
Development of intelligent systems
(RInS)

Object recognition with
Convolutional Neural Networks

Danijel Skočaj

University of Ljubljana

Faculty of Computer and Information Science

Academic year: 2021/22

Development of intelligent systems, Object recognition with CNNs 2

Media hype

Development of intelligent systems, Object recognition with CNNs 3

Superior perfomance

1k categories

1,3M images

Top5 classification

28,2

25,8

16,4

11,7

6,7

3,6 3,1
2,2

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2015 2016 2017

ILSVRC results

Deep learning era

Development of intelligent systems, Object recognition with CNNs 4

New deep learning era

 More data!

 More computing power - GPU!

 Better learning algorithms!

Development of intelligent systems, Object recognition with CNNs 5

New deep learning era

ICCV 2019, Seoul, Korea, 27. 10. - 2. 11. 2019

Development of intelligent systems, Object recognition with CNNs 6

Machine learning in computer vision

 Conventional approach

feature
extraction

features classification class

modellearning

PCA, LDA, CCA,
HOG, SIFT,

SURF, ORB, … kNN, SVM, ANN,
AdaBoost, …

Development of intelligent systems, Object recognition with CNNs 7

Deep learning in computer vision

 Conventional machine learning approach in computer vision

 Deep learing approach

feature
extraction

features classification class

modellearning

classification class

Deep
model

deep
learning

Development of intelligent systems, Object recognition with CNNs 8

Deep learning – the main concept

Kolo

Avto

OsebaPerson

Bike

Car

Development of intelligent systems, Object recognition with CNNs 9

End to end learning

 Representations as well
as classifier are being
learned

Development of intelligent systems, Object recognition with CNNs 10

Perceptron

 Rosenblatt, 1957

 Binary inputs and output

 Weights

 Threshold

 Bias

 Very simple!

Development of intelligent systems, Object recognition with CNNs 11

Sigmoid neurons

 Real inputs and outputs from interval [0,1]

 Activation function: sgimoid function

 output =

Development of intelligent systems, Object recognition with CNNs 12

Sigmoid neurons

 Small changes in weights and biases causes small change in output

 Enables learning!

Development of intelligent systems, Object recognition with CNNs 13

Feedfoward neural networks

 Network architecture:

Development of intelligent systems, Object recognition with CNNs 14

Example: recognizing digits

 MNIST database of handwritten digits

 28x28 pixes (=784 input neurons)

 10 digits

 50.000 training images

 10.000 validation images

 10.000 test images

Development of intelligent systems, Object recognition with CNNs 15

Example code: Feedforward

 Code from https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip

or https://github.com/mnielsen/neural-networks-and-deep-learning

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git

 or https://github.com/chengfx/neural-networks-and-deep-learning-for-python3 (for Python 3)

https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/chengfx/neural-networks-and-deep-learning-for-python3

Development of intelligent systems, Object recognition with CNNs 16

Loss function

 Given:

for all training images

 Loss function:

 (mean sqare error – quadratic loss function)

 Find weigths w and biases b that for given input x

produce output a that minimizes Loss function C

Development of intelligent systems, Object recognition with CNNs 17

Gradient descend

 Find minimum of

 Change of C:

 Gradient of C:

 Change v in the opposite

direction of the gradient:

 Algorithm:

 Initialize v

 Until stopping criterium riched

 Apply udate rule

Learning rate

Development of intelligent systems, Object recognition with CNNs 18

Gradient descend in neural networks

 Loss function

 Update rules:

 Consider all training samples

 Very many parameters
=> computationaly very expensive

 Use Stochastic gradient descend instead

Development of intelligent systems, Object recognition with CNNs 19

Stochastic gradient descend

 Compute gradient only for a subset of m training samples:

 Mini-batch:

 Approximate gradient:

 Update rules:

 Training:

1. Initialize w and b

2. In one epoch of training keep randomly selecting one mini-batch of m samples at a

time (and train) until all training images are used

3. Repeat for several epochs

Development of intelligent systems, Object recognition with CNNs 20

Example code: SGD

Development of intelligent systems, Object recognition with CNNs 21

Backpropagation

 All we need is gradient of loss function

 Rate of change of C wrt. to change in any weigt

 Rate of change of C wrt. to change in any biase

 How to compute gradient?

