSS, the channel state information (CSI) rep-
resents fine-grained channel information, which is now
available for several off-the-shelf WiFi network interface
cards (NIC), e.g., Intel WiFi Link 5300 NIC [11] and the
Atheros AR9580 chipset [12]. Specifically, CSI consists
of both subcarrier-level amplitude and phase information
of the orthogonal frequency division multiplexing (OFDM)
channel. It is a more stable representation of channel char-
acteristics than RSS. In a recent work [13], the authors use
the amplitudes of WiFi CSI data to track vital signs of a
sleeping person. However, the CSI phase information has
not been used for vital sign monitoring so far, due to large
variations caused by noise and the unsynchronized time and
frequency at the transmitter and receiver.

In this paper, we leverage CSI phase difference data
between two antennas of the receiver NIC to detect and
monitor breathing rate and heart rate. We find that the CSI
phase difference data is quite stable after suitable calibration.
Moreover, the CSI phase difference data is also more robust
than RSS in various deployment scenarios, such as different
distances, obstacles/walls, and orientations. We provide a
rigorous analysis of CSI phase difference data, and prove
that for indoor multipath environments under small-scale
fading, the CSI phase difference data is a periodic signal
with the same frequency as the breathing signal, when the
wireless signal is reflected from the chest of a person.

Built upon the analysis, we design PhaseBeat, a remote
sensing system using CSI phase difference data for monitor-
ing respiration and heartbeat with commodity WiFi device.
First, PhaseBeat exploits the CSI phase difference data to
extract the periodic signal induced by chest movements (e.g.,
inhaling and exhaling). Then, PhaseBeat preprocesses the
captured data, with environment detection, data calibration,
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subcarrier selection, and discrete wavelet transform. The
cleansed CSI phase difference data is then used to estimate
the breathing and heart rate in realtime. We implement
PhaseBeat with off-the-shelf WiFi devices and evaluate its
performance with extensive experiments, which involve four
persons over three months in typical indoor environments,
such as a computer laboratory, a through-wall scenario,
and a long corridor. The experimental results demonstrate
that PhaseBeat can achieve high accuracy for breathing and
heart rate estimation, with median error of 0.25 bpm and 1
bpm, respectively. We also find PhaseBeat highly robust for
breathing rate estimation under various environments, such
as different distances between the transmitter and receiver.

In the remainder of this paper, we present the prelim-
inaries and our analysis of phase difference data in Sec-
tion II. We describe the PhaseBeat design in Section III
and demonstrate its performance in Section IV. Section V
reviews related work and Section VI concludes this paper.

II. PRELIMINARIES AND PHASE DIFFERENCE ANALYSIS

A. Channel State Information Preliminaries

OFDM is widely used in modern wireless network stan-
dards, such as WiFi (i.e., IEEE 802.11a/g/n). With OFDM,
the total spectrum is partitioned into multiple orthogonal
subcarriers, and wireless data is transmitted over the subcar-
riers using the same modulation and coding scheme (MCS)
to mitigate frequency selective fading. Leveraging the device
driver for off-the-shelf NICs, e.g., the Intel 5300 NIC [11],
we can extract the CSI from the NIC, which is fine-grained
physical layer (PHY) information. CSI reveals the channel
characteristics experienced by the received signal such as the
multipath effect, shadow fading, and distortion [26], [27].

With OFDM, the WiFi channel at the 5 GHz band can
be considered as a narrowband flat fading channel. In the
frequency domain, the channel model can be expressed as
𝑌⃗ = CSI ⋅ 𝑋⃗ + 𝑁⃗ , where 𝑌⃗ and 𝑋⃗ denote the received and
transmitted signal vectors, respectively, 𝑁⃗ is the additive
white Gaussian noise, and CSI represents the channel’s
frequency response, which can be estimated from 𝑌⃗ and
𝑋⃗ .

Although the WiFi OFDM system has 56 subcarriers over
a 20 MHz channel, the Intel 5300 NIC can report CSI
for only 30 of the 56 subcarriers. The channel frequency
response of subcarrier 𝑖, CSI𝑖, is a complex value, that is

CSI𝑖 = ℐ𝑖 + 𝑗𝒬𝑖 = ∣CSI𝑖∣ exp (𝑗∠CSI𝑖), (1)

where ℐ𝑖 and 𝒬𝑖 are the in-phase component and quadrature
component, respectively; ∣CSI𝑖∣ and ∠CSI𝑖 are the amplitude
response and phase response of subcarrier 𝑖, respectively.

