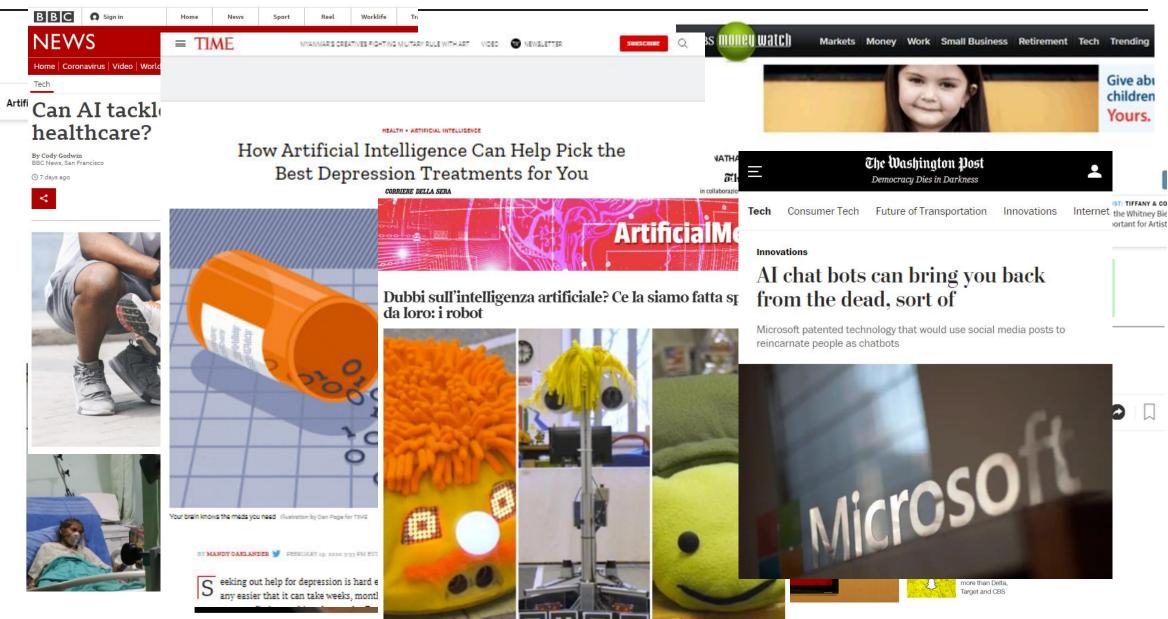
Development of intelligent systems (RInS)

Object recognition with Convolutional Neural Networks

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

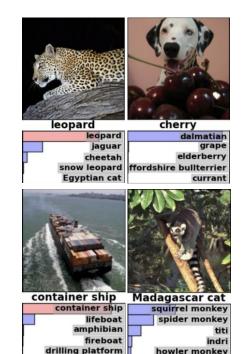
Academic year: 2021/22

Media hype



IM GENET

1k categories 1,3M images Top5 classification

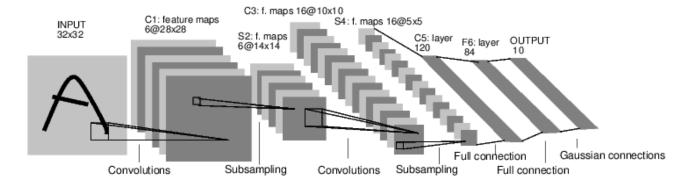


ILSVRC results

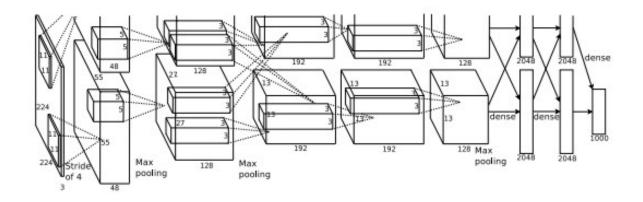
New deep learning era

More data!

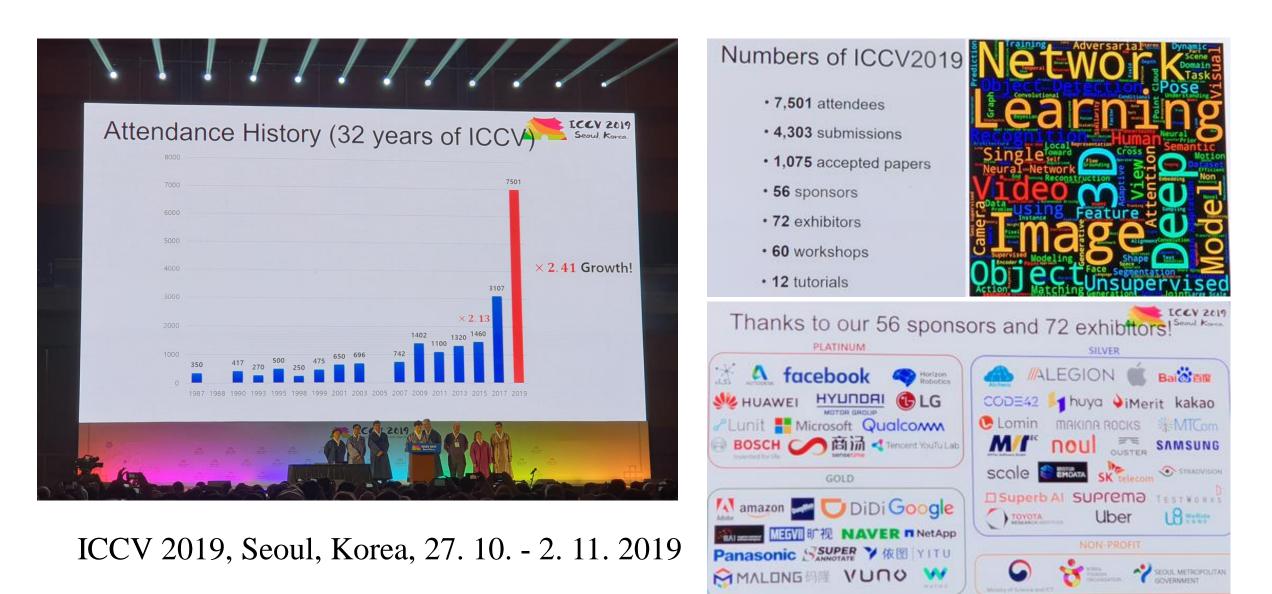
More computing power - GPU!



Better learning algorithms!

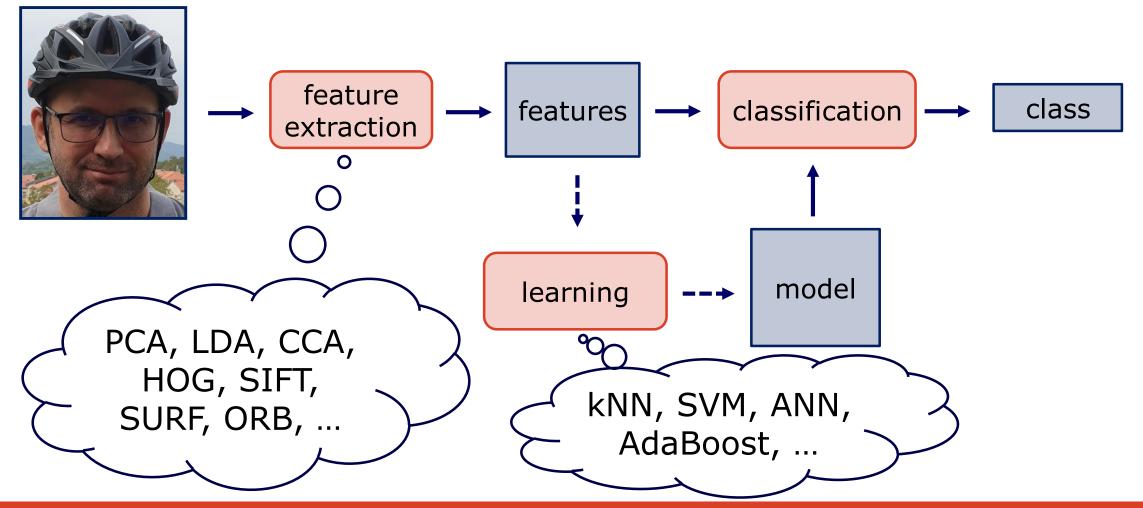


New deep learning era



Machine learning in computer vision

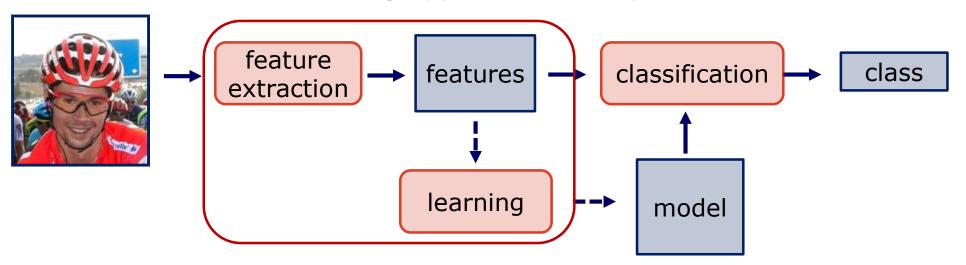
Conventional approach



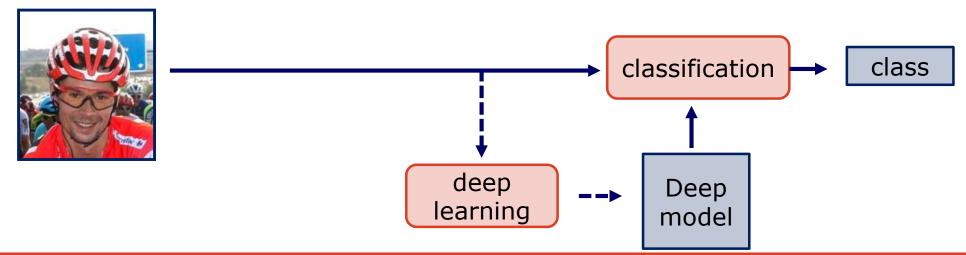
Development of intelligent systems, Object recognition with CNNs

Deep learning in computer vision

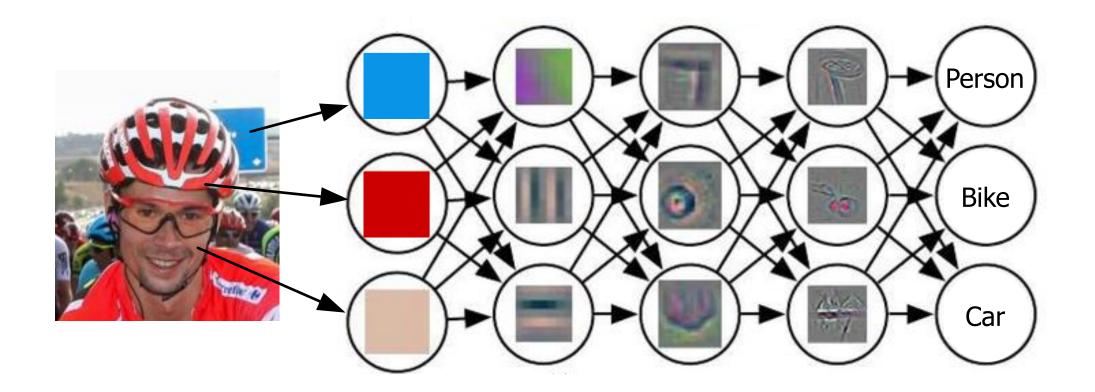
Conventional machine learning approach in computer vision



Deep learing approach

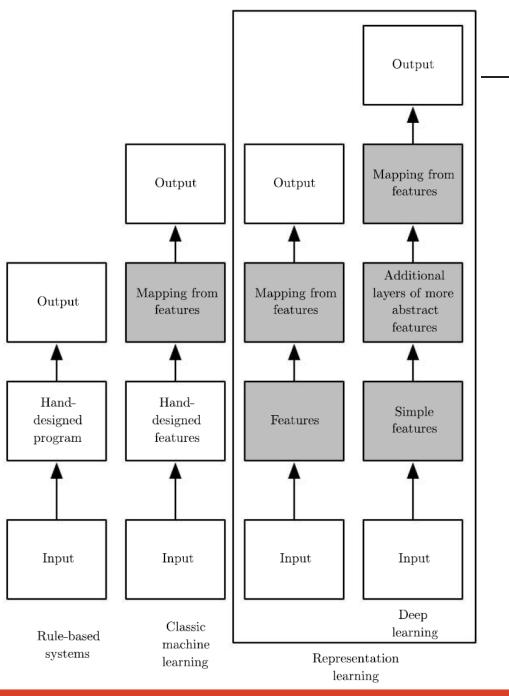


Deep learning – the main concept



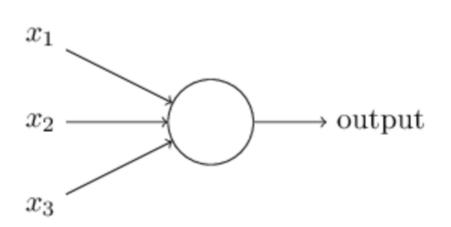
End to end learning

 Representations as well as classifier are being learned



Perceptron

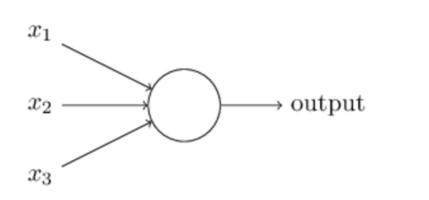
- Rosenblatt, 1957
- Binary inputs and output
- Weights
- Threshold
- Bias
- Very simple!



$$egin{aligned} ext{output} &= egin{cases} 0 & ext{if } \sum_j w_j x_j \leq ext{ threshold} \ 1 & ext{if } \sum_j w_j x_j > ext{ threshold} \ 0 & ext{if } w \cdot x + b \leq 0 \ 1 & ext{if } w \cdot x + b > 0 \end{aligned}$$

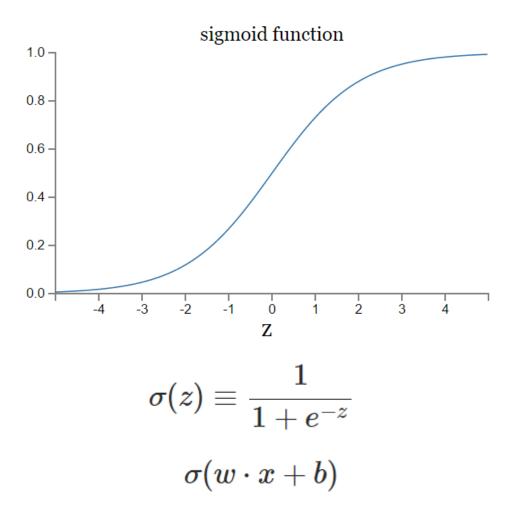
Sigmoid neurons

Real inputs and outputs from interval [0,1]



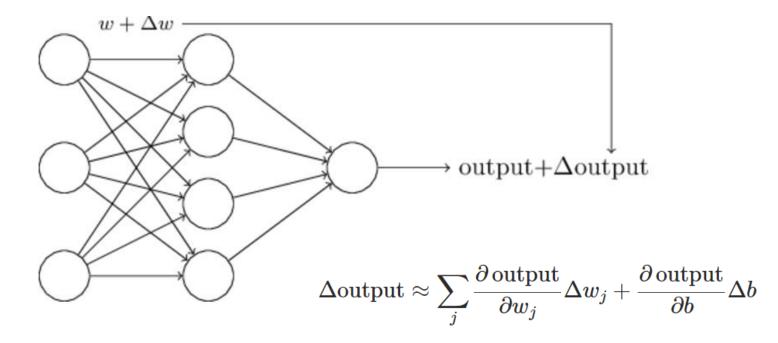
Activation function: sgimoid function

• output =
$$\frac{1}{1 + \exp(-\sum_j w_j x_j - b)}$$



Sigmoid neurons

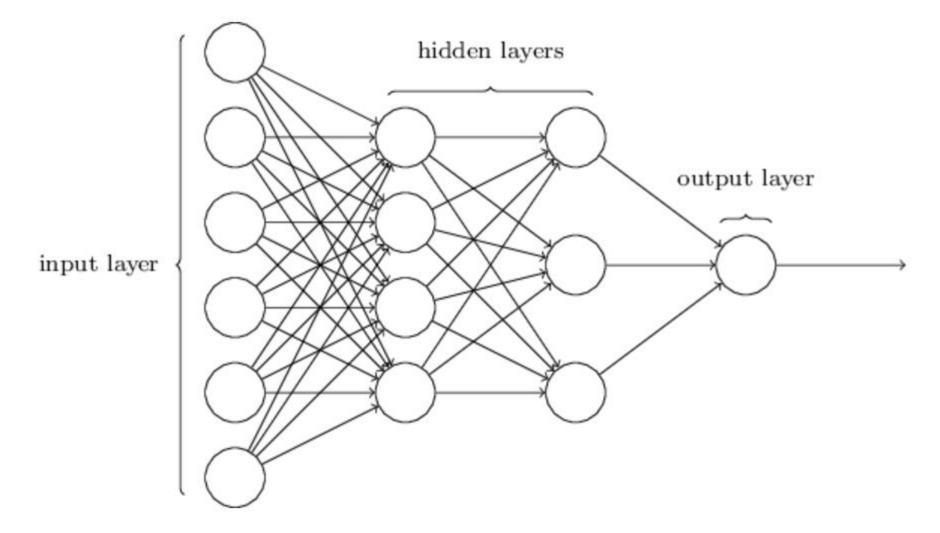
Small changes in weights and biases causes small change in output



Enables learning!

