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Media hype
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New deep learning era

 More data!

 More computing power - GPU!

 Better learning algorithms!
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New deep learning era

ICCV 2019, Seoul, Korea, 27. 10. - 2. 11. 2019 
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Machine learning in computer vision

 Conventional approach

feature 
extraction

features classification class

modellearning

PCA, LDA, CCA, 
HOG, SIFT,  

SURF, ORB, … kNN, SVM, ANN, 
AdaBoost, …
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Deep learning in computer vision

 Conventional machine learning approach in computer vision

 Deep learing approach

feature 
extraction

features classification class

modellearning

classification class

Deep 
model

deep 
learning
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Deep learning – the main concept

Kolo

Avto

OsebaPerson

Bike

Car
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End to end learning

 Representations as well
as classifier are being
learned
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Perceptron

 Rosenblatt, 1957

 Binary inputs and output

 Weights

 Threshold

 Bias

 Very simple!
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Sigmoid neurons

 Real inputs and outputs from interval [0,1]

 Activation function: sgimoid function

 output =
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Sigmoid neurons

 Small changes in weights and biases causes small change in output

 Enables learning!
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Feedfoward neural networks

 Network architecture:
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Example: recognizing digits

 MNIST database of handwritten digits

 28x28 pixes (=784 input neurons)

 10 digits

 50.000 training images

 10.000 validation images

 10.000 test images
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Example code: Feedforward

 Code from https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip

or https://github.com/mnielsen/neural-networks-and-deep-learning

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 

 or https://github.com/chengfx/neural-networks-and-deep-learning-for-python3 (for Python 3)

https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/chengfx/neural-networks-and-deep-learning-for-python3
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Loss function

 Given:

for all training images

 Loss function:

 (mean sqare error – quadratic loss function)

 Find weigths w and biases b that for given input x

produce output a that minimizes Loss function C
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Gradient descend

 Find minimum of

 Change of C:

 Gradient of C:

 Change v in the opposite

direction of the gradient: 

 Algorithm:

 Initialize v

 Until stopping criterium riched

 Apply udate rule

Learning rate
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Gradient descend in neural networks

 Loss function

 Update rules:

 Consider all training samples

 Very many parameters
=> computationaly very expensive

 Use Stochastic gradient descend instead
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Stochastic gradient descend

 Compute gradient only for a subset of m training samples:

 Mini-batch:

 Approximate gradient: 

 Update rules:

 Training:

1. Initialize w and b

2. In one epoch of training keep randomly selecting one mini-batch of m samples at a 

time (and train) until all training images are used

3. Repeat for several epochs
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Example code: SGD
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Backpropagation

 All we need is gradient of loss function

 Rate of change of C wrt. to change in any weigt

 Rate of change of C wrt. to change in any biase

 How to compute gradient?

 Numericaly

 Simple, approximate, extremely slow 

 Analyticaly for entire C

 Fast, exact, nontractable 

 Chain individual parts of netwok

 Fast, exact, doable 

Backpropagation!
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Main principle

 We need the gradient of the Loss function

 Two phases:

 Forward pass; propagation: the input sample is propagated through the network and
the error at the final layer is obtained

 Backward pass; weight update: the error is backpropagated to the individual levels, 
the contribution of the individual neuron to the error is calculated and the weights are 
updated accordingly



Development of intelligent systems, Object recognition with CNNs 23

Learning strategy

 To obtain the gradient of the Loss function :

 For every neuron in the network calculate error of this neuron

 This error propagates through the netwok causing the final error

 Backpropagate the final error to get all

 Obtain all and from
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Equations of backpropagation

 BP1: Error in the output layer:

 BP2: Error in terms of the error in the next layer:

 BP3: Rate of change of the cost wrt. to any bias:

 BP4: Rate of change of the cost wrt. to any weight:
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Backpropagation algorithm

 Input x: Set the corresponding activation for the input layer

 Feedforward:  For each

compute

 Output error : Compute the output error

 Backpropagate the error:

For each

compute

 Output the gradient:
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Backpropagation and SGD

For a number of epochs

Until all training images are used

Select a mini-batch of training samples

For each training sample in the mini-batch

Input: set the corresponding activation

Feedforward: for each

compute and

Output error: compute

Backpropagation: for each

compute

Gradient descend: for each and update: 
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Example code: Backpropagation
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Local computation