For an indoor environment with NLOS components [14],
the channel frequency response of subcarrier 𝑖 can also be

formulated as

CSI𝑖 =
𝐾∑

𝑘=0

𝑟𝑘 ⋅ 𝑒−𝑗2𝜋𝑓𝑖𝜏𝑘 . (2)

where 𝐾 is the number of multipaths, 𝑟𝑘 and 𝜏𝑘 are the
attenuation and the propagation delay from the 𝑘𝑡ℎ path,
respectively, and 𝑓𝑖 is the central frequency of subcarrier 𝑖.
Traditionally, the multipaths are harmful for indoor localiza-
tion, because only the LOS component is a good indicator
of distance [14], [15]. However, our PhaseBeat system can
effectively exploit the reflections for vital signals monitoring,
as will be shown in this paper.

B. Phase Difference Information

In this section, we show that the CSI phase difference
data between two antennas for consecutive packets of the
5 GHz OFDM channel is highly stable and a periodic
signal with the same frequency as the breathing signal. We
now provide an analysis to validate the stability from the
measured phase difference. Let ∠𝐶𝑆𝐼𝑖 denote the measured
phase of subcarrier 𝑖, which is given by [12], [16], [23]–[25]

∠𝐶𝑆𝐼𝑖 = ∠CSI𝑖 + (𝜆𝑝 + 𝜆𝑠)𝑚𝑖 + 𝜆𝑐 + 𝛽 + 𝑍, (3)

where ∠CSI𝑖 is the true phase value, 𝑚𝑖 is the subcarrier
index of subcarrier 𝑖, 𝛽 is the initial phase offset due to the
phase-locked loop (PLL), 𝑍 is the measurement noise that
is assumed to be AWGN of variance 𝜎2, and 𝜆𝑝, 𝜆𝑠 and
𝜆𝑐 are the phase errors from the packet boundary detection
(PBD), the sampling frequency offset (SFO), and central
frequency offset (CFO), respectively [16]. The phase errors
can be written as

𝜆𝑝 = 2𝜋
Δ𝑡

𝑁
, 𝜆𝑠 = 2𝜋

(
𝑇 ′ − 𝑇

𝑇

)
𝑇𝑠
𝑇𝑢
𝑛, 𝜆𝑐 = 2𝜋Δ𝑓𝑇𝑠𝑛,

(4)

where Δ𝑡 is the packet boundary detection delay, 𝑁 is the
FFT size, 𝑇 ′ and 𝑇 are the sampling periods at the receiver
and the transmitter, respectively, 𝑇𝑢 is the length of the
data symbol, 𝑇𝑠 is the total length of a data symbol and
the guard interval, 𝑛 is the sampling time offset for the
current packet, and Δ𝑓 is the center frequency difference
between the transmitter and receiver. Note that we cannot
obtain the exact values for Δ𝑡, 𝑇 ′−𝑇

𝑇 , 𝑛, Δ𝑓 , and 𝛽 in (3)
and (4). Moreover, 𝜆𝑝, 𝜆𝑠, and 𝜆𝑐 vary for different packets
with different Δ𝑡 and 𝑛. Thus, the true phase ∠CSI𝑖 cannot
be derived from the measured phase value. Fortunately, the
measured phase difference on subcarrier 𝑖 can be leveraged
as in the following theorem.

Theorem 1. The measured phase difference on subcarrier
𝑖 between two receiver antennas is stable, and its mean and
variation are given by{

𝔼(Δ∠𝐶𝑆𝐼𝑖) = 𝔼(Δ∠CSI𝑖) + Δ𝛽

Var(Δ∠𝐶𝑆𝐼𝑖) = Var(Δ∠CSI𝑖) + 2𝜎2.
(5)
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Figure 1. Comparison between phase CSI measured from a single antenna
(marked as blue crosses) and the phase differences measured from two
antennas (marked as red dots) of the 5th subcarrier for 600 consecutively
received packets.

Proof: Note that the three antennas of the Intel 5300
NIC use the same clock and the same down-converter
frequency. Consequently, the measured phases of subcarrier
𝑖 from two antennas have identical packet detection delay,
sampling periods, frequency differences, and the same index
𝑚𝑖 [17]. Thus the measured phase difference on subcarrier
𝑖 between two antennas can be approximated as

Δ∠𝐶𝑆𝐼𝑖 = Δ∠CSI𝑖 +Δ𝛽 +Δ𝑍, (6)

where Δ∠CSI𝑖 is the true phase difference of subcarrier
𝑖, Δ𝛽 is the unknown difference in phase offsets, which
is in fact a constant [17], and Δ𝑍 is the noise difference
with variance 2𝜎2. Since Δ𝑡, Δ𝑓 , and 𝑛 are all removed,
Δ∠𝐶𝑆𝐼𝑖 in (6) becomes highly stable for consecutive
packets. From (6), we can derive the mean and variance of
the measured phase difference on subcarrier 𝑖 as that given
in (5).

