Development of intelligent systems (RInS)

Transformations between coordinate frames

Danijel Skočaj
University of Ljubljana
Faculty of Computer and Information Science
Literature: Tadej Bajd (2006).
Osnove robotike, chapter 2

Academic year: 2021/22

Coordinate frames

3D environment

2D navigation

Degrees of freedom

- DOF
- 6 DOF for full description of the pose of an object in space
- 3 translations (position)
- 3 rotations (orientation)

Degrees of freedom

$$
\begin{aligned}
& \text { 天四 中 子四 } \\
& \text { 人四 }
\end{aligned}
$$

Degrees of freedom

Position and orientation of the robot

Pose of the object in 3D space

Robot manipulator

- ViCoS LCLWOS robot manipulator
- 5DOF
- 6DOF needed for general grasping

Chains of coordinate frames

- Transformations between coordinate frames

Position and orientation

- Pose=Position+Orientation
- Position(P2)=Position (P3)
- Position(P1)~=Position (P2)
- Orientation(P1)=Orientation (P3)
- Orientation(P2)~=Orientation (P3)
- Pose(P1)~=Pose(P2)~=Pose(P3)

Translation and rotation

- Moving objects:
- P1 v P3: Translation (T)
- P2 v P3: Rotation (R)
- P1 v P2: Translation in rotation

Position

- Position: vector from the origin of the coordinate frame to the point
- Position of the object P1:

$$
{ }^{0} \mathbf{p}_{1}={ }^{0} \mathrm{x}_{1}{ }^{0} \mathbf{i}+{ }^{0} \mathrm{y}_{1}{ }^{0} \mathbf{j}+{ }^{0} \mathrm{z}_{1}{ }^{0} \mathbf{k}
$$

Orientation

- Right-handed coordinate frame
- Rotation around x_{0} axis:
- Rotation matrix:

$$
{ }^{0} \mathbf{R}_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]
$$

- Orientation of c.f. O_{1} with respect to c.f. O_{0}
- Transformation of the vector ${ }^{1} \mathbf{p}$ expressed in the c.f. O_{1} into the coordinates expressed in the c.f. O_{0} :

$$
{ }^{0} \mathbf{p}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{p}
$$

Rotation matrices

- Rotation around x axis:

$$
\mathbf{R}_{X, \alpha}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]
$$

- Rotation around y axis :

$$
\mathbf{R}_{Y, \alpha}=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]
$$

- Rotation around z axis :

$$
\mathbf{R}_{z, \alpha}=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Properties of rotation matrix

- Rotation is an orthogonal transformation matrix
- Inverse transformation:

$$
{ }^{1} \mathbf{R}_{0}=\left({ }^{0} \mathbf{R}_{1}\right)^{-1}=\left({ }^{0} \mathbf{R}_{1}\right)^{T}
$$

- In the right-handed coordinate frame the determinant equals to 1
- Addition of angles:

$$
\mathbf{R}_{X, \alpha_{1}} \cdot \mathbf{R}_{X, \alpha_{2}}=\mathbf{R}_{X, \alpha_{1}+\alpha_{2}}
$$

- Backward rotation:

$$
\mathbf{R}_{X, \alpha}{ }^{-1}=\mathbf{R}_{X,-\alpha}
$$

Consecutive rotations

- Postmultiplicate the vector with the rotation matrix
- Consecutive rotations:

$$
\begin{gathered}
{ }^{0} \mathbf{p}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{p} \quad{ }^{1} \mathbf{p}={ }^{1} \mathbf{R}_{2} \cdot{ }^{2} \mathbf{p} \\
{ }^{0} \mathbf{p}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{R}_{2}{ }^{2} \mathbf{p}
\end{gathered}
$$

- Rotation matrices are postmultiplicated:

$$
{ }^{0} \mathbf{R}_{2}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{R}_{2}
$$

- In general:
- Postmultiplicate matrices for all rotations
- Rotations always refer to the respective relative current coordinate frame

$$
{ }^{0} \mathbf{R}_{n}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{R}_{2} \cdots{ }^{n-1} \mathbf{R}_{n}
$$