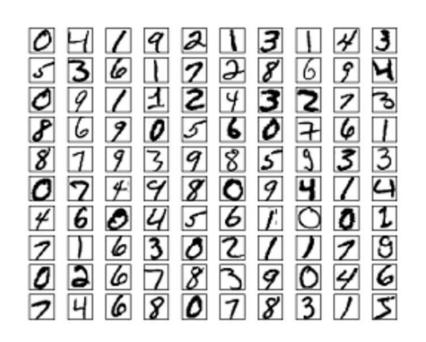
Feedfoward neural networks

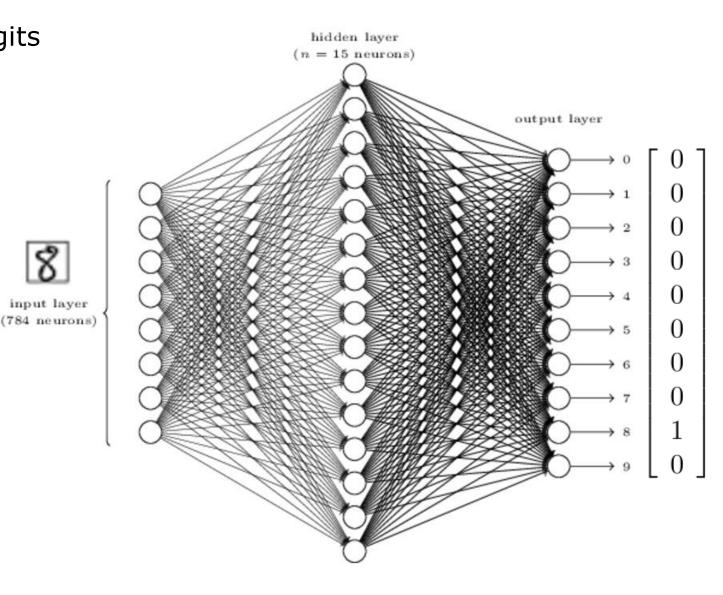
Network architecture:



Example: recognizing digits

- MNIST database of handwritten digits
 - 28x28 pixes (=784 input neurons)
 - 10 digits
 - 50.000 training images
 - 10.000 validation images
 - 10.000 test images





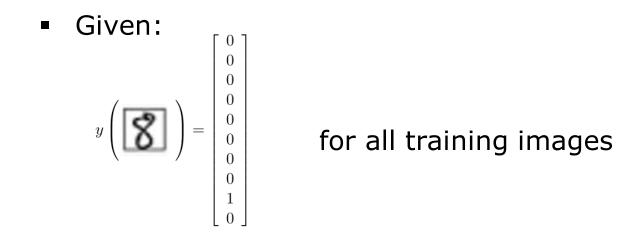
Example code: Feedforward

- Code from https://github.com/mnielsen/neural-networks-and-deep-learning git clone https://github.com/mnielsen/neural-networks-and-deep-learning git clone https://github.com/mnielsen/neural-networks-and-deep-learning
- Or <u>https://github.com/chengfx/neural-networks-and-deep-learning-for-python3</u> (for Python 3)

```
net = network.Network([784, 30, 10])
class Network(object):
                                                   net.SGD(training_data, 5, 10, 3.0, test_data=test_data)
                                                                                In [55]: x,y=test data[0]
    def __init__(self, sizes):
        self.num_layers = len(sizes)
                                                                                In [56]: net.feedforward(x)
        self.sizes = sizes
                                                                                Out[56]:
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
                                                                                array([[ 1.83408119e-03],
        self.weights = [np.random.randn(y, x)
                                                                                          5.94472468e-08],
                        for x, y in zip(sizes[:-1], sizes[1:])]
                                                                                          1.84785949e-03],
                                                                                          6.85718810e-04],
   def feedforward(self, a):
                                                                                          1.41399919e-05],
       for b, w in zip(self.biases, self.weights):
                                                                                          5.40491233e-06],
           a = sigmoid(np.dot(w, a)+b)
                                                                                          4.74332685e-09],
       return a
                                                                                          9.97920007e-01],
                                                                                          8.19370561e-05],
                                                                                          6.65086583e-05]])
def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))
                                                                                In [57]: y
```

Out[57]: 7

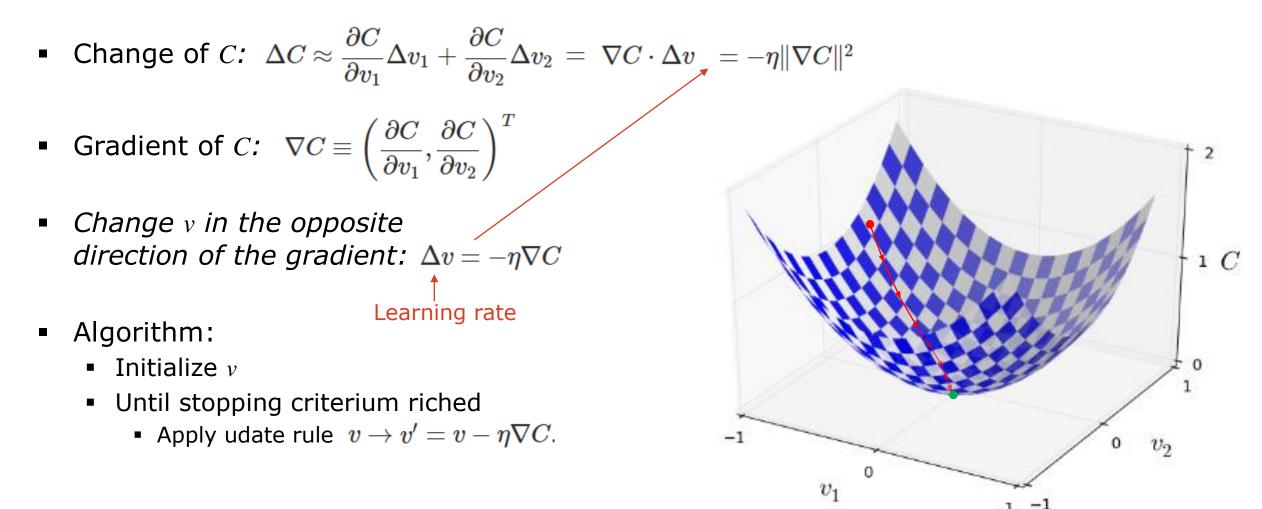
Loss function



- Loss function: $C(w,b)\equiv rac{1}{2n}\sum_x \|y(x)-a\|^2$
 - (mean sqare error quadratic loss function)
- Find weigths *w* and biases *b* that for given input *x* produce output *a* that minimizes Loss function *C*

Gradient descend

• Find minimum of $C(v_1, v_2)$

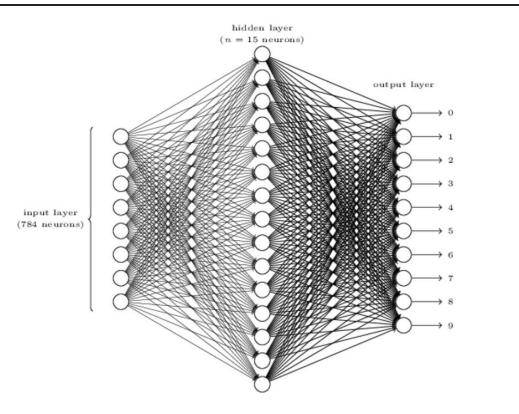


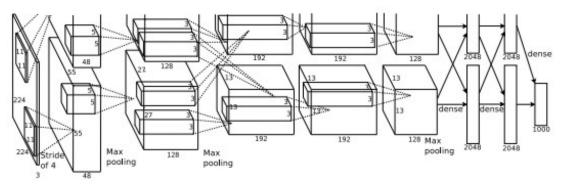
Gradient descend in neural networks

- Loss function C(w, b)
- Update rules:

$$egin{aligned} w_k & o w_k' = w_k - \eta rac{\partial C}{\partial w_k} \ b_l & o b_l' = b_l - \eta rac{\partial C}{\partial b_l} \end{aligned}$$

- Consider all training samples
- Very many parameters
 => computationaly very expensive
- Use Stochastic gradient descend instead





Stochastic gradient descend

- Compute gradient only for a subset of *m* training samples:
 - Mini-batch: X_1, X_2, \ldots, X_m

• Approximate gradient:
$$rac{\sum_{j=1}^m
abla C_{X_j}}{m} \approx rac{\sum_x
abla C_x}{n} =
abla C$$
 $\nabla C pprox rac{1}{m} \sum_{j=1}^m
abla C_{X_j}$

• Update rules:

$$egin{aligned} &w_k o w_k' = w_k - rac{\eta}{m} \sum_j rac{\partial C_{X_j}}{\partial w_k} \ &b_l o b_l' = b_l - rac{\eta}{m} \sum_j rac{\partial C_{X_j}}{\partial b_l}, \end{aligned}$$

- Training:
 - 1. Initialize *w* and *b*
 - 2. In one *epoch* of training keep randomly selecting one mini-batch of *m* samples at a time (and train) until all training images are used
 - 3. Repeat for several epochs

Example code: SGD

```
def SGD(self, training data, epochs, mini batch size, eta):
    n = len(training data)
    for j in xrange(epochs):
        random.shuffle(training data)
        mini batches = [
            training data[k:k+mini batch size]
            for k in xrange(0, n, mini_batch_size)]
        for mini batch in mini batches:
            self.update mini batch(mini_batch, eta)
def update mini batch(self, mini batch, eta):
   nabla_b = [np.zeros(b.shape) for b in self.biases]
   nabla w = [np.zeros(w.shape) for w in self.weights]
   for x, y in mini batch:
        delta_nabla_b, delta_nabla_w = self.backprop(x, y)
       nabla b = [nb+dnb for nb, dnb in zip(nabla b, delta nabla b)]
       nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
   self.weights = [w-(eta/len(mini batch))*nw
                    for w, nw in zip(self.weights, nabla w)]
   self.biases = [b-(eta/len(mini_batch))*nb
```

```
for b, nb in zip(self.biases, nabla_b)]
```

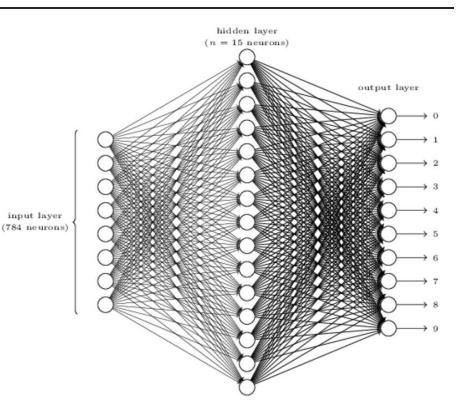
Backpropagation

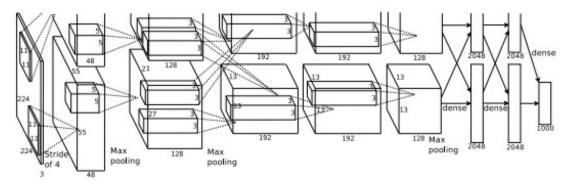
- All we need is gradient of loss function ∇C
 - Rate of change of C wrt. to change in any weigt
 - Rate of change of *C* wrt. to change in any biase

$$rac{\partial C}{\partial b_j^l} \qquad \qquad rac{\partial C}{\partial w_{jk}^l}$$

- How to compute gradient?
 - Numericaly
 - Simple, approximate, extremely slow $\ensuremath{\mathfrak{S}}$
 - Analyticaly for entire *C*
 - Fast, exact, nontractable ⊗
 - Chain individual parts of netwok
 - Fast, exact, doable ☺

Backpropagation!





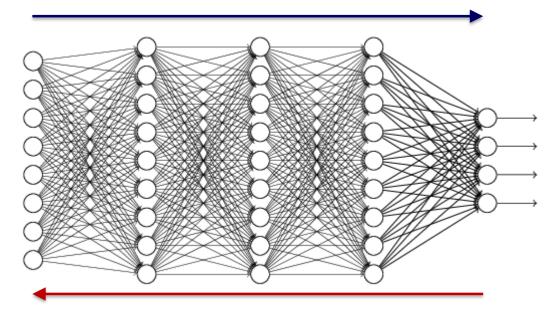
Main principle

- We need the gradient of the Loss function ∇C
- Two phases:
 - Forward pass; propagation: the input sample is propagated through the network and the error at the final layer is obtained

 ∂C

 ∂w^l_{il}

 $rac{\partial C}{\partial b_i^l}$



 Backward pass; weight update: the error is backpropagated to the individual levels, the contribution of the individual neuron to the error is calculated and the weights are updated accordingly

Learning strategy

- To obtain the gradient of the Loss function ∇C : $\frac{\partial C}{\partial b_i^l} = \frac{\partial C}{\partial w_{jk}^l}$
 - For every neuron in the network calculate error of this neuron

$$\delta^l_j \equiv {\partial C \over \partial z^l_j}$$

- This error propagates through the netwok causing the final error
- Backpropagate the final error to get all δ_i^l

• Obtain all
$$\frac{\partial C}{\partial b_j^l}$$
 and $\frac{\partial C}{\partial w_{jk}^l}$ from δ_j^l

Equations of backpropagation

• BP1: Error in the output layer:

$$\delta^L_j = rac{\partial C}{\partial a^L_j} \sigma'(z^L_j) \qquad \qquad \delta^L =
abla_a C \odot \sigma'(z^L)$$

BP2: Error in terms of the error in the next layer:

$$\delta^l_j = \sum_k w^{l+1}_{kj} \delta^{l+1}_k \sigma'(z^l_j) \qquad \qquad \delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

BP3: Rate of change of the cost wrt. to any bias:

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \qquad \qquad \frac{\partial C}{\partial b} = \delta$$

BP4: Rate of change of the cost wrt. to any weight:

$$rac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \qquad \qquad rac{\partial C}{\partial w} = a_{
m in} \delta_{
m out} \qquad \bigcirc^{rac{\partial C}{\partial w}} = a_{
m in} \delta_{
m out}$$

0.01

Backpropagation algorithm

- **Input** *x*: Set the corresponding activation a^1 for the input layer
- Feedforward: For each $l=2,3,\ldots,L$ compute $z^l=w^la^{l-1}+b^l$ and $a^l=\sigma(z^l)$
- Output error δ^L : Compute the output error $\delta^L = \nabla_a C \odot \sigma'(z^L)$
- Backpropagate the error:

For each
$$l = L - 1, L - 2, \dots, 2$$

compute $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$

• Output the gradient:

$$rac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \qquad rac{\partial C}{\partial b_j^l} = \delta_j^l$$

For a number of **epochs**

Until all training images are used

Select a **mini-batch** of *m* training samples

For each training sample \boldsymbol{x} in the mini-batch

Input: set the corresponding activation $a^{x,1}$

Feedforward: for each
$$l=2,3,\ldots,L$$
 compute $z^{x,l}=w^la^{x,l-1}+b^l$ and $a^{x,l}=\sigma(z^{x,l})$

Output error: compute $\delta^{x,L} = \nabla_a C_x \odot \sigma'(z^{x,L})$

Backpropagation: for each
$$\ l=L-1,L-2,\ldots,2$$
 compute $\delta^{x,l}=((w^{l+1})^T\delta^{x,l+1})\odot\sigma'(z^{x,l})$

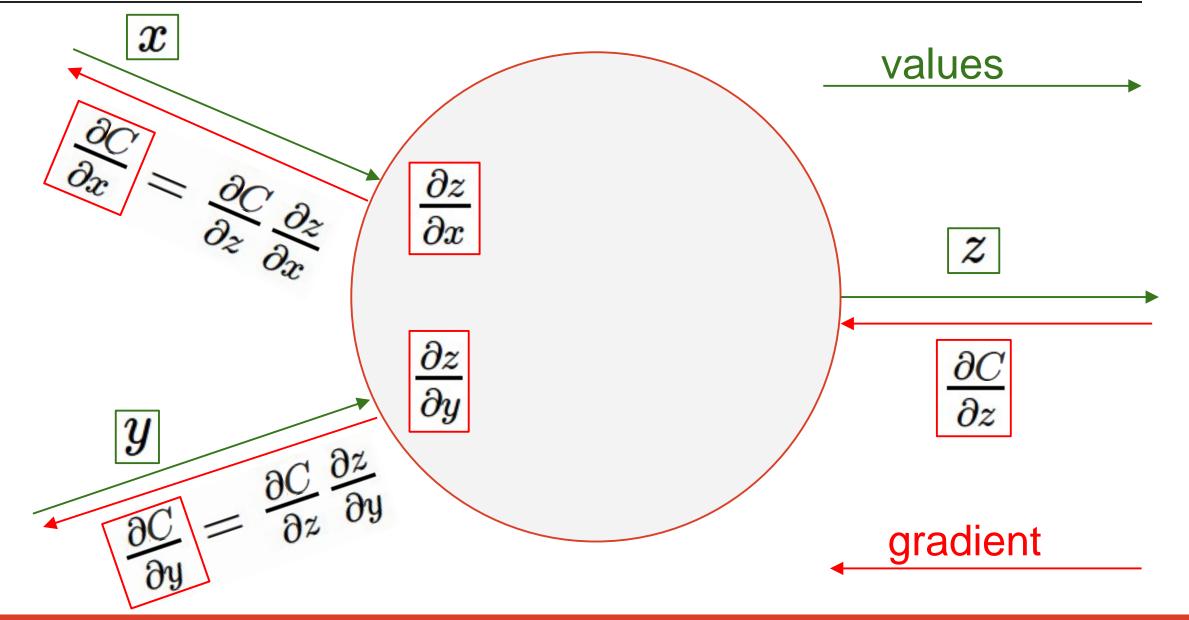
Gradient descend: for each l = L, L - 1, ..., 2 and x update:

$$egin{aligned} &w^l o w^l - rac{\eta}{m} \sum_x \delta^{x,l} (a^{x,l-1})^T \ &b^l o b^l - rac{\eta}{m} \sum_x \delta^{x,l} \end{aligned}$$

Example code: Backpropagation

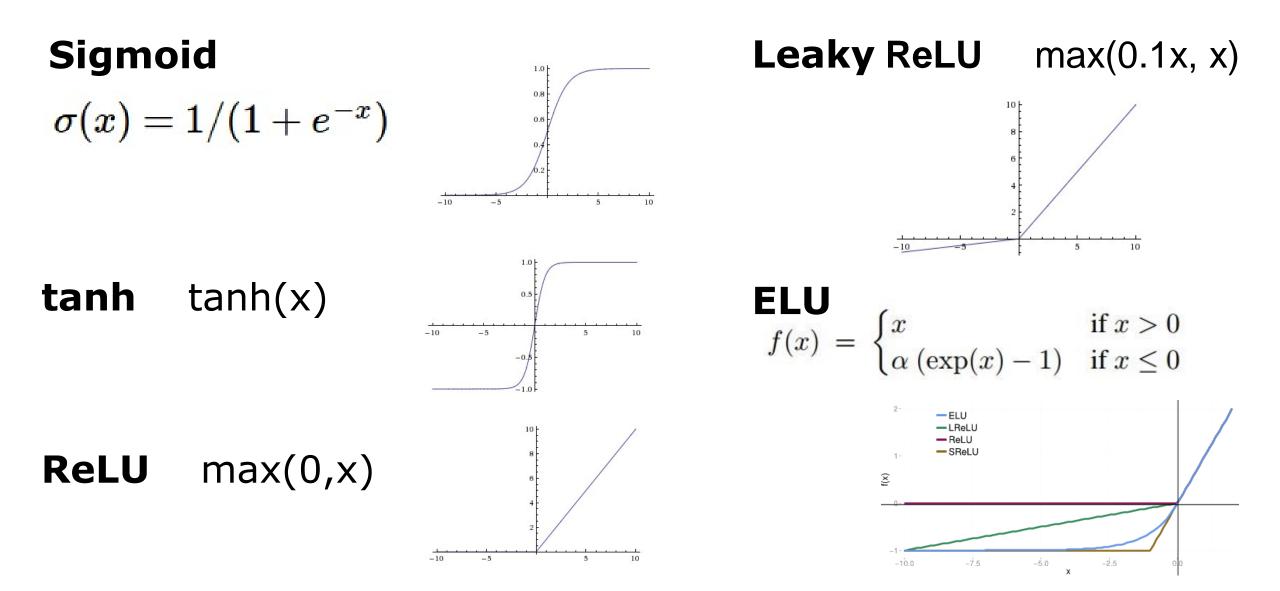
```
def backprop(self, x, y):
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
                                                           def cost derivative(self, output activations, y):
            zs.append(z)
                                                               return (output activations-y)
            activation = sigmoid(z)
            activations.append(activation)
       # backward pass
                                                                             def sigmoid(z):
        delta = self.cost_derivative(activations[-1], y) * \
                                                                                 return 1.0/(1.0+np.exp(-z))
            sigmoid prime(zs[-1])
        nabla b[-1] = delta
                                                                        def sigmoid prime(z):
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
                                                                            return sigmoid(z)*(1-sigmoid(z))
        for l in xrange(2, self.num_layers):
            z = zs[-1]
            sp = sigmoid prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla b[-1] = delta
            nabla w[-1] = np.dot(delta, activations[-1-1].transpose())
        return (nabla b, nabla w)
```

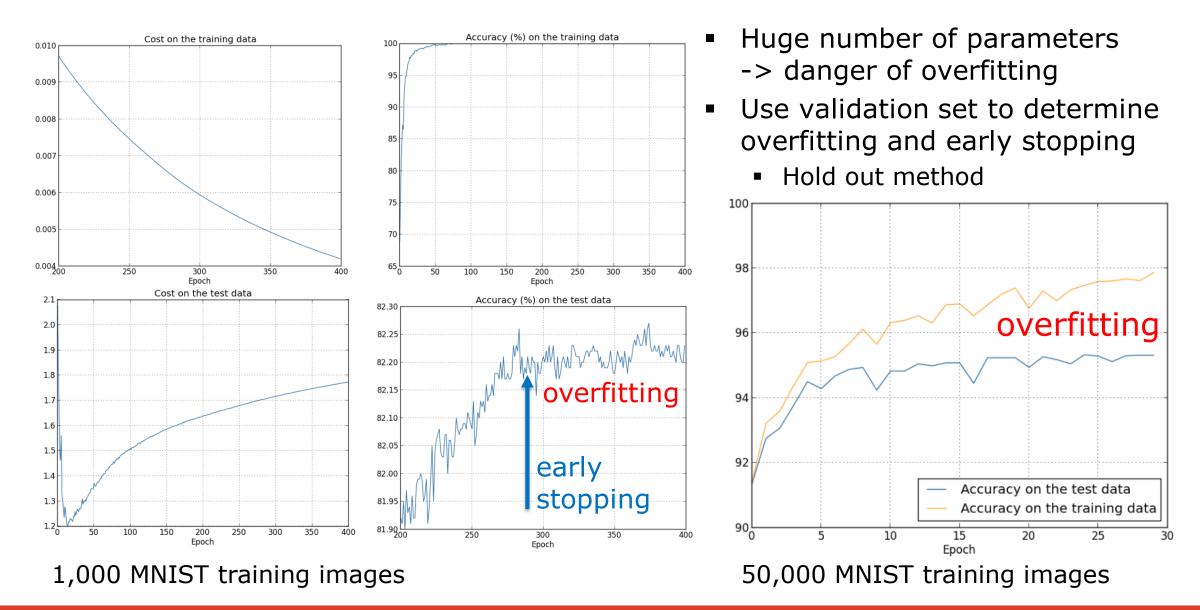
Local computation



Activation function	Loss function
Linear	Quadratic
$a_j^L=z_j^L$	$C(w,b)\equiv rac{1}{2n}\sum_x \ y(x)-a\ ^2$
Sigmoid 1	Binary cross-entropy
$\sigma(z)\equivrac{1}{1+e^{-z}}$	$C=-rac{1}{n}\sum_{x}\sum_{j}\left[y_{j}\ln a_{j}^{L}+(1-y_{j})\ln(1-a_{j}^{L}) ight]$
Softmax $e^{z_j^L}$	Categorical Cross-entropy
Softmax $a_j^L = rac{e^{z_j^L}}{\sum_k e^{z_k^L}}$	$C=-rac{1}{n}\sum_{x}\sum_{j}y_{j}\ln a_{j}^{L}$
Other	Custom

