Exercise 3: The Turtlebot

Development of Intelligent Systems

2022

In this exercise you will familiarize yourself with the simulation of the Turtlebot robot
platform that you will be using throughout this course. The robot is composed of a heavily
modified iRoomba vacuum cleaner, a depth sensor (Microsoft Kinect), a laptop, and some
construction material.

Unfortunately, the Turtlebot is not officialy supported in ROS Noetic, and in order to
use it we have to manually install and manually build some packages.

1 Installing the Turtlebot packages

First, we need to install some Ubuntu packages that are either required by the packages
used in the Turtlebot stack or we will use directly. You can install them with the following
mega-command:

sudo apt install ros—noetic—ecl—exceptions ros-—noetic—ecl—-threads ros—noetic—ecl—geometry
ros—noetic—kobuki—dock—drive ros-—noetic—kobuki—driver ros—mnoetic—ecl—streams ros—

noetic—position—controllers ros—noetic—effort—controllers ros—noetic—joint—trajectory
—controller ros—noetic—costmap—2d ros—noetic—amcl ros—noetic—base—local—planner ros—
noetic—carrot—planner ros—noetic—clear—costmap—recovery ros—noetic—dwa—local—planner
ros—noetic—fake—localization ros—noetic—global—planner ros—noetic—map—server ros—
noetic-move—base ros-—noetic-move—-base-msgs ros-—noetic-move-slow—and-—clear ros—noetic—
nav—core ros—noetic—mavfn ros—mnoetic—rotate—recovery ros—noetic—voxel—grid ros—noetic
—slam—gmapping

For easier copying this command is available as a bash file (ROS packs.sh) on
ucilnica. After we have all these packages installed download the Turtlebot packs.zip
file from ucilnica into a warkspace and build them. These are ROS packages that are
officially not available in ROS Noetic and we have to build them manually. After this,
you can continue with the exercise.

2 Starting the simulation

ROS is integrated with the Gazebo simulator. Many times it is much more convenient to
run a simulation of the Turtlebot robot instead of working on the real robot. For example,
imagine there is a deadly virus, and you can not access the real robot. In Gazebo we need
a model of the robot that we want to simulate, and a model of the world in which we
simulate the robot. A model of the Turtlebot is already provided in the newly built
Turtlebot packages. A simple turtlebot world representing a polygon in the classroom
has been added inside the worlds folder in the exercise. It consists of a 3d model .dae
file, as well as a folder containing graphics to be inluded in the model and a .world file



http://gazebosim.org/

which Gazebo actually loads. You can create your own 3d models using any 3d modeling
software (the provided file was made in Google SketchUp). There are a bit more detailed
tutorials on the following links:

e (Gazebo tutorials

e Importing a 3D model in Gazebo

To start a complete simulation of the Turtlebot robot in Gazebo, run the following
command, after you have compiled the package for this exercise:

roslaunch exercise3 rins_world.launch

If this is the first time starting Gazebo it might take some time while Gazebo downloads
the files that it needs from the internet. After this you should get a window with a 3D
simulation of our robot in an environment containing a polygon.

Now we can use a lot of the existing functionalities just like we were using a real robot.
We can use Rviz visualizer. In the package turtlebot_rviz_launchers we have already
prepared Rviz visualizations of the robot. To see one, run the following command in a
new terminal:

roslaunch turtlebot_rviz_launchers view_robot.launch

Try turning off and on different displays, and check what visualization options do the
different displays offer. You should familiarize yourself with Rviz.

Let’s now finally move the robot. You can find scripts for remote control of the Turtle-
bot using different devices in the turtlebot_teleop package. To control the robot with
the keyboard run the following command:

roslaunch turtlebot_teleop keyboard_teleop.launch

You should now be able the move the robot using the keys as shown in the terminal.
Note that you can use the same script for moving the real robot, by simply redirecting
the the commands to the correct topic. In fact, all that the script does is reading the
keyboard presses and sending appropriate Twist messages.