From (6), it can be seen that 𝔼(Δ∠𝐶𝑆𝐼𝑖)−𝔼(Δ∠CSI𝑖) is
a constant Δ𝛽. The difference does not change the estimated
frequency of vital signals, although its variance becomes
larger. Fig. 1 is a comparison between the single antenna
phases (as blue crosses) and the phase differences (as red
dots) of the 5th subcarrier in the polar coordinate plot for 600
consecutively received packets. We can see that the single
antenna phase of the 5th subcarrier is nearly uniformly dis-
tributed between 0∘ and 360∘, making it unusable. However,
all phase difference data of the 5th subcarrier concentrate
into a sector between 190∘ and 210∘, which clearly validates
Theorem 1.

In the following Theorem, we show the measured phase
difference information is periodic.

Lemma 1. When the wireless signal is reflected from the
chest of a person with a breathing frequency 𝑓𝑏, the true

phase of the reflected signal at any antenna of the receiver
is also periodic with the same frequency 𝑓𝑏.

Proof: Because the wireless signal on subcarrier 𝑖 is a
plane wave, its true phase at the receiver is determined by the
propagation distance, that is ∠CSI𝑖 = 2𝜋𝑑(𝑡)/𝜆𝑖, where 𝑑(𝑡)
is the propagation distance at time 𝑡 and 𝜆𝑖 is the wavelength
of subcarrier 𝑖. When the chest of a person periodically rises
and falls with frequency 𝑓𝑏, the propagation distance 𝑑(𝑡)
of the reflection signal becomes 𝑑(𝑡) = 𝐷 + 𝐴 cos(2𝜋𝑓𝑏𝑡),
where 𝐷 is the constant mean distance of the reflection
path, 𝐴 is the amplitude of the periodic signal from chest
movements. Thus, the true phase of the reflected signal at
the receiver is ∠CSI𝑖 = 2𝜋(𝐷+𝐴 cos(2𝜋𝑓𝑏𝑡))/𝜆𝑖. Clearly,
the true phase at the receiver is a periodic signal with the
frequency 𝑓𝑏.

Theorem 2. For indoor environments with multipaths, when
the wireless signal is reflected from the chest of a person
with breathing frequency 𝑓𝑏, the true phase at any antenna
of the receiver is also a periodic signal with frequency 𝑓𝑑
such that

𝑃 (∣𝑓𝑑 − 𝑓𝑏∣ < 𝜖) = 1, ∀𝜖 > 0. (7)

The proof is omitted for brevity.
In the following section, we describe the design of the

PhaseBeat system, aiming to overcome the above challenges
for estimating breathing rate and heart rate using CSI phase
difference data, for one or more persons.

III. THE PHASEBEAT SYSTEM

A. PhaseBeat System Architecture

We design the PhaseBeat system to monitor vital signs
such as breathing and heartbeat of one or more persons
by leveraging CSI phase difference data with commodity
WiFi devices. Specifically, PhaseBeat exploits CSI phase
difference data to extract the periodic signal caused by the
rise and fall of the chest (e.g., inhaling and exhaling). Based
on Theorems 1 and 2, PhaseBeat can effectively exploit
CSI phase difference data to monitor vital signs. First, CSI
phase difference data is relatively stable for back-to-back
packets in stationary environments such as people sitting,
standing, or sleeping. It can thus be effective for monitoring
vital signs. Second, CSI phase difference data includes the
periodic signal that has the same frequency as the breathing
signal. Finally, the CSI phase difference data is more robust,
with only small variations for different distances or different
orientations, compared with CSI amplitude data used in prior
work for monitoring vital signs.