28

values

gradient
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Activation and loss functions

Activation function Loss function

Linear Quadratic

Sigmoid Binary cross-entropy

Softmax Categorical Cross-entropy

Other Custom
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Activation functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU max(0.1x, x)

ELU

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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 Huge number of parameters 
-> danger of overfitting

 Use validation set to determine 
overfitting and early stopping

 Hold out method

Overfitting

1,000 MNIST training images 50,000 MNIST training images

overfitting

overfitting

early
stopping
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Regularization

 How to avoid overfitting:

 Increase the number of training images 

 Decrease the number of parameters 

 Regularization 

 Regularization:

 L2 regularization

 L1 regularization

 Dropout

 Data augmentation
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Regularisation

 How to avoid overfitting:

 Increase the number of training images 

 Decrease the number of parameters 

 Regularization 

 Data Augmentation

 L1 regularisation

 L2 regularisation

 Dropout

 Batch Normalization

 DropConnect

 Fractional Max Pooling

 Stochastic Depth

 Cutout / Random Crop

 Mixup

[Wan et al. 2013]

[Huang et al. 2016]

[Graham, 2014]
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Data augmentation

 Use more data!  Synthetically generate new data

 Apply different kinds of transformations: 
translations, rotations, elastic distortions, 
appearance modifications (intensity, blur)

 Operations should reflect real-world 
variation
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Parameter updates

 Different schemes for updating gradient

 Gradient descend

 Momentum update

 Nesterov momentum

 AdaGrad update

 RMSProp update

 Adam update

 Learning rate decay

Image credits: Alec Radford
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Setting up the network

 Set up the network

 Coarse-fine cross-validation in stages

 Only a few epochs to get a rough idea 

 Even on a smaller problem
to speed up the process

 Longer running time, finer search,…

 Cross-validation strategy

 Check various parameter settings

 Always sample parameters

 Check the results, adjust the range

 Hyperparameters to play with:

 network architecture

 learning rate, its decay schedule, update type

 regularization (L2/Dropout strength)…

 Run multiple validations simultaneously

 Actively observe the learning progress

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Convolutional neural networks

 From feedforward fully-connected neural networks

 To convolutional neural networks
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Convolution

 Convolution operation:

 Discrete convolution:

 Two-dimensional convolution:

 Convolution is commutative:

 Cross-correlation: flipped kernel

example
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Convolutional neural networks

 Data in vectors, matrices, tensors

 Neigbourhood, spatial arrangement

 2D: Images,time-fequency representations

 1D: sequential signals, text, audio, speech, time series,…

 3D: volumetric images, video, 3D grids
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Convolution layer

*
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Convolution layer

4×

3 
4 8 

8×

3 4
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σ

*
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*
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Sparse connectivity

 Local connectivity – neurons are only locally connected (receptive field)

 Reduces memory requirements

 Improves statistical efficiency

 Requires fewer operations

from below from above

The receptive field of the 
units in the deeper layers 
is large
=> Indirect connections!
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Parameter sharing

 Neurons share weights!

 Tied weights

 Every element of the kernel is used 
at every position of the input

 All the neurons at the same level detect
the same feature (everywhere in the input)

 Greatly reduces the number of parameters!

 Equivariance to translation

 Shift, convolution = convolution, shift

 Object moves => representation moves

 Fully connected network with an infinitively strong prior over its weights

 Tied weights

 Weights are zero outside the kernel region

=> learns only local interactions and is equivariant to translations
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Convolutional neural network

[From recent Yann 

LeCun slides]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Convolutional neural network

example 5x5 filters

(32 total)
one filter => 

one activation map

input

image:

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Pooling layer

 makes the representations smaller and more manageable 

 operates over each activation map independently

 downsampling

Example: Max pooling

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Pooling

 Max pooling introduces translation 
invariance

 Pooling with downsampling
 Reduces the representation size

 Reduces computational cost

 Increases statistical efficiency
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CNN layers

 Layers used to build ConvNets:

 INPUT: 
raw pixel values

 CONV: 
convolutional layer

 (BN: batch nornalisation)

 (ReLU:)
introducing nonlinearity 

 POOL: 
downsampling

 FC: 
for computing class scores

 SoftMax
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CNN architecture

 Stack the layers in an appropriate order

Hu et. al. 