 Numericaly

 Simple, approximate, extremely slow

 Analyticaly for entire C

 Fast, exact, nontractable

 Chain individual parts of netwok

 Fast, exact, doable

Backpropagation!

Development of intelligent systems, Object recognition with CNNs 22

Main principle

 We need the gradient of the Loss function

 Two phases:

 Forward pass; propagation: the input sample is propagated through the network and
the error at the final layer is obtained

 Backward pass; weight update: the error is backpropagated to the individual levels,
the contribution of the individual neuron to the error is calculated and the weights are
updated accordingly

Development of intelligent systems, Object recognition with CNNs 23

Learning strategy

 To obtain the gradient of the Loss function :

 For every neuron in the network calculate error of this neuron

 This error propagates through the netwok causing the final error

 Backpropagate the final error to get all

 Obtain all and from

Development of intelligent systems, Object recognition with CNNs 24

Equations of backpropagation

 BP1: Error in the output layer:

 BP2: Error in terms of the error in the next layer:

 BP3: Rate of change of the cost wrt. to any bias:

 BP4: Rate of change of the cost wrt. to any weight:

Development of intelligent systems, Object recognition with CNNs 25

Backpropagation algorithm

 Input x: Set the corresponding activation for the input layer

 Feedforward: For each

compute

 Output error : Compute the output error

 Backpropagate the error:

For each

compute

 Output the gradient:

Development of intelligent systems, Object recognition with CNNs 26

Backpropagation and SGD

For a number of epochs

Until all training images are used

Select a mini-batch of training samples

For each training sample in the mini-batch

Input: set the corresponding activation

Feedforward: for each

compute and

Output error: compute

Backpropagation: for each

compute

Gradient descend: for each and update:

Development of intelligent systems, Object recognition with CNNs 27

Example code: Backpropagation

Development of intelligent systems, Object recognition with CNNs 28

Local computation

28

values

gradient

Development of intelligent systems, Object recognition with CNNs 29

Activation and loss functions

Activation function Loss function

Linear Quadratic

Sigmoid Binary cross-entropy

Softmax Categorical Cross-entropy

Other Custom

Development of intelligent systems, Object recognition with CNNs 30

Activation functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU max(0.1x, x)

ELU

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 31

 Huge number of parameters
-> danger of overfitting

 Use validation set to determine
overfitting and early stopping

 Hold out method

Overfitting

1,000 MNIST training images 50,000 MNIST training images

overfitting

overfitting

early
stopping

Development of intelligent systems, Object recognition with CNNs 32

Regularization

 How to avoid overfitting:

 Increase the number of training images

 Decrease the number of parameters

 Regularization

 Regularization:

 L2 regularization

 L1 regularization

 Dropout

 Data augmentation

Development of intelligent systems, Object recognition with CNNs 33

Regularisation

 How to avoid overfitting:

 Increase the number of training images

 Decrease the number of parameters

 Regularization

 Data Augmentation

 L1 regularisation

 L2 regularisation

 Dropout

 Batch Normalization

 DropConnect

 Fractional Max Pooling

 Stochastic Depth

 Cutout / Random Crop

 Mixup

[Wan et al. 2013]

[Huang et al. 2016]

[Graham, 2014]

Development of intelligent systems, Object recognition with CNNs 34

Data augmentation

 Use more data! Synthetically generate new data

 Apply different kinds of transformations:
translations, rotations, elastic distortions,
appearance modifications (intensity, blur)