The PhaseBeat system architecture is presented in Fig. 2.
It includes four basic modules: Data Extraction, Data Prepro-
cessing, Breathing Rate Estimation, and Heart Rate Estima-
tion. The Data Extraction module extracts CSI phase differ-
ence data between two receive antennas of an off-the-shelf
WiFi device. The Data Preprocessing module consists of
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Figure 2. PhaseBeat system architecture.

environment detection, data calibration, subcarrier selection,
and discrete wavelet transform. For environment detection,
we adopt a threshold method to determine the stationary
states of a person, such as sitting, standing, or sleeping.
For data calibration, we remove the direct current (DC)
component and high frequency noises, and downsample the
processed data. Then, subcarrier selection is used to improve
the reliability of CSI phase difference data. The discrete
wavelet transform (DWT) is used to obtain the denoised
breathing signal with approximation coefficient for level 4
and the reconstructed heart signal with the sum of detail
coefficients for level 3 and level 4. In the Breathing Rate
Estimation module, we use peak detection for the case of a
single person and the root-MUSIC method for the case of
multiple persons. In the Heart Rate Estimation module, we
use an FFT based method to detect the heart rate.

B. Data Preprocessing

1) Environment Detection: After extracting the CSI phase
difference information using (6), we need to determine
whether the person is in a stationary state. When the
person is determined to be in a stationary state, such as
sitting, standing, or sleeping, PhaseBeat can estimate his/her
breathing rate and heart rate. A threshold-based method is
used to identify whether a segment of CSI phase difference
data is received in a stationary state, by computing the mean
absolute deviation of the CSI phase difference data in a short

sliding window.
We define 𝑉 as the sum of mean absolute deviations of

all CSI phase difference data in the sliding window as

𝑉 =
1

∣𝑊 ∣
30∑
𝑖=1

∑
𝑘∈𝑊

∣Δ∠𝐶𝑆𝐼𝑖(𝑘)− 𝔼(Δ∠𝐶𝑆𝐼𝑖(𝑘))∣, (8)

where Δ∠𝐶𝑆𝐼𝑖(𝑘) is the measured phase difference from
subcarrier 𝑖 for packet 𝑘, 𝑊 is the index set of all the
packets in the sliding window, ∣𝑊 ∣ is the length of the
sliding window. Because other movement events lead to
larger variations in CSI phase difference data than that
caused by the minute movements of breathing and heartbeat,
the threshold-based approach is effective to detect such large
movements (such as walking or jumping). In PhaseBeat, we
set the threshold between 0.25 and 6 to identify useful data
for vital sign monitoring. Fig. 3 shows the environment
detection results for different states. When the person is
sitting, the phase difference data is a sinusoidal-like periodic
signal over time. When there is no one in the range, the
phase difference data is a straight line with very small
fluctuations. When the person stands up or is walking, the
phase difference data exhibits larger fluctuations. Thus, a
simple threshold can be effective to determine the stationary
state of the person.

2) Data Calibration: To obtain robust CSI phase differ-
ence data, we further perform data calibration to remove the
DC component and high frequency noises, and to downsam-
ple the processed data. First, because the DC component af-
fects subcarrier selection, peak detection, and FFT frequency
estimation, PhaseBeat needs to remove the DC component
with the Hampel Filter. Unlike traditional data calibration
methods that only remove high frequency noises, we use
the Hampel Filter for detrending of the original CSI phase
difference data to remove the DC component. The Hampel
Filter is utilized to obtain the basic trend of the original
data, which is set as a large sliding window with 2000
samples and a small threshold of 0.01. Then, the detrended
data is obtained by subtracting the basic trend data from
the original data. In addition, we also leverage the Hampel
Filter to reduce high frequency noises using a smaller sliding
window with 50 samples and the same threshold of 0.01.
Second, because PhaseBeat employs a data sample rate of
400 Hz, we need to implement downsampling to reduce the
computation complexity for realtime breathing and heart rate
estimation. We use a sampling interval of 20 to obtain the
low frequency CSI phase difference data, that is equivalent
to sampling at 20 Hz.

Fig. 4 presents the data calibration results. It can be seen
that the original phase differences of all subcarriers have a
DC component and high frequency noises. By implementing
the proposed data calibration scheme, both the DC compo-
nent and high frequency noises are removed; the CSI from
each of the subcarriers becomes a sinusoidal-like periodic
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after data calibration.

signal over the packets with low noise; and the number of
packets is decreased from 10000 to 500, which is amenable
to applying other signal processing methods.

3) Subcarrier Selection: PhaseBeat employs subcarrier
selection to further boost the reliability of CSI phase dif-
ference data, because different subcarriers have different
wavelengths, leading to the different sensitivity for breathing
and heart signals. We use the mean absolute deviation of CSI
phase difference data from every subcarrier to measure its
sensitivity. Generally the larger the mean absolute deviation,
the higher the sensitivity. Thus, we first choose 𝑘 maximum
mean absolute deviations of CSI phase difference data. Then,
we use the median of the 𝑘 mean absolute deviations of
CSI phase difference data to make the final selection. Fig. 5
shows the CSI phase difference series patterns after data
calibration. We can see that the neighboring subcarriers of
subcarrier 20 have higher sensitivity to breathing signals.
Then, as shown in Fig. 7, the mean absolute deviation of
CSI phase difference data of subcarrier 19 is the maximum.
In PhaseBeat, we set the 𝑘 = 3 as the default value, and
subcarriers 19, 18, and 2 are thus selected. With the above
approach, subcarrier 18 is finally selected, which has the
highest sensitivity as shown in Fig. 7.

