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Media hype
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New deep learning era

 More data!

 More computing power - GPU!

 Better learning algorithms!
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New deep learning era

ICCV 2019, Seoul, Korea, 27. 10. - 2. 11. 2019 
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Machine learning in computer vision

 Conventional approach

feature 
extraction

features classification class

modellearning

PCA, LDA, CCA, 
HOG, SIFT,  

SURF, ORB, … kNN, SVM, ANN, 
AdaBoost, …
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Deep learning in computer vision

 Conventional machine learning approach in computer vision

 Deep learing approach

feature 
extraction

features classification class

modellearning

classification class

Deep 
model

deep 
learning
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Deep learning – the main concept

Kolo

Avto

OsebaPerson

Bike

Car
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End to end learning

 Representations as well
as classifier are being
learned
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Perceptron

 Rosenblatt, 1957

 Binary inputs and output

 Weights

 Threshold

 Bias

 Very simple!
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Sigmoid neurons

 Real inputs and outputs from interval [0,1]

 Activation function: sgimoid function

 output =
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Sigmoid neurons

 Small changes in weights and biases causes small change in output

 Enables learning!
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Feedfoward neural networks

 Network architecture:
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Example: recognizing digits

 MNIST database of handwritten digits

 28x28 pixes (=784 input neurons)

 10 digits

 50.000 training images

 10.000 validation images

 10.000 test images
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Example code: Feedforward

 Code from https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip

or https://github.com/mnielsen/neural-networks-and-deep-learning

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 

 or https://github.com/chengfx/neural-networks-and-deep-learning-for-python3 (for Python 3)

https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/chengfx/neural-networks-and-deep-learning-for-python3
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Loss function

 Given:

for all training images

 Loss function:

 (mean sqare error – quadratic loss function)

 Find weigths w and biases b that for given input x

produce output a that minimizes Loss function C
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Gradient descend

 Find minimum of

 Change of C:

 Gradient of C:

 Change v in the opposite

direction of the gradient: 

 Algorithm:

 Initialize v

 Until stopping criterium riched

 Apply udate rule

Learning rate
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Gradient descend in neural networks

 Loss function

 Update rules:

 Consider all training samples

 Very many parameters
=> computationaly very expensive

 Use Stochastic gradient descend instead
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Stochastic gradient descend

 Compute gradient only for a subset of m training samples:

 Mini-batch:

 Approximate gradient: 

 Update rules:

 Training:

1. Initialize w and b

2. In one epoch of training keep randomly selecting one mini-batch of m samples at a 

time (and train) until all training images are used

3. Repeat for several epochs
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Example code: SGD
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Backpropagation

 All we need is gradient of loss function

 Rate of change of C wrt. to change in any weigt

 Rate of change of C wrt. to change in any biase

 How to compute gradient?

 Numericaly

 Simple, approximate, extremely slow 

 Analyticaly for entire C

 Fast, exact, nontractable 

 Chain individual parts of netwok

 Fast, exact, doable 

Backpropagation!
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Main principle

 We need the gradient of the Loss function

 Two phases:

 Forward pass; propagation: the input sample is propagated through the network and
the error at the final layer is obtained

 Backward pass; weight update: the error is backpropagated to the individual levels, 
the contribution of the individual neuron to the error is calculated and the weights are 
updated accordingly
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Learning strategy

 To obtain the gradient of the Loss function :

 For every neuron in the network calculate error of this neuron

 This error propagates through the netwok causing the final error

 Backpropagate the final error to get all

 Obtain all and from
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Equations of backpropagation

 BP1: Error in the output layer:

 BP2: Error in terms of the error in the next layer:

 BP3: Rate of change of the cost wrt. to any bias:

 BP4: Rate of change of the cost wrt. to any weight:
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Backpropagation algorithm

 Input x: Set the corresponding activation for the input layer

 Feedforward:  For each

compute

 Output error : Compute the output error

 Backpropagate the error:

For each

compute

 Output the gradient:
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Backpropagation and SGD

For a number of epochs

Until all training images are used

Select a mini-batch of training samples

For each training sample in the mini-batch

Input: set the corresponding activation

Feedforward: for each

compute and

Output error: compute

Backpropagation: for each

compute

Gradient descend: for each and update: 
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Example code: Backpropagation



Development of intelligent systems, Object recognition with CNNs 28

Local computation

28

values

gradient
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Activation and loss functions