Activation functions



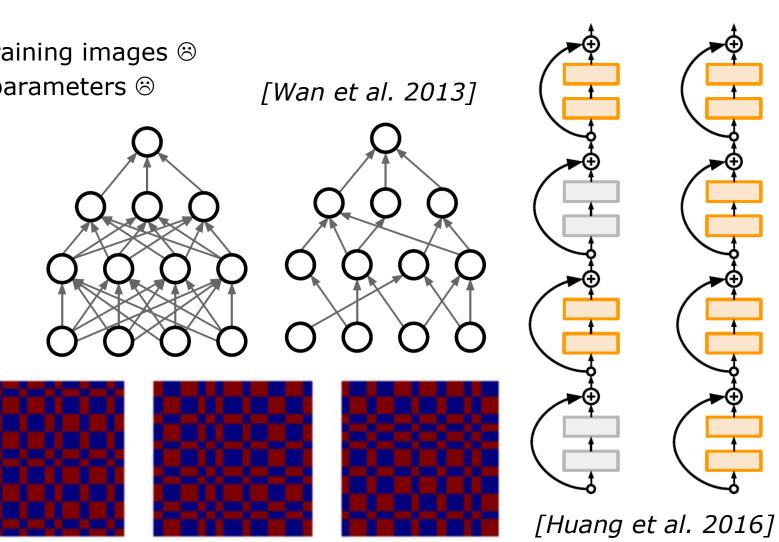


Regularization

- How to avoid overfitting:
 - Increase the number of training images $\boldsymbol{\Im}$
 - Decrease the number of parameters ⊗
 - Regularization ☺
- Regularization:
 - L2 regularization
 - L1 regularization
 - Dropout
 - Data augmentation

Regularisation

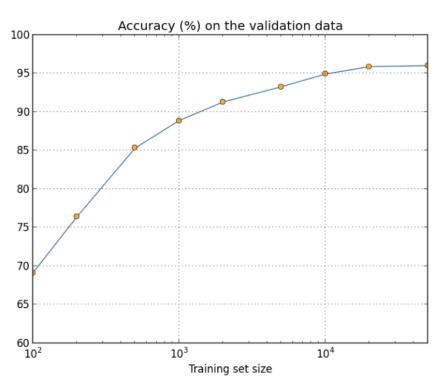
- How to avoid overfitting:
 - Increase the number of training images $\boldsymbol{\Im}$
 - Decrease the number of parameters $\boldsymbol{\boldsymbol{\Im}}$
 - Regularization ③
- Data Augmentation
- L1 regularisation
- L2 regularisation
- Dropout
- Batch Normalization
- DropConnect
- Fractional Max Pooling
- Stochastic Depth
- Cutout / Random Crop
- Mixup



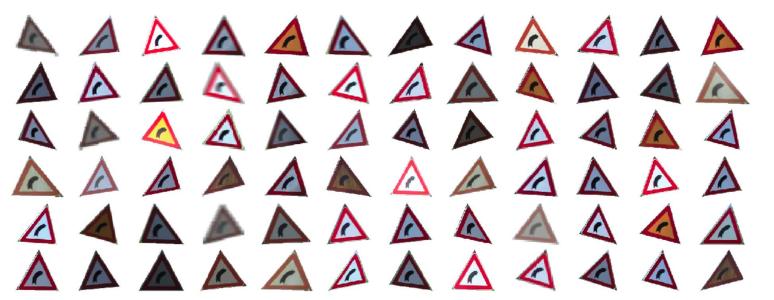
[Graham, 2014]

Data augmentation

Use more data!

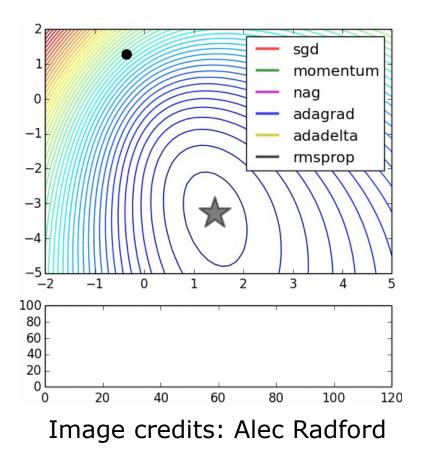


- Synthetically generate new data
- Apply different kinds of transformations: translations, rotations, elastic distortions, appearance modifications (intensity, blur)
- Operations should reflect real-world variation



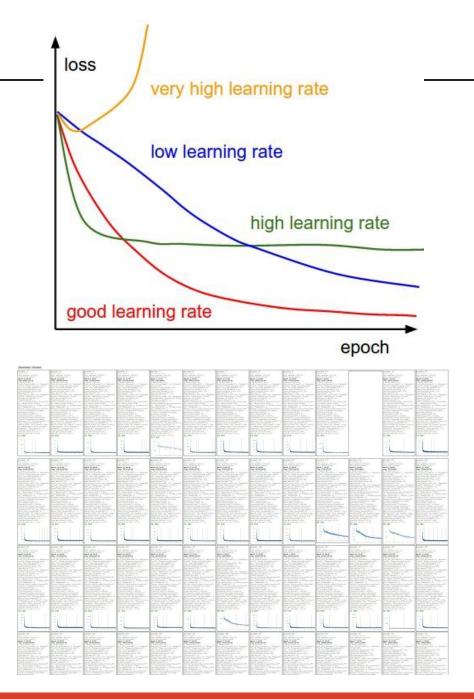
Parameter updates

- Different schemes for updating gradient
 - Gradient descend
 - Momentum update
 - Nesterov momentum
 - AdaGrad update
 - RMSProp update
 - Adam update
 - Learning rate decay



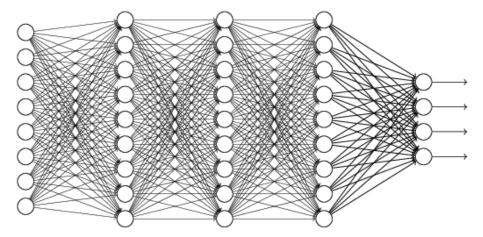
Setting up the network

- Set up the network
- Coarse-fine cross-validation in stages
 - Only a few epochs to get a rough idea
 - Even on a smaller problem to speed up the process
 - Longer running time, finer search,...
- Cross-validation strategy
 - Check various parameter settings
 - Always sample parameters
- Check the results, adjust the range
- Hyperparameters to play with:
 - network architecture
 - learning rate, its decay schedule, update type
 - regularization (L2/Dropout strength)...
- Run multiple validations simultaneously
- Actively observe the learning progress

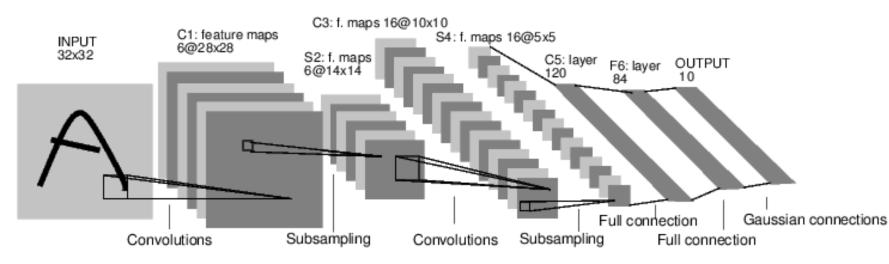


Convolutional neural networks

From feedforward fully-connected neural networks



To convolutional neural networks



Convolution

Convolution operation:

$$s(t) = \int x(a)w(t-a)da \qquad s(t) = (x*w)(t)$$

Discrete convolution:

$$s(t) = (x * w)(t) = \sum_{a = -\infty} x(a)w(t - a)$$

Two-dimensional convolution:

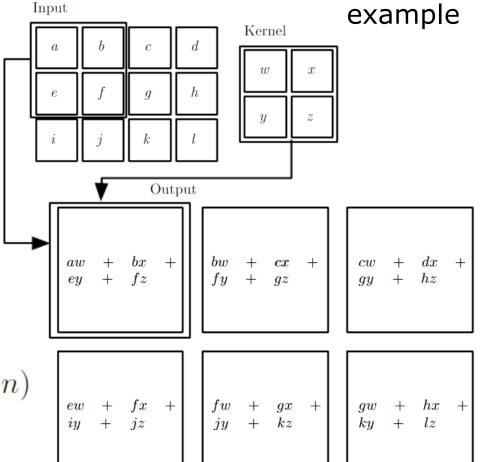
$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

 ∞

Convolution is commutative:

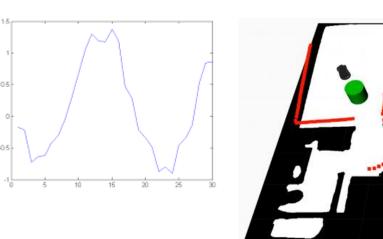
$$S(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i - m, j - n)K(m, n)$$

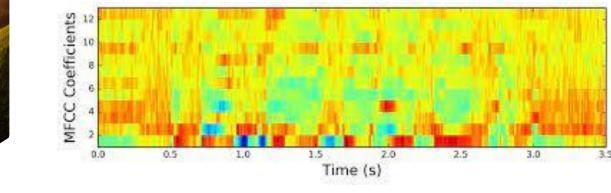
Cross-correlation:
$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i + m, j + n)K(m, n)$$



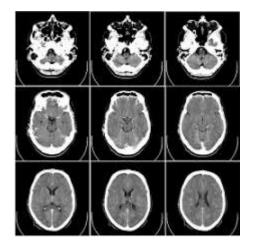
Convolutional neural networks

- Data in vectors, matrices, tensors
- Neigbourhood, spatial arrangement
- 2D: Images,time-fequency representations

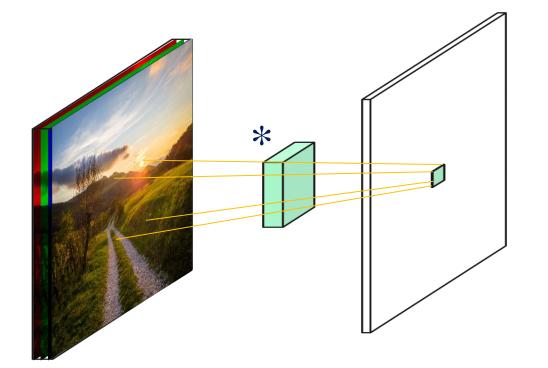




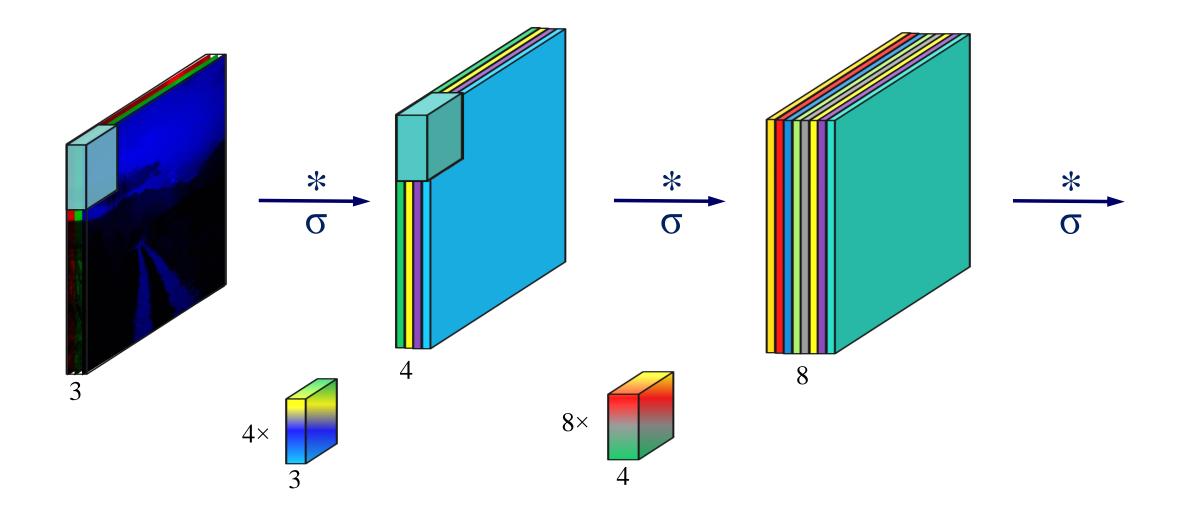
- 1D: sequential signals, text, audio, speech, time series,...
- 3D: volumetric images, video, 3D grids



Convolution layer

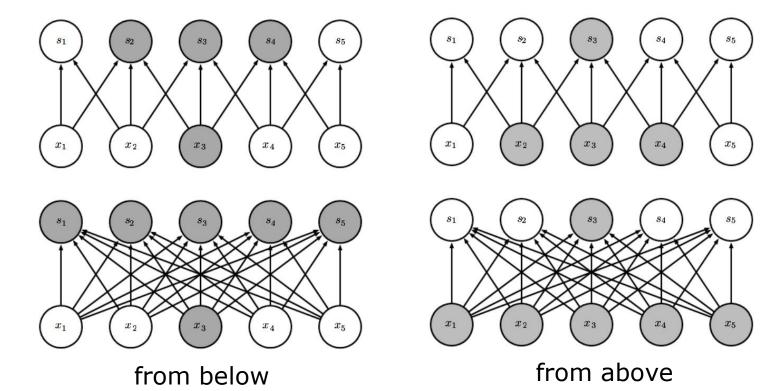


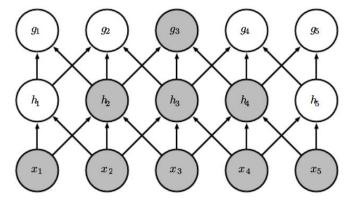
Convolution layer



Sparse connectivity

- Local connectivity neurons are only locally connected (receptive field)
 - Reduces memory requirements
 - Improves statistical efficiency
 - Requires fewer operations





The receptive field of the units in the deeper layers is large

=> Indirect connections!

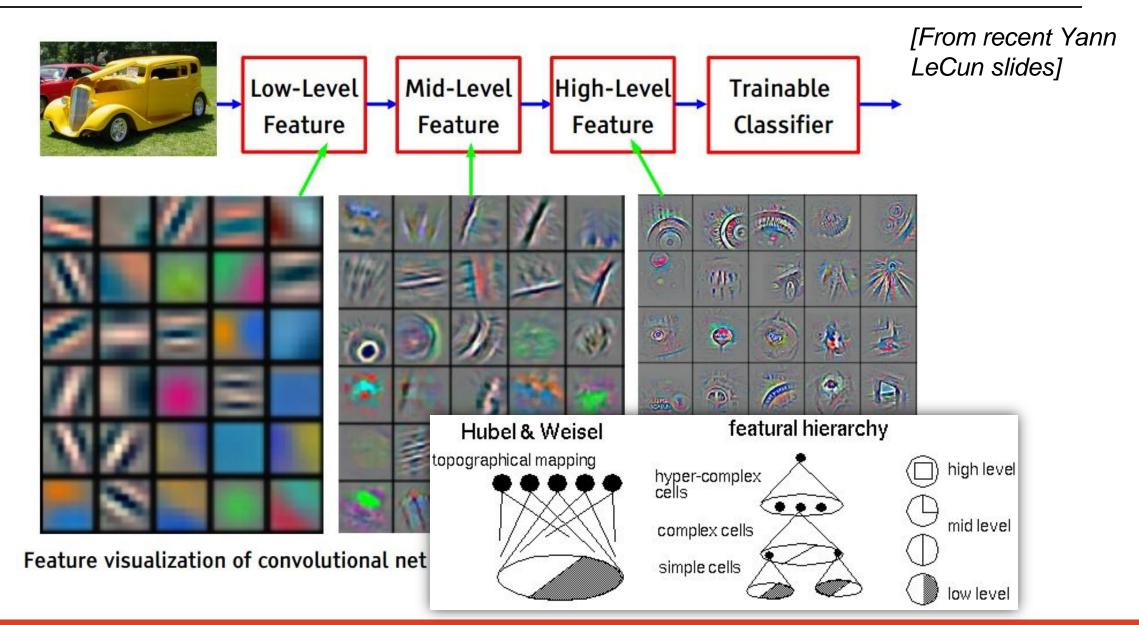
Parameter sharing

Neurons share weights!

- Tied weights
- Every element of the kernel is used at every position of the input
- All the neurons at the same level detect the same feature (everywhere in the input)
- Greatly reduces the number of parameters!
- Equivariance to translation
 - Shift, convolution = convolution, shift
 - Object moves => representation moves

- Fully connected network with an infinitively strong prior over its weights
 - Tied weights
 - Weights are zero outside the kernel region
 - => learns only local interactions and is equivariant to translations

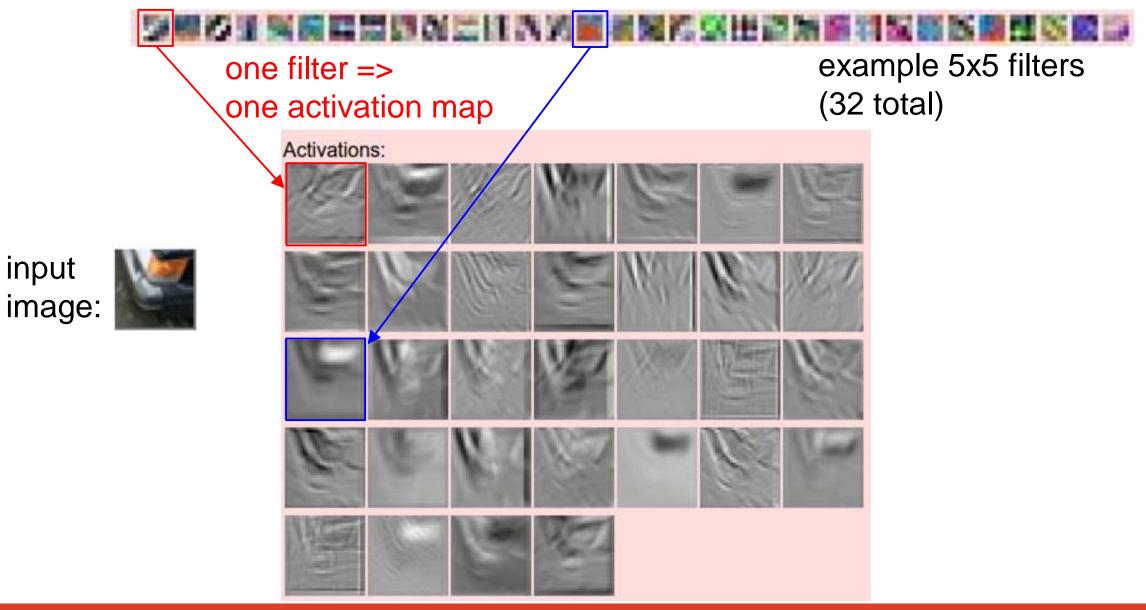
Convolutional neural network



Development of intelligent systems, Object recognition with CNNs

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Convolutional neural network