4) Discrete Wavelet Transform (DWT): Different from
FFT and short time Fourier transform (STFT), DWT can
achieve a time-frequency representation of data, which pro-
vides not only the optimal resolution both in the time and
frequency domains, but also a multi-scale analysis of the
data. With DWT, the phase difference data after subcarrier
selection can be decomposed into an approximation coeffi-
cients vector with a low-pass filter and a detail coefficients
vector with a high-pass filter. In fact, the approximation co-
efficient vector represents the basic shape of the input signal
with large scale characteristics, while the detail coefficient
vector describes the high frequency noises and the detailed
information with small scale characteristics.

In wavelet decomposition, the following steps recur-
sively split the previous approximation coefficient and detail
coefficient into two new coefficients based on the same
scheme [18]. After 𝐿 steps, the DWT can obtain an approx-
imation coefficient 𝛼𝐿 and a sequence of detail coefficients

𝛽1, 𝛽2, ..., 𝛽𝐿. We can compute the DWT coefficients as
follows.{

𝛼
(𝐿)
𝑘 =

∑
𝑛∈ℤ Δ∠𝐶𝑆𝐼(𝑛)𝜙(𝐿)

𝑛−2𝐿𝑘
, 𝐿 ∈ ℤ

𝛽
(𝑙)
𝑘 =

∑
𝑛∈ℤ Δ∠𝐶𝑆𝐼(𝑛)𝜓𝑙

𝑛−2𝑙𝑘, 𝑙 ∈ {1, ..., 𝐿} ,
(9)

where Δ∠𝐶𝑆𝐼(𝑛) is the phase difference data after sub-
carrier selection, ℤ is the integer set, the 𝜙’s and 𝜓’s are
wavelet basis functions, which are orthogonal to each other.
The phase difference data Δ∠𝐶𝑆𝐼(𝑛) can be approximated
using inverse DWT, as

Δ∠𝐶𝑆𝐼(𝑛) =
∑
𝑘∈ℤ

𝛼
(𝐿)
𝑘 𝜙

(𝐿)

𝑛−2𝐿𝑘
+

𝐿∑
𝑙=1

∑
𝑘∈ℤ

𝛽
(𝑙)
𝑘 𝜓𝑙

𝑛−2𝑙𝑘.

(10)

In PhaseBeat, DWT is employed to remove high fre-
quency noises from the collected CSI phase difference data.
Moreover, the approximation coefficient 𝛼𝐿 is used to detect
the breathing rate, while the sum of detail coefficients
𝛽𝐿−1+𝛽𝐿 is used to detect the heart rate. We set 𝐿 to 4 in
this paper. As shown in Fig. 6, for the original signal, we first
implement the DWT based decomposition recursively for
four levels with the Daubechies(db) wavelet filter. Because
we obtain a 20 Hz sampling rate after data calibration, and
the sampling rate is halved after every step of decomposition,
the detail coefficient 𝛽1 and the approximation coefficient 𝛼1

have a frequency ranging from 10 Hz to 5 Hz and 0 Hz to
5 Hz, respectively. Then, the approximation coefficient 𝛼4

has a frequency in 0 Hz to 0.625 Hz to obtain the denoised
breathing signal. The sum of detail coefficients 𝛽3 +𝛽4 has
the range from 0.625 Hz to 2.5 Hz to reconstruct the heart
signal.

C. Breathing Rate Estimation

1) Peak Detection for the One Person Case: The breath-
ing signal is caused by the small, periodic movement of
inhaling and exhaling, which can be extracted from the
phase difference data according to Theorem 2. Although the
FFT based method can be used to estimate the breathing
rate, the accuracy may not be good. This is because the
frequency resolution depends on the window size of FFT. If
the window size becomes larger, the estimation accuracy
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Figure 6. Discrete wavelet transform results.

will be higher, but the larger window size also leads to
a lower time domain resolution. Therefore, our PhaseBeat
system employs peak detection to estimate the breathing rate
based on the approximation coefficient 𝛼𝐿 to achieve high
accuracy.