Transformations

- Transformation from one c.f. to another:

- If c.f. are parallel:

$$
{ }^{0} \mathbf{p}={ }^{1} \mathbf{p}+{ }^{0} \mathbf{d}_{1}
$$

- Only translation
- If c.f. are not parallel: ${ }^{0} \mathbf{p}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{p}+{ }^{0} \mathbf{d}_{1}$
- Rotation and translation
- General pose description

Matrix notation

- Three coordinate frames:

$$
\begin{gathered}
{ }^{0} \mathbf{p}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{p}+{ }^{0} \mathbf{d}_{1} \quad{ }^{1} \mathbf{p}={ }^{1} \mathbf{R}_{2} \cdot{ }^{2} \mathbf{p}+{ }^{1} \mathbf{d}_{2} \\
{ }^{0} \mathbf{p}={ }^{0} \mathbf{R}_{2} \cdot{ }^{2} \mathbf{p}+{ }^{0} \mathbf{d}_{2}
\end{gathered}
$$

- Combine the transformations:

$$
\begin{gathered}
{ }^{0} \mathbf{R}_{2}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{R}_{2} \quad{ }^{0} \mathbf{d}_{2}={ }^{0} \mathbf{d}_{1}+{ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{d}_{2} \\
{ }_{\mathbf{p}}^{\mathbf{p}}={ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{R}_{2}{ }^{2} \mathbf{p}+{ }^{0} \mathbf{R}_{1}{ }^{1} \mathbf{d}_{2}+{ }^{0} \mathbf{d}_{1}
\end{gathered}
$$

- We can add the translation vectors if they are expressed in the same coordinate frame
- The two equations in the matrix form:

$$
\left[\begin{array}{cc}
{ }^{0} \mathbf{R}_{1} & { }^{0} \mathbf{d}_{1} \\
\mathbf{0} & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
{ }^{1} \mathbf{R}_{2} & { }^{1} \mathbf{d}_{2} \\
\mathbf{0} & 1
\end{array}\right]=\left[\begin{array}{cc}
{ }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{R}_{2} & { }^{0} \mathbf{R}_{1} \cdot{ }^{1} \mathbf{d}_{2}+{ }^{0} \mathbf{d}_{1} \\
\mathbf{0} & 1
\end{array}\right]
$$

Homogeneous transformations

- General pose

$$
{ }^{0} \mathbf{p}=\mathbf{R} \cdot{ }^{1} \mathbf{p}+\mathbf{d}
$$

can be expressed in the matrix form:

$$
\mathbf{H}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{d} \\
\mathbf{0} & 1
\end{array}\right]
$$

- Homogeneous transformation - homogenises (combines) rotation and translation in one matrix
- Very concise and convenient format
- Homogeneous matrix of size 4×4 (for 3D space)
- One row is added, also 1 in the position vector

$$
\left[\begin{array}{l}
{ }^{0} \mathbf{p} \\
1
\end{array}\right]\left[\begin{array}{c}
{ }^{1} \mathbf{p} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
{ }^{0} \mathbf{p} \\
1
\end{array}\right]={ }^{0} \mathbf{H}_{1}\left[\begin{array}{c}
1 \mathbf{p} \\
1
\end{array}\right]
$$

Homogenous matrix

- Rotation R and translation d :

- Only rotation:

Only translation:
$\left[\begin{array}{ccc|c}\hline \circ & \circ & \circ & 0 \\ \circ & \boldsymbol{R} & \circ & 0 \\ 0 & \circ & \circ & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc|c}\hline 1 & 0 & 0 & \circ \\ 0 & 1 & 0 & d \\ 0 & 0 & 1 & \circ \\ \hline 0 & 0 & 0 & 1\end{array}\right]$