3 Autonomous navigation

3.1 Map-building

Of course, our ultimate goal is to have the robot navigate autonomously. The first step
towards this capability is to build a map of the working environment of the robot. For
building a map we will use the gmapping package which builds a map based on the laser-
scan data (which we get from the Kinect) and the odometry data for the robot movement.
Now close all the running programs except the Turtlebot simulation in Gazebo. Open a
new terminal and run:

roslaunch exercise3 gmapping_simulation.launch



http://gazebosim.org/tutorials
http://gazebosim.org/tutorials?tut=import_mesh
http://wiki.ros.org/rviz
http://wiki.ros.org/gmapping

This will start the necessary nodes for building a map. The gmapping_simulation.launch
file is built from the gmapping_demo.launch script from the turtlebot_navigation
package which we use for the real robot. In gmapping_simulation.launch we do not
start the nodes for the Kinect since we do not use a real Kinect sensor.

In order to view the map that we are building we can use Rviz and the prepared
visualization in turtlebot_rviz_launchers:

roslaunch turtlebot_rviz_launchers view_navigation.launch

To build the map we should move the robot around the polygon, moving in straight
lines and making 360° degree in place rotations. To move the robot use the same script
as in the previous section:

roslaunch turtlebot_teleop keyboard.launch

Now move about the polygon until you get a relatively good map. To build a good
map:

e Move the robot slowly. When the robot is moving quickly it loses the connection
between individual scans and is unable to merge them together. Because of this the
map is not expanded.

e Stop frequently and rotate around the axis to capture the entire neighborhood.

e Observe the current state that is shown in Rviz. The map is not refreshed in real
time but rather in steps therefore make sure that the map has indeed been updated
before moving on.

Once you are satisfied with the map you can save it by executing:

rosrun map_server map_saver —f <the_name_of_your_map>

Do not add any extensions to <the_name_of_your_map>. The map_saver will create
two files for the map. The first one is a .yaml file containing the name of the image for the
map, the origin of the image, the metric length of a pixel in the map and the thresholds
for occupied and free space. The other file is a .pgm image file which you can open in any
image editor. This is useful for fixing minor imperfections in the map.

If you have built a good enough map close all the running programs.

3.2 Nayvigation

If you have built a map of the polygon we are finally ready to let the robot drive itself.
In one terminal start the simulation:

roslaunch exercise3 rins_world.launch

Next, we need to start the localization node from the Adaptive Monte Carlo Local-
ization package, as well the navigation node that from the Move Base package that will
actually drive the robot. You also need to specify the map file that you want to use-which
would be the . yaml file generated in the previous section. You can do this in different ways,

3


http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/move_base

right now, open the amcl_simulation.launch file and change the argument map_file
to the complete path of your map. Now we can start the navigation by running:

roslaunch exercise3 amcl_simulation.launch

The amcl_simulation.launch file is built from the amcl_demo.launch script from
the turtlebot_navigation package which we use for the real robot. Finally, to see what
is going on and issue commands to the robot, start the visualization:

roslaunch turtlebot_rviz_launchers view_navigation.launch

In Rviz we can new see the robot as well as other information. In the beginning the
position of the robot might be wrong. The initial position is the same position as when it
began making the map. To initialize the robot in the right position you can use the “2D
Pose Estimate” button in Rviz. Finally, if the position of the robot is relatively correct,
use the “2D Nav Goal” button in Rviz to send the robot to a new position. Ta-da! We
can use the same method for moving the real robot.

4 Sending movement goals from a node

In the exercise3 package you have a C++ example of sending a goal from a node. For this
purpose we are using a SimpleActionClient to communicate with the SimpleActionServer
that is available in move_base. This node is based on the actionlib server/client, which
can be viewed as an additional type of ROS Service, for requests that have a longer exe-
cution time. It gives us the capability for monitoring the execution status of our requests,
canceling the request during execution and other options.

5 Homework

For the homework you need to have a pre-built map of the polygon. Create a node that:

e Has pre-determined (hardcoded) 5 goal locations on the map. You should determine
this locations while navigating the map.

e Using the interface to move_base, write a script that sends the robot at the first
goal location, waits until the goal is reached, then sends the robot to the second
goal location and so on, until all goal locations have been visited. While the robot
is moving you should print out the status of the goal.

e If move_base is not able to reach some goal, you should print some warning message
in the console and continue with the rest of the goals.

e *Try to think of ways to automatically determine the goals that the robot should
reach in order to explore the map and find objects in the map! This will be useful
for the Tasks. You do not need to include this in the homework.


http://wiki.ros.org/actionlib_tutorials/Tutorials/SimpleActionClient
http://wiki.ros.org/actionlib

	Installing the Turtlebot packages
	Starting the simulation
	Autonomous navigation
	Map-building
	Navigation

	Sending movement goals from a node
	Homework