However, we find that the approximation coefficient 𝛼𝐿

still has fake peaks (i.e., local maximums). We thus use
the sliding window method to identify the true peak, where
the window size is set to 51 samples based on human’s
maximum breathing period [13]. Then, we can identify all
the peaks by checking whether the median of all the samples
in the window is the maximum value or not. After peak
detection, all peak-to-peak intervals are averaged to obtain
the period of the breathing signal, denoted as 𝑃 . Finally, the
estimated breathing rate can be computed as 60/𝑃 bpm.

2) Root-MUSIC for Multiple Person Case: An FFT based
method can transform the approximation coefficient 𝛼𝐿 from
the time domain to the frequency domain to estimate the
breathing frequencies for two persons in LOS environments.
However, with more persons and more cluttered environ-
ments, the FFT based method always leads to poor results,
especially when there are two or more breathing rates very

close to each other. Fig. 8 illustrates the breathing rate
estimation for two persons (the upper plot) and three persons
(the lower plot) with the FFT method, where the red dotted
lines mark the real breathing frequencies (i.e., the ground
truth). We can see that the estimated frequencies for the
two persons are 0.2 Hz and 0.3 Hz, respectively, which are
both quite accurate. However, for the case of three persons,
the FFT curve only shows two peaks, and the estimated
breathing rates are much less accurate.

To address this issue, we propose a root-MUSIC method
to estimate multiple breathing rates based on phase differ-
ence data. In fact, we leverage 30 CSI phase difference
series patterns after data calibration to build the estimated
correlation matrix R̂, which is given by

R̂ = HH𝑇 , (11)

where H is a matrix that represents 30 CSI phase difference
series after data calibration, which is defined as

H =

⎡⎢⎢⎢⎣
ℎ1(1) ℎ2(1) ⋅ ⋅ ⋅ ℎ30(1)
ℎ1(2) ℎ2(2) ⋅ ⋅ ⋅ ℎ30(2)

...
... ⋅ ⋅ ⋅ ...

ℎ1(𝐼) ℎ2(𝐼) ⋅ ⋅ ⋅ ℎ30(𝐼)

⎤⎥⎥⎥⎦, (12)

where ℎ𝑖(𝑗) is the phase difference from subcarrier 𝑖 for
packet 𝑗 after data calibration, and 𝐼 is the total number of
packets. After obtaining the estimated correlation matrix R,
we incorporate the standard root-MUSIC method to obtain
multiple persons breathing frequencies, which is effective
for estimating frequencies of signals consisting of a sum of
sinusoids with additive white Gaussian noise [19]. For the
same phase difference data for three persons in Fig. 8, the
breathing frequencies estimated by the proposed method are
0.1467 Hz, 0.2233 Hz, and 0.2483 Hz, respectively, which
are much more accurate than those estimated by the FFT
based on method. Moreover, we can see that the proposed
root-MUSIC method can effectively distinguish two close
breathing frequencies.

D. Heart Rate Estimation

1) FFT Based Heart Rate Estimation: Heart rate is an im-
portant indicator of health condition and vital sign. Similar
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to the breathing signal, the heart signal is also periodic, but
its magnitude is extremely weak. Usually, breathing signal
is orders of magnitude stronger than the heart signal. The
movement of the heart (i.e., diastole and systole) only causes
small variations in the reflected signal. Moreover, the much
stronger breathing signal also generates higher harmonics,
which becomes strong interferences to the heart signal. It
is thus more challenging to detect the heart rate than the
breathing rate.

In PhaseBeat, we employ a directional antenna at the
transmitter to improve the power of the reflected signal.
Then, the sum of the detail coefficients 𝛽𝐿−1 + 𝛽𝐿 of the
wavelet decomposition is utilized to estimate the heart rate.
When the level of decomposition is 𝐿 = 4, the frequency
range is between 0.625 Hz and 2.5 Hz, which filters out
the breathing signals, which are between 0.17 Hz and 0.62
Hz, as well as higher frequency noises. Finally, we can use
an FFT based method to transform the sum of the detail
coefficients 𝛽𝐿−1+𝛽𝐿 to the frequency domain to estimate
the heart rate. To improve the frequency resolution, we adopt
the method proposed in [5] for heart rate estimation. After
finding the peak of FFT, we use the three bins, including
the peak bin and its two adjacent bins, where an inverse
FFT is performed to obtain a complex time-domain signal.
The heart rate is estimated by evaluating the phase of the
signal. Fig. 9 shows the heart rate estimation with FFT. The
PhaseBeat estimated heartbeat frequency is 1.07 Hz, while
heartbeat frequency measured by a commercial fingertip
pulse sensor is 1.06 Hz. The heart rate estimated error is
0.01 Hz, or 0.6 bpm, in this experiment.