 Operations should reflect real-world
variation

Development of intelligent systems, Object recognition with CNNs 35

Parameter updates

 Different schemes for updating gradient

 Gradient descend

 Momentum update

 Nesterov momentum

 AdaGrad update

 RMSProp update

 Adam update

 Learning rate decay

Image credits: Alec Radford

Development of intelligent systems, Object recognition with CNNs 36

Setting up the network

 Set up the network

 Coarse-fine cross-validation in stages

 Only a few epochs to get a rough idea

 Even on a smaller problem
to speed up the process

 Longer running time, finer search,…

 Cross-validation strategy

 Check various parameter settings

 Always sample parameters

 Check the results, adjust the range

 Hyperparameters to play with:

 network architecture

 learning rate, its decay schedule, update type

 regularization (L2/Dropout strength)…

 Run multiple validations simultaneously

 Actively observe the learning progress

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 37

Convolutional neural networks

 From feedforward fully-connected neural networks

 To convolutional neural networks

Development of intelligent systems, Object recognition with CNNs 38

Convolution

 Convolution operation:

 Discrete convolution:

 Two-dimensional convolution:

 Convolution is commutative:

 Cross-correlation: flipped kernel

example

Development of intelligent systems, Object recognition with CNNs 39

Convolutional neural networks

 Data in vectors, matrices, tensors

 Neigbourhood, spatial arrangement

 2D: Images,time-fequency representations

 1D: sequential signals, text, audio, speech, time series,…

 3D: volumetric images, video, 3D grids

Development of intelligent systems, Object recognition with CNNs 40

Convolution layer

*

Development of intelligent systems, Object recognition with CNNs 41

Convolution layer

4×

3
4 8

8×

3 4

*
σ

*
σ

*
σ

Development of intelligent systems, Object recognition with CNNs 42

Sparse connectivity

 Local connectivity – neurons are only locally connected (receptive field)

 Reduces memory requirements

 Improves statistical efficiency

 Requires fewer operations

from below from above

The receptive field of the
units in the deeper layers
is large
=> Indirect connections!

Development of intelligent systems, Object recognition with CNNs 43

Parameter sharing

 Neurons share weights!

 Tied weights

 Every element of the kernel is used
at every position of the input

 All the neurons at the same level detect
the same feature (everywhere in the input)

 Greatly reduces the number of parameters!

 Equivariance to translation

 Shift, convolution = convolution, shift

 Object moves => representation moves

 Fully connected network with an infinitively strong prior over its weights

 Tied weights

 Weights are zero outside the kernel region

=> learns only local interactions and is equivariant to translations

Development of intelligent systems, Object recognition with CNNs 44

Convolutional neural network

[From recent Yann

LeCun slides]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 45

Convolutional neural network

example 5x5 filters

(32 total)
one filter =>

one activation map

input

image:

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 46

Pooling layer

 makes the representations smaller and more manageable

 operates over each activation map independently

 downsampling

Example: Max pooling

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 47

Pooling

 Max pooling introduces translation
invariance

 Pooling with downsampling
 Reduces the representation size

 Reduces computational cost

 Increases statistical efficiency

Development of intelligent systems, Object recognition with CNNs 48

CNN layers

 Layers used to build ConvNets:

 INPUT:
raw pixel values

 CONV:
convolutional layer

 (BN: batch nornalisation)

 (ReLU:)
introducing nonlinearity

 POOL:
downsampling

 FC:
for computing class scores

 SoftMax

Development of intelligent systems, Object recognition with CNNs 49

CNN architecture

 Stack the layers in an appropriate order

Hu et. al.

Babenko et. al.

Development of intelligent systems, Object recognition with CNNs 50

CNN architecture

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 51

Typical solution

Development of intelligent systems, Object recognition with CNNs 52

Network architecture

 Training the model

 Inference

Development of intelligent systems, Object recognition with CNNs 53

Example implementation in TensorFlow

Segmentation network

Classification network

Development of intelligent systems, Object recognition with CNNs 54

Case study – LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2

i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 55

Case study - AlexNet

http://fromdata.org/2015/10/01/imagenet-cnn-architecture-image/

INPUT CONV1
POOL1

NORM1

CONV2
POOL2

NORM2

CONV3 CONV4 CONV5
POOL3

FC6 FC7 FC8

[Krizhevsky et al. 2012]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 56

Case studay - VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
-> 7.3% top 5 error

best model

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 57

Case study - GoogLeNet

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 58

Case study - ResNet

spatial dim.
only 56x56!