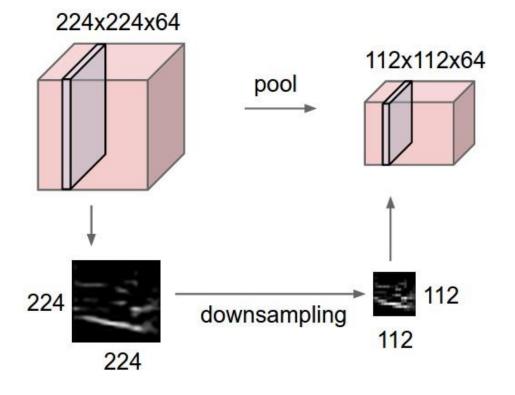


Development of intelligent systems, Object recognition with CNNs

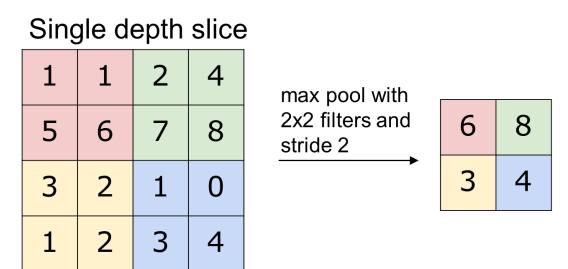
Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson 45

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently
- downsampling

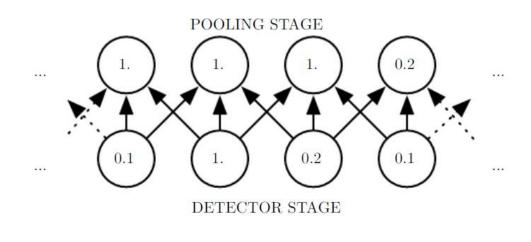


Example: Max pooling

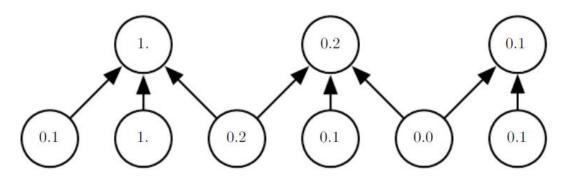


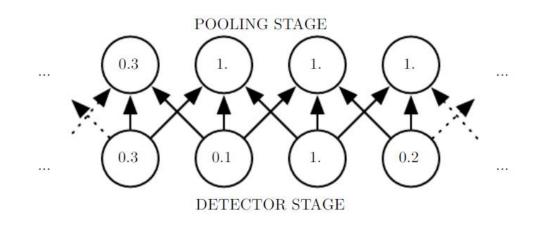
Pooling

 Max pooling introduces translation invariance



- Pooling with downsampling
 - Reduces the representation size
 - Reduces computational cost
 - Increases statistical efficiency

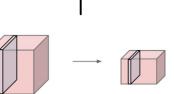




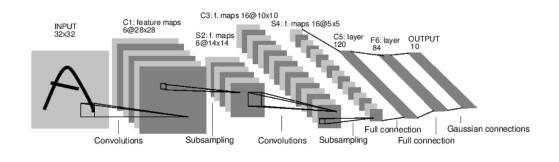
CNN layers

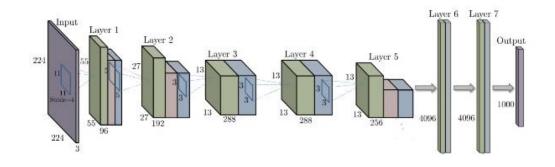
- Layers used to build ConvNets:
 - INPUT: raw pixel values

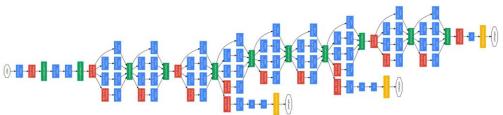
- CONV: convolutional layer
- (BN: batch nornalisation)
- (ReLU:) introducing nonlinearity
- POOL: downsampling

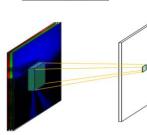


- FC: for computing class scores
- SoftMax



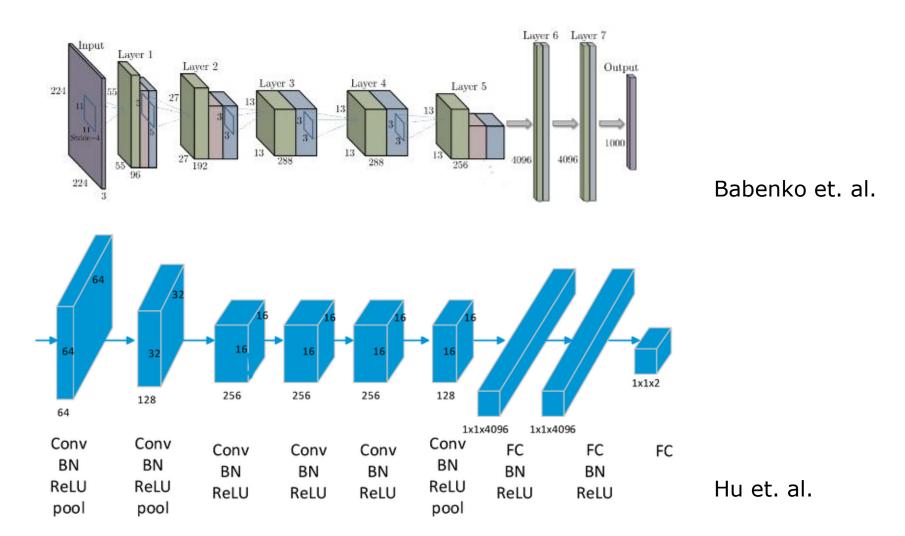




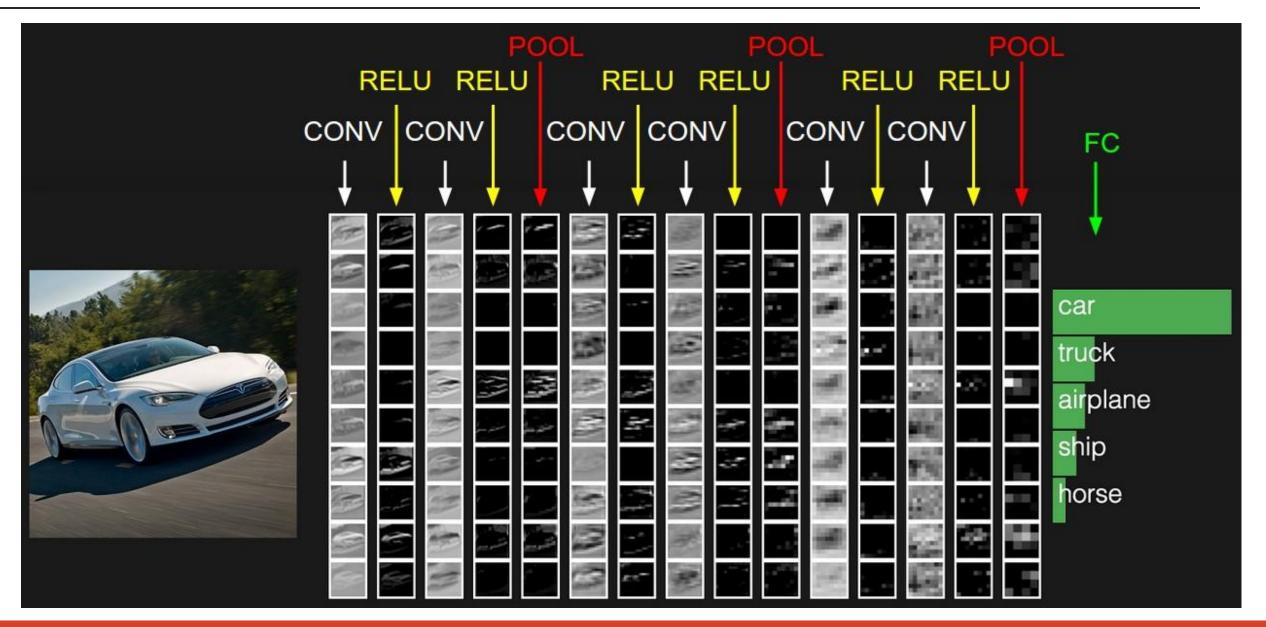


CNN architecture

Stack the layers in an appropriate order



CNN architecture



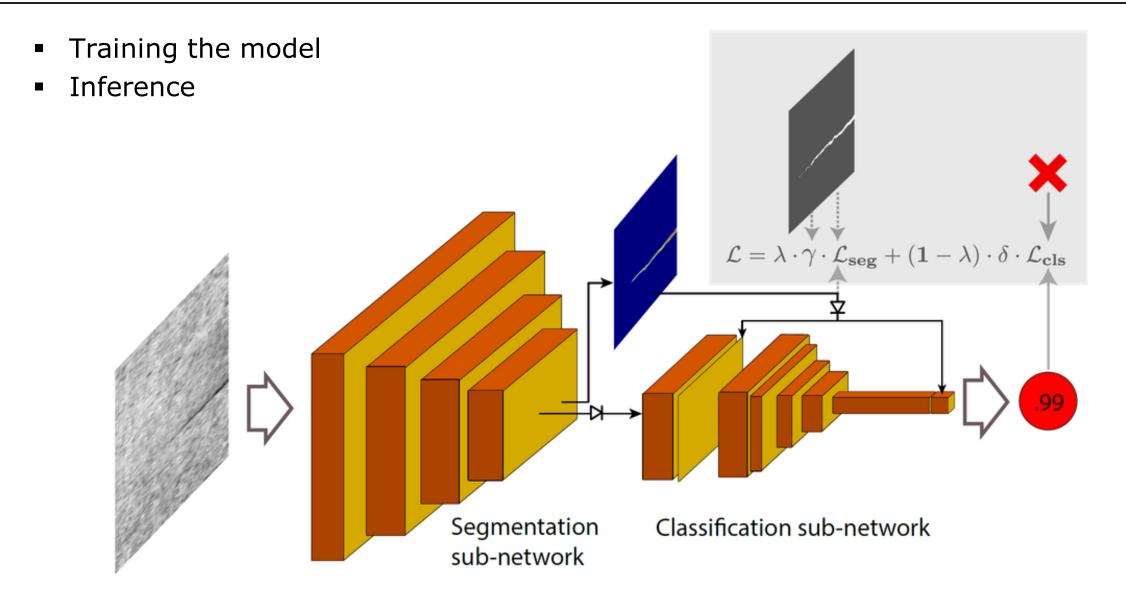
Development of intelligent systems, Object recognition with CNN

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson 50

Typical solution

Korak 1: Zajem podatkov

Network architecture

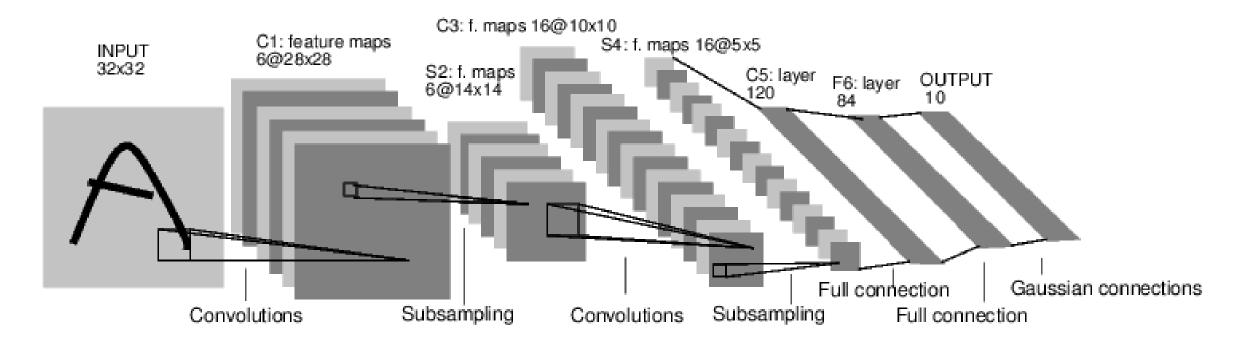


Example implementation in TensorFlow



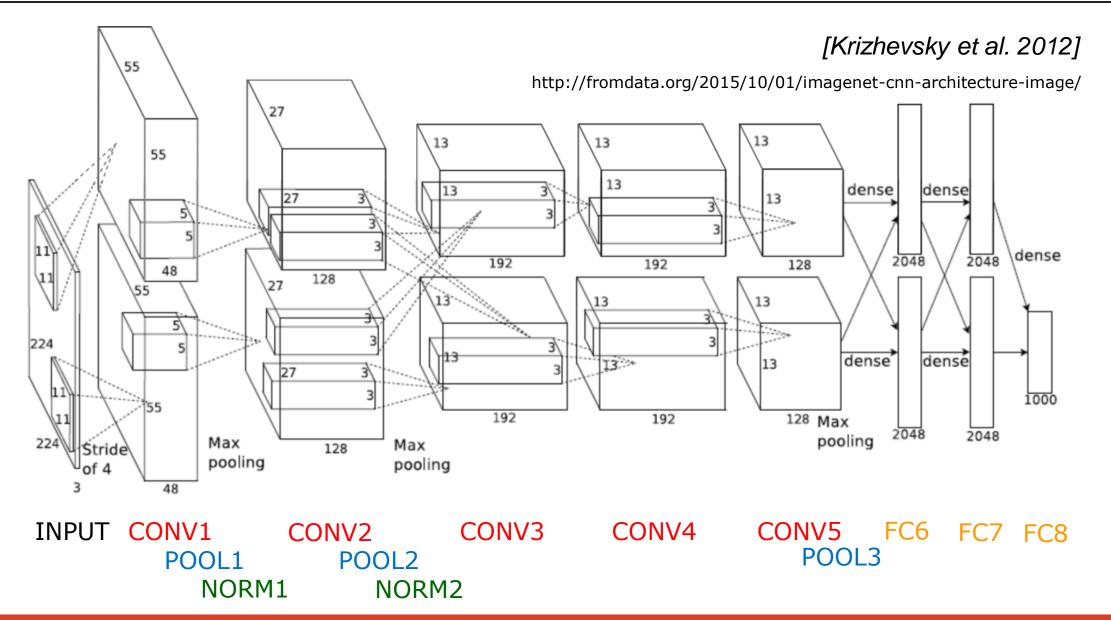
Case study – LeNet-5

[LeCun et al., 1998]



Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Case study - AlexNet



Development of intelligent systems, Object recognition with CNN

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson 55

Case studay - VGGNet		ConvNet Configuration					
		A	A-LRN	B	С	D	Е
		11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
		layers	layers	layers	layers	layers	layers
			input $(224 \times 224 \text{ RGB image})$				
[Simonyan and Zisserman, 2014]		conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
			LRN	conv3-64	conv3-64	conv3-64	conv3-64
		maxpool					
224×224×3 224×224×64		conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
				conv3-128	conv3-128	conv3-128	conv3-128
112×112×128		maxpool					
	best model	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
		conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
					conv1-256	conv3-256	conv3-256
56×56×2	256						conv3-256
	$28 \times 28 \times 512$ $7 \times 7 \times 512$	maxpool		0.010			
	14×14×512 1×1×4096 1×1×1000	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
S. 28		conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
					conv1-512	conv3-512	conv3-512
		maxpool		-	conv3-512		
	convolution+ReLU	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	max pooling	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512 conv3-512	conv3-512
	fully connected+ReLU	conv5-512	conv5-512	conv5-512	conv3-512	conv3-512	conv3-512
	softmax				conv1-512	conv5-512	conv3-512
	sortmax	8		max	pool		convo oriz
		FC-4096					
		FC-4096					
Only 3x3 CONV stride 1, pad 1		FC-1000					
-		soft-max					
and 2x2 MAX PC	DOL stride 2	0					

11.2% top 5 error in ILSVRC 2013 -> 7.3% top 5 error

Network

Number of parameters

Table 2: Number of parameters (in millions).

В

133

C

134

D

138

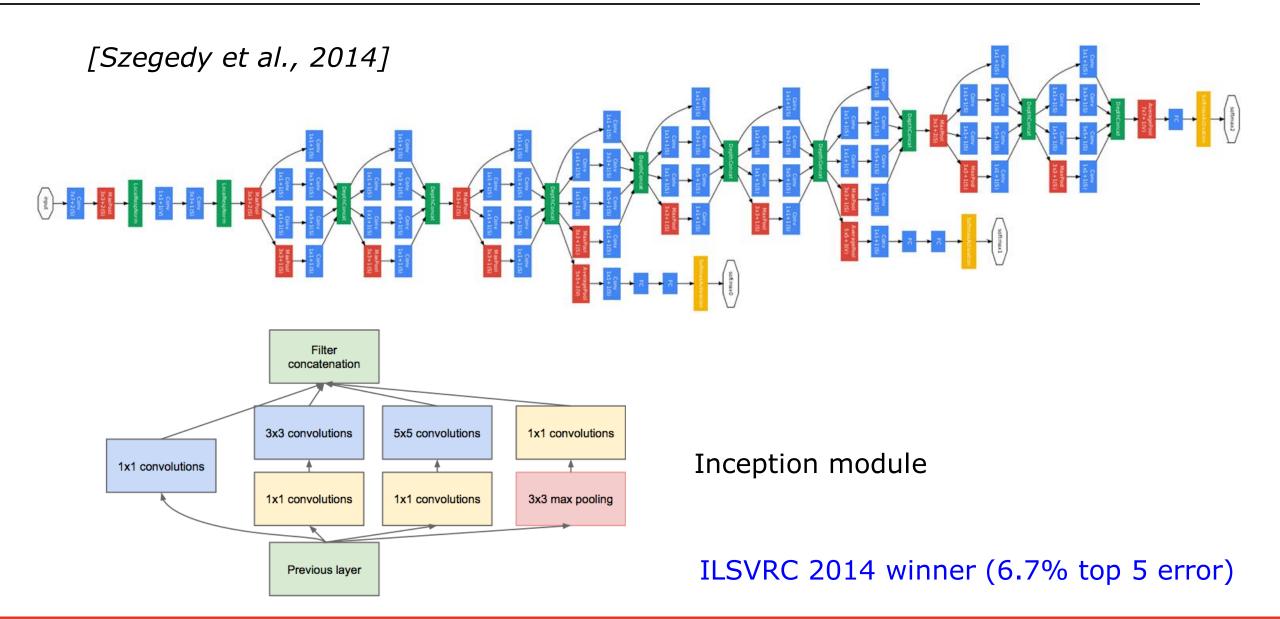
E

144

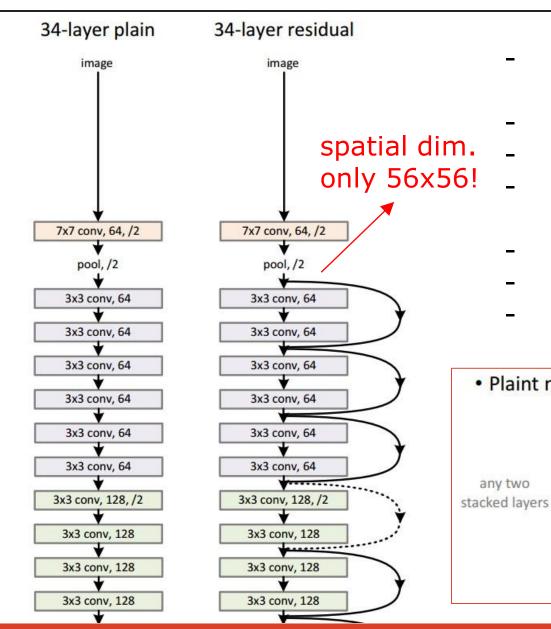
A,A-LRN

133

Case study - GoogLeNet



Case study - ResNet



- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- only 56x56! Learning rate: 0.1, divided by 10 when validation error plateaus
 - Mini-batch size 256
 - Weight decay of 1e-5
 - No dropout used

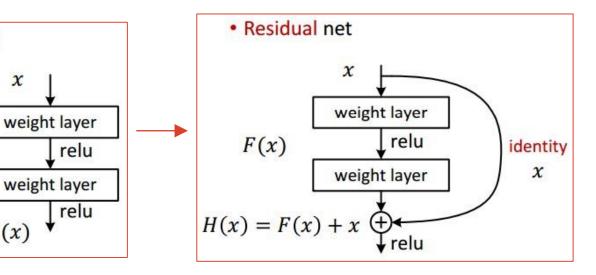
x

H(x)

Plaint net

any two

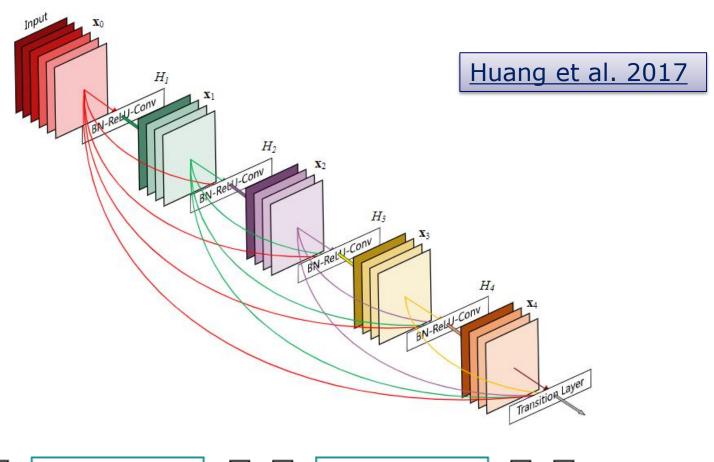
ILSVRC 2015 winner (3.6% top 5 error)