IV. EXPERIMENTAL STUDY

A. Test Configuration

In this section, we present our extensive experimental
study with PhaseBeat in the 5 GHz band. In the experiments,
we use a desktop computer as an access point and a Lenovo
laptop as a mobile device, both equipped with the Intel 5300
NIC. Our PhaseBeat system is implemented on the Ubuntu
desktop 14.04 LTS OS for both the access point and the
mobile device. The access point operates in the monitor
mode and the distance between two adjacent antennas is
𝑑 = 2.68 cm, which is half of the wavelength in the 5 GHz
band. The mobile device operates in the injection mode, to
transmit packets at 400 packets per second using only one
antenna. Then, we extract CSI phase difference data between
two adjacent antennas at the access point for vital signal
estimation.

We conducted extensive experiments with PhaseBeat with
four persons over three months. The test scenarios include
a computer laboratory and corridors as shown in Fig. 10.
We have three setups in these two environments for the
results reported in this paper. The first setup is within the
laboratory, a 4.5× 8.8 m2 room. The room is crowed with
tables and PCs, which block part of the LOS paths and

Figure 10. Experimental setup scenarios.

form a complex radio propagation environment. The second
setup is a through-wall scenario, where the person is on the
transmitter side, separated by a wall from the receiver. The
third setup is the 20 m long corridor, where the receiver
and the transmitter are 11 m apart. We use omnidirectional
antennas at both the receiver and transmitter for breathing
rate estimation in all the three scenarios. We use a directional
antenna at the transmitter in the laboratory scenario for heart
rate estimation. For comparison purpose, we employ the
NEULOG Respiration Monitor Belt Logger Sensor and a
fingertip pulse oximeter to record the ground truths of the
breathing and heart rates.

B. Performance of Breathing and Heart Rate Estimation

Fig. 11 presents the cumulative distribution functions
(CDF) of estimation error in breathing rate estimation. We
use the amplitude based method [13] as a benchmark in this
experiment. We can see that both systems have a similar
median estimate error at about 0.25 bpm. However, we
can see that for PhaseBeat, 90% of the test data have an
estimated error under 0.5 bpm, while 70% of the test data
for the amplitude based method have an estimated error
under 0.5 bpm. Moreover, the maximum estimation error
for PhaseBeat and the amplitude based method are 0.85 bpm
and 1.7 bpm, respectively. Therefore, our PhaseBeat system
achieves a considerably higher accuracy than the amplitude
based method for breathing rate estimation.

Fig. 12 presents the CDF of estimation error in heart rate
estimation. For heart signal detection, we need to use the
directional antenna at the transmitter to improve the received
power. We can see that the variation of CSI phase difference
data becomes larger, while the variation of CSI amplitude
data becomes small, although we cannot directly see the
periodic heart signal. Thus, we only show the PhaseBeat
results for heart signal estimation. In Fig. 12, we find that
PhaseBeat has a median estimate error of about 1 bpm, while
80% of the test data have an estimated error under 2.5 bpm.
Moreover, the maximum estimation error for PhaseBeat is
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Figure 13. Accuracy of breathing and heart rates estimation for different
sampling frequency.

about 10 bpm. We notice that the estimated accuracy of heart
rate is lower than the breathing rate estimation because of
the much weaker heart signal.

Fig. 13 shows the accuracy of breathing and heart rates
estimation for different sampling frequencies. For data cali-
bration, we adopt a 400 Hz sampling frequency to estimate
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Figure 14. Accuracy of breathing rates estimation for different number of
persons.
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Figure 15. Impact of the distance between the transmitter and the receiver
for the long corridor.

the vital signs, which is sufficient to accurately detect
the heart signal. As shown in Fig. 13, the breathing rate
estimation have a similar high accuracy of about 98% for
different sampling frequencies. However, the accuracy of the
heart rate estimation is only 88% for a sampling frequency
of 20 Hz, while it can achieve an accuracy of 95% with the
400 Hz sampling rate. Thus, we choose the 400 Hz sampling
rate for PhaseBeat, which is used for all the experimental
results in this paper.

