
Exercise 2: Introduction to ROS

Development of Intelligent Systems

2022

In this exercise you will get further familiarized with ROS. We will explore services,
writing nodes in Python, the usage of roslaunch and rosbag commands as well as some
additional ROS commands. Download the code for Exercise 2 and extract the files in the
src of your workspace. Build the package using the catkin_make command.

1 Services
Download (if you have not already) the materials for Exercise1. In the exercise you have
examples of creating a ROS service and a ROS client as well as defining a custom service
format. We define a custom service by specifying the structure of the request that the
service will accept and the response that it will return. To see an example see the exer-
cise1/srv/Reverse.srv file. When we define a custom service we need to instruct catkin
to build the necessary header files. This is done inside CMakeLists.txt similarly to how
we build message files. For actual examples of a service and a client node explore the files
exercise1/src/service_node.cpp and exercise1/src/client_node.cpp. The follow-
ing links are useful for a quick start with services:

• Simple service and client in C++

• Simple service and client in Python

2 Starting multiple nodes
In ROS we usually have multiple nodes running at the same time and it quickly becomes
impractical to use the roscore and rosrun commands for starting each node separately.
For these purposes we use the roslaunch tool. This tool starts multiple nodes, as they are
configured in a .launch file. Additionally, it starts the ROS Master if it is not running,
we can use it to set parameters on the Parameter Server and more. Run the following
command in the terminal:

roslaunch exercise1 greeting . launch

Which nodes were just started? Now explore the exerise1/launch/greeting.launch
file to see an example of how to write a a launch file and familiarize yourself with some
additional functionalities like setting values of the parameter server and remapping topic
names. You can find more detailed information on the usage of roslaunch on the following
links:

1

http://www.ros.org
http://wiki.ros.org/ROS/Tutorials/WritingServiceClient(c++)
http://wiki.ros.org/ROS/Tutorials/WritingServiceClient(python)
http://wiki.ros.org/roslaunch


• Command-line usage

• Launch files structure

3 Parameter Server
Sometimes we want to be able to store the values of certain parameters so that they
are available to every node in ROS. These values can be one of very different things:
calibration parameters, which camera is currently in use, some variables to describe the
current state of the system and so on. ROS makes this functionality availavle though the
Parameter Server. Inside the exerise2 package, in the pubvel node you have an example
of how to use the parameter server.

• Usage of the parameter server in C++

• Usage of the paramete server in Python

4 Python nodes
Navigate to the exercise2 package you installed at the beginning of this tutorial. Inside
this package you have an example of a Python node. Explore this node to see the usage
of the rospy module. Python nodes (as all Python programs) do not need to be built. So
you could just add a new program to your package without actually calling catkin_make!
Of course, if you are using custom messages or services you will have to first build the
package. See the following links for a quick introduction:

• Simple publisher and subscriber in Python

• A simple service and a client in Python

The given example only demonstrates the construction of simple executable Python
node. If we are developing a more complex Python package then it is necessary to do
better organization of our code. On the following link you can find how to organize your
code so that your module is actually installed system wide using catkin:

• Installing Python and Catkin

5 Recording and replaying messages
ROS contains the rosbag package which enables the recording and playback of messages
posted to certain topics. This can be extremely useful for debugging purposes and some-
times enables us to develop programs without having access to the real robot. There are
numerous online resources on how to use this package:

• Command-line usage

• Code API

• Cookbook examples

2

http://wiki.ros.org/roslaunch/Commandline Tools
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/ParameterServer
http://wiki.ros.org/roscpp/Overview/Parameter Server
http://wiki.ros.org/rospy/Overview/Parameter Server
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)
http://wiki.ros.org/rospy_tutorials/Tutorials/WritingServiceClient
http://wiki.ros.org/rospy_tutorials/Tutorials/Makefile
http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag/Commandline
http://wiki.ros.org/rosbag/Code API
http://wiki.ros.org/rosbag/Cookbook


Let us try to record and playback massages using these package. In one terminal
start the roscore. In a second terminal start the turtlesim_node from the turtlesim
package. In a third terminal start the randomwalk.launch file which starts the pubvel
node by running:

roslaunch exercise2 randomwalk . launch

Let us now record the movement messages that are being published. Run the command:

rosbag record −−duration=2m −−output−name=randomwalk . bag /turtle1/cmd_vel /turtle1/pose

As you might have guessed it we will record the messages posted to the /turtle1/cmd_-
vel and the /turtle1/pose topics in the next 2 minutes and save them in a file called
randomwalk.bag. There are a lot of options available for the recording and playback of
.bag files so make sure you read the Command-line usage tutorial before you use it. Let
us now explore the recorded file. Navigate to its location and run the following command:

rosbag info randomwalk . bag

You can see a summary of its contents with information like which topics are contained
inside it, how many messages, what are their types and so on. Now let us play back the
recorded messages. First kill the node that is currently publishing movement commands,
navigate to the terminal that is running the pubvel node and press Ctrl+C. Next, navigate
the the location of the recorded .bag file and run the command:

rosbag play randomwalk . bag

Now the turtle should start moving and the examining the topics we can see that the
recorded messages are being published. There are many options for the playback of the
.bag files, one of which is pausing the playback by pressing the space key on the keyboard.

6 Some additional ROS commands

• In a terminal run:

rqt

This starts the ROS inspection GUI. In the plugins menu you can find many tools for
visualizing topics and nodes, publishing messages, sending service requests, working
with bag files and many others.

• Use the rosservice commands to find out what are the available services from the
turtlesim_node and use it to send a request to a certain function.

• Use rosparam to read the parameter that the same node sets. Change some values.

3



7 Homework
Your task is to create a service node which moves the simulated turtle from the turtlesim
package. The request should contain a string and an integer field. The string should be
one of "circle", "rectangle", "triangle" or "random" and the integer field is a duration.
The node should then move the turtle in a circular trajectory, rectangular, triangular or
random for the given duration in the integer field. After the given duration the turtle
should stop moving. The response to the client should contain a string field with the last
issued movement type.

4


	Services
	Starting multiple nodes
	Parameter Server
	Python nodes
	Recording and replaying messages
	Some additional ROS commands
	Homework