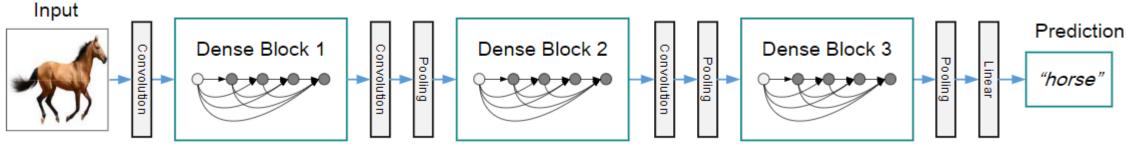


Development of intelligent systems, Object recognition with CNNs

DenseNet

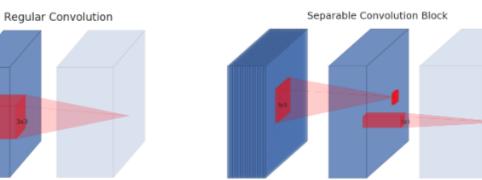
- Densely Connected Convolutional Networks
 - Every layer connected to every other layer in a feed-forward fashion
 - Dense connectivity
 - Model compactness
 - Strong gradient flow
 - Implicit deep supervision
 - Feature reuse





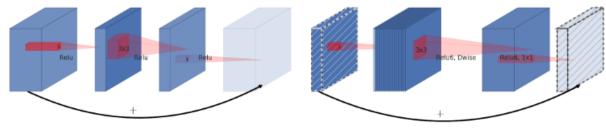
MobileNets

- Efficient Convolutional Neural Networks for Mobile Applications
- Efficient models for mobile and embedded vision applications
- Depthwise separable convolution:
 - Depthwise convolution
 - Pointwise (1x1) convolution





MobileNetV2: Inverted Residuals and Linear Bottlenecks

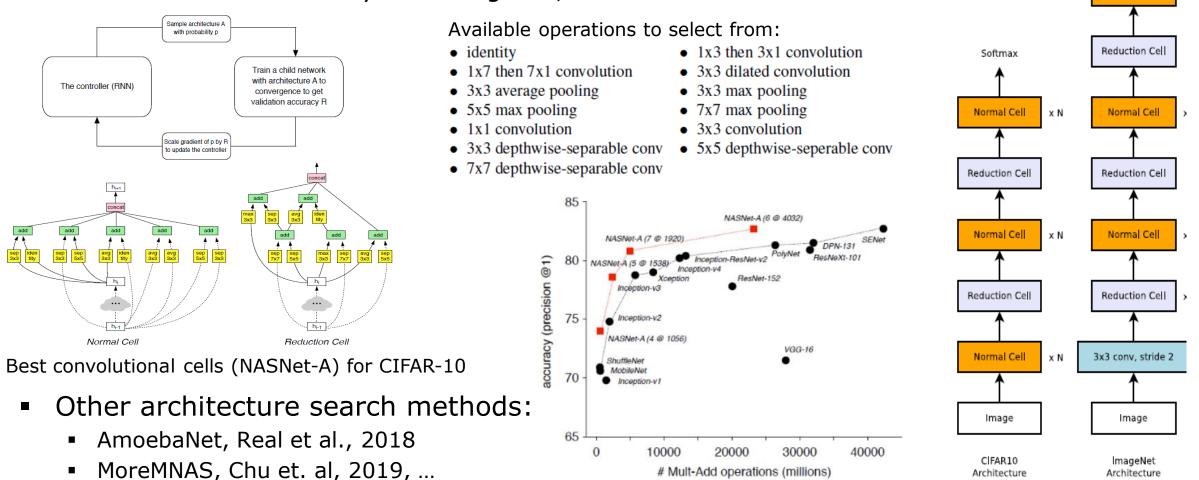


MobileNetV3: NAS+ NetAdapt

Howard et al. 2017

NASNet

- Neural Architecure Search
 - Search the space of architetures to find the optimal one given available resources
 - 500 GPUs across 4 days resulting in 2,000 GPU-hours on NVidia P100

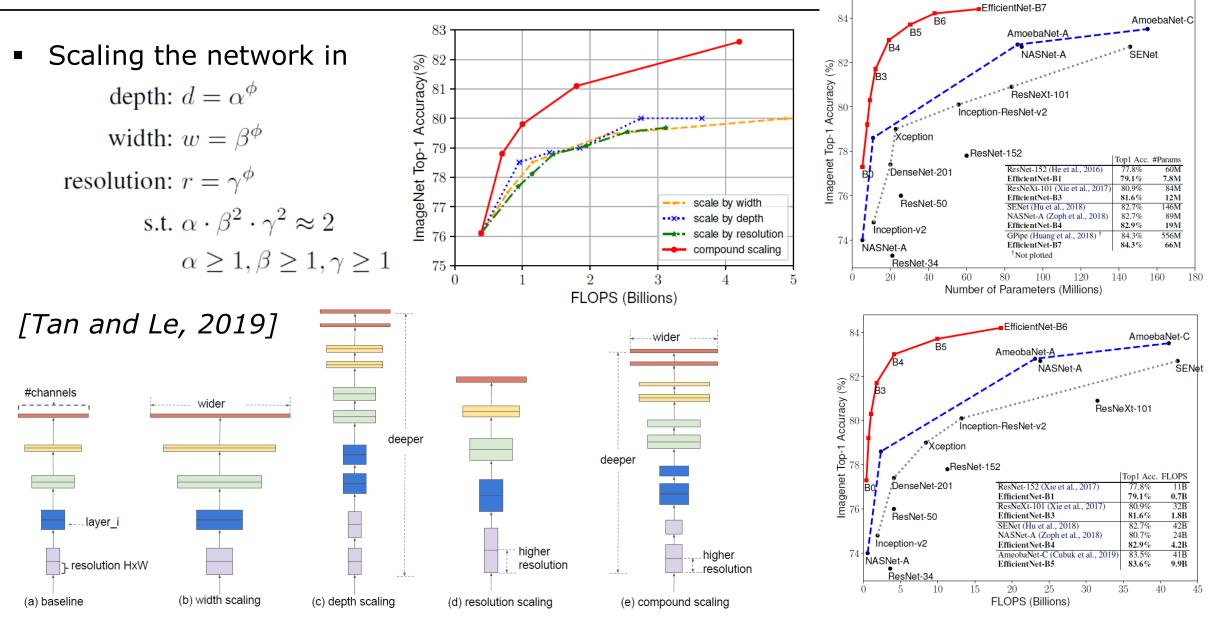


Softmax

Normal Cell

[Zoph et al. 2018]

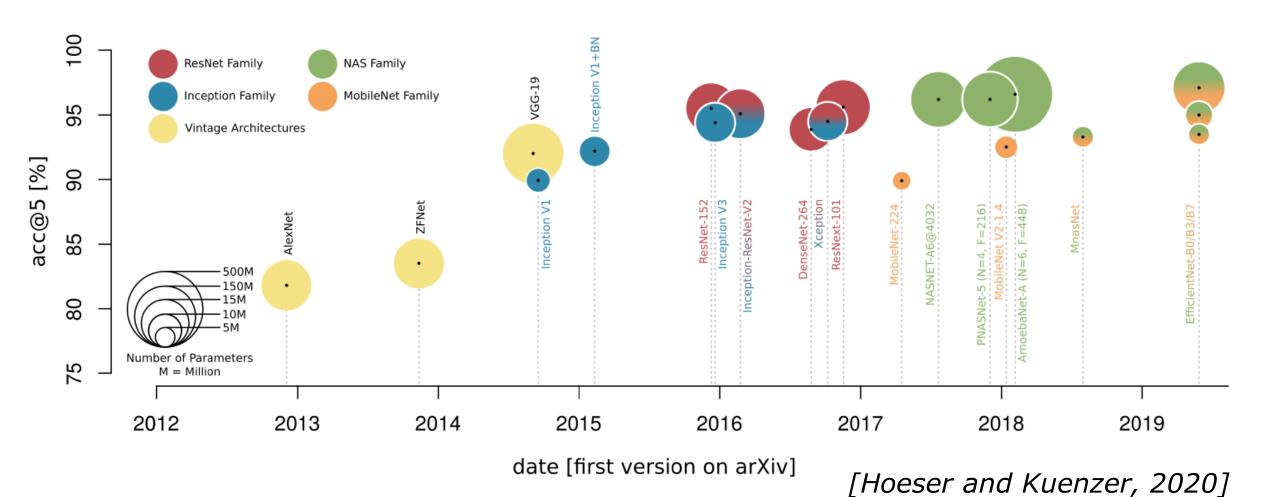
EfficientNet



Development of intelligent systems, Object recognition with CNNs

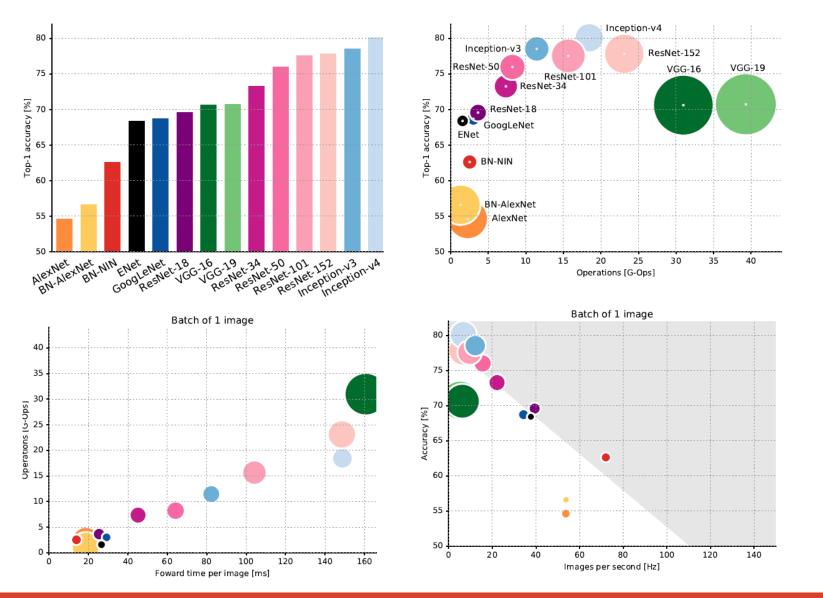
Architectures overview

Date of publication, main type



Development of intelligent systems, Object recognition with CNNs

Analysis of DNN models



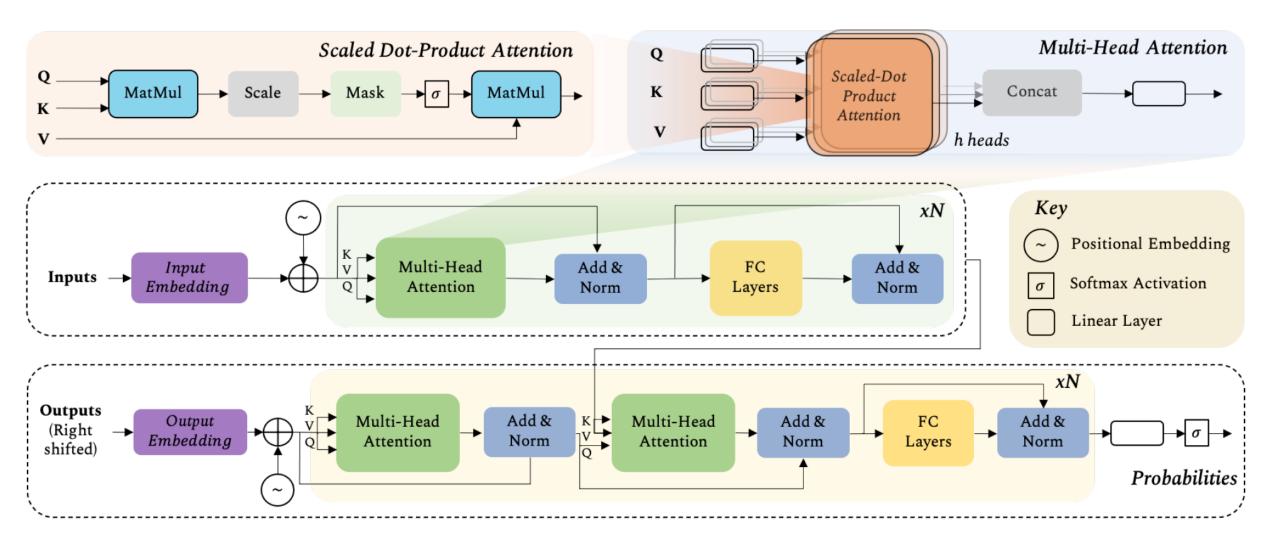
[Canziani et al., 2017]

Development of intelligent systems, Object recognition with CNNs

Pretrained models

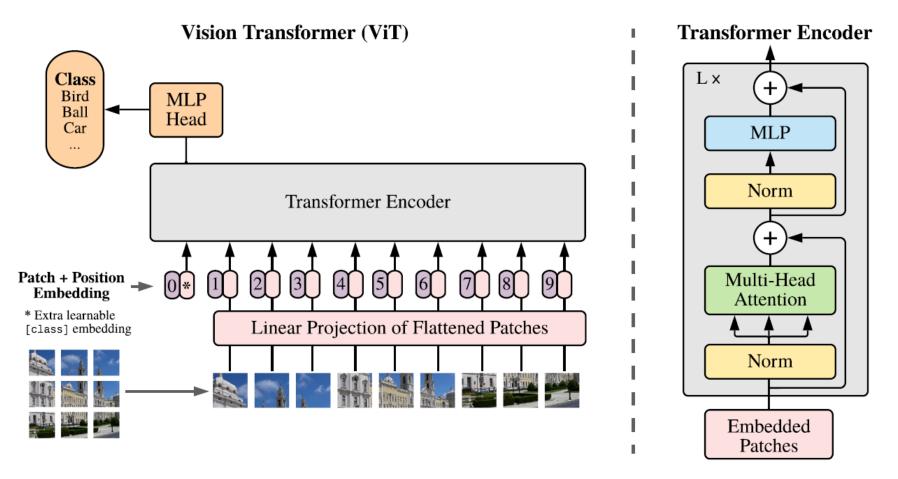
```
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet v2 = models.mobilenet v2(pretrained=True)
mobilenet v3 large = models.mobilenet v3 large(pretrained=True)
mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
resnext50 32x4d = models.resnext50 32x4d(pretrained=True)
wide resnet50 2 = models.wide resnet50 2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)
```

Transformers



[Khan et.al, 2021]

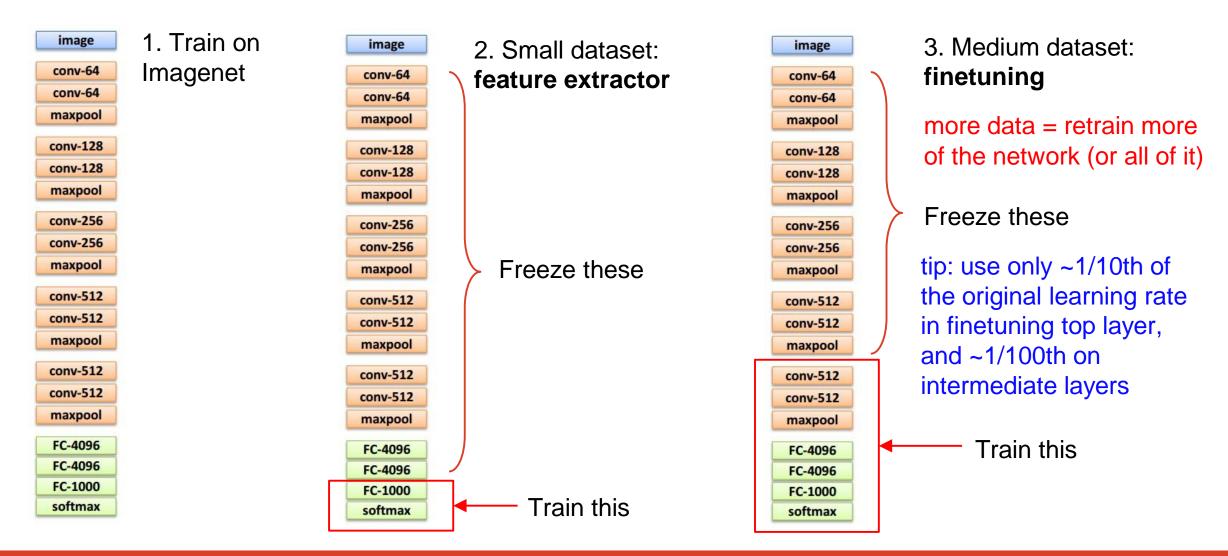
Development of intelligent systems, Object recognition with CNN



[Dosovitskiy et.al, Google, 2020, ICLR 2021]

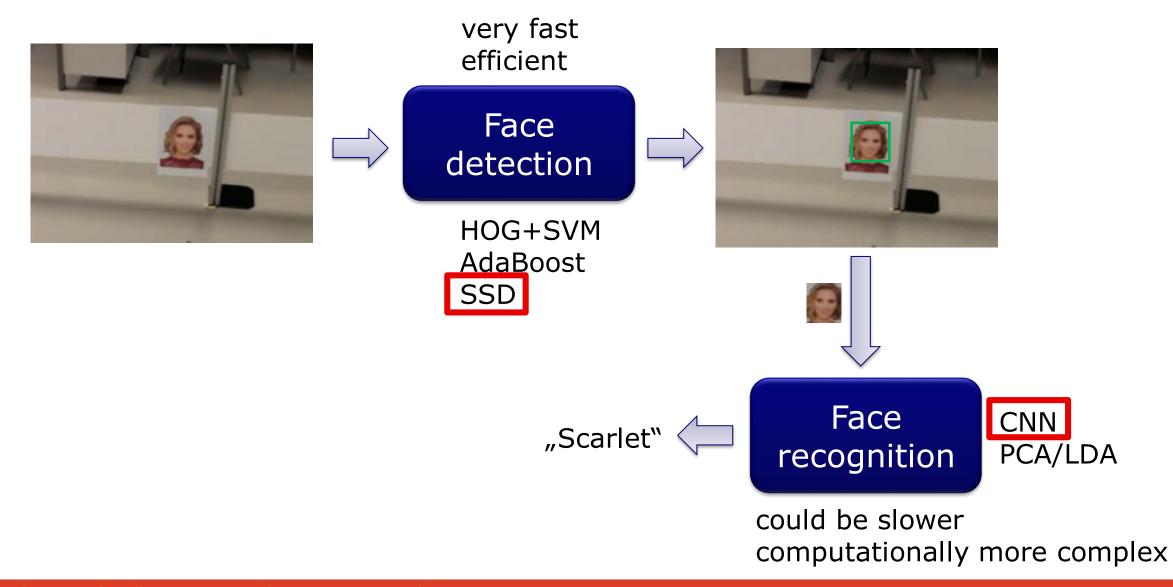
Transfer learning

If you don't have enough data use pretrained models!