Properties of homogeneous transformation

- Inverse of homogeneous transformation:

$$
\begin{aligned}
& { }^{0} \mathbf{p}=\mathbf{R} \cdot{ }^{1} \mathbf{p}+\mathbf{d} \\
& { }^{1} \mathbf{p}=\mathbf{R}^{T} \cdot{ }^{0} \mathbf{p}-\mathbf{R}^{T} \mathbf{d} \\
& \mathbf{H}^{-1}=\left[\begin{array}{cc}
\mathbf{R}^{T} & -\mathbf{R}^{T} \cdot \mathbf{d} \\
\mathbf{0} & 1
\end{array}\right]
\end{aligned}
$$

- Consecutive poses:
- Postmultiplication of homogeneous transformations:

$$
\begin{aligned}
& { }^{{ }^{0} \mathbf{H}_{2}={ }^{0} \mathbf{H}_{1} \cdot{ }^{1} \mathbf{H}_{2}} \\
& { }^{0} \mathbf{H}_{\mathrm{n}}={ }^{0} \mathbf{H}_{1} \cdot{ }^{1} \mathbf{H}_{2} \ldots{ }^{\mathrm{n}-1} \mathbf{H}_{\mathrm{n}}
\end{aligned}
$$

- An element can be transformed arbitrary number of times by multiplying homogeneous matrices

Example

- Two rotations
- Vector $\mathbf{v}=[7,3,2,1]^{\mathrm{T}}$
first rotate for 90° around z axis $\mathbf{w}=\boldsymbol{\operatorname { R o t }}(\mathrm{z}, 90) \mathbf{v}$ and then for 90° around y axis $\quad \mathbf{q}=\operatorname{Rot}(\mathrm{y}, 90) \mathbf{w}$

Example- two rotations

$$
\begin{aligned}
\mathbf{w} & =\operatorname{Rot}(z, 90) \mathbf{v} \\
\mathbf{q} & =\boldsymbol{\operatorname { R o t }}(\mathrm{y}, 90) \mathbf{w} \\
\mathbf{q} & =\boldsymbol{\operatorname { R o t }}(\mathrm{y}, 90) \boldsymbol{\operatorname { R o t }}(\mathrm{z}, 90) \mathbf{v}
\end{aligned}
$$

$$
\boldsymbol{\operatorname { R o t }}(\mathrm{y}, 90) \operatorname{Rot}(\mathrm{z}, 90)=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{q}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
7 \\
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
7 \\
3 \\
1
\end{array}\right]
$$

Example - translation

- After two rotations also translate the vector for $(4,-3,7)$
- Merge
- Translation $\operatorname{Trans}(4 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k})$ with rotations $\operatorname{Rot}(y, 90) \cdot \operatorname{Rot}(z, 90)$

$$
\begin{aligned}
\mathbf{H}_{1} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 7 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 4 \\
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 7 \\
0 & 0 & 0 & 1
\end{array}\right]= \\
& =\operatorname{Trans}(4,-3,7) \operatorname{Rot}(y, 90) \operatorname{Rot}(z, 90)
\end{aligned}
$$

- Transformation of the point $(7,3,2)$:

$$
\mathbf{x}=\mathbf{H}_{1} \cdot \mathbf{v}=\left[\begin{array}{llll}
0 & 0 & 1 & 4 \\
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 7 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
7 \\
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
4 \\
10 \\
1
\end{array}\right]
$$

Transformation of the coordinate frame

- Homogeneous transformation matrix transforms the base coordinate frame

$$
\operatorname{Trans}(4,-3,7) \operatorname{Rot}(y, 90) \boldsymbol{\operatorname { R o t }}(\mathrm{z}, 90)
$$

- Vector of origin of c.f.:

$$
\mathbf{H}_{1} \cdot \mathbf{v}=\left[\begin{array}{cccc}
0 & 0 & 1 & 4 \\
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 7 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 \\
-3 \\
7 \\
1
\end{array}\right]=\mathbf{v}^{\prime}
$$

- Unit vectors:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 0 & 1 & 4 \\
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 7 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2 \\
7 \\
1
\end{array}\right]=\mathbf{x}_{e}^{\prime}} \\
& \mathbf{y e}^{\prime}=[4,-3,8,1]^{\mathrm{T}} \quad, \quad \mathbf{z e}_{\mathrm{e}}=[5,-3,7,1]^{\mathrm{T}}
\end{aligned}
$$