Activation function Loss function

Linear Quadratic

Sigmoid Binary cross-entropy

Softmax Categorical Cross-entropy

Other Custom
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Activation functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU max(0.1x, x)

ELU

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson



Development of intelligent systems, Object recognition with CNNs 31

 Huge number of parameters 
-> danger of overfitting

 Use validation set to determine 
overfitting and early stopping

 Hold out method

Overfitting

1,000 MNIST training images 50,000 MNIST training images

overfitting

overfitting

early
stopping
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Regularization

 How to avoid overfitting:

 Increase the number of training images 

 Decrease the number of parameters 

 Regularization 

 Regularization:

 L2 regularization

 L1 regularization

 Dropout

 Data augmentation
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Regularisation

 How to avoid overfitting:

 Increase the number of training images 

 Decrease the number of parameters 

 Regularization 

 Data Augmentation

 L1 regularisation

 L2 regularisation

 Dropout

 Batch Normalization

 DropConnect

 Fractional Max Pooling

 Stochastic Depth

 Cutout / Random Crop

 Mixup

[Wan et al. 2013]

[Huang et al. 2016]

[Graham, 2014]
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Data augmentation

 Use more data!  Synthetically generate new data

 Apply different kinds of transformations: 
translations, rotations, elastic distortions, 
appearance modifications (intensity, blur)

 Operations should reflect real-world 
variation
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Parameter updates

 Different schemes for updating gradient

 Gradient descend

 Momentum update

 Nesterov momentum

 AdaGrad update

 RMSProp update

 Adam update

 Learning rate decay

Image credits: Alec Radford
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Setting up the network

 Set up the network

 Coarse-fine cross-validation in stages

 Only a few epochs to get a rough idea 

 Even on a smaller problem
to speed up the process

 Longer running time, finer search,…

 Cross-validation strategy

 Check various parameter settings

 Always sample parameters

 Check the results, adjust the range

 Hyperparameters to play with:

 network architecture

 learning rate, its decay schedule, update type

 regularization (L2/Dropout strength)…

 Run multiple validations simultaneously

 Actively observe the learning progress

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Convolutional neural networks

 From feedforward fully-connected neural networks

 To convolutional neural networks
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Convolution

 Convolution operation:

 Discrete convolution:

 Two-dimensional convolution:

 Convolution is commutative:

 Cross-correlation: flipped kernel

example
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Convolutional neural networks

 Data in vectors, matrices, tensors

 Neigbourhood, spatial arrangement

 2D: Images,time-fequency representations

 1D: sequential signals, text, audio, speech, time series,…

 3D: volumetric images, video, 3D grids
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Convolution layer

*
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Convolution layer

4×

3 
4 8 

8×

3 4

*
σ

*
σ

*
σ
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Sparse connectivity

 Local connectivity – neurons are only locally connected (receptive field)

 Reduces memory requirements

 Improves statistical efficiency

 Requires fewer operations

from below from above

The receptive field of the 
units in the deeper layers 
is large
=> Indirect connections!
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Parameter sharing

 Neurons share weights!

 Tied weights

 Every element of the kernel is used 
at every position of the input

 All the neurons at the same level detect
the same feature (everywhere in the input)

 Greatly reduces the number of parameters!

 Equivariance to translation

 Shift, convolution = convolution, shift

 Object moves => representation moves

 Fully connected network with an infinitively strong prior over its weights

 Tied weights

 Weights are zero outside the kernel region

=> learns only local interactions and is equivariant to translations
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Convolutional neural network

[From recent Yann 

LeCun slides]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Convolutional neural network

example 5x5 filters

(32 total)
one filter => 

one activation map

input

image:

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Pooling layer

 makes the representations smaller and more manageable 

 operates over each activation map independently

 downsampling

Example: Max pooling

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Pooling

 Max pooling introduces translation 
invariance

 Pooling with downsampling
 Reduces the representation size

 Reduces computational cost

 Increases statistical efficiency



Development of intelligent systems, Object recognition with CNNs 48

CNN layers

 Layers used to build ConvNets:

 INPUT: 
raw pixel values

 CONV: 
convolutional layer

 (BN: batch nornalisation)

 (ReLU:)
introducing nonlinearity 

 POOL: 
downsampling

 FC: 
for computing class scores

 SoftMax
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CNN architecture

 Stack the layers in an appropriate order

Hu et. al. 