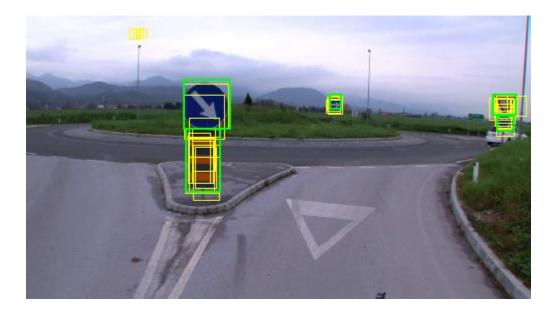
Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson 68

Two stage object detection and recognition



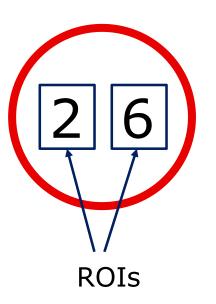
Object detection and recognition

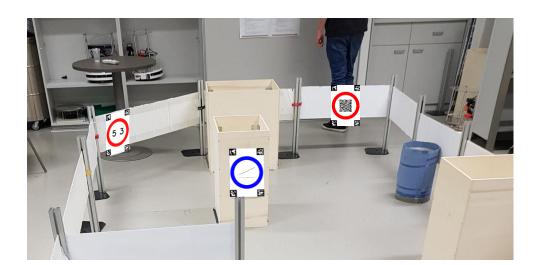
- Two stage approach:
 - Detection of region proposals
 - Recognition of the individual region proposals

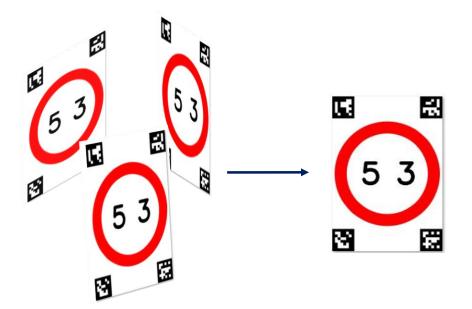


Object detection in RInS

- Information in circles
 - -> detecting circles as region proposals (Region Of Interests)
- Rectify ROIs
- Recognize the content of ROIs



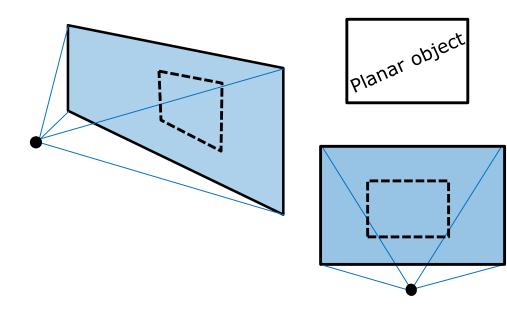




Rectification using homography

Homography

Two views on the same (planar) object:

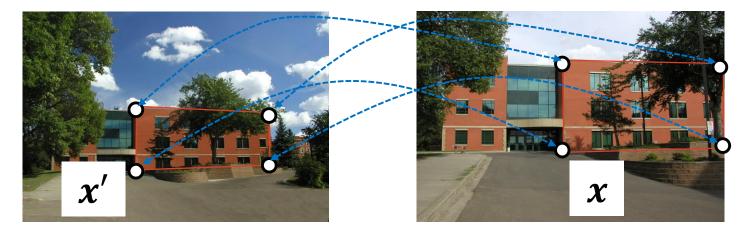


Homography: plane to plane mapping

Slide credit: Matej Kristan

Computing homography

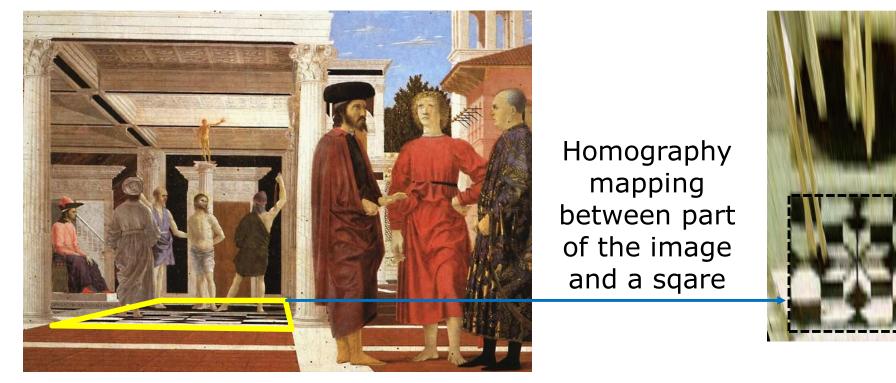
Four corresponding points:



$$wx' = Hx \qquad w \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• The elements of the matrix *H* can be computed using Direct Linear Transform (DLT)!

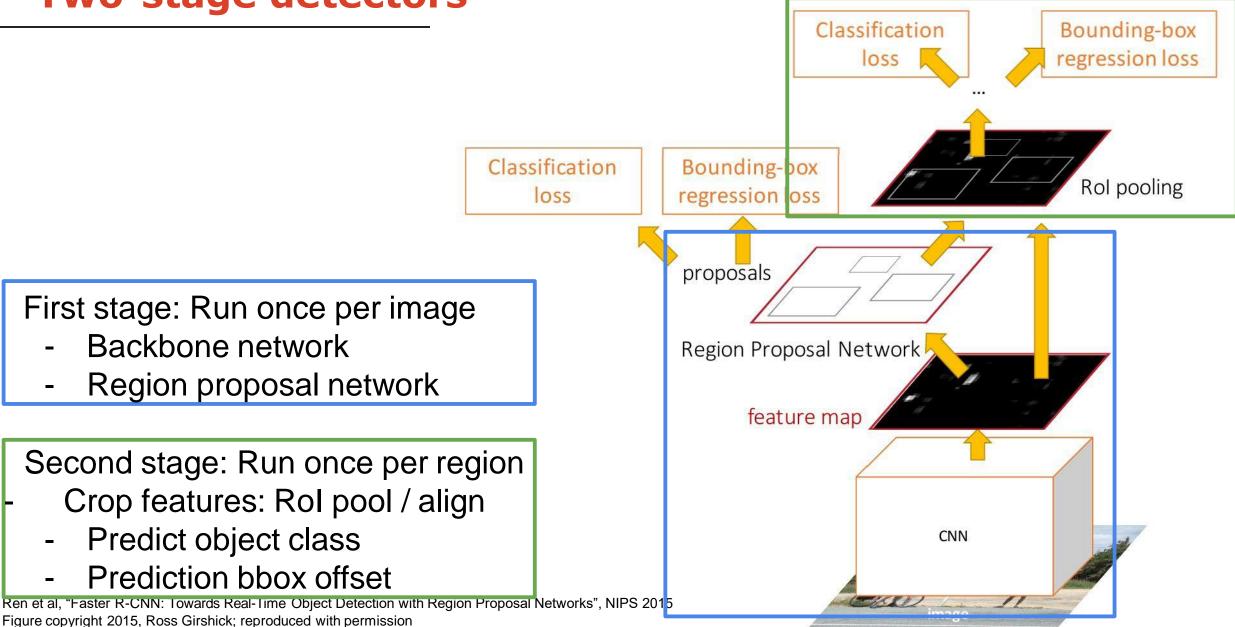
Application of homography



Flagellation of Christ (Piero della Francesca)

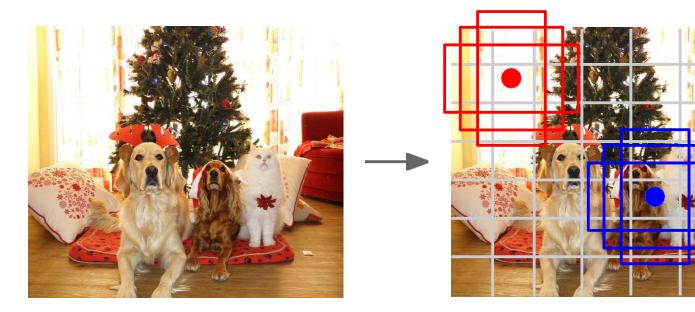
Slide credit: Antonio Criminisi

Two-stage detectors



Development of intelligent systems, Object recognition with CNNs

Single-Stage Object Detectors



Input image 3 x H x W

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016 Lin et al, "Focal Loss for Dense Object Detection", ICCV 2017 Divide image into grid 7 x 7

Image a set of **base boxes** centered at each grid cell Here B = 3 Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers:
 - (dx, dy, dh, dw, confidence)
- Predict scores for each of C classes (including background as a class)
- Looks a lot like RPN, but category-specific!

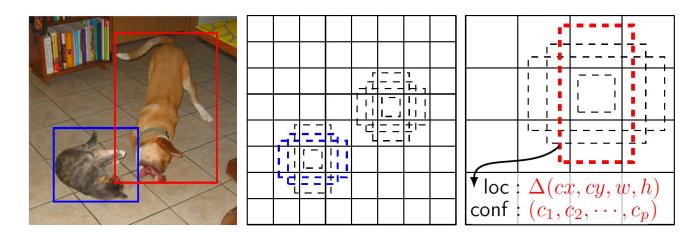
Output: 7 x 7 x (5 * B + C)

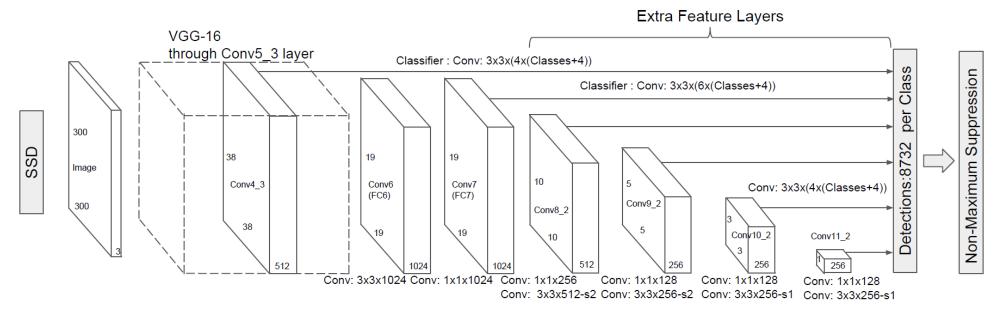
Development of intelligent systems, Object recognition with CNNs

SSD: Single Shot MultiBox Detector

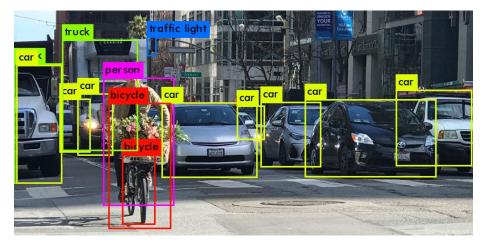
- Multi-scale feature maps for detection
- Convolutional predictors for detection
- Default boxes and aspect ratios
- Real time operation

[Liu et al., ECCV 2016]



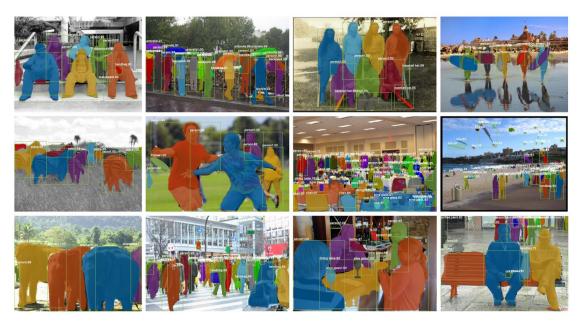


Detection



[Redmon, Yolo, 2018]

Instance segmentation



[He, Mask R-CNN, 2012]

Semantic segmentation

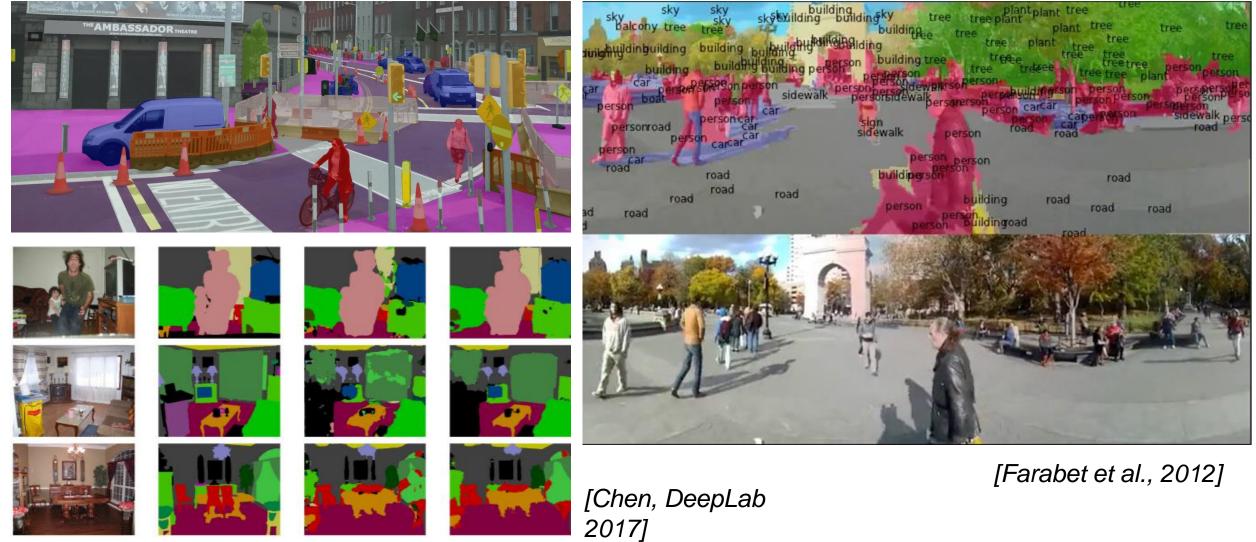
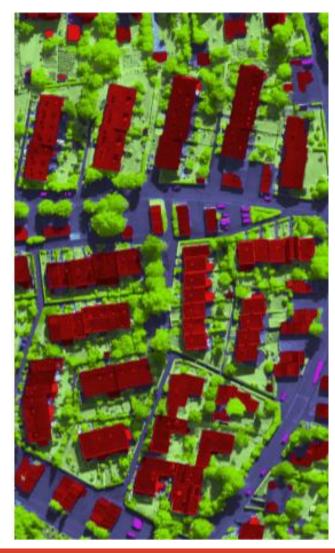
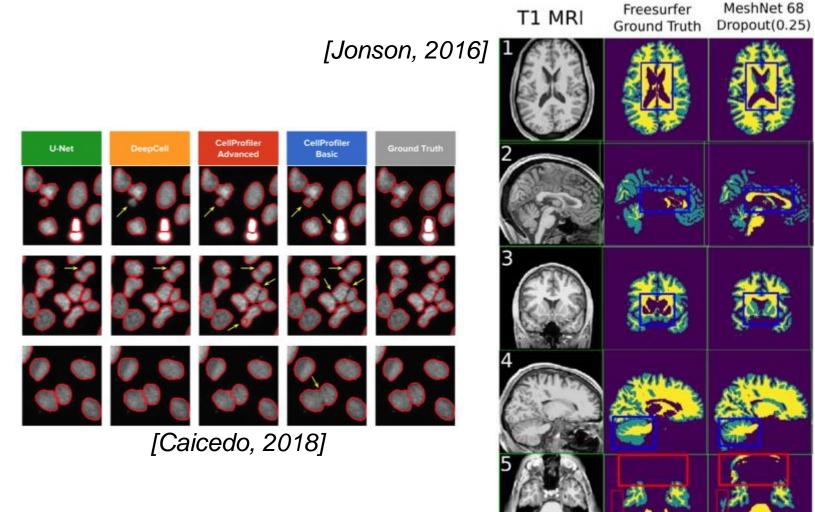


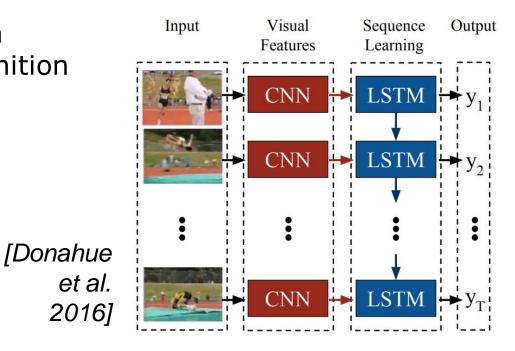
Image segmentation

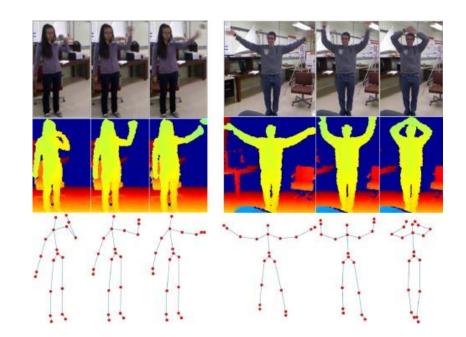




[Marmanis, 2016]

 Action recognition





[Luvizon et al. 2016]

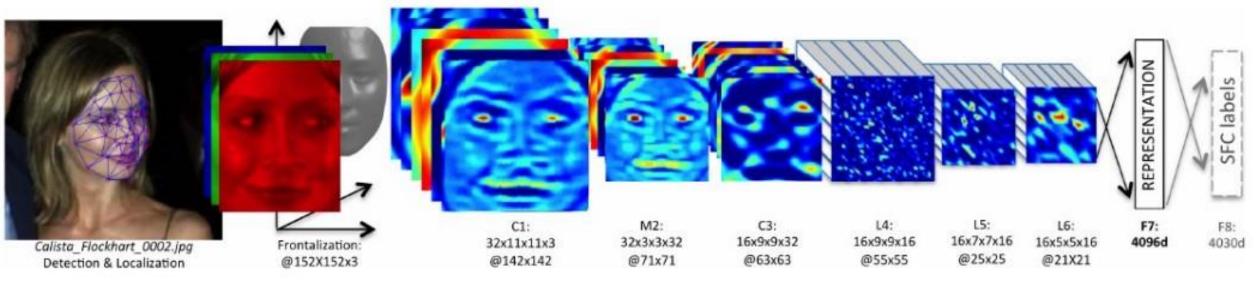
input video		Spatial stream ConvNet								
	single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax	class
	Temporal stream ConvNet									score fusion
	multi-frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax	[Si
Video	optical flow] [0]

[Simonyan et al. 2014]

Development of intelligent systems, Object recognition with CNNs

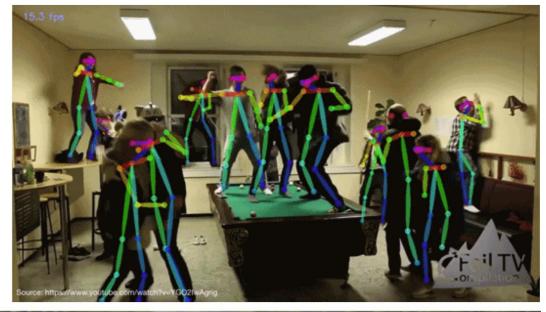
Biometry

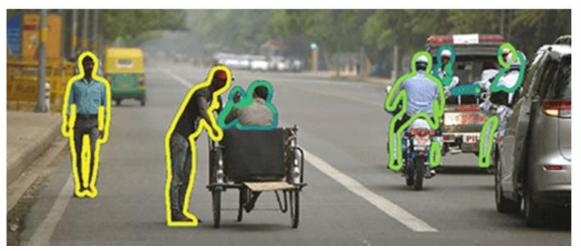
[Taigman et al. 2014]

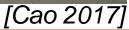


Person/pose detection

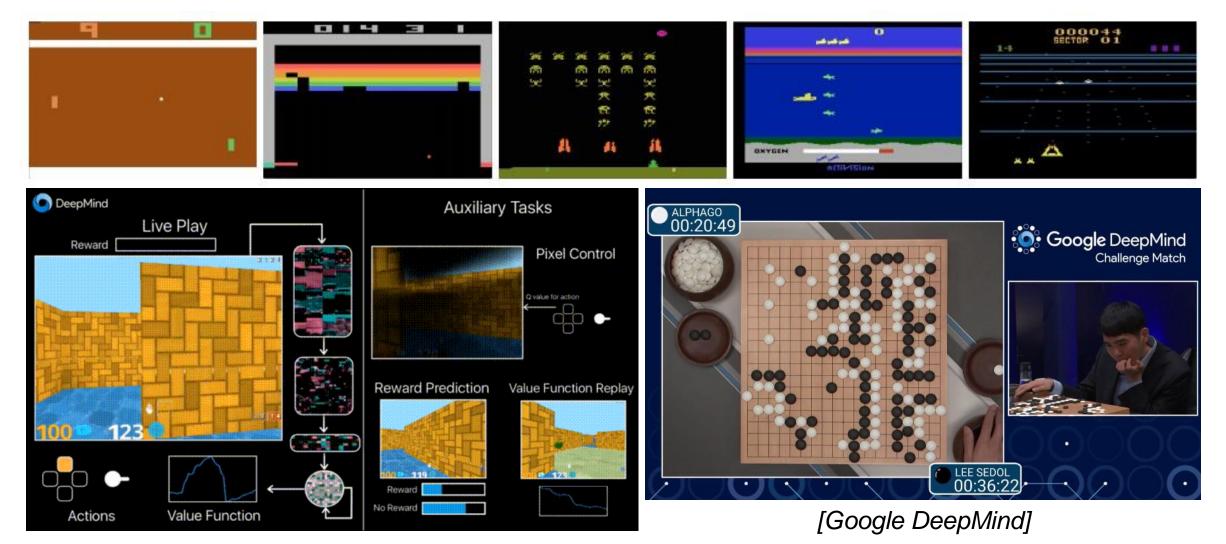
[Güler, DensePose, 2018]







Reinforcement learning for game playing



Describes without errors

Describes with minor errors

A person riding a motorcycle on a dirt road.