Babenko et. al. 
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CNN architecture

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Typical solution
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Network architecture

 Training the model

 Inference
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Example implementation in TensorFlow

Segmentation network

Classification network
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Case study – LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2

i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Case study - AlexNet

http://fromdata.org/2015/10/01/imagenet-cnn-architecture-image/

INPUT CONV1
POOL1

NORM1

CONV2
POOL2

NORM2

CONV3 CONV4 CONV5
POOL3

FC6 FC7 FC8

[Krizhevsky et al. 2012]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Case studay - VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
-> 7.3% top 5 error

best model

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Case study - GoogLeNet

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Case study - ResNet

spatial dim. 
only 56x56!

- Batch Normalization after every 
CONV layer

- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9) 
- Learning rate: 0.1, divided by 10 

when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

ILSVRC 2015 winner 
(3.6% top 5 error)
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DenseNet

 Densely Connected
Convolutional Networks

 Every layer connected to 
every other layer in a 
feed-forward fashion

 Dense connectivity

 Model compactness

 Strong gradient flow

 Implicit deep supervision

 Feature reuse

Huang et al. 2017

https://arxiv.org/abs/1608.06993
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MobileNets

 Efficient Convolutional Neural Networks for Mobile Applications

 Efficient models for mobile and embedded vision applications

 Depthwise separable convolution:

 Depthwise convolution

 Pointwise (1x1) convolution

 MobileNetV2: Inverted Residuals and Linear Bottlenecks

 MobileNetV3: NAS+ NetAdapt

Howard et al. 2017

Sandler et al. 2018

Howard et al. 2019

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1905.02244
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 Neural Architecure Search

 Search the space of architetures to find the optimal one given available resources

 500 GPUs across 4 days resulting in 2,000 GPU-hours on NVidia P100

 Other architecture search methods:
 AmoebaNet, Real et al., 2018

 MoreMNAS, Chu et. al, 2019, …

NASNet

Best convolutional cells (NASNet-A) for CIFAR-10

Available operations to select from:

[Zoph et al. 2018]
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EfficientNet

 Scaling the network in

[Tan and Le, 2019]



Development of intelligent systems, Object recognition with CNNs 63

Architectures overview

 Date of publication, main type

[Hoeser and Kuenzer, 2020]
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Analysis of DNN models

[Canziani et al., 2017]
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Pretrained models
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Transformers

[Khan et.al, 2021][Vaswani et.al, NIPS 2017]
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ViT - Vision Transformer

 AN IMAGE IS WORTH 16X16 WORDS: 
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

[Dosovitskiy et.al, 
Google, 2020,
ICLR 2021]
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Transfer learning

 If you don‘t have enough data use pretrained models!

1. Train on 

Imagenet
3. Medium dataset:

finetuning

more data = retrain more 

of the network (or all of it)

2. Small dataset:

feature extractor

Freeze these

Train this

Freeze these

Train this

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

tip: use only ~1/10th of 

the original learning rate 

in finetuning top layer, 

and ~1/100th on 

intermediate layers
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Two stage object detection and recognition

Face 
detection

Face 
recognition

„Scarlet“

very fast
efficient

could be slower
computationally more complex

HOG+SVM
AdaBoost
SSD

CNN
PCA/LDA
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Object detection and recognition

 Two stage approach:

 Detection of region proposals

 Recognition of the individual region proposals
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Object detection in RInS

 Information in circles

 -> detecting circles as region
proposals (Region Of Interests)

 Rectify ROIs

 Recognize the content of ROIs

 Rectification using homography

ROIs

2  6
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Homography

 Two views on the same (planar) object:

 Homography: plane to plane mapping

Slide credit: Matej Kristan
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Computing homography

 Four corresponding points:

 The elements of the matrix 𝑯 can be computed using Direct 

Linear Transform (DLT)!