Fig. 14 shows the accuracy of breathing rates estimation
for different numbers of persons. Moreover, we compare the
proposed root-MUSIC method using 30 subcarriers with the
FFT based method, and with root-MUSIC method using a
single subcarrier. It is noticed that for multiple persons, the
accuracy of breathing rate estimation decreases for all the
three schemes. Moreover, we can see that for two-person
breathing rates estimation, the three methods all have a high
accuracy above 90%. However, for four persons breathing
rate estimation, the root-MUSIC method using 30 subarriers
have the best performance among the three.
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Figure 16. Impact of the distance between the transmitter and the receiver
for through-wall scenario.

C. Impact of the Transmitter-Receiver Distance

Fig. 15 and Fig. 16 show the impact of the distance
between the transmitter and the receiver for the long corridor
and through-wall scenario, respectively. When the distance
between the transmitter and the receiver is increased, the
mean estimation error is also increased. This is because
the reflected signal is reduced when the distance between
the transmitter and receiver is long, which influences the
dynamic range of phase difference data. Moreover, we can
see that the mean estimation error at the same distance for
the through-wall scenario is larger than that for the long
corridor scenario. For example, when the distance is 7 m, the
mean estimation errors for the long corridor and the through-
wall scenario are 0.3 bpm and 0.52 bpm, respectively. It is
because the signal for the through-wall scenario has a larger
attenuation than that for the long corridor scenario.

V. RELATED WORK

This work is closely related to two categories of vital sign
monitoring, i.e., sensor based and RF signal based systems,
which are discussed in the following.

Sensor based systems for vital sign monitoring leverage
special hardware attached to the human body. Typically, spe-
cial devices, such as a capnometer that can measure carbon
dioxide (CO2) concentrations in respired gases, are used to
monitor patients’ breathing rate in hospitals [3]. However,
it is very uncomfortable to wear, and is mainly used in
clinical environments. Photoplethysmography (PPG) is an
optical technique to measure the blood volume variations
in the tissues by detecting the changes in light absorption,
which requires the sensors to be attached to the patient’s
finger (e.g., pulse oximeters) [4]. Moreover, smartphone can
utilize the embedded camera to measure light changes from
the video frames. Then, the pixel of the frame is transformed
into RGB components, which can detect the PPG signal to
estimate the heart rate [20]. Recently, the smartphones can
measure the breathing rate with the built-in accelerometer,

gyroscope [21], and microphone [22], which require the user
to place the smartphone near the body and wear sensors.
These techniques all require attached sensors, which cannot
be applied for remote monitoring of vital signs.

RF based systems for vital sign monitoring exploit wire-
less signals to extract the breathing-induced chest move-
ments, which is mainly based on radar and WiFi techniques.
For radar based vital sign monitoring, some techniques
such as the Doppler radar [6], [7] and the ultra-wideband
radar [8] are developed, which require special hardware
with high frequency and high cost. A recent work employs
a frequency modulated continuous wave (FMCW) radar to
estimate breathing and heart rates, even for multiple subjects
in parallel [5]. However, this system requires customized
hardware with a large bandwidth from 5.46 GHz to 7.25
GHz. For WiFi based vital signs monitoring, UbiBreathe
uses WiFi RSS for breathing rate estimation, which requires
the device be placed along the LOS path between the
transmitter and the receiver for monitoring the breathing
signal [10]. Furthermore, based on RSS, mmVital uses 60
GHz millimeter wave (mmWave) signals for breathing and
heart rates estimation using a larger bandwidth about 7
GHz [9]. This techniques does not work over a relatively
longer distance and requires a high gain directional antenna
at both the transmitter and the receiver. Recently, the authors
in [13] exploit the amplitudes of CSI data of WiFi to track
vital signs. This work is focused on monitoring breathing
and heart rates when one person is sleeping.

The PhaseBeat system is motivated by these interesting
prior works. To the best of our knowledge, it is the first
to leverage CSI phase difference data to remotely detect
breathing and heart rates with commodity WiFi devices.
It can achieve a higher estimation accuracy of vital signs,
with easy, low-cost deployment. This work also provides a
rigorous analysis of the CSI phase data, and proves that the
phase difference data is periodic and has the same frequency
as the breathing signal.

VI. CONCLUSIONS

In this paper, we presented PhaseBeat to exploit CSI
phase difference data to monitor breathing and heartbeats
with commodity WiFi device. We first provided a rigorous
analysis of CSI phase difference data, with respect to its
stability and periodicity. We then described the PhaseBeat
design in detail, including environment detection, data cali-
bration, subcarrier selection, and discrete wavelet transform.
We implemented PhaseBeat with off-the-shelf WiFi devices,
and conducted an extensive experimental study with three
setups. The experimental results showed that PhaseBeat can
achieve superior performance on breathing and heart rate
detection over existing methods.
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