Two dogs play in the grass.

Somewhat related to the image

A skateboarder does a trick on a ramp.

Unrelated to the image

A dog is jumping to catch a frisbee.

A group of young people playing a game of frisbee.

A herd of elephants walking

across a dry grass field.

Two hockey players are fighting over the puck.

A little girl in a pink hat is blowing bubbles.

A close up of a cat laying on a couch.

A red motorcycle parked on the side of the road.

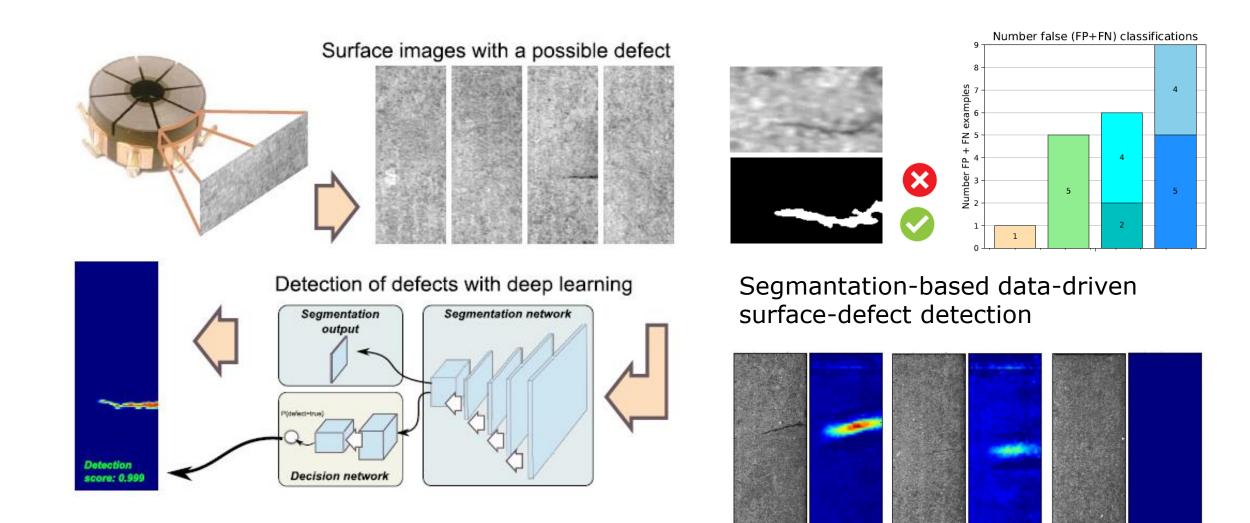
A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

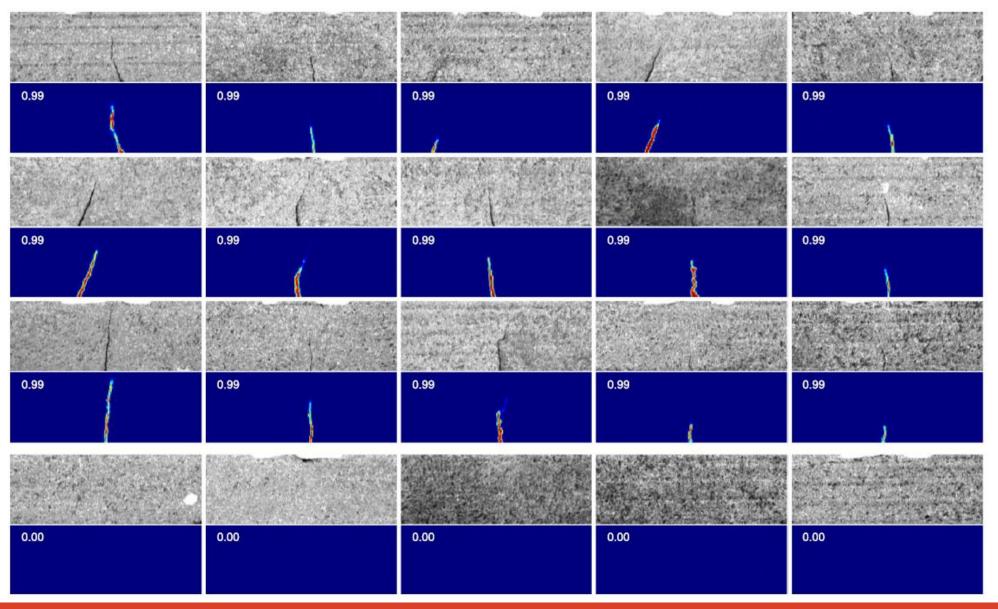
[Vinyals et al., 2015]

Development of intelligent systems, Object recognition with CNNs

Surface-defect detection

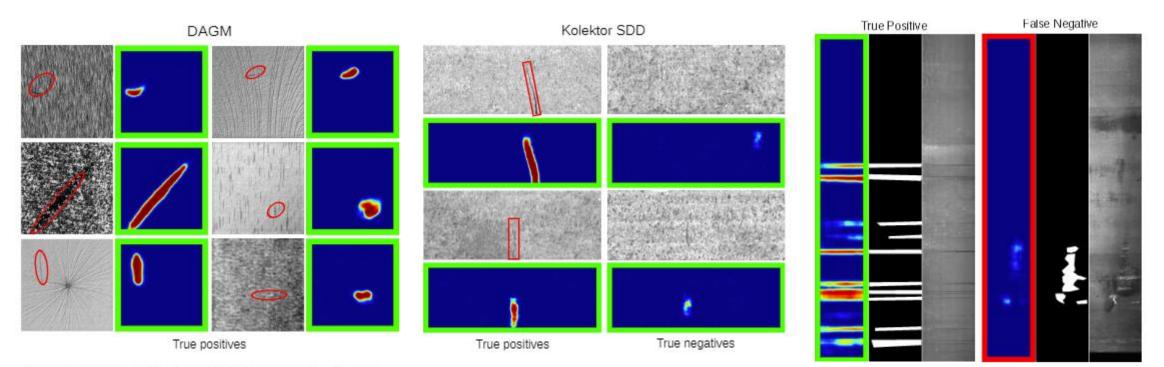


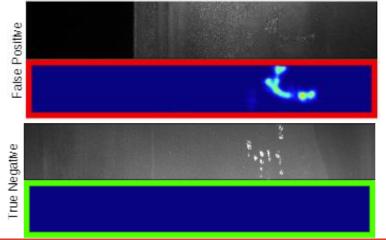
Surface-defect detection

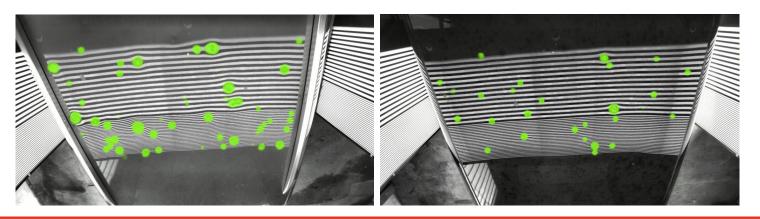


Development of intelligent systems, Object recognition with CNNs

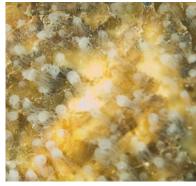
Surface-defect detection

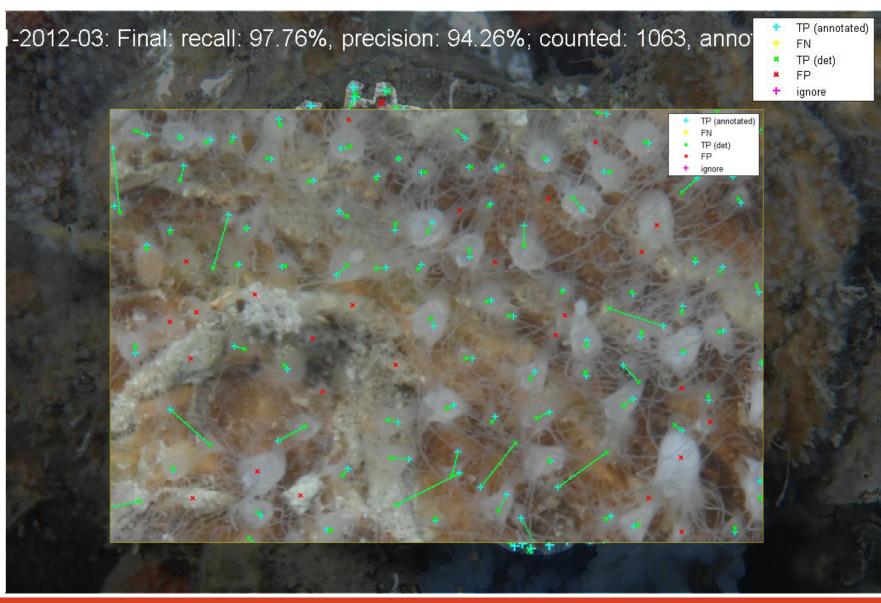




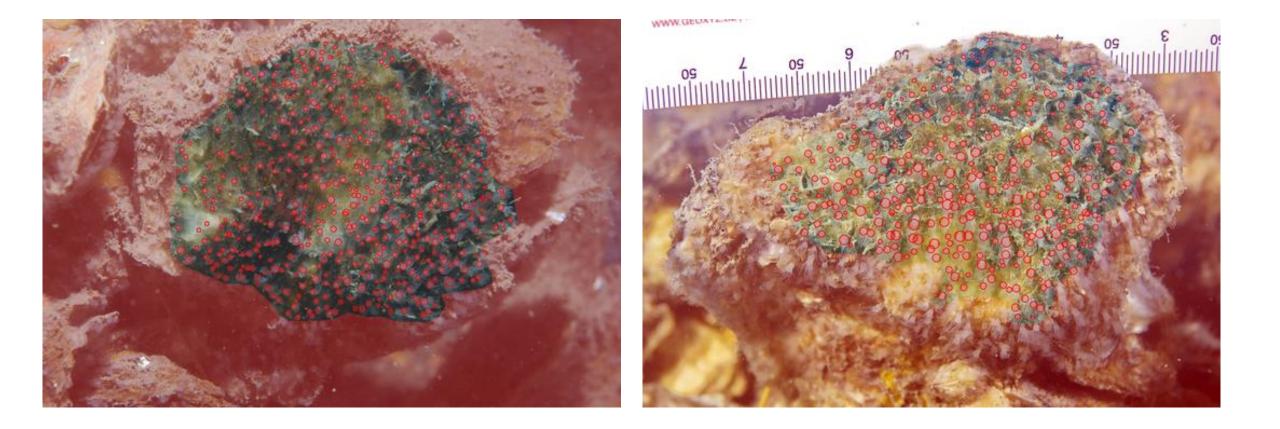


Polyp counting

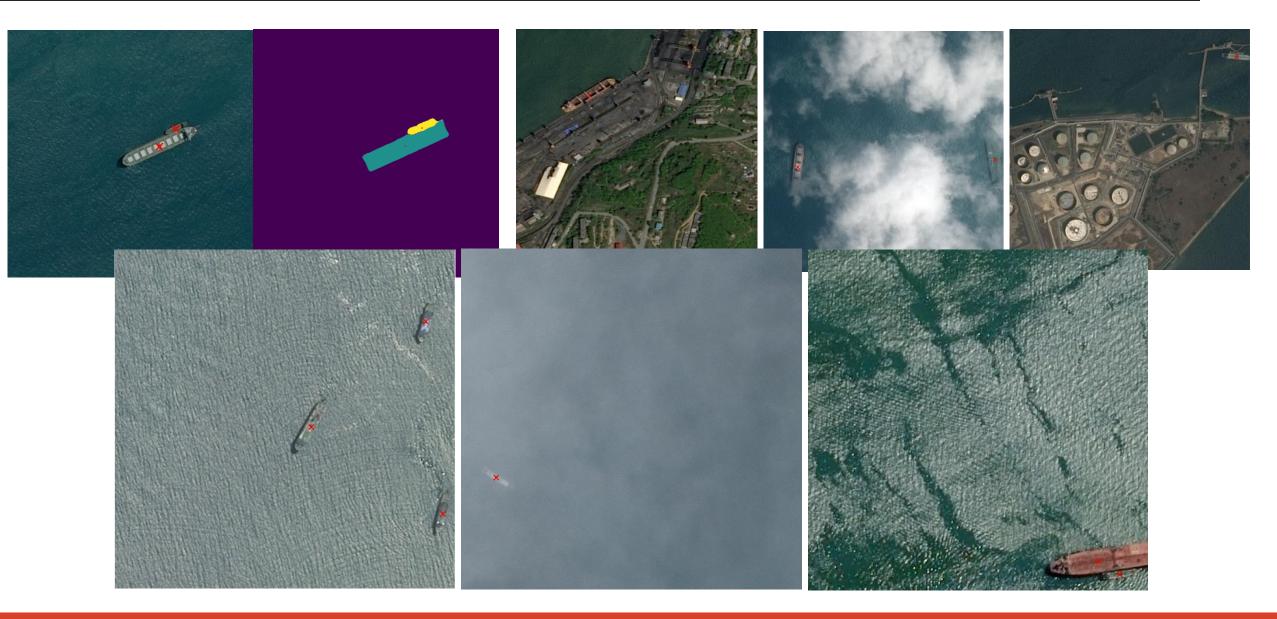




Polyp counting



Ship detection



Face detection

Mask-wearing detection

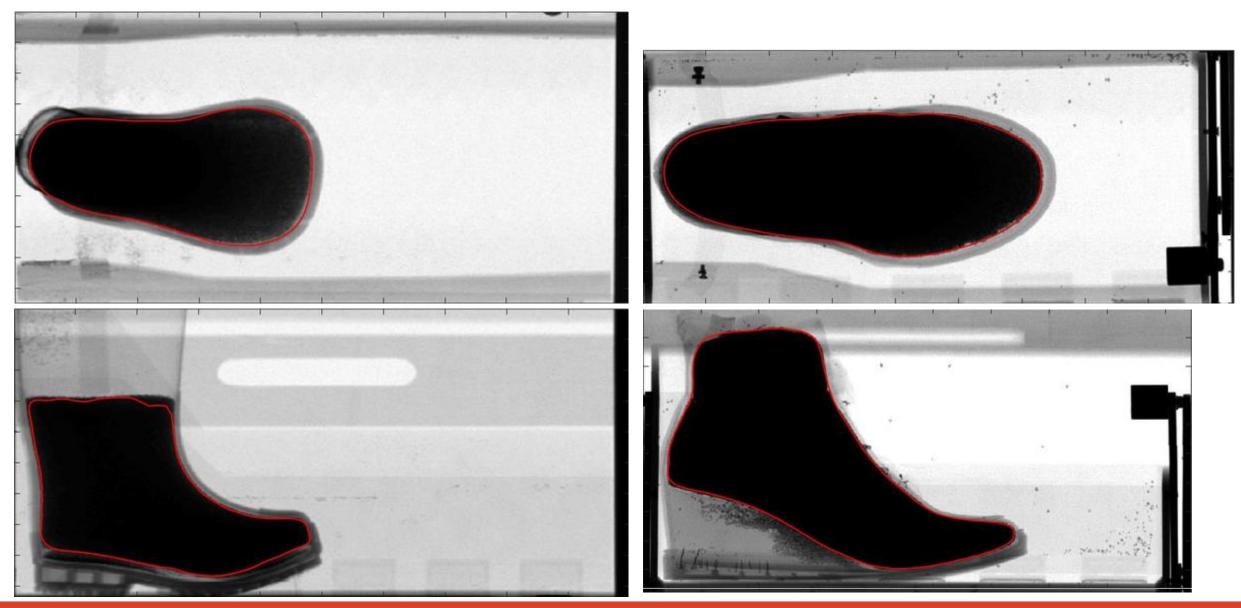
Obstacle detection on autonomous boat

USV equipped with different sensors:

