
Lab 7 - TensorFlow for voice recognition

TensorFlow is a library for different data manipulations, but it is mostly used for neural networks.
TensorFlow Lite is its light-weight counterpart suitable for running on Android devices. In this lab
we will first see:

1. how to record audio using android devices;
2. how to use a pre-trained neural network model for real-time voice recognition;
3. how to dynamically adjust the sensing rate.

Starting application

To shortcut the development process, you can download the starting code from:

https://bitbucket.org/pbdfrita/msfrita_voice_recognition

The application is based on the TensorFlow Lite Speech Command Recognition Android Demo .
You should be able to run the application on your Android device (or emulator). The application
performs recognition of speech commands and highlights the recognized word. Test it and make
sure that it works.

It is a simple application that contains only two activities:

1. RecognizeActivity.java - helper activity that simplifies the recognition process;
2. SpeechActivity.java - main activity which implements all functionalities. We will focus

on this activity.

Check the onCreate() method and try to understand the six functions called from there:

1. loadRecognitionSettings() - Sets recognition parameters;
2. loadModel() - Loads the neural network model for recognition of speech commands;
3. requestMicrophonePermission() - Checks permissions;
4. startRecording() - Starts sensing audio using the device’s microphone;
5. startRecognition() - Applies the model on the sensed audio;
6. setUI() - Updates the user interface.

To make sure that the application works properly when being paused, you should call
 startBackgroundThread() in the onResume(); and call stopBackgroundThread() in the
onStop(). Make sure that you understand the two functions. How many Threads are used in the
application?

https://bitbucket.org/pbdfrita/msfrita_voice_recognition

Layout update

At the bottom of the layout activity_speech.xml there is a TextView that shows the inference
time. Bellow this TextView, add two more TextViews:

1. Detected Voice Activity: Shows the value of the variable VAD_SCORE
2. Time Between Samples: Shows the value of the variable TIME_BETWEEN_SAMPLES_MS

Voice Recognition

The results of the most recent recognition process can be accessed via the object
RecognizeCommands.RecognitionResult result i n the function recognize(). The value
 result.score represents an estimation about how certain the model is that a specific word has
been recognized. The higher this score is, the more certain the model is. Use this score to
create a module for Voice Activation Detection (VAD). You should:

- calculate the VAD_SCORE using the equation: VAD_SCORE = 100 * result . score ;
- update the function checkVAD(VAD_SCORE) so that it:

1. updates the UI (it shows the latest value of the VAD_SCORE)
2. changes the UI background if a voice has been detected (VAD_SCORE >

 VAD_THRESHOLD). If not, it should stay white.

- test the application. Is your VAD module working i.e., is the background color changing when
you speak close to the microphone?

Dynamically adjust the sensing rate

Currently, the application senses at a constant rate, which can be changed using the variable
TIME_BETWEEN_SAMPLES_MS. This variable tells the application how long the recording thread
should sleep, before it records the next audio sample.

Now that we have a working VAD module, we can use it to dynamically adjust the sensing rate.
If there is no voice detected, the device should sense less often. If there is a voice detected, the
device should sense more often. Update the application using the following guidelines:
- If a voice has been detected, the sensing rate should increase for 50%;
- If a voice has NOT been detected, the sensing rate should decrease for 50%;
- The sensing rate should not be smaller than MINIMUM_TIME_BETWEEN_SAMPLES_MS;
- The sensing rate should not be larger than MAX_TIME_BETWEEN_SAMPLES_MS;
- Update the TextView Time_between_samples, every time the sensing rate changes.

If you did not attend the lab slot in-person at FRI, you should commit your solution to a private
Bitbucket repository named FRIMS2021-LAB-7 and a user pbdfrita (pbdfrita@gmail.com)
should be added as a read-only member. The solutions will be pulled from your repository on
Sunday, May 8th, 23:59.