Babenko et. al. 
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CNN architecture

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Typical solution
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Network architecture

 Training the model

 Inference
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Example implementation in TensorFlow

Segmentation network

Classification network
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Case study – LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2

i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Case study - AlexNet

http://fromdata.org/2015/10/01/imagenet-cnn-architecture-image/

INPUT CONV1
POOL1

NORM1

CONV2
POOL2

NORM2

CONV3 CONV4 CONV5
POOL3

FC6 FC7 FC8

[Krizhevsky et al. 2012]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Case studay - VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
-> 7.3% top 5 error

best model

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Case study - GoogLeNet

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Case study - ResNet

spatial dim. 
only 56x56!

- Batch Normalization after every 
CONV layer

- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9) 
- Learning rate: 0.1, divided by 10 

when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

ILSVRC 2015 winner 
(3.6% top 5 error)
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DenseNet

 Densely Connected
Convolutional Networks

 Every layer connected to 
every other layer in a 
feed-forward fashion

 Dense connectivity

 Model compactness

 Strong gradient flow

 Implicit deep supervision

 Feature reuse

Huang et al. 2017

https://arxiv.org/abs/1608.06993
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MobileNets

 Efficient Convolutional Neural Networks for Mobile Applications

 Efficient models for mobile and embedded vision applications

 Depthwise separable convolution:

 Depthwise convolution

 Pointwise (1x1) convolution

 MobileNetV2: Inverted Residuals and Linear Bottlenecks

 MobileNetV3: NAS+ NetAdapt

Howard et al. 2017

Sandler et al. 2018

Howard et al. 2019

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1905.02244
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 Neural Architecure Search

 Search the space of architetures to find the optimal one given available resources

 500 GPUs across 4 days resulting in 2,000 GPU-hours on NVidia P100

 Other architecture search methods:
 AmoebaNet, Real et al., 2018

 MoreMNAS, Chu et. al, 2019, …

NASNet

Best convolutional cells (NASNet-A) for CIFAR-10

Available operations to select from:

[Zoph et al. 2018]
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EfficientNet

 Scaling the network in

[Tan and Le, 2019]
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Architectures overview

 Date of publication, main type

[Hoeser and Kuenzer, 2020]
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Analysis of DNN models

[Canziani et al., 2017]



Development of intelligent systems, Object recognition with CNNs 65

Pretrained models
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Transformers

[Khan et.al, 2021][Vaswani et.al, NIPS 2017]



Development of intelligent systems, Object recognition with CNNs 67

ViT - Vision Transformer

 AN IMAGE IS WORTH 16X16 WORDS: 
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

[Dosovitskiy et.al, 
Google, 2020,
ICLR 2021]
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Transfer learning

 If you don‘t have enough data use pretrained models!

1. Train on 

Imagenet
3. Medium dataset:

finetuning

more data = retrain more 

of the network (or all of it)

2. Small dataset:

feature extractor

Freeze these

Train this

Freeze these

Train this

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

tip: use only ~1/10th of 

the original learning rate 

in finetuning top layer, 

and ~1/100th on 

intermediate layers
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Two stage object detection and recognition

Face 
detection

Face 
recognition

„Scarlet“

very fast
efficient

could be slower
computationally more complex

HOG+SVM
AdaBoost
SSD

CNN
PCA/LDA
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Object detection and recognition

 Two stage approach:

 Detection of region proposals

 Recognition of the individual region proposals
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Object detection in RInS

 Information in circles

 -> detecting circles as region
proposals (Region Of Interests)

 Rectify ROIs

 Recognize the content of ROIs

 Rectification using homography

ROIs

2  6
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Homography

 Two views on the same (planar) object:

 Homography: plane to plane mapping

Slide credit: Matej Kristan
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Computing homography

 Four corresponding points:

 The elements of the matrix 𝑯 can be computed using Direct 

Linear Transform (DLT)!

11 12 13

21 22 23

31 32 331

x' H H H x

w y' H H H y

H H H 1

    
    

     
        

𝒙′ 𝒙

𝑤𝒙′ = 𝑯𝒙

Slide credit: Matej Kristan
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Application of homography

Slide credit: Antonio Criminisi

Homography
mapping

between part 
of the image 
and a sqare

Flagellation of Christ (Piero della Francesca)
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Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015  

Figure copyright 2015, Ross Girshick; reproduced with permission

Fei-Fei Li, Ranjay Krishna, Danfei Xu 75

Two-stage detectors

First stage: Run once per image

- Backbone network

- Region proposal network

Second stage: Run once per region

- Crop features: RoI pool / align

- Predict object class

- Prediction bbox offset

Slide credit: Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Divide image into grid  

7 x 7

Image a set of base boxes  

centered at each grid cell  
Here B = 3

Input image  

3 x H x W

Within each grid cell:
- Regress from each of the B  

base boxes to a final box  

with 5 numbers:

(dx, dy, dh, dw, confidence)
- Predict scores for each of C  

classes (including  

background as a class)

- Looks a lot like RPN, but  

category-specific!