- stereo camera
- IMU
- GPS
- compass

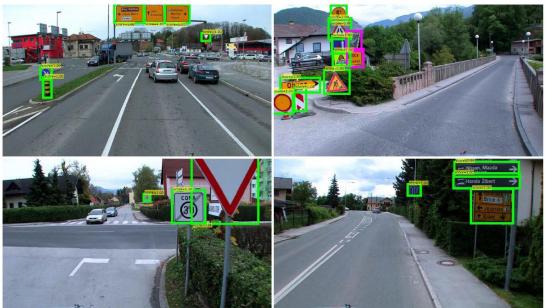
Segmentation based on RGB + IMU

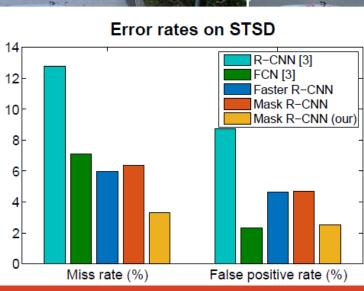
Semantic edge detection



Development of intelligent systems, Object recognition with CNNs

Object (traffic sign) detection



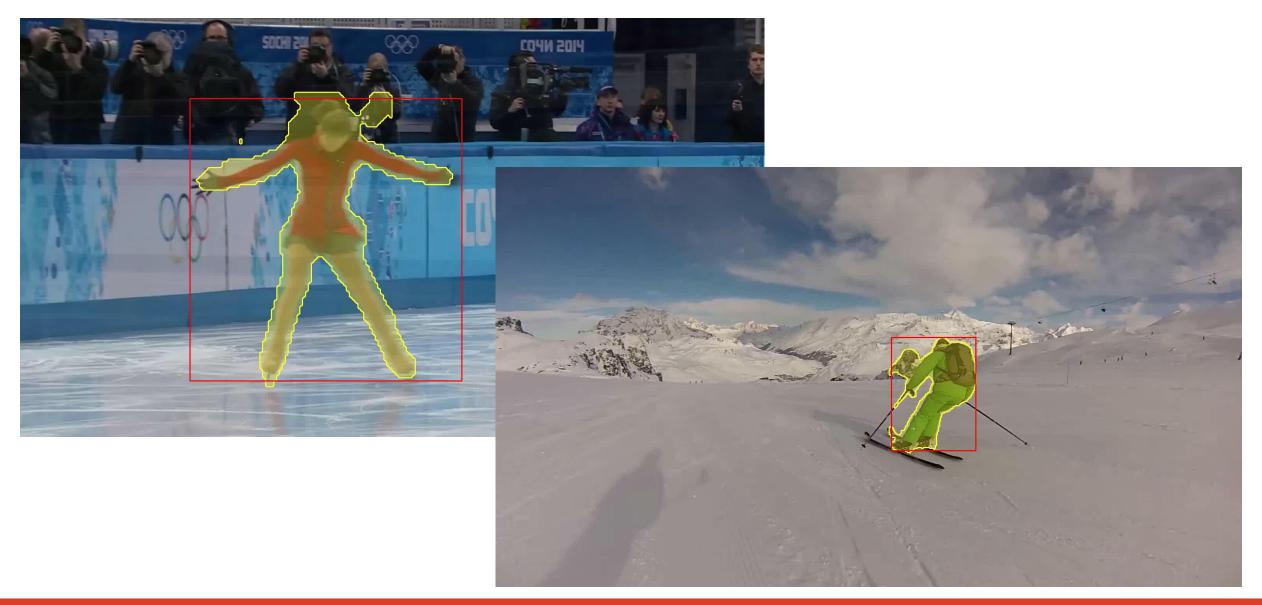


Object (traffic sign) detection

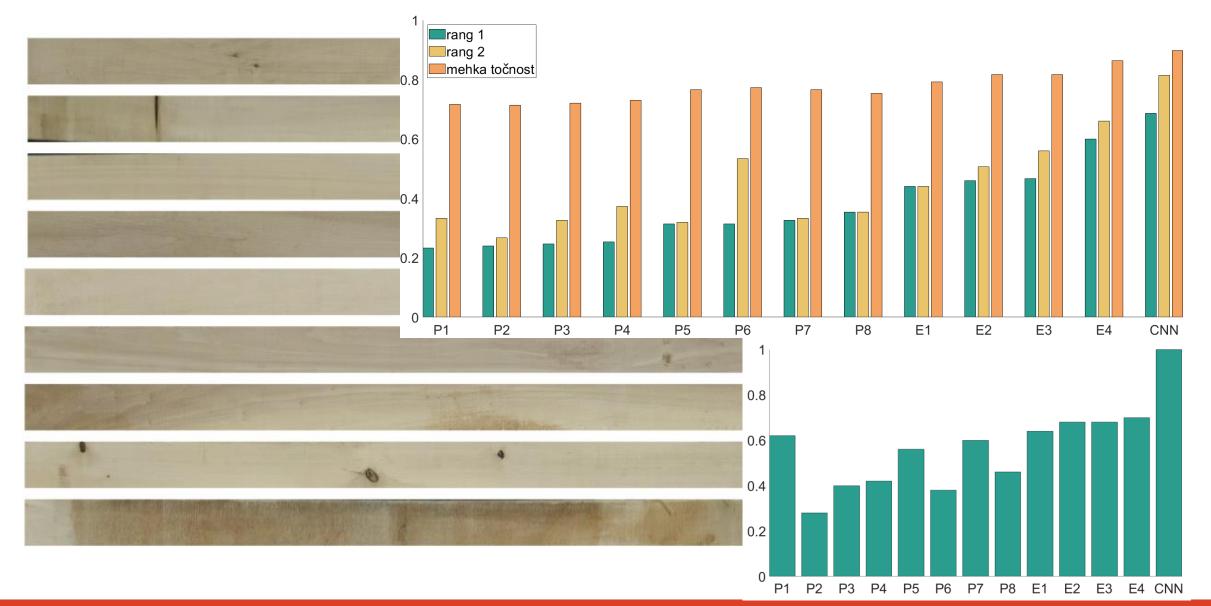
Image anonymisation

 Detection and anonimysation of car plates and faces

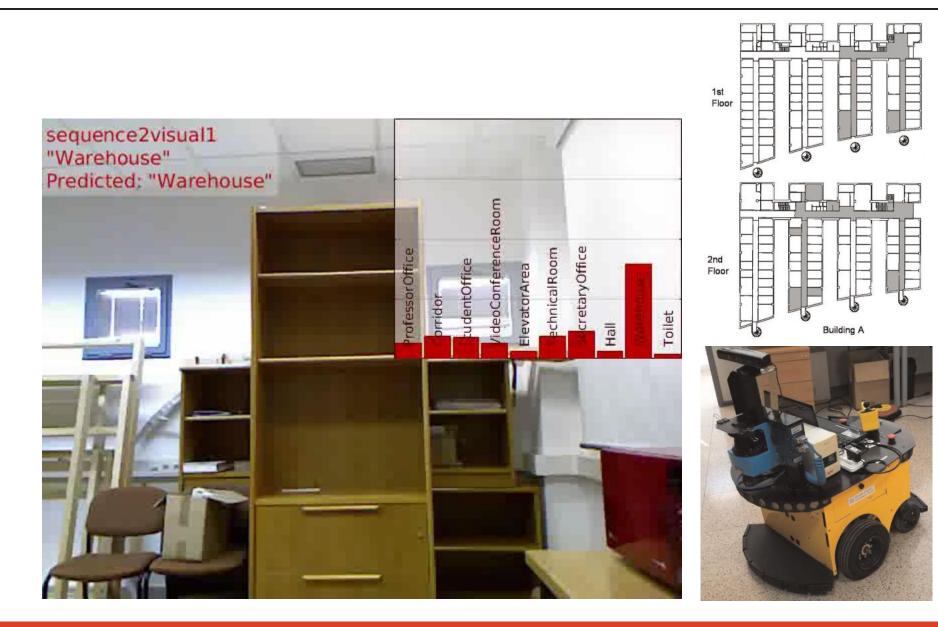
Visual tracking



Plank classification



Place recognition



Semantic segmentation

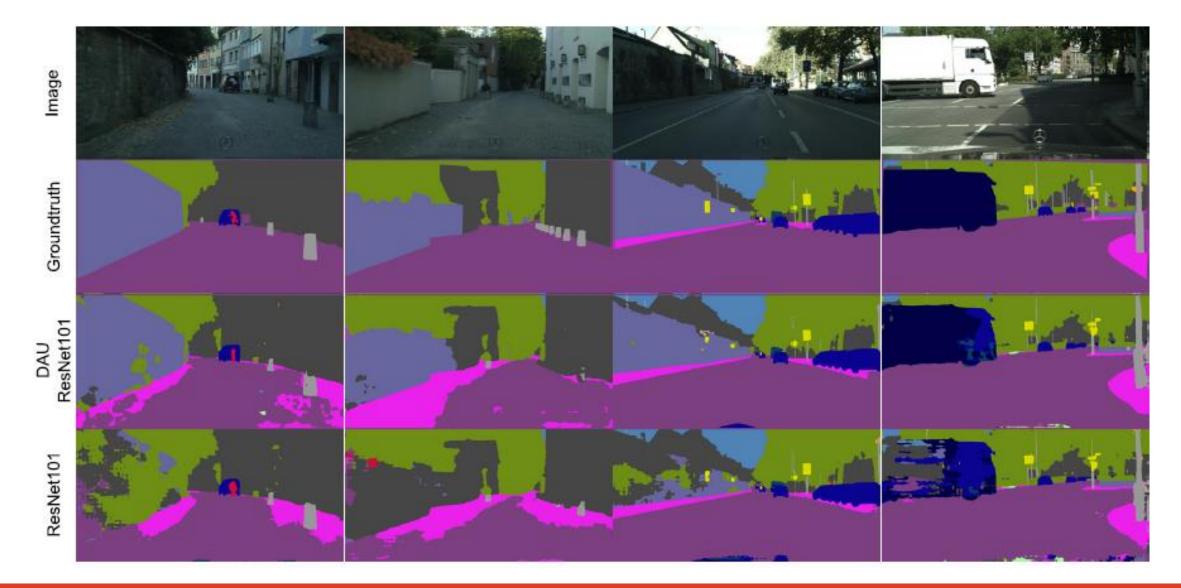


Image enhancement

Deblurring, super-resolution



Original

-

DAU-SNR-Deblur (our)

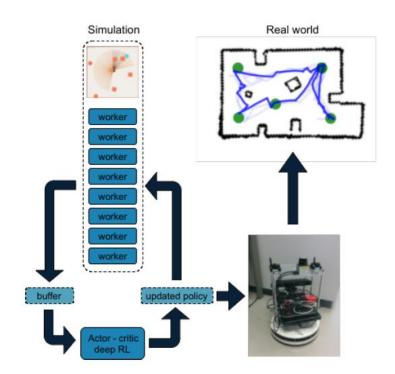
ABA

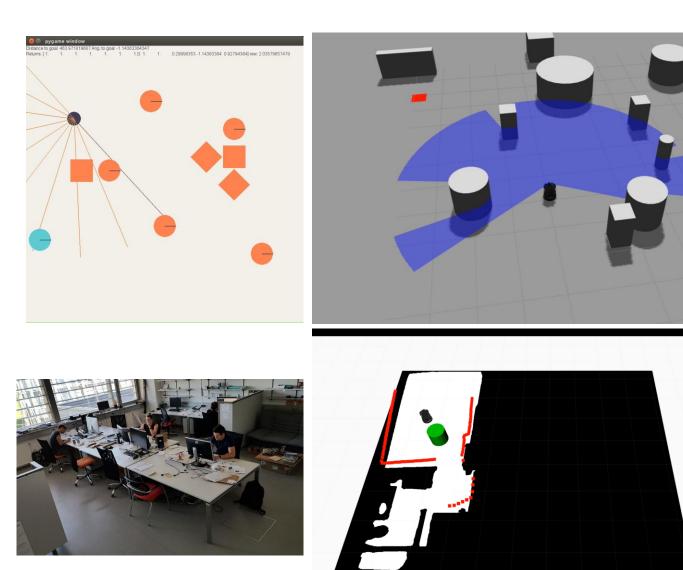
Original

Deep reinforcement learning

Vicos sualgnitive ystemslab

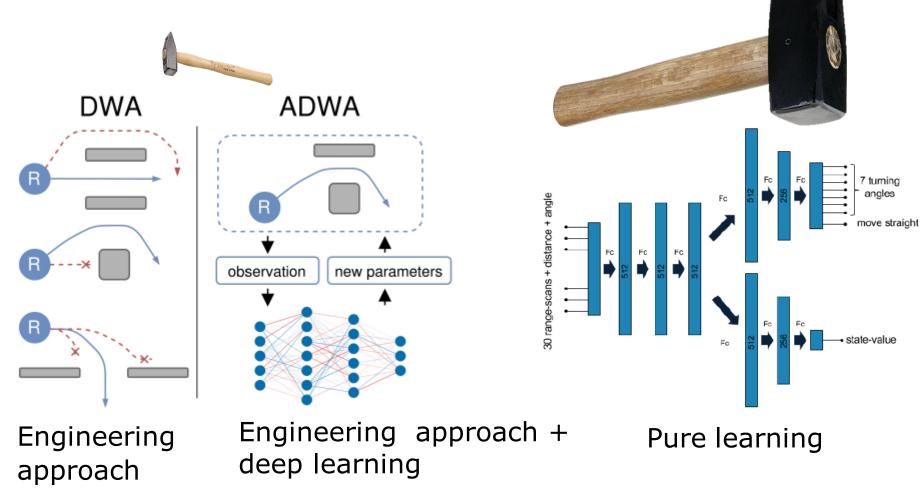
- Automatic generation of learning examples
- Goal-driven map-less mobile robot navigation





Innate and learned

- Goal-driven map-less mobile robot navigation
- Constraining the problem using a priory knowledge



Problem solving

Complexity

Simple, well defined problems

Rule-based decision making

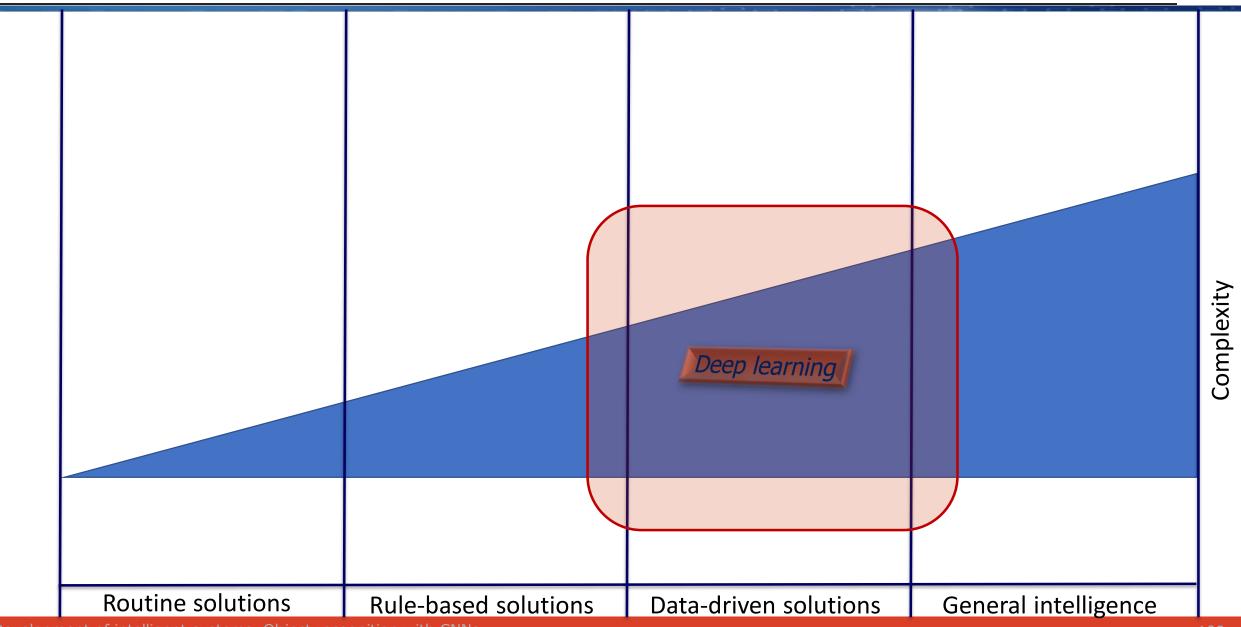
Programming

Complex, vaguely defined problems

Data-driven decision making

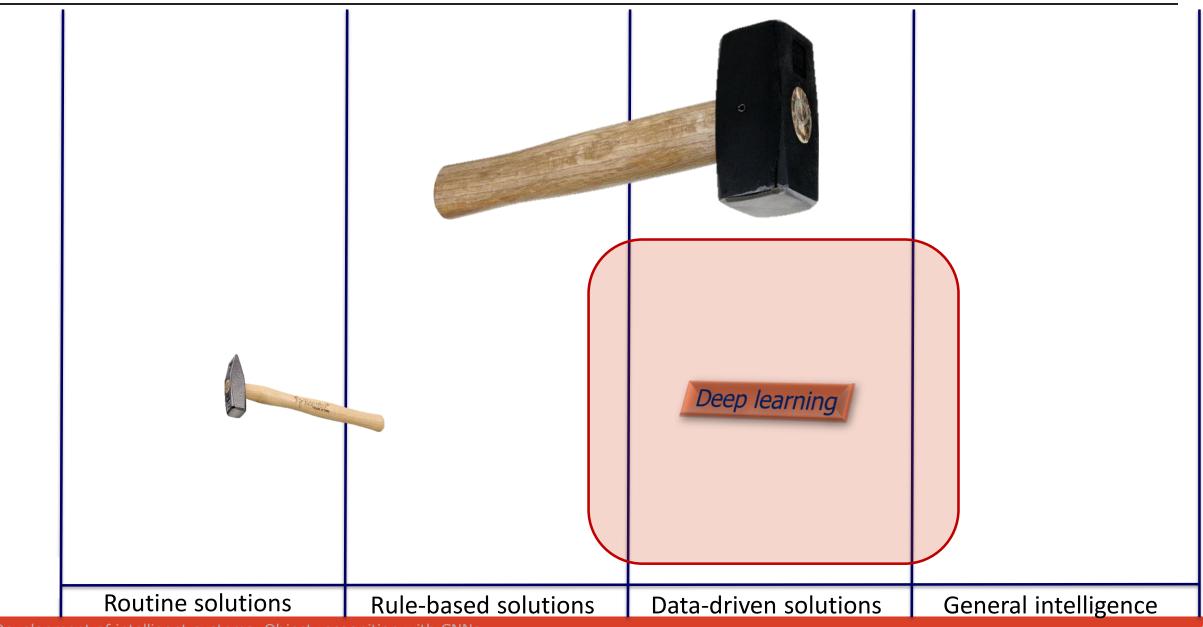
Machine learning

Problem solving



Development of intelligent systems, Object recognition with CNNs

Adequate tools

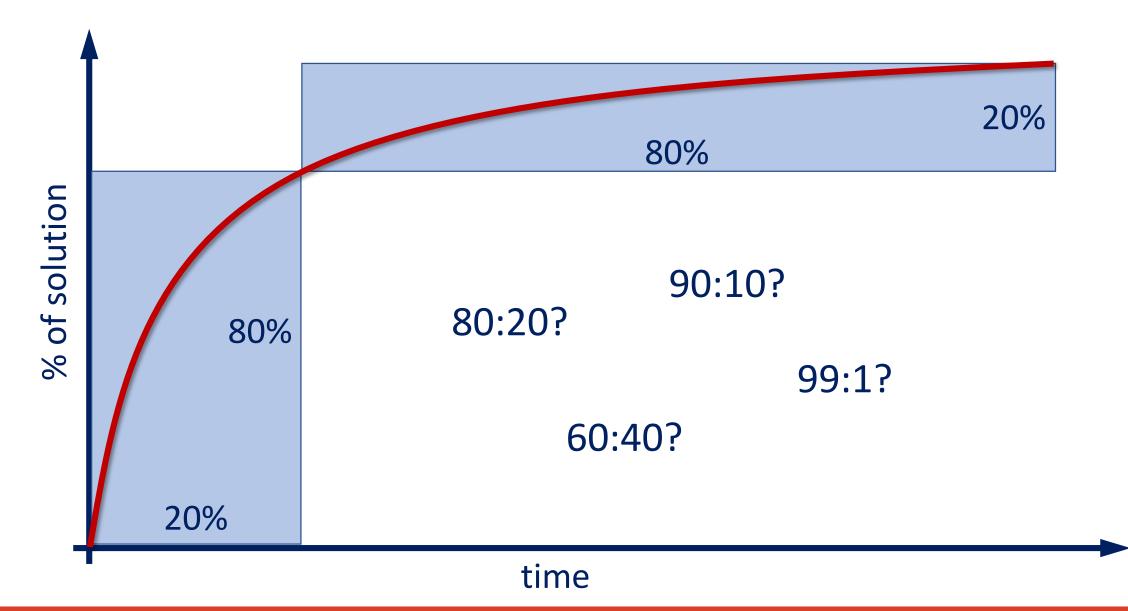


Development of intelligent systems, Object recognition with CNNs

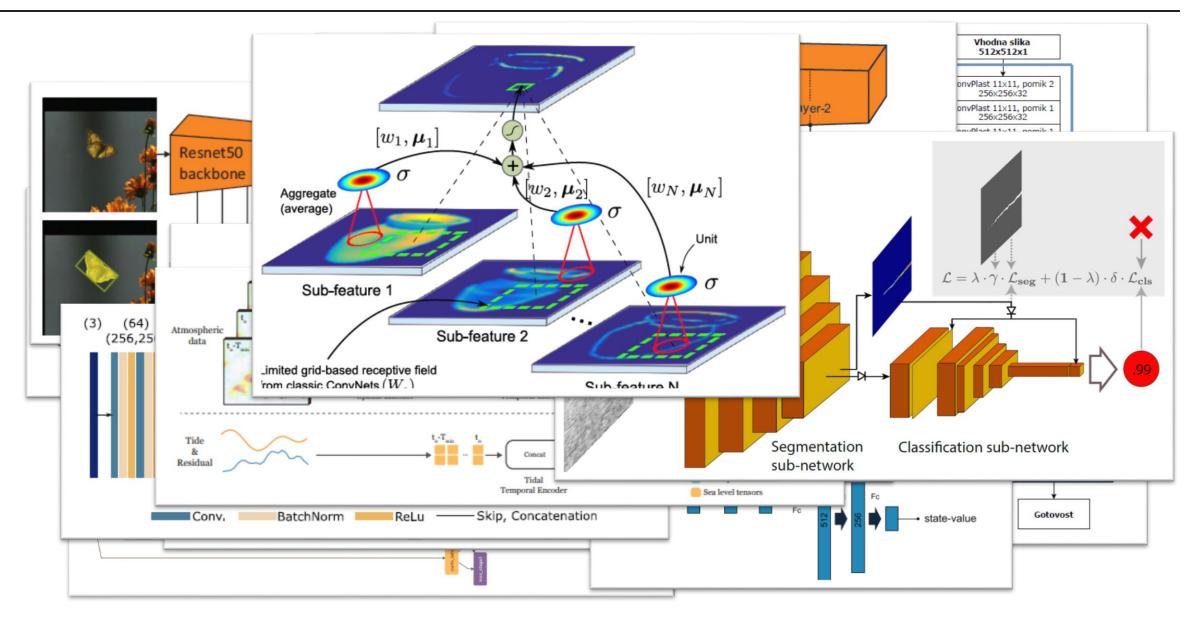
Development, deployement and maintainance

- Data, data, data!
 - Enough data, representative data
 - Correctly annotated data
- Appropriate deep architecture design
 - Proper backbone, architecture, loss function, ...
 - Learning, parameter optimisation
- Efficient implementation
 - Execution speed
 - Integration
- Maintenance
 - Incremental improvement of the learned model
 - Reflecting to changes in the environment

Development of deep learning solutions



Knowledge and experience count



Software

Neural networks in Python

Convolutional neural networks using PyTorch or TensorFlow

or other deep learning frameworks

Caffe 🖞 Caffe 2 theano MatConvNet

Optionally use Google Colab

Literature

 Michael A. Nielsen, Neural Networks and Deep learning, Determination Press, 2015 <u>http://neuralnetworksanddeeplearning.com/index.html</u>

Neural Networks and Deep Learning

 Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016 <u>http://www.deeplearningbook.org/</u>

- Fei-Fei Li, Andrej Karpathy, Justin Johnson, CS231n: Convolutional Neural Networks for Visual Recognition, Stanford University, 2016 <u>http://cs231n.stanford.edu/</u>
- Papers