11 12 13

21 22 23

31 32 331

x' H H H x

w y' H H H y

H H H 1

    
    

     
        

𝒙′ 𝒙

𝑤𝒙′ = 𝑯𝒙

Slide credit: Matej Kristan
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Application of homography

Slide credit: Antonio Criminisi

Homography
mapping

between part 
of the image 
and a sqare

Flagellation of Christ (Piero della Francesca)
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Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015  

Figure copyright 2015, Ross Girshick; reproduced with permission

Fei-Fei Li, Ranjay Krishna, Danfei Xu 75

Two-stage detectors

First stage: Run once per image

- Backbone network

- Region proposal network

Second stage: Run once per region

- Crop features: RoI pool / align

- Predict object class

- Prediction bbox offset

Slide credit: Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Divide image into grid  

7 x 7

Image a set of base boxes  

centered at each grid cell  
Here B = 3

Input image  

3 x H x W

Within each grid cell:
- Regress from each of the B  

base boxes to a final box  

with 5 numbers:

(dx, dy, dh, dw, confidence)
- Predict scores for each of C  

classes (including  

background as a class)

- Looks a lot like RPN, but  

category-specific!

Output:

7 x 7 x (5 * B + C)Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016  

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Single-Stage Object Detectors

Slide credit: Fei-Fei Li, Ranjay Krishna, Danfei Xu
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SSD: Single Shot MultiBox Detector

 Multi-scale feature maps for 
detection

 Convolutional predictors for 
detection

 Default boxes and aspect ratios

 Real time operation

[Liu et al., ECCV 2016]
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Detection Instance segmentation

Wide usabilty of ConvNets

[Redmon, Yolo, 2018]

[Liu, SSD, 2015]

[He, 

Mask R-CNN,

2012]
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Wide usabilty of ConvNets

[Chen, DeepLab

2017]

Semantic segmentation

[Farabet et al., 2012]
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Wide usabilty of ConvNets

 Image segmentation
[Jonson, 2016]

[Marmanis, 2016]

[Caicedo, 2018]
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Wide usabilty of ConvNets

 Action
recognition

[Simonyan et al. 2014]

[Luvizon et al. 2016]

[Donahue

et al. 

2016]
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Wide usabilty of ConvNets

 Biometry [Taigman et al. 2014]

[Najibi,

SSH,

2017]

[Emeršič,

2017]
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Wide usabilty of ConvNets

 Person/pose detection

[Cao 2017]

[Güler, DensePose, 2018]
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Wide usabilty of ConvNets

 Reinforcement learning for game playing

[Google DeepMind]
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Wide usabilty of ConvNets

[Vinyals et al., 2015]

Image 

Captioning

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Surface-defect detection

Segmantation-based data-driven
surface-defect detection
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Surface-defect detection
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Surface-defect detection
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Polyp counting
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Polyp counting
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Ship detection
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Face detection
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Mask-wearing detection
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Obstacle detection on autonomous boat

USV equipped with 
different sensors:

• stereo camera
• IMU
• GPS
• compass

Segmentation based on
RGB + IMU
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Semantic edge detection
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Object (traffic sign) detection
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Object (traffic sign) detection



Development of intelligent systems, Object recognition with CNNs 98

Image anonymisation

 Detection and 
anonimysation of car 
plates and faces
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Visual tracking
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Plank classification
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Place recognition
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Semantic segmentation
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Image enhancement

 Deblurring, super-resolution
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Deep reinforcement learning

 Automatic generation of 
learning examples

 Goal-driven map-less 
mobile robot navigation
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Innate and learned

 Goal-driven map-less mobile robot navigation 

 Constraining the problem using a priory knowledge

Engineering

approach

Engineering  approach + 
deep learning

Pure learning
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Problem solving

 Different problem complexities

Simple, 
well defined problems

Complex, vaguely 
defined problems

C
o
m

p
le

x
it
y

Rule-based
decision making

Data-driven 
decision making

Programming Machine learning
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Problem solving

Routine solutions Rule-based solutions Data-driven solutions General intelligence

C
o

m
p

le
xi

ty
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Adequate tools

Routine solutions Rule-based solutions Data-driven solutions General intelligence
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Development, deployement and maintainance

• Data, data, data!
• Enough data, representative data

• Correctly annotated data

• Appropriate deep architecture design
• Proper backbone, architecture, loss function, …

• Learning, parameter optimisation

• Efficient implementation
• Execution speed

• Integration

• Maintenance
• Incremental improvement of the learned model

• Reflecting to changes in the environment
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Development of deep learning solutions
%

 o
f 

so
lu

ti
o

n

time

80%

20%

80%
20%

80:20?

60:40?

90:10?

99:1?
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Knowledge and experience count
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Software

 Neural networks in Python

 Convolutional neural networks using PyTorch or TensorFlow

 or other deep learning frameworks

 Optionally use Google Colab
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