Output:

7 x 7 x (5 * B + C)Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016  

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Single-Stage Object Detectors

Slide credit: Fei-Fei Li, Ranjay Krishna, Danfei Xu
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SSD: Single Shot MultiBox Detector

 Multi-scale feature maps for 
detection

 Convolutional predictors for 
detection

 Default boxes and aspect ratios

 Real time operation

[Liu et al., ECCV 2016]
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Detection Instance segmentation

Wide usabilty of ConvNets

[Redmon, Yolo, 2018]

[Liu, SSD, 2015]

[He, 

Mask R-CNN,

2012]
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Wide usabilty of ConvNets

[Chen, DeepLab

2017]

Semantic segmentation

[Farabet et al., 2012]
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Wide usabilty of ConvNets

 Image segmentation
[Jonson, 2016]

[Marmanis, 2016]

[Caicedo, 2018]
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Wide usabilty of ConvNets

 Action
recognition

[Simonyan et al. 2014]

[Luvizon et al. 2016]

[Donahue

et al. 

2016]
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Wide usabilty of ConvNets

 Biometry [Taigman et al. 2014]

[Najibi,

SSH,

2017]

[Emeršič,

2017]



Development of intelligent systems, Object recognition with CNNs 83

Wide usabilty of ConvNets

 Person/pose detection

[Cao 2017]

[Güler, DensePose, 2018]
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Wide usabilty of ConvNets

 Reinforcement learning for game playing

[Google DeepMind]
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Wide usabilty of ConvNets

[Vinyals et al., 2015]

Image 

Captioning

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Surface-defect detection

Segmantation-based data-driven
surface-defect detection
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Surface-defect detection
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Surface-defect detection
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Polyp counting



Development of intelligent systems, Object recognition with CNNs 90

Polyp counting
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Ship detection
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Face detection
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Mask-wearing detection
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Obstacle detection on autonomous boat

USV equipped with 
different sensors:

• stereo camera
• IMU
• GPS
• compass

Segmentation based on
RGB + IMU
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Semantic edge detection
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Object (traffic sign) detection
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Object (traffic sign) detection
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Image anonymisation

 Detection and 
anonimysation of car 
plates and faces



Development of intelligent systems, Object recognition with CNNs 99

Visual tracking
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Plank classification
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Place recognition
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Semantic segmentation
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Image enhancement

 Deblurring, super-resolution
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Deep reinforcement learning

 Automatic generation of 
learning examples

 Goal-driven map-less 
mobile robot navigation
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Innate and learned

 Goal-driven map-less mobile robot navigation 

 Constraining the problem using a priory knowledge

Engineering

approach

Engineering  approach + 
deep learning

Pure learning
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Problem solving

 Different problem complexities

Simple, 
well defined problems

Complex, vaguely 
defined problems

C
o
m

p
le

x
it
y

Rule-based
decision making

Data-driven 
decision making

Programming Machine learning
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Problem solving

Routine solutions Rule-based solutions Data-driven solutions General intelligence

C
o

m
p

le
xi

ty



Development of intelligent systems, Object recognition with CNNs 110

Adequate tools

Routine solutions Rule-based solutions Data-driven solutions General intelligence
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Development, deployement and maintainance

• Data, data, data!
• Enough data, representative data

• Correctly annotated data

• Appropriate deep architecture design
• Proper backbone, architecture, loss function, …

• Learning, parameter optimisation

• Efficient implementation
• Execution speed

• Integration

• Maintenance
• Incremental improvement of the learned model

• Reflecting to changes in the environment
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Development of deep learning solutions
%

 o
f 

so
lu

ti
o

n

time

80%

20%

80%
20%

80:20?

60:40?

90:10?

99:1?
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Knowledge and experience count
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Software

 Neural networks in Python

 Convolutional neural networks using PyTorch or TensorFlow

 or other deep learning frameworks

 Optionally use Google Colab
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