Development of intelligent systems (RInS)

Task 3: FooDeRo

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

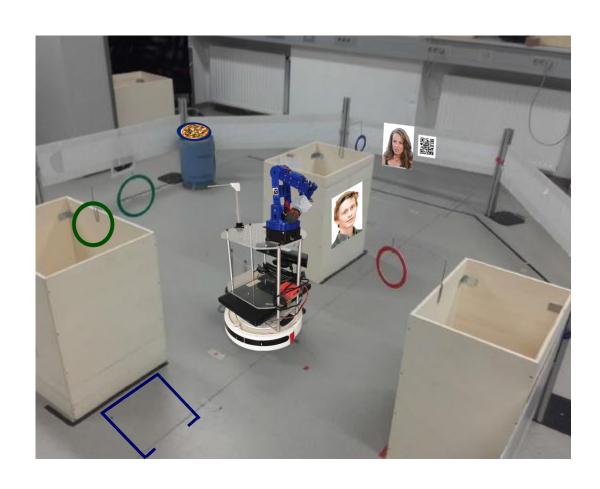
Academic year: 2021/22

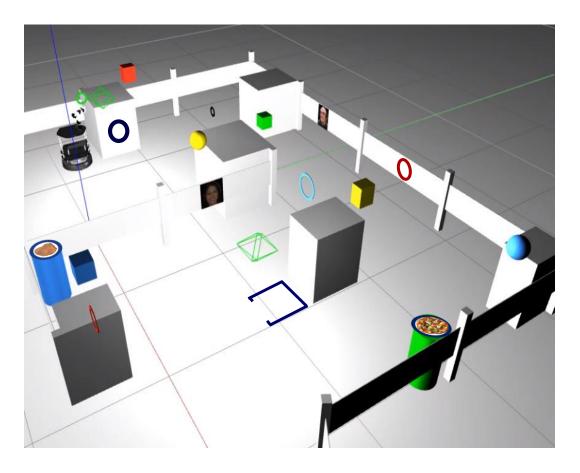
Food
Delivery
Robot

Setup:

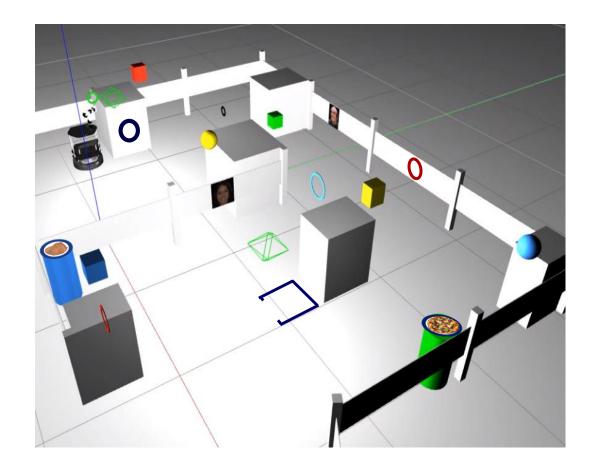
- "Small city" scene (fenced area).
- Several persons (faces) in the scene.
- Three "restaurants" (cylinders) of different colours.
- Four parking slots marked with rings of different sizes and colours.

Goal:


Deliver the (virtual) food to the persons.

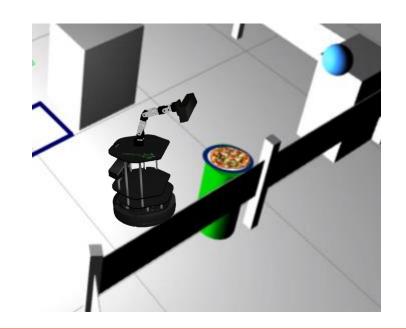

Task:

- Find all persons in the city.
- Find all restaurants and look on top of them which food do they serve.
- Park in the starting parking slot (marked with the green ring).
- Accept orders from the link given in the QR code.
- Collect the food and (virtually) bring it to the corresponding persons.
- Talk to them briefly.