Pose of the coordinate frame

- Unit vectors of the new coordinate frame:

$$
\begin{aligned}
& \mathbf{x}_{\mathrm{e}}{ }^{\mathrm{n}}: \quad 4 \mathbf{i}-2 \mathbf{j}+7 \mathbf{k}-4 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k}=0 \mathbf{i}+1 \mathbf{j}+0 \mathbf{k} \\
& x^{{ }^{n}}=[0,1,0,0]^{T} \\
& y_{e}{ }^{n}: 4 \mathbf{i}-3 \mathbf{j}+8 \mathbf{k}-4 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k}=0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k} \\
& y_{e}{ }^{n}=[0,0,1,0]^{T} \\
& \mathbf{z}_{\mathrm{e}}{ }^{\mathrm{n}}=5 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}-4 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k}=1 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k} \\
& z_{e}{ }^{n}=[1,0,0,0]^{T}
\end{aligned}
$$

- Transformaction matrix descibes the coordinate frame!

$$
\mathbf{k} \quad \mathbf{v}^{\prime}=[4,-3,7,1]^{\mathrm{T}}
$$

Movement of the coordinate frame

- Premultiplication or postmultiplication (of an object or c.f.) with transformation
- Example:
- Coordinate frame: $\quad \mathbf{C}=\left[\begin{array}{cccc}\mathbf{i}_{\mathbf{c}} & \mathbf{j}_{\mathbf{c}} & \mathbf{k}_{\mathbf{c}} \\ 1 & 0 & 0 & 20 \\ 0 & 0 & -1 & 10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \mathbf{i}$
- Transformation:

$$
\mathbf{P}=\left[\begin{array}{cccc}
0 & -1 & 0 & 10 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 10 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\operatorname{Trans}(10,0,0) \cdot \operatorname{Rot}(z, 90)
$$

Premultiplication

$$
\text { (P) } \mathbf{C}=\mathbf{X}=\left[\begin{array}{cccc}
0 & -1 & 0 & 10 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 20 \\
0 & 0 & -1 & 10 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 20 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The pose of the object is transformed with respect to the fixed reference coordinate frame in which the object coordinates were given.
- Order of transformations:
$\operatorname{Trans}(10,0,0) \cdot \boldsymbol{\operatorname { R o t }}(z, 90)$

Postmultiplication

- The pose of the object is transformed with respect to its own relative current coordinate frame
- Order of transformations:
$\operatorname{Trans}(10,0,0) \cdot \boldsymbol{\operatorname { R o t }}(z, 90)$

Movement of the reference c.f.

- Example: Trans(2,1,0)Rot(z,90)

$$
\begin{aligned}
{\left[\begin{array}{cccc}
0 & -1 & 0 & 2 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } & \cdot\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]= \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
0 & -1 & 0 & 2 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]= \\
& =\left[\begin{array}{cccc}
0 & -1 & 0 & 2 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Movement of the reference c.f.

- Example: Trans(2,1,0)Rot(z,90)

With respect to the reference coordinate frame:

Package TF in ROS

- Maintenance of the coordinate frames through time

Conventions

- Right-handed coordinate frame
- Orientation of the robot or object axes
- x: forward
- y : left
- z: up
- Orientation of the camera axes
- z: forward
- x: right
- y: down
- Rotation representations

- quaternions
- rotation matrix
- rotations around X, Y and Z axes
- Euler angles

Coordinate frames on mobile plaforms

- map (global map)
- world coordinate frame
- does not change (or very rarely)
- long-term reference
- useless in short-term
- odom (odometry)
- world coordinate frame
- changes with respect to odometry
- useless in long-term
- uselful in short-term

- base_link (robot)
- attached to the robot
- robot coordinate frame

Tree of coordinate frames

- ROS TF2
- tree of coordinate frames and their relative poses
- distributed representation
- dynamic representation
- changes through time
- accessible representation
- querying relations between arbitrary coordinate frames

