Exercise 5: Customizing navigation

Development of Intelligent Systems

2022

In this exercise we will look in further detail some of the previously discussed topics.
For some tasks for the mobile robot we need greater precision in the movement of the
robot. We can get this precision with customizing the parameters that move_base and
amcl use. For some tasks we have to resort to simple twist movement commands. For this
exercise you need the turtlebot_navigation package and there are no new materials.

1 Customizing move_base

The general parameters for move_base are set in the turtlebot_navigation /param
/move_base_params.yaml. Among other things, here you can set:

e The global and local planners which are used.

e Define recovery behaviours. When move_base fails to find a valid plan it will perform
recovery behaviours in the order they are specified.

Controller and planner patience. How long the robot will wait for a valid control or
a plan before starting recovery behaviours.

Enable/disable recovery behaviours.

Enable/disable in place rotation for clearing obstacles.
e Others.

As you are aware, the robot does not always know its precise location. As it moves,
if the marking obstacles is enabled, it will sometimes wrongly add obstacles to the map.
This can also happen when starting the robot in the wrong location. Note that you can
use the service clear_costmaps from move_base to clear the costmaps if you believe
that they have been contaminated.

1.1 Local and global costmaps

As you probably know by now the navigation stack maintains two costmaps. This costmaps
are used to plan robot movements by the local and the global planners. When you start
move_base from the turtlebot_navigation package it loads the file turtlebo_naviga-
tion /param/costmap_common_params.yaml to set some parameters for both the local
and global costmaps. You can explore this file to see the parameters that you can set.
The actual package that move_base uses for maintaining the costmaps is the costmap 2d
package. Some common tparameters:


http://wiki.ros.org/costmap_2d

e marking (adding an obstacle in the map) and clearing (clearing an area of obstacles).
This can be really useful if you know that the map that you have will not change
and there will not be any new obstacles added.

e inflation layer parameters. These determine how close to the obstacles can trajec-
tories be planned.

e robot radius determines the size of the "forbidden" area around the obstacles. It
should be the size of the robot with some safety margins.

e inflation layer -> inflation radius determines the size of the area near the obstacles
where costs are incurred for moving inside it.

e inflation layer -> cost_scaling factor determines how fast the costs drop, starting
from "forbidden" part, to the edge of the inflation layer.

Some additional parameters for the local and global costmaps are set in the turtle-
bot_navigation /param /local_costmap_params.yaml and turtlebot_navigation
/param /global_costmap_params.yaml parameter files.

1.2 Local planner

A local planner is what connects the robot to the global path plan. The local planner that
move_base uses by default is the Dynamic Window Approach (DWA) planner which is
implemented in the base local planner package. Its parameters are set in the turtle-
bot_navigation /param /dwa_local_planner_params.yaml. Some useful parameters
that can be set here are:

e Minimum and maximum translational and rotational speeds.
e Minimum and maximum translational and rotational accelerations.

e Goal tolerance: how close should the robot be to the goal position and orientation
so that the goal is considered reached.

e Various trajectory parameters: weighting how much the robot should follow the
global path, how much it should attempt to reach its goal, how much should the
controller avoid obstacles, and others.

1.3 Global planner

The global planner which move_base uses by default is the navfn planner. Its parameters
can be set in the turtlebot_navigation /param /navfn_global_planner_params.yaml.
Optionally you can choose to use the funglobal planner which is a more general imple-
mentation and can be set to behave exactly like navfn. The global_planner uses Dijktra
by default and can also be set to use A*. The parameters for the global_planner can be
set in funrins navigation /param /global planner params.yaml

2


http://wiki.ros.org/base_local_planner
http://wiki.ros.org/navfn
http://wiki.ros.org/global_planner

2 Customizing amcl

The move_base node depents on the amcl package to provide the location of the robot.
The parameters for the amcl node are set in the turtlebot_navigation/launch/in-
cludes/kinect_amcl.launch.xml. Some parameters that you could change if you are
not satisfied with the localization:

e The numbers of particles used in the particle filter.

Translation and rotational movements needed for performing filter updates.

Different laser parameter: the maximum and minimum range distances to use when
localizing, the number of range reading to use and others.

The noise in odometry. With the odom_alpha parameters you can increase or de-
crease the noise in odometry which is used in the calculation of the location.

A lot of other parameters.

Please not that there is a bug in amcl which affects the correctness of the location.
To fix this bug the odom_model_type should be set to "diff-corrected", however, if
you do this the you will probably need to adjust the odometry noise parameters (lower
odom_alpha values). More information is available here and here

3 Homework

No homework!


http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
https://answers.ros.org/question/227811/tuning-amcls-diff-corrected-and-omni-corrected-odom-models/

	Customizing 2=0.4em3=0.2em4=0.1em7=0.1em=`move_base
	Local and global costmaps
	Local planner
	Global planner

	Customizing 2=0.4em3=0.2em4=0.1em7=0.1em=`amcl
	Homework

