Exercise 6: Kinect and PCL

Development of Intelligent Systems

2021

In the scope of this assignment you will learn how to process and use the acquired
depth information from the Kinect sensor using the Point Cloud Library.

It is expected that the following assignments are solved in C++, as this is the easiest
and fastest way to use the PCL library and process large point clouds. As ROS nodes
are meant for long-term continuous operation, be careful to release the memory that you
allocate manually or use automatic techniques (e.g. smart pointers). The nodes in the
given package mostly consist of implementations of the tutorials on the PCL page in

ROS.

1 Using PCL to manipulate a point cloud

The PCL library can perform many operations on point clouds, but to do it, the clouds
have to be first retrieved by your node. Note that recent versions of ROS have changed the
ways some frequently used messages are handled. For PCL you can now directly operate
using PCL structures which are automatically converted to messages. So instead of using
classes from the sensor_msgs package you can write your most simple node that simply
forwards point clouds like this:

#include <ros/ros.h>

#include <pcl_ conversions/pcl_ conversions.h>
#include <pcl/point_ cloud.h>

#include <pcl/point types.h>

ros :: Publisher pub;

void callback(const pcl::PCLPointCloud2ConstPtr& cloud_blob) {
pub.publish(cloud_blob);

}
int main(int argc, charxx argv) {
ros::init (argc, argv, "forwarder");
ros :: NodeHandle nh;
ros:: Subscriber sub = nh.subscribe ("input", 1, callback);

pub = nh.advertise<pcl::PCLPointCloud2>("output", 1);
ros::spin ();

}

The full source code for this example is available in the package for this exercise under
the name forwarder.

Next, we will look at a node that takes a full point cloud from the Kinect and makes it
more sparse. Sparser point clouds have fewer points and are therefore easier to process (so
this operation is suitable as a pre-processing step in computationally intensive operations,
but it is not always practical to perform it in a separate node as in this example). A full

http://pointclouds.org/

example is available in the package for this exercise under the name voxelgrid and only
differs from the previous example in the callback function and an extra include.

#include <pcl/filters/voxel grid.h>

void callback(const pcl::PCLPointCloud2ConstPtr& cloud_blob) {

pcl:: PCLPointCloud2 cloud_filtered;

pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
sor.setInputCloud (cloud_blob);
sor.setLeafSize (0.1, 0.1, 0.1);
sor.filter (cloud_filtered);

pub.publish(cloud_filtered);

2 Determining the ground plane

One of the most useful components of the PCL library are the algorithms for fitting 3D
geometric primitives to a point cloud. For an in-door mobile robot an almost ever-present
feature of the environment is the ground plane. By detecting the plane we can remove
it and process the remaining point cloud in search for objects that stick out from the

ground.

The example available in the package under the name find_plane is based on the
previous examples and contains a lot more code that demonstrates the main components

of the PCL library (e.g. how each algorithm has input and output point clouds).

Note that this example does not always find the ground-plane, but it finds a plane

this is a dominant plane in the given point cloud, in most cases this will be floor or wall.

#include
#include
#include
#include
#include

<pcl/ModelCoefficients.h>

<pcl/sample consensus/method types.h>
<pcl/sample consensus/model types.h>
<pcl/segmentation/sac_segmentation.h>
<pcl/filters /extract indices.h>

pcl:: PCLPointCloud2::Ptr cloud_filtered_blob (new pcl::PCLPointCloud2);

pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud_filtered (mew pcl::PointCloud<pcl::<>
PointXYZRGB >);

pcl::PointCloud<pcl::PointXYZRGB >::Ptr cloud_outliers (mew pcl::PointCloud<pcl::<>
PointXYZRGB >);

Create the filtering object: downsample the dataset using a leaf size of lcm
pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
sor.setInputCloud (cloud_blob);
sor.setLeafSize (0.01f, 0.01f, 0.01f);
sor.filter (#cloud_filtered_blob);

Convert to the templated PointCloud
pcl:: fromPCLPointCloud2 (*cloud_filtered_blob, *cloud_filtered);

pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());

Create the segmentation object
pcl::SACSegmentation<pcl::PointXYZRGB> seg;

Optional
seg.setOptimizeCoefficients (true);

// Mandatory

seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (1000);
seg.setDistanceThreshold (0.01);
seg.setInputCloud (cloud_filtered);

seg.segment (xinliers, *coefficients);
if (inliers—>indices.size () = 0) return;
pcl::ExtractIndices<pcl::PointXYZRGB> extract;
extract.setInputCloud(cloud_filtered);
extract.setIndices(inliers);
extract.setNegative(false);
extract.filter(xcloud_outliers);

Publish the found plane

pcl:: PCLPointCloud2 outcloud;
pcl:: toPCLPointCloud2 (xcloud_outliers, outcloud);

pub.publish (outcloud);

Publish new point cloud on a new topic and visualize it in Rviz.

@ e | Mave Camera | [JSelet o Fonus Camera
2 Displays 0
Background . M a; a8; 8
™« Global statu.
 Fined Frame 0K
» ® Gid =
» P2 Map
* =L Lasersean
* iy RobotModel
* o~ Fath
* % polstClowdz B
» ¥ status: Ok

fpcl_chjects out
[

Tapk
sensar_mags/FointCloud2 opic o subscribe

add
(@ Time
wiall Elapsed: 253,61

RO Time: | 136275787560 | ROS Blapsed: | 253.71 wiall Time: | 136

B OEENNC S wE N

Reset | Lefe-Click: Rutate. Middla-Click: Move %Y. Right-Click/Mor

3 Detecting a cylinder

As part of the final competition in this course you will need to detect the cylinders in the
polygon. One way to do this is using the PCL library. In the package for this exercise you
have one example how to do this in the cylinder_segmentation node. Explore the code.
Can you think of ideas to speed up or improve the detections?

4 Homework: 3D object detection

Either using the PCL library or in another way, create a node which detects cylinders
and 3D rings. The robot should drive around the polygon and publish a marker with the
location of each detected object.

	Using PCL to manipulate a point cloud
	Determining the ground plane
	Detecting a cylinder
	Homework: 3D object detection