Simulated scene

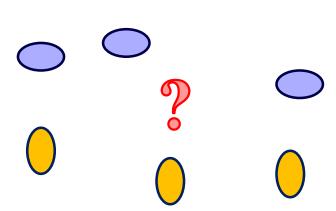
- There will be faces and other objects on the walls, including printed rings
- There might be different objects in the scene at the same height as 3D rings
- Rings will not be positioned exactly above the parking place


More precisely

- Find and recognise all persons
 - Detect a person, recognise his identity and remember his position
 - The number of persons present is not known in advance
 - (Preferably) implement the autonomous exploration of space
- Find all restaurants (cylinders)
 - Approach them and look on top of them
- Recognise food
 - Detect the plate (a circle) and recognise the food using image classification
 - Or use object detection directly
- Go to the starting parking slot
 - Detect the green ring
 - Park in the corresponding parking slot
- Accept orders
 - Read the QR code
 - Read the information from the link encoded in the QR code
- Pick up and deliver the food
 - Approach the restaurants (cylinders) serving the food specified at the link
 - Approach the persons specified at the link
 - Minimize the distance travelled needed to fulfil this task
- Have a dialogue with the person
 - Virtually "deliver the food" and have a simple dialogue with the person

- Find all persons and remember their positions
 - Done for Task 1
 - The number of persons present is not known in advance
- Recognise persons
 - Face recognition
 - A limited number of faces and their identity given in advance
 - Learning classifier or KNN on embeddings
 - Utilise/integrate/develop/train any face/object recognition algorithm
- Find all restaurants (cylinders)
 - Done for Task 2
 - There will be three cylinders in the scene
- Approach them and look on top of them
 - Approach close enough
 - Use the second camera to look on top of the cylinders

- Recognise food
 - Detect the plate (a circle) and recognise the food using image classification
 - Or use object detection directly
 - Utilise/integrate/develop/train any object detection or recognition algorithm
 - The food will always be positioned on the circle plate
 - Several types of the food will be available
 - Examples of the food images will be given in advance
- Go to the starting parking slot
 - Detect the green ring
 - Park in the corresponding parking slot
 - Done for Task 2
 - The parking slot will not be positioned exactly under the ring



- Accept orders
 - Detect the QR code on the wall in the front of the parking slot
 - Read the information from the link encoded in the QR code
 - Simple format: name food

- Pick up and deliver the food
 - Approach the restaurants (cylinders) serving the food specified at the link
 - Indicate that you are picking up the food ("I will take one pizza!")
 - Approach the person specified at the link
 - Approach close enough and look into him
 - Minimize the distance travelled needed to fulfil this task
 - Plan the path accordingly
 - Every person will ask for one type of food
 - Maximum of three persons will place an order

- Have a simple dialogue with the person
 - Virtually "deliver the food"
 - R: "Here is your pizza."
 - H: "Thank you."
 - Receive the payment from the person
 - R: "Will you pay by cash or credit card?"
 - Wave with the robot arm accordingly:
 - H: "With cash." wave to the left
 - H: "With credit card." wave to the right
 - R: "How satisfied were you with the service on the scale from 1 to 5?"
 - H: "5".
 - R: "Thank you and good by."
- Simple speech synthesis
- Simple speech recognition, limited vocabulary
 - 1. Automatic speech recognition
 - 2. Text input (also as a backup)

Shortcuts

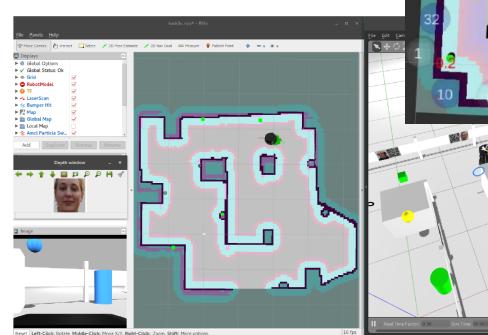
- You may not implement all the functionalities (for a lower grade)
- You can find out some information using the input to a text dialogue box:
 - Which person ordered which food
 - What is the colour of the cylinder that serves a specific food
 - Which payment method will a specific person use
 - How satisfied with the service a person was
- You can therefore skip the following tasks
 - Parking
 - QR code reading
 - Food detection and recognition
 - Speech recognition
- You can also use predefined goals instead of autonomous space exploration

Demonstration

- Demonstrate what is going on in the robot
- Visualize in RViz:
 - Locations of detected cylinders, rings, faces
 - Recognised colours, food
 - Navigation goals, path plans
 - Current sensor readings (images, Lidar)
- Show dialogue in a separate window
- Show the reasoning process
- Show also the current environment in Gazebo

R: Here is your pizza.