- Batch Normalization after every
CONV layer

- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10

when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

ILSVRC 2015 winner
(3.6% top 5 error)

Development of intelligent systems, Object recognition with CNNs 59

DenseNet

 Densely Connected
Convolutional Networks

 Every layer connected to
every other layer in a
feed-forward fashion

 Dense connectivity

 Model compactness

 Strong gradient flow

 Implicit deep supervision

 Feature reuse

Huang et al. 2017

https://arxiv.org/abs/1608.06993

Development of intelligent systems, Object recognition with CNNs 60

MobileNets

 Efficient Convolutional Neural Networks for Mobile Applications

 Efficient models for mobile and embedded vision applications

 Depthwise separable convolution:

 Depthwise convolution

 Pointwise (1x1) convolution

 MobileNetV2: Inverted Residuals and Linear Bottlenecks

 MobileNetV3: NAS+ NetAdapt

Howard et al. 2017

Sandler et al. 2018

Howard et al. 2019

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1905.02244

Development of intelligent systems, Object recognition with CNNs 61

 Neural Architecure Search

 Search the space of architetures to find the optimal one given available resources

 500 GPUs across 4 days resulting in 2,000 GPU-hours on NVidia P100

 Other architecture search methods:
 AmoebaNet, Real et al., 2018

 MoreMNAS, Chu et. al, 2019, …

NASNet

Best convolutional cells (NASNet-A) for CIFAR-10

Available operations to select from:

[Zoph et al. 2018]

Development of intelligent systems, Object recognition with CNNs 62

EfficientNet

 Scaling the network in

[Tan and Le, 2019]

Development of intelligent systems, Object recognition with CNNs 63

Architectures overview

 Date of publication, main type

[Hoeser and Kuenzer, 2020]

Development of intelligent systems, Object recognition with CNNs 64

Analysis of DNN models

[Canziani et al., 2017]

Development of intelligent systems, Object recognition with CNNs 65

Pretrained models

Development of intelligent systems, Object recognition with CNNs 66

Transformers

[Khan et.al, 2021][Vaswani et.al, NIPS 2017]

Development of intelligent systems, Object recognition with CNNs 67

ViT - Vision Transformer

 AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

[Dosovitskiy et.al,
Google, 2020,
ICLR 2021]

Development of intelligent systems, Object recognition with CNNs 68

Transfer learning

 If you don‘t have enough data use pretrained models!

1. Train on

Imagenet
3. Medium dataset:

finetuning

more data = retrain more

of the network (or all of it)

2. Small dataset:

feature extractor

Freeze these

Train this

Freeze these

Train this

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

tip: use only ~1/10th of

the original learning rate

in finetuning top layer,

and ~1/100th on

intermediate layers

Development of intelligent systems, Object recognition with CNNs 69

Two stage object detection and recognition

Face
detection

Face
recognition

„Scarlet“

very fast
efficient

could be slower
computationally more complex

HOG+SVM
AdaBoost
SSD

CNN
PCA/LDA

Development of intelligent systems, Object recognition with CNNs 70

Object detection and recognition

 Two stage approach:

 Detection of region proposals

 Recognition of the individual region proposals

Development of intelligent systems, Object recognition with CNNs 71

Object detection in RInS

 Information in circles

 -> detecting circles as region
proposals (Region Of Interests)

 Rectify ROIs

 Recognize the content of ROIs

 Rectification using homography

ROIs

2 6

Development of intelligent systems, Object recognition with CNNs 72

Homography

 Two views on the same (planar) object:

 Homography: plane to plane mapping

Slide credit: Matej Kristan

Development of intelligent systems, Object recognition with CNNs 73

Computing homography

 Four corresponding points:

 The elements of the matrix 𝑯 can be computed using Direct

Linear Transform (DLT)!