P: Thank you.


R: Will you pay with cash or credit card?

H: With cash.

R: How would you grade the service?

H: With 5!

R: 5! Thank you!

Tasks

- System setup
 - Running ROS
 - Tele-operating TurtleBot
- Autonomous navigation
 - Autonomous control of the mobile platform
 - Acquiring images and 3D information
 - Simultaneous mapping and localization (SLAM)
 - Path planning, obstacle avoidance, approaching
 - Advanced fine manoeuvring and parking
 - Intelligent navigation and exploration of space
- Advanced perception and cognitive capabilities
 - Detection of faces, circles, 3D rings, 3D cylinders
 - Recognition of faces, food, digits, colour
 - Basic manipulation and visual servoing
 - Speech synthesis, speech recognition, dialogue processing, reading QR codes
 - Belief maintenance, reasoning, planning

Task 1

Task 2

Task 3

Integrate everything into a robust coherent system

Evaluation protocol

- The evaluation course will be set up in advance
 - The main setup will not change
- The teams will be allowed to build the map in advance
- The faces, cylinders, food, parking places and the rings will be positioned on the day of the evaluation
 - Faces, and the size and colours of the cylinders and rings, as well as types of food are known in advance
- The robot has to operate completely autonomously
 - only the initial positioning is allowed
 - (and the optional answering by typing the text)
- The robot can start at any position
- Every team will have allocated 15-20 minutes to show the performance of the robot

Requirements

- System setup
 - Running ROS
 - Tele-operating TurtleBot
- Autonomous navigation
 - Autonomous control of the mobile platform
 - Acquiring images and 3D information
 - Simultaneous mapping and localization (SLAM)
 - Path planning, obstacle avoidance, approaching
 - Advanced fine manoeuvring and parking
 - Intelligent navigation and exploration of space
- Advanced perception and cognitive capabilities
 - Detection of faces, circles, 3D rings, 3D cylinders
 - Recognition of faces, food, digits, colour
 - Basic manipulation and visual servoing
 - Speech synthesis, speech recognition, dialogue processing, reading QR codes
 - Belief maintenance, reasoning, planning

For 6
For + max. 2
For + max. 2

Grading

• Must do:

- Face detection (2 pts)
- Ring detection (2 pts)
- Cylinder detection (2 pts)
- Colour recognition (1 pt)
- Face recognition (1pt)
- Approaching cylinders (1 pt)
- Approaching faces (1 pt)

Should do:

- Taking images of food (1 pt)
- Food recognition (2 pt)
- Parking (2 pts)
- QR-code detection (1 pt)
- Taking orders from the link (1 pt)
- Optimal path planning (1 pt)
- Auton. space exploration (2 pts)
- Dialogue with ASR (2 pts)
- Weaving with manipulator (1pt)

Performance evaluation

- Navigation (1 pt)
- Reasoning (1 pt)
- Visualisation (1 pt)
- Robustness (1 pt)
- Relative speed (1 pt)
- Overall impression (2 pts)

Points:

- Must do: 10
- Should do: 13
- Performance: 7
- Total: 30

Task 3 goals

- The main goals of the third task and evaluation are:
 - to navigate the robot around
 - to detect faces in 2D
 - to detect objects (rings and cylinders) in 3D
 - to learn and recognize colours
 - to learn and recognize faces
 - to learn and recognize food images
 - to do simple reasoning
 - to do simple dialogue processing
 - to plan adequate actions
 - to fine manoeuvre the robot
 - to do simple mobile manipulation
 - to integrate all functionalities into a coherent system