11 12 13

21 22 23

31 32 331

x' H H H x

w y' H H H y

H H H 1

𝒙′ 𝒙

𝑤𝒙′ = 𝑯𝒙

Slide credit: Matej Kristan

Development of intelligent systems, Object recognition with CNNs 74

Application of homography

Slide credit: Antonio Criminisi

Homography
mapping

between part
of the image
and a sqare

Flagellation of Christ (Piero della Francesca)

Development of intelligent systems, Object recognition with CNNs 75

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Figure copyright 2015, Ross Girshick; reproduced with permission

Fei-Fei Li, Ranjay Krishna, Danfei Xu 75

Two-stage detectors

First stage: Run once per image

- Backbone network

- Region proposal network

Second stage: Run once per region

- Crop features: RoI pool / align

- Predict object class

- Prediction bbox offset

Slide credit: Fei-Fei Li, Ranjay Krishna, Danfei Xu

Development of intelligent systems, Object recognition with CNNs 76

Divide image into grid

7 x 7

Image a set of base boxes

centered at each grid cell
Here B = 3

Input image

3 x H x W

Within each grid cell:
- Regress from each of the B

base boxes to a final box

with 5 numbers:

(dx, dy, dh, dw, confidence)
- Predict scores for each of C

classes (including

background as a class)

- Looks a lot like RPN, but

category-specific!

Output:

7 x 7 x (5 * B + C)Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Single-Stage Object Detectors

Slide credit: Fei-Fei Li, Ranjay Krishna, Danfei Xu

Development of intelligent systems, Object recognition with CNNs 77

SSD: Single Shot MultiBox Detector

 Multi-scale feature maps for
detection

 Convolutional predictors for
detection

 Default boxes and aspect ratios

 Real time operation

[Liu et al., ECCV 2016]

Development of intelligent systems, Object recognition with CNNs 78

Detection Instance segmentation

Wide usabilty of ConvNets

[Redmon, Yolo, 2018]

[Liu, SSD, 2015]

[He,

Mask R-CNN,

2012]

Development of intelligent systems, Object recognition with CNNs 79

Wide usabilty of ConvNets

[Chen, DeepLab

2017]

Semantic segmentation

[Farabet et al., 2012]

Development of intelligent systems, Object recognition with CNNs 80

Wide usabilty of ConvNets

 Image segmentation
[Jonson, 2016]

[Marmanis, 2016]

[Caicedo, 2018]

Development of intelligent systems, Object recognition with CNNs 81

Wide usabilty of ConvNets

 Action
recognition

[Simonyan et al. 2014]

[Luvizon et al. 2016]

[Donahue

et al.

2016]

Development of intelligent systems, Object recognition with CNNs 82

Wide usabilty of ConvNets

 Biometry [Taigman et al. 2014]

[Najibi,

SSH,

2017]

[Emeršič,

2017]

Development of intelligent systems, Object recognition with CNNs 83

Wide usabilty of ConvNets

 Person/pose detection

[Cao 2017]

[Güler, DensePose, 2018]

Development of intelligent systems, Object recognition with CNNs 84

Wide usabilty of ConvNets

 Reinforcement learning for game playing

[Google DeepMind]

Development of intelligent systems, Object recognition with CNNs 85

Wide usabilty of ConvNets

[Vinyals et al., 2015]

Image

Captioning

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Development of intelligent systems, Object recognition with CNNs 86

Surface-defect detection

Segmantation-based data-driven
surface-defect detection

Development of intelligent systems, Object recognition with CNNs 87

Surface-defect detection

Development of intelligent systems, Object recognition with CNNs 88

Surface-defect detection

Development of intelligent systems, Object recognition with CNNs 89

Polyp counting

Development of intelligent systems, Object recognition with CNNs 90

Polyp counting

Development of intelligent systems, Object recognition with CNNs 91

Ship detection

Development of intelligent systems, Object recognition with CNNs 92

Face detection

Development of intelligent systems, Object recognition with CNNs 93

Mask-wearing detection

Development of intelligent systems, Object recognition with CNNs 94

Obstacle detection on autonomous boat

USV equipped with
different sensors:

• stereo camera
• IMU
• GPS
• compass

Segmentation based on
RGB + IMU

Development of intelligent systems, Object recognition with CNNs 95

Semantic edge detection

Development of intelligent systems, Object recognition with CNNs 96

Object (traffic sign) detection

Development of intelligent systems, Object recognition with CNNs 97

Object (traffic sign) detection

Development of intelligent systems, Object recognition with CNNs 98

Image anonymisation

 Detection and
anonimysation of car
plates and faces

Development of intelligent systems, Object recognition with CNNs 99

Visual tracking

Development of intelligent systems, Object recognition with CNNs 100

Plank classification

Development of intelligent systems, Object recognition with CNNs 101

Place recognition

Development of intelligent systems, Object recognition with CNNs 102

Semantic segmentation

Development of intelligent systems, Object recognition with CNNs 103

Image enhancement

 Deblurring, super-resolution

Development of intelligent systems, Object recognition with CNNs 104

Development of intelligent systems, Object recognition with CNNs 105

Development of intelligent systems, Object recognition with CNNs 106

Deep reinforcement learning

 Automatic generation of
learning examples

 Goal-driven map-less
mobile robot navigation

Development of intelligent systems, Object recognition with CNNs 107

Innate and learned

 Goal-driven map-less mobile robot navigation

 Constraining the problem using a priory knowledge

Engineering

approach

Engineering approach +
deep learning

Pure learning

Development of intelligent systems, Object recognition with CNNs 108

Problem solving

 Different problem complexities

Simple,
well defined problems

Complex, vaguely
defined problems

C
o
m

p
le

x
it
y

Rule-based
decision making

Data-driven
decision making

Programming Machine learning

Development of intelligent systems, Object recognition with CNNs 109

Problem solving

Routine solutions Rule-based solutions Data-driven solutions General intelligence

C
o

m
p

le
xi

ty

Development of intelligent systems, Object recognition with CNNs 110

Adequate tools

Routine solutions Rule-based solutions Data-driven solutions General intelligence

Development of intelligent systems, Object recognition with CNNs 111

Development, deployement and maintainance

• Data, data, data!
• Enough data, representative data

• Correctly annotated data

• Appropriate deep architecture design
• Proper backbone, architecture, loss function, …

• Learning, parameter optimisation

• Efficient implementation
• Execution speed

• Integration

• Maintenance
• Incremental improvement of the learned model

• Reflecting to changes in the environment

Development of intelligent systems, Object recognition with CNNs 112

Development of deep learning solutions
%

 o
f

so
lu

ti
o

n

time

80%

20%

80%
20%

80:20?

60:40?

90:10?

99:1?

Development of intelligent systems, Object recognition with CNNs 113

Knowledge and experience count

Development of intelligent systems, Object recognition with CNNs 114

Software

 Neural networks in Python

 Convolutional neural networks using PyTorch or TensorFlow

 or other deep learning frameworks

 Optionally use Google Colab

Development of intelligent systems, Object recognition with CNNs 115

Literature

 Michael A. Nielsen, Neural Networks and Deep learning,
Determination Press, 2015
http://neuralnetworksanddeeplearning.com/index.html

 Ian Goodfellow and Yoshua Bengio and Aaron Courville,
Deep Learning, MIT Press, 2016
http://www.deeplearningbook.org/

 Fei-Fei Li, Andrej Karpathy, Justin Johnson, CS231n: Convolutional Neural
Networks for Visual Recognition, Stanford University, 2016
http://cs231n.stanford.edu/

 Papers

http://neuralnetworksanddeeplearning.com/index.html
http://www.deeplearningbook.org/
http://cs231n.stanford.